1
|
Ke K, Li L, Lu C, Zhu Q, Wang Y, Mou Y, Wang H, Jin W. The crosstalk effect between ferrous and other ions metabolism in ferroptosis for therapy of cancer. Front Oncol 2022; 12:916082. [PMID: 36033459 PMCID: PMC9413412 DOI: 10.3389/fonc.2022.916082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death process characterized by excessive accumulation of reactive oxygen species and lipid peroxidation. The elucidation of ferroptosis pathways may lead to novel cancer therapies. Current evidence suggests that the mechanism of ferroptosis can be summarized as oxidative stress and antioxidant defense mechanisms. During this process, ferrous ions play a crucial role in cellular oxidation, plasma membrane damage, reactive oxygen species removal imbalance and lipid peroxidation. Although, disregulation of intracellular cations (Fe2+, Ca2+, Zn2+, etc.) and anions (Cl-, etc.) have been widely reported to be involved in ferroptosis, their specific regulatory mechanisms have not been established. To further understand the crosstalk effect between ferrous and other ions in ferroptosis, we reviewed the ferroptosis process from the perspective of ions metabolism. In addition, the role of ferrous and other ions in tumor therapy is briefly summarized.
Collapse
Affiliation(s)
- Kun Ke
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li Li
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao Lu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qicong Zhu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuanyu Wang
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiping Mou
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huiju Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| | - Weiwei Jin
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Weiwei Jin, ; Huiju Wang,
| |
Collapse
|
2
|
Chen P, He M, Chen B, Hu B. Size- and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111110. [PMID: 32810646 DOI: 10.1016/j.ecoenv.2020.111110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
ZIF-8 nanoparticles (NPs) has been demonstrated with good potential in drug delivery, which causes an increasing attention on relevant toxicity study. In this work, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide), glutathione (GSH), reactive oxygen species (ROS), stain analysis and gene detection assays were performed on ZIF-8 (50, 90 and 200 nm) incubated HepG2 cells. Moreover, time-resolved inductively coupled plasma mass spectrometry (TRA-ICP-MS) was applied for single cell analysis; the variation in cellular zinc amount and the proportion of zinc up-taken cells was investigated as a function of NPs size, incubation concentration/time and elimination. Smaller size of ZIF-8 NPs would lead to higher zinc accumulation and toxicity. The function of ZIF-8 on cells is assumed to be mainly related to zinc intracellular accumulation. The possible action path is presented as high accumulation of zinc in ZIF-8 incubated cells lead to high ROS level and cellular inflammation, ultimately inducing necrocytosis. For better understanding of the bio-effect of ZIF-8, ZnO NPs and Zn2+ incubated HepG2 cells were evaluated in the same way. Higher accumulation of zinc in larger part of the cell population was found in ZIF-8 incubated cells than that in ZnO NPs incubated cells. It demonstrated higher bioavailability for ZIF-8 over ZnO NPs. While, in drug delivery application, the possible risk of the remained intracellular ZIF-8 cannot be ignored.
Collapse
Affiliation(s)
- Pengyu Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei Province, PR China.
| |
Collapse
|
3
|
Shirai M, Matsuoka M, Makino T, Kai K, Teranishi M, Takasaki W. Hepatic glutathione contributes to attenuation of thioacetamide-induced hepatic necrosis due to suppression of oxidative stress in diet-induced obese mice. J Toxicol Sci 2015; 40:509-21. [PMID: 26165648 DOI: 10.2131/jts.40.509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously reported that hepatic necrosis induced by thioacetamide (TA), a hepatotoxicant, was attenuated in mice fed a high-fat diet (HFD mice) in comparison with mice fed a normal rodent diet (ND mice). In this study, we focused on investigation of the mechanism of the attenuation. Hepatic content of thiobarbituric acid reactive substances (TBARS), an oxidative stress marker, significantly increased in ND mice at 24 and 48 hr after TA administration in comparison to that in vehicle-treated ND mice. At these time points, severe hepatic necrosis was observed in ND mice. Treatment with an established antioxidant, butylated hydroxyanisole, attenuated the TA-induced hepatic necrosis in ND mice. In contrast, in HFD mice, hepatic TBARS content did not increase, and hepatic necrosis was attenuated in comparison with ND mice at 24 and 48 hr after TA dosing. Metabolomics analysis regarding hepatic glutathione, a biological antioxidant, revealed decreased glutathione and changes in the amount of glutathione metabolism-related metabolites, such as increased ophtalmate and decreased cysteine, and this indicated activation of glutathione synthesis and usage in HFD mice. Finally, after treatment with L-buthionine-S,R-sulfoxinine, an inhibitor of glutathione synthesis, TA-induced hepatic necrosis was enhanced and hepatic TBARS contents increased after TA dosing in HFD mice. These results suggested that activated synthesis and usage of hepatic GSH, which suppresses hepatic oxidative stress, is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice.
