1
|
Géniès C, Jeanjean C, Najjar A, Schepky A, Lange D, Kühnl J, Fabian E, Zifle A, Duplan H, Hewitt NIJ, Jacques C. Characterization of the in vitro penetration and first-pass metabolism of genistein and daidzein using human and pig skin explants and Phenion full-thickness skin models. J Appl Toxicol 2025; 45:200-209. [PMID: 39191458 DOI: 10.1002/jat.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
OECD test guideline compliant skin penetration studies, which also comply with the SCCS basic criteria, are lacking for genistein and daidzein. Therefore, we have measured their penetration and metabolism using ex vivo explants of fresh (i.e., metabolically viable) pig skin, fresh and frozen human skin, and Phenion full-thickness (FT) models. Preliminary studies using fresh pig skin helped to define the optimal experimental conditions. The dermal absorption of 10 nmoles/cm2 genistein and daidzein in ethanol was comparable in all four models. A first-pass metabolism in skin to glucuronide and sulfate metabolites was demonstrated for both chemicals in all models except frozen human skin. The main difference between fresh skin models was the overall extent of metabolism and the relative ratio of each metabolite, for example, much lower sulfate conjugates were formed in pig skin incubations. The extent of parent chemical metabolized and the contribution of the glucuronide pathway were relatively lower in PhenionFT models than in fresh human skin, possibly due to a higher penetration rate in this model and differences in the expression of functional metabolizing enzymes. When metabolism in human skin was abolished by freezing, more radiolabelled chemical remained in the skin tissue but the overall dermal absorption was unchanged. In conclusion, this initial characterization study showed that all models tested indicated that genistein and daidzein extensively penetrated the skin when applied to skin in ethanol. All fresh skin models produced the same metabolites, with the known species difference in the sulfation pathway demonstrated in pig skin.
Collapse
Affiliation(s)
- Camille Géniès
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | - Corinne Jeanjean
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | | | | | | | | | | | | | - Hélène Duplan
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| | | | - Carine Jacques
- Pierre Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Toulouse, France
| |
Collapse
|
2
|
Le Roux CE, Farthing AL, Lucas EK. Dietary phytoestrogens recalibrate socioemotional behavior in C57Bl/6J mice in a sex- and timing-dependent manner. Horm Behav 2025; 168:105678. [PMID: 39826371 PMCID: PMC11830535 DOI: 10.1016/j.yhbeh.2025.105678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Estrogens are potent regulators of socioemotional behavior across species. Ubiquitous in human and animal diets, plant-derived phytoestrogens (PE) bind estrogen receptors. While prior work has examined the impact of PE exposure on socioemotional behavior, findings are inconsistent across studies. To investigate whether the timing of PE diet initiation may govern differential behavioral effects, we compared the impacts of PE-free (<20 mg/kg) versus PE-rich (810 mg/kg) diet exposure across the lifetime versus acutely in adulthood. Reproductive physiology was assessed through age at puberty onset and gonadal size. In adulthood, all mice underwent a behavioral battery consisting of the open field, elevated plus maze, and social interaction tests, followed by assessment of emotional memory dynamics with cued threat conditioning, extinction, recall, and renewal. Lifetime PE exposure delayed puberty onset and increased adult gonadal size selectively in males, whereas both lifetime and adult-only PE exposure decreased adult body weight in both sexes. In males, adult-only exposure increased open-arm avoidance in the elevated plus maze but enhanced threat memory extinction. In females, lifetime PE exposure increased open-arm avoidance, reduced sociability, and impaired threat memory extinction. Interestingly, lifetime PE exposure increased the context-dependent renewal of threat memory in both sexes. These findings demonstrate sex- and timing-dependent effects of PE exposure. Male lifetime PE exposure impacts reproductive measures with limited behavioral effects, whereas female lifetime exposure broadly impairs socioemotional behavior. Conversely, adult-only PE exposure altered behavior in males with limited impact in females. This study highlights the importance of diet composition, exposure period, and sex in rodent behavioral studies.