Collapse
Affiliation(s)
- Makoto Shirai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | | | | | | | | | | |
Collapse
|
4
|
Uski O, Jalava PI, Happo MS, Torvela T, Leskinen J, Mäki-Paakkanen J, Tissari J, Sippula O, Lamberg H, Jokiniemi J, Hirvonen MR. Effect of fuel zinc content on toxicological responses of particulate matter from pellet combustion in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:331-340. [PMID: 25553547 DOI: 10.1016/j.scitotenv.2014.12.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Significant amounts of transition metals such as zinc, cadmium and copper can become enriched in the fine particle fraction during biomass combustion with Zn being one of the most abundant transition metals in wood combustion. These metals may have an important role in the toxicological properties of particulate matter (PM). Indeed, many epidemiological studies have found associations between mortality and PM Zn content. The role of Zn toxicity on combustion PM was investigated. Pellets enriched with 170, 480 and 2300 mg Zn/kg of fuel were manufactured. Emission samples were generated using a pellet boiler and the four types of PM samples; native, Zn-low, Zn-medium and Zn-high were collected with an impactor from diluted flue gas. The RAW 264.7 macrophage cell line was exposed for 24h to different doses (15, 50,150 and 300 μg ml(-1)) of the emission samples to investigate their ability to cause cytotoxicity, to generate reactive oxygen species (ROS), to altering the cell cycle and to trigger genotoxicity as well as to promote inflammation. Zn enriched pellets combusted in a pellet boiler produced emission PM containing ZnO. Even the Zn-low sample caused extensive cell cycle arrest and there was massive cell death of RAW 264.7 macrophages at the two highest PM doses. Moreover, only the Zn-enriched emission samples induced a dose dependent ROS response in the exposed cells. Inflammatory responses were at a low level but macrophage inflammatory protein 2 reached a statistically significant level after exposure of RAW 264.7 macrophages to ZnO containing emission particles. ZnO content of the samples was associated with significant toxicity in almost all measured endpoints. Thus, ZnO may be a key component producing toxicological responses in the PM emissions from efficient wood combustion. Zn as well as the other transition metals, may contribute a significant amount to the ROS responses evoked by ambient PM.
Collapse
Affiliation(s)
- O Uski
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland; National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - P I Jalava
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - M S Happo
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - T Torvela
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - J Leskinen
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - J Mäki-Paakkanen
- National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - J Tissari
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - O Sippula
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - H Lamberg
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - J Jokiniemi
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland; VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - M-R Hirvonen
- University of Eastern Finland, Department of Environmental Science, P.O. Box 1627, FI-70211 Kuopio, Finland; National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95, FI-70701 Kuopio, Finland.
| |
Collapse
|
5
|
An JM, Moon SA, Hong SY, Kang JW, Seo JT. Neuroprotective effect of 3-morpholinosydnonimine against Zn2+-induced PC12 cell death. Eur J Pharmacol 2015; 748:37-44. [DOI: 10.1016/j.ejphar.2014.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022]
|
6
|
Torvela T, Uski O, Karhunen T, Lähde A, Jalava P, Sippula O, Tissari J, Hirvonen MR, Jokiniemi J. Reference Particles for Toxicological Studies of Wood Combustion: Formation, Characteristics, and Toxicity Compared to Those of Real Wood Combustion Particulate Mass. Chem Res Toxicol 2014; 27:1516-27. [DOI: 10.1021/tx500142f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tiina Torvela
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Oskari Uski
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department
of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Tommi Karhunen
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Anna Lähde
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Pasi Jalava
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department
of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Olli Sippula
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jarkko Tissari
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Maija-Riitta Hirvonen
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department
of Environmental Health, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jorma Jokiniemi
- Department
of Environmental Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- VTT Technical
Research
Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo, Finland
| |
Collapse
|
7
|
Shirai M, Arakawa S, Miida H, Matsuyama T, Kinoshita J, Makino T, Kai K, Teranishi M. Thioacetamide-induced Hepatocellular Necrosis Is Attenuated in Diet-induced Obese Mice. J Toxicol Pathol 2013; 26:175-86. [PMID: 23914059 PMCID: PMC3695339 DOI: 10.1293/tox.26.175] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/28/2013] [Indexed: 12/31/2022] Open
Abstract
To assess modification of thioacetamide-induced hepatotoxicity in mice fed a high-fat
diet, male C57BL/6J mice were fed a normal rodent diet or a high-fat diet for 8 weeks and
then treated once intraperitoneally with thioacetamide at 50 mg/kg body weight. At 24 and
48 hours after administration, massive centrilobular hepatocellular necrosis was observed
in mice fed the normal rodent diet, while the necrosis was less severe in mice fed the
high-fat diet. In contrast, severe swelling of hepatocytes was observed in mice fed the
high-fat diet. In addition, mice fed the high-fat diet displayed more than a 4-fold higher
number of BrdU-positive hepatocytes compared with mice fed the normal rodent diet at 48
hours after thioacetamide treatment. To clarify the mechanisms by which the hepatic
necrosis was attenuated, we investigated exposure to thioacetamide and one of its
metabolites, the expression of CYP2E1, which converts thioacetamide to reactive
metabolites, and the content of glutathione S-transferases in the liver. However, the
reduced hepatocellular necrosis noted in mice fed the high-fat diet could not be explained
by the differences in exposure to thioacetamide or thioacetamide sulfoxide or by
differences in the expression of drug-metabolizing enzymes. On the other hand, at 8 hours
after thioacetamide administration, hepatic total glutathione in mice fed the high-fat
diet was significantly lower than that in mice fed the normal diet. Hence, decreased
hepatic glutathione amount is a candidate for the mechanism of the attenuated necrosis. In
conclusion, this study revealed that thioacetamide-induced hepatic necrosis was attenuated
in mice fed the high-fat diet.
Collapse
Affiliation(s)
- Makoto Shirai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Kuo CC, Liu TW, Chen LT, Shiah HS, Wu CM, Cheng YT, Pan WY, Liu JF, Chen KL, Yang YN, Chen SN, Chang JY. Combination of arsenic trioxide and BCNU synergistically triggers redox-mediated autophagic cell death in human solid tumors. Free Radic Biol Med 2011; 51:2195-209. [PMID: 22001324 DOI: 10.1016/j.freeradbiomed.2011.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022]
Abstract
Arsenic trioxide (As(2)O(3)) is an effective treatment for relapsed or refractory acute promyelocytic leukemia (APL). After the discovery of As(2)O(3) as a promising treatment for APL, several studies investigated the use of As(2)O(3) as a single agent in the treatment of solid tumors; however, its therapeutic efficacy is limited. Thus, the systematic study of the combination of As(2)O(3) with other clinically used chemotherapeutic drugs to improve its therapeutic efficacy in treating human solid tumors is merited. In this study, we demonstrate for the first time, using isobologram analysis, that As(2)O(3) exhibits a synergistic interaction with N,N'-bis(2-chloroethyl)-N-nitrosourea (BCNU). The synergistic augmentation of the cytotoxicity of As(2)O(3) with BCNU is in part through the autophagic cell death machinery in human solid tumor cells. As(2)O(3) and BCNU in combination produce enhanced cytotoxicity via the depletion of reduced glutathione (GSH) and augmentation of reaction oxygen species (ROS) production. Further analysis indicated that the extension of GSH depletion by this combined regimen occurs through the inhibition of the catalytic activity of glutathione reductase. Blocking ROS production with antioxidants or ROS scavengers effectively inhibits cell death and autophagy formation, indicating that redox-mediated autophagic cell death involves the synergism of As(2)O(3) with BCNU. Taken together, this is the first evidence that BCNU could help to extend the therapeutic spectrum of As(2)O(3). These findings will be useful in designing future clinical trials of combination chemotherapy with As(2)O(3) and BCNU, with the potential for broad use against a variety of solid tumors.
Collapse
Affiliation(s)
- Ching-Chuan Kuo
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.
Collapse
Affiliation(s)
- Ross G Cooper
- Division of Physiology, Birmingham City University, 704 Baker Building Franchise Street, Perry Barr, Birmingham B42 2SU, UK. E-mail:
| |
Collapse
|
10
|
Mitozo PA, de Souza LF, Loch-Neckel G, Flesch S, Maris AF, Figueiredo CP, Dos Santos ARS, Farina M, Dafre AL. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism. Free Radic Biol Med 2011; 51:69-77. [PMID: 21440059 DOI: 10.1016/j.freeradbiomed.2011.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 01/01/2023]
Abstract
Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H₂O₂ or cumene hydroperoxide (CuOOH), both at 100 μM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H₂O₂ decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H₂O₂ and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H₂O₂, but not in C6 cells. However, Prx-SO₃ formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices.
Collapse
Affiliation(s)
- Péricles Arruda Mitozo
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kreżel A, Wójcik J, Maciejczyk M, Bal W. Zn(II) complexes of glutathione disulfide: structural basis of elevated stabilities. Inorg Chem 2010; 50:72-85. [PMID: 21141850 DOI: 10.1021/ic101212y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glutathione disulfide (GSSG), a long disregarded redox partner of glutathione (GSH), is thought to participate in intracellular zinc homeostasis. We performed a concerted potentiometric and NMR spectroscopic study of protonation and Zn(II) binding properties of GSSG ((γECG)(2)) and a series of its nine analogs with C-terminal modifications, tripeptide disulfides: (γECS)(2), (γECE)(2), (γECG-NH(2))(2), (γECG-OEt)(2), and (γEcG)(2); dipeptide disulfides, (γEC)(2) and (γEC-OEt)(2); and mixed disulfides, γECG-γEC and γECG-γEC-OEt. The acid-base and Zn(II) complexation properties in this group of compounds are strictly correlated to average C-terminal electrostatic charges. In particular, it was demonstrated that GSSG assumes a bent (head-to-tail) conformation in solution at neutral pH, which is controlled by electrostatic attraction between the protonated γ-amino groups of the Glu residue and the deprotonated C-terminal Gly carboxylates. This interaction modulates the ability of GSSG to coordinate Zn(II), both indirectly, by affecting the basicities of the amino groups, and directly, through the participation of the Gly carboxylates in the outer coordination sphere of the Zn(II) ion. A specific coiled structure of the major [Zn-GSSG](2-) complex is additionally stabilized by the formation of hydrogen bonds between glycinyl carboxylates and two Zn(II)-coordinated water molecules. The elevated stability of Zn(II)-GSSG complexes was demonstrated by competition with FluoZin-3, a fluorescent sensor with high Zn(II) affinity, commonly used in in vitro and in vivo studies. The potential biological functions and reactivity of GSSG complexes of Zn(II) ions are discussed.
Collapse
Affiliation(s)
- Artur Kreżel
- Laboratory of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Tamka 2, 50-137 Wrocław, Poland.
| | | | | | | |
Collapse
|
12
|
Heyob KM, Rogers LK, Tipple TE, Welty SE. Riboflavin supplementation does not attenuate hyperoxic lung injury in transgenic (spc-mt)hGR mice. Exp Lung Res 2010; 37:155-61. [PMID: 21128861 DOI: 10.3109/01902148.2010.516057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aims of this study were to test the hypothesis that mice expressing mitochondrially targeted human glutathione reductase (GR) driven by a surfactant protein C promoter ((spc-mt)hGR) are functionally riboflavin deficient and that this deficiency exacerbates hyperoxic lung injury. The authors further hypothesized that dietary supplementation with riboflavin (FADH) will improve the bioactivity of GR, thus enhancing resistance to hyperoxic lung injury. Transgenic (mt-spc)hGR mice and their nontransgenic littermates were fed control or riboflavin-supplemented diets upon weaning. At 6 weeks of age the mice were exposed to either room air (RA) or >95% O(2) for up to 84 hours. GR activities (with and without exogenous FADH) and GR protein levels were measured in lung tissue homogenates. Glutathione (GSH) and glutathione disulfide (GSSG) concentrations were assayed to identify changes in GR activity in vivo. Lung injury was assessed by right lung to body weight ratios and bronchoalveolar lavage protein concentrations. The data showed that enhanced GR activity in the mitochondria of lung type II cells does not protect adult mice from hyperoxic lung injury. Furthermore, the addition of riboflavin to the diets of (spc-mt)hGR mice neither enhances GR activities nor offers protection from hyperoxic lung injury. The results indicated that modulation of mitochondrial GR activity in lung type II cells is not an effective therapy to minimize hyperoxic lung injury.
Collapse
Affiliation(s)
- Kathryn M Heyob
- The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Proteins with oxidizable thiols are essential to many functions of cell nuclei, including transcription, chromatin stability, nuclear protein import and export, and DNA replication and repair. Control of the nuclear thiol-disulfide redox states involves both the elimination of oxidants to prevent oxidation and the reduction of oxidized thiols to restore function. These processes depend on the common thiol reductants, glutathione (GSH) and thioredoxin-1 (Trx1). Recent evidence shows that these systems are controlled independent of the cytoplasmic counterparts. In addition, the GSH and Trx1 couples are not in redox equilibrium, indicating that these reductants have nonredundant functions in their support of proteins involved in transcriptional regulation, nuclear protein trafficking, and DNA repair. Specific isoforms of glutathione peroxidases, glutathione S-transferases, and peroxiredoxins are enriched in nuclei, further supporting the interpretation that functions of the thiol-dependent systems in nuclei are at least quantitatively distinct, and probably also qualitatively distinct, from similar processes in the cytoplasm. Elucidation of the distinct nuclear functions and regulation of the thiol redox pathways in nuclei can be expected to improve understanding of nuclear processes and also to provide the basis for novel approaches to treat aging and disease processes associated with oxidative stress in the nuclei.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
14
|
Saini N, Schaffner W. Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biol Chem 2010; 391:513-8. [PMID: 20302514 DOI: 10.1515/bc.2010.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder in which oxidative stress is implicated as a major causative factor. Mutations in the gene encoding Parkin, a ubiquitin ligase, are responsible for a familial form of PD. In a Drosophila disease model lacking Parkin (park(25) null mutant), we tested the effect of zinc supplementation. Zinc is an essential trace metal and a component of many enzymes and transcriptional regulators. Unlike copper and iron, zinc is not redox-active and under most conditions serves as an antioxidant. We find that the condition of parkin mutants raised on zinc-supplemented food is greatly improved. At zinc concentrations where controls begin to show adverse effects as a result of the metal supplement, parkin mutants perform best, as manifested in a higher frequency of reaching adulthood, extended lifespan and improved motoric abilities.
Collapse
Affiliation(s)
- Nidhi Saini
- Institute of Molecular Life Sciences, University of Zürich, Switzerland
| | | |
Collapse
|
15
|
Walther UI, Mückter H. GLUTATHIONE SYNTHESIS AGAINST OXIDANT INJURY BY PEROXIDES IN TWO ALVEOLAR EPITHELIAL CELL LINES. Exp Lung Res 2009; 35:89-103. [DOI: 10.1080/01902140802441569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Franco JL, Posser T, Mattos JJ, Trevisan R, Brocardo PS, Rodrigues ALS, Leal RB, Farina M, Marques MRF, Bainy ACD, Dafre AL. Zinc reverses malathion-induced impairment in antioxidant defenses. Toxicol Lett 2009; 187:137-43. [PMID: 19429256 DOI: 10.1016/j.toxlet.2009.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Malathion toxicity has been related to the inhibition of acetylcholinesterase and induction of oxidative stress, while zinc has been shown to possess neuroprotective effects in experimental and clinical studies. In the present study the effect of zinc chloride (zinc) was addressed in adult male Wistar rats following a long-term treatment (30 days, 300mg/L in tap water ad libitum) against an acute insult caused by a single malathion exposure (250mg/kg, i.p.). Malathion produced a significant decrease in hippocampal acetylcholinesterase, as well as a decrease in the activity of several hippocampal antioxidant enzymes: glutathione reductase, glutathione S-transferase, catalase and superoxide dismutase. The pretreatment with zinc did not completely prevent acetylcholinesterase activity impairment; however, antioxidant activity was completely restored. Zinc administration significantly increased HSP60, but not HSP70, expression. The HSP60 increase suggests a novel zinc-dependent pathway, which may be related to a counteracting mechanism against malathion effects. Based on these results the following hypothesis can be presented: the published "pro-oxidative" effect of malathion may be related, among others, to compromised antioxidant defenses, while the zinc "antioxidant" action may be related to the preservation of antioxidant defenses. In conclusion, our data points to the inhibition of antioxidant enzymes as an important non-cholinergic effect of malathion, which can be rescued by oral zinc treatment.
Collapse
Affiliation(s)
- Jeferson L Franco
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Harvey C, Thimmulappa R, Singh A, Blake D, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 2009; 46:443-53. [PMID: 19028565 PMCID: PMC2634824 DOI: 10.1016/j.freeradbiomed.2008.10.040] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 12/22/2022]
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is the primary transcription factor protecting cells from oxidative stress by regulating cytoprotective genes, including the antioxidant glutathione (GSH) pathway. GSH maintains cellular redox status and affects redox signaling, cell proliferation, and death. GSH homeostasis is regulated by de novo synthesis as well as GSH redox state; previous studies have demonstrated that Nrf2 regulates GSH homeostasis by affecting de novo synthesis. We report that Nrf2 modulates the GSH redox state by regulating glutathione reductase (GSR). In response to oxidants, lungs and embryonic fibroblasts (MEFs) from Nrf2-deficient (Nrf2(-/-)) mice showed lower levels of GSR mRNA, protein, and enzyme activity relative to wild type (Nrf2(+/+)). Nrf2(-/-) MEFs exhibited greater accumulation of glutathione disulfide and cytotoxicity compared to Nrf2(+/+) MEFs in response to t-butylhydroquinone, which was rescued by restoring GSR. Microinjection of glutathione disulfide induced greater apoptosis in Nrf2(-/-) MEFs compared to Nrf2(+/+) MEFs. In silico promoter analysis of the GSR gene revealed three putative antioxidant-response elements (ARE1, -44; ARE2, -813; ARE3, -1041). Reporter analysis, site-directed mutagenesis, and chromatin immunoprecipitation assays demonstrated binding of Nrf2 to two AREs distal to the transcription start site. Overall, Nrf2 is critical for maintaining the GSH redox state via transcriptional regulation of GSR and protecting cells against oxidative stress.
Collapse
Affiliation(s)
- C.J. Harvey
- Department of Environmental Health Science, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - R.K. Thimmulappa
- Department of Environmental Health Science, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - A. Singh
- Department of Environmental Health Science, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - D.J. Blake
- Department of Environmental Health Science, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - G. Ling
- Department of Environmental Health Science, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - N. Wakabayashi
- Department of Environmental Health Science, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - J. Fujii
- Department of Biomolecular Function, Yamagata University, Yamagata, Japan
| | - A. Myers
- Division of Allergy and Clinical Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - S. Biswal
- Department of Environmental Health Science, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Corresponding author: E-mail address: (S. Biswal)
| |
Collapse
|
18
|
Heyob KM, Rogers LK, Welty SE. Glutathione reductase targeted to type II cells does not protect mice from hyperoxic lung injury. Am J Respir Cell Mol Biol 2008; 39:683-8. [PMID: 18566333 DOI: 10.1165/rcmb.2008-0112oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure of the lung epithelium to reactive oxygen species without adequate antioxidant defenses leads to airway inflammation, and may contribute to lung injury. Glutathione peroxidase catalyzes the reduction of peroxides by oxidation of glutathione (GSH) to glutathione disulfide (GSSG), which can in turn be reduced by glutathione reductase (GR). Increased levels of GSSG have been shown to correlate negatively with outcome after oxidant exposure, and increased GR activity has been protective against hyperoxia in lung epithelial cells in vitro. We tested the hypothesis that increased GR expression targeted to type II alveolar epithelial cells would improve outcome in hyperoxia-induced lung injury. Human GR with a mitochondrial targeting sequence was targeted to mouse type II cells using the SPC promoter. Two transgenic lines were identified, with Line 2 having higher lung GR activities than Line 1. Both transgenic lines had lower lung GSSG levels and higher GSH/GSSG ratios than wild-type. Six-week-old wild-type and transgenic mice were exposed to greater than 95% O2 or room air (RA) for 84 hours. After exposure, Line 2 mice had higher right lung/body weight ratios and lavage protein concentrations than wild-type mice, and both lines 1 and 2 had lower GSSG levels than wild-type mice. These findings suggest that GSSG accumulation in the lung may not play a significant role in the development of hyperoxic lung injury, or that compensatory responses to unregulated GR expression render animals more susceptible to hyperoxic lung injury.
Collapse
Affiliation(s)
- Kathryn M Heyob
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA
| | | | | |
Collapse
|
19
|
Walther UI, Walther SC, Mückter H, Fichtl B. Enhancing glutathione synthesis can decrease zinc-mediated toxicity. Biol Trace Elem Res 2008; 122:216-28. [PMID: 18193173 DOI: 10.1007/s12011-007-8072-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 11/27/2007] [Indexed: 11/30/2022]
Abstract
Zinc toxicity has been linked to cellular glutathione: A decrease in glutathione is followed by an increase in zinc-mediated toxicity. The question arises whether an increase in glutathione synthesis might decrease zinc-mediated cytotoxicity. We incubated five cell lines (hepatoma and lung-derived) with zinc chloride and 2 mmol/l N-acetyl-L-cysteine (NAC) to support glutathione synthesis. In all but one hepatic cell line, the glutathione content was increased by NAC as compared to the D-enantiomere NADC, whereas NADC did not increase GSH content as compared to not treated controls. In both alveolar epithelial cell lines, an increase in zinc tolerance was observed due to NAC as compared to NADC. In native fibroblast-like and the hepatoma cell lines, no changes in zinc tolerance were found due to NAC. In the fibroblast-like cells, zinc tolerance was increased due to NAC only after cellular glutathione had been previously decreased (by lowered cysteine concentrations in the medium). Enhancing glutathione synthesis can antagonize zinc-mediated toxicity in the alveolar epithelial cell lines, whereas some other characteristics than glutathione synthesis might be more important in other cell types. Furthermore, NAC acted as a GSH precursor only at cysteine medium concentrations of 10 micromol/l or below and therefore might be described as a poor cysteine repletor for glutathione synthesis.
Collapse
Affiliation(s)
- Udo Ingbert Walther
- Walther Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians Universität München, Nubbaumstr. 26, 80336, Munich, Germany.
| | | | | | | |
Collapse
|
20
|
Rao R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:7210-26. [PMID: 18508729 PMCID: PMC6261932 DOI: 10.2741/3223] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mounting body of evidence indicates that the disruption of epithelial tight junctions and resulting loss of barrier function play a crucial role in the pathogenesis of a variety of gastrointestinal, hepatic, pulmonary, kidney and ocular diseases. Increased production of inflammatory mediators such as cytokines and reactive oxygen species disrupt the epithelial and endothelial barrier function by destabilizing tight junctions. Oxidative stress induced by various reactive oxygen species such as hydrogen peroxide, nitric oxide, peroxynitrite and hypochlorous acid disrupt the epithelial and endothelial tight junctions in various tissues. The mechanism involved in oxidative stress-induced disruption of tight junction includes protein modification such as thiol oxidation, phosphorylation, nitration and carbonylation. The role of signaling molecules such as protein kinases and protein phosphatases in regulation of tight junctions is discussed in this article. Understanding such mechanisms in oxidative stress-induced disruption of epithelial and endothelial barrier functions is likely to provide insight into the pathogenesis of various inflammatory diseases, and may form a basis for the design of treatment strategies for different diseases.
Collapse
Affiliation(s)
- Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
21
|
Achard-Joris M, Moreau JL, Lucas M, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Boudou A, Bourdineaud JP. Role of metallothioneins in superoxide radical generation during copper redox cycling: Defining the fundamental function of metallothioneins. Biochimie 2007; 89:1474-88. [PMID: 17681660 DOI: 10.1016/j.biochi.2007.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
In order to demonstrate the in vivo antioxidant properties of metallothioneins (MTs), the bacteria Escherichia coli was used as a cell reactor in which we compared the metal binding and antioxidative functions of MTs from different species, with different structures and polypeptide lengths. No protective effects of cytoplasmic MTs from cadmium (Cd) or zinc (Zn) contamination were observed in a wild-type E. coli strain, although these MTs can efficiently bind both Cd and Zn. To test their antioxidant properties, MTs were expressed within the cytoplasm of a sodA sodB deficient mutated strain (QC1726). However, a paradoxical MT toxicity was found when this strain was contaminated with Cd and Zn, suggesting that in a wild-type strain, superoxide dismutase counteracts MT toxicity. The most toxic MT was the one with the strongest Cd and Zn binding capacities. This toxic effect was linked to the generation of superoxide radicals, since a Cd-contaminated QC1726 strain expressing oyster MT isoforms produced 75-85% more O(2)*(-) than the control QC1726 strain. Conversely, under anaerobiosis or in the presence of a copper chelator, MTs protected QC1726 strain from Cd and Zn contamination. A model is proposed to explain the observed MT toxicity.
Collapse
Affiliation(s)
- Maud Achard-Joris
- UMR 5805 CNRS - Université Bordeaux 1, Team Géochimie et Ecotoxicologie des Métaux dans les systèmes Aquatiques, Station Marine d'Arcachon, Place du Dr. Peyneau, 33120 Arcachon, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bishop GM, Dringen R, Robinson SR. Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radic Biol Med 2007; 42:1222-30. [PMID: 17382203 DOI: 10.1016/j.freeradbiomed.2007.01.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 12/01/2006] [Accepted: 01/10/2007] [Indexed: 11/30/2022]
Abstract
The release of zinc (Zn) from glutamatergic synapses contributes to the neuropathology of ischemia, traumatic brain injury, and stroke. Astrocytes surround glutamatergic synapses and are vulnerable to the toxicity of Zn, which impairs their antioxidative glutathione (GSH) system and elevates the production of reactive oxygen species (ROS). It is not known whether one or both of these actions are the primary cause of Zn-induced cell death in astrocytes. Using primary rat astrocyte cultures we have examined whether Zn-mediated impairment of GSH redox cycling is the main source of its toxicity. Zn acetate at concentrations of 100 microM or greater were found to inactivate glutathione reductase (GR) via an NADPH-dependent mechanism, while concentrations of 150 microM and above caused substantial cell death. Furthermore, Zn increased the ratio of GSSG:GSH in astrocytes, increased their export of GSSG, slowed their clearance of exogenous H2O2, and promoted the intracellular production of ROS. In contrast, the GR inhibitor, carmustine, did not induce cell death, cause the production of ROS, or alter the GSH thiol redox balance. Taken together these results indicate that Zn toxicity in astrocytes is primarily associated with the generation of intracellular ROS, rather than the inhibition of GR.
Collapse
Affiliation(s)
- Glenda M Bishop
- School of Psychology, Psychiatry and Psychological Medicine, Monash University, Wellington Rd, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
23
|
Cardoso LA, Ferreira ST, Hermes-Lima M. Reductive inactivation of yeast glutathione reductase by Fe(II) and NADPH. Comp Biochem Physiol A Mol Integr Physiol 2007; 151:313-321. [PMID: 17544307 DOI: 10.1016/j.cbpa.2007.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 03/18/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022]
Abstract
Glutathione reductase (GR) carries out the enzymatic reduction of glutathione disulfide (GSSG) to its reduced form (GSH) at the expense of the reducing power of NADPH. Previous studies have shown that GR from several species is progressively inactivated in the presence of NADPH, but that the mechanism of inactivation (especially in the presence of metals) has not been fully elucidated. We have investigated the involvement of iron ions in the inactivation of yeast (Saccharomyces cerevisiae) GR in the presence of NADPH. Even in the absence of added iron, inactivation of GR was partly blocked by the iron chelators, deferoxamine and ortho-phenanthroline, suggesting the involvement of trace amounts of contaminating iron in the mechanism of inhibition. Exogenously added antioxidants including ethanol, dimethylsulfoxide and 2-deoxyribose did not protect GR against NADPH-induced inactivation, whilst addition of exogenous Fe(II) (but not Fe(III)) potentiated the inactivation. Moreover, removal of oxygen from the medium led to increased inhibition of GR, whereas pre-incubation of the Fe(II)-containing medium for 30 min under normoxic conditions prior to the addition of GR abolished the enzyme inactivation by NADPH. Under these pre-incubation conditions, Fe(II) is fully oxidized to Fe(III) within 1 min. Furthermore, GR that had been previously inactivated in the presence of Fe(II) plus NADPH could be partially reactivated by treatment with ortho-phenanthroline and deferoxamine. In contrast, Fe(III) had no effect on GR reactivation. Together, these results indicate that yeast GR is inactivated by a reductive mechanism mediated by NADPH and Fe(II). According to this mechanism, GR is diverted from its normal redox cycling by the generation of an inactive reduced enzyme form in which both the FAD and thiol groups at the active site are likely in a reduced state.
Collapse
Affiliation(s)
- Luciano A Cardoso
- Oxyradical Research Group, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Sérgio T Ferreira
- Programa de Bioquímica e Biofisica Celular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | - Marcelo Hermes-Lima
- Oxyradical Research Group, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
24
|
Franco JL, Trivella DBB, Trevisan R, Dinslaken DF, Marques MRF, Bainy ACD, Dafre AL. Antioxidant status and stress proteins in the gills of the brown mussel Perna perna exposed to zinc. Chem Biol Interact 2006; 160:232-40. [PMID: 16564039 DOI: 10.1016/j.cbi.2006.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 11/25/2022]
Abstract
Zinc, at low levels, has several basic housekeeping functions in metalloenzymes, transcription factors, immunoregulation, growth, and cytoprotection, displaying antioxidant, anti-apoptotic, and anti-inflammatory roles. At high levels, however, the metal can be highly toxic. The aim of this work is to investigate the toxic effect of zinc on antioxidant status and stress proteins in the gills of the brown mussel Perna perna exposed for 48 h to zinc chloride (zinc) at 10, 30 and 100 microM. Glutathione reductase (GR) activity was drastically reduced at 30 and 100 microM zinc. At the lower levels, i.e. 10 microM zinc, antioxidant defenses were up-regulated, as were glutathione levels and the activities of glutathione peroxidase and catalase, in spite of the absence of effect on glutathione S-transferase and glucose 6-phosphate dehydrogenase activity. At the higher tested concentration of 100 microM zinc, oxidative stress was apparent as reflected by the increased lipid peroxidation end products and decreased protein thiol and glutathione levels, associated with an inability to up regulate antioxidant defenses. Using 30 microM zinc, higher gill rhodamine B efflux was observed, indicating an activation of multixenobiotic resistance (MXR) activity, which is reinforced by increased immunoreactive P-glycoprotein detection. Zinc also increased the HSP60-immunoreactive protein, whereas the HSP70-immunoreactive protein remained unchanged. Overall, the results indicate that zinc toxicity -- at higher levels -- may be connected to a strong inhibition of GR activity, and related to the pro-oxidative state found. Mussels showed an adaptive-like response to 10 microM zinc by increasing antioxidant defenses. Increased P-glycoprotein and HSP60 expression, and rhodamine B efflux were also remarkable features in the gill response to zinc.
Collapse
Affiliation(s)
- Jeferson L Franco
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Brocardo PS, Pandolfo P, Takahashi RN, Rodrigues ALS, Dafre AL. Antioxidant defenses and lipid peroxidation in the cerebral cortex and hippocampus following acute exposure to malathion and/or zinc chloride. Toxicology 2005; 207:283-91. [PMID: 15596258 DOI: 10.1016/j.tox.2004.09.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 09/17/2004] [Accepted: 09/25/2004] [Indexed: 11/16/2022]
Abstract
This study investigates the effects of acute exposure to organophosphate insecticide malathion (250 mg/kg, i.p.) and/or ZnCl2 (5 mg/kg, i.p.), with the following parameters: lipid peroxidation and the activity of acetylcholinesterase (AChE), glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PDH), and the levels of total glutathione (GSH-t) in the hippocampus and cerebral cortex of female rats. Malathion exposure elicited lipid peroxidation and reduced AChE activity in the cerebral cortex and hippocampus. It also reduced the activity of GR and GST, and increased G6PDH activity in the cerebral cortex, without changing the levels of GSH-t and GPx activity. ZnCl2 exposure reduced AChE activity and caused a mild pro-oxidative effect, since lipid peroxidation was increased in the hippocampus. ZnCl2, individually or in combination with malathion, caused a reduction in GR and GST activity in the cerebral cortex. Malathion and/or ZnCl2 did not change the GSH-t levels. Moreover, ZnCl2 prevented the increase in G6PDH activity caused by malathion. It showed that ZnCl2 had little effect against the changes induced by malathion. In fact, zinc itself produced pro-oxidant action, such as the reduction in the activity of the antioxidant enzymes GR and GST.
Collapse
Affiliation(s)
- Patrícia S Brocardo
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, SC 88040-900, Florianópolis, Brazil
| | | | | | | | | |
Collapse
|