Collapse
Affiliation(s)
- Cameron E Le Roux
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy L Farthing
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Elizabeth K Lucas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Department of Psychiatry & Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Viscardi G, Back S, Ahmed A, Yang S, Mejia SB, Zurbau A, Khan TA, Selk A, Messina M, Kendall CW, Jenkins DJ, Sievenpiper JL, Chiavaroli L. Effect of Soy Isoflavones on Measures of Estrogenicity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2025; 16:100327. [PMID: 39433088 PMCID: PMC11784794 DOI: 10.1016/j.advnut.2024.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024] Open
Abstract
Despite recommendations to increase plant food consumption for public and planetary health and the role that soy foods can play in plant-predominant diets, controversies around the effects of soy foods, especially soy isoflavones, are a barrier to their intake. Given their cardioprotective effects and ability to alleviate menopausal symptoms, addressing these concerns is particularly relevant to women. This systematic review and meta-analysis of randomized controlled trials aimed to determine the effect of soy isoflavones on measures of estrogenicity in postmenopausal women. MEDLINE, Embase, and Cochrane Library were searched through August 2024 for randomized trials ≥3-mo investigating soy isoflavones compared with non-isoflavone controls in postmenopausal women. Outcomes included endometrial thickness (ET), vaginal maturation index (VMI), follicle-stimulating hormone (FSH), and estradiol. Independent authors extracted data and assessed risk of bias. Grading of Recommendations, Assessment, Development and Evaluation was used to assess certainty of evidence. We included 40 trials (52 trial comparisons, n = 3285) assessing the effect of a median reported dose of 75 mg/d of soy isoflavones in substitution for non-isoflavone controls over a median of 24 wk. Soy isoflavones had no statistically significant effect on any measure of estrogenicity; ET [mean difference, -0.22 mm (95% confidence interval, -0.45, 0.01 mm), PMD = 0.059], VMI [2.31 (-2.14, 6.75), PMD = 0.310], FSH [-0.02 IU/L (-2.39, 2.35 IU/L), PMD = 0.987], and estradiol [1.61 pmol/L (-1.17, 4.38 pmol/L), PMD = 0.256]. The certainty of evidence was high to moderate for all outcomes. Current evidence suggests that soy isoflavones do not exhibit estrogenic effects compared with non-isoflavone controls on 4 measures of estrogenicity in postmenopausal women. This synthesis supports that soy isoflavones likely act as selective estrogen receptor modulators, differing clinically from the hormone estrogen. Addressing public health concerns may promote soy foods as high-quality plant protein sources with low environmental impact and cost, particularly benefiting postmenopausal women and aligning with sustainable dietary patterns and guidelines. This study was registered in PROSPERO as CRD42023439239.
Collapse
Affiliation(s)
- Gabrielle Viscardi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Songhee Back
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amna Ahmed
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shuting Yang
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amanda Selk
- Department of Gynecology, Women's College Hospital, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, Mount Sinai Hospital (Toronto), Sinai Health, Toronto, Ontario, Canada; Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Cyril Wc Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David Ja Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Xie D, Pan Y, Chen J, Mao C, Li Z, Qiu F, Yang L, Deng Y, Lu J. Association of genetic variants in soy isoflavones metabolism-related genes with decreased lung cancer risk. Gene 2024; 927:148732. [PMID: 38945312 DOI: 10.1016/j.gene.2024.148732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Soy isoflavones have been reported to exhibit anti-tumor effects. We hypothesize that genetic variants in soy isoflavone metabolism-related genes are associated with the risk of lung cancer. METHODS A two-stage case-control study design was conducted in this study. The discovery stage included 300 lung cancer cases and 600 healthy controls to evaluate the association of candidate genetic variants with lung cancer risk. The validation stage involved 1200 cases and 1200 controls to validate the associations found. Furthermore, qPCR was performed to assess the mRNA expression levels of different genotypes of the SNP. ELISA was used to explore the association between genotype and soy isoflavone levels, as well as the association between soy isoflavone levels and lung cancer risk. RESULTS A nonlinear association was observed between plasma soy isoflavone levels and lung cancer risk, with higher soy isoflavone levels associated with lower lung cancer risk (P < 0.001). The two-stage case-control study identified that UGT1A1 rs3755319 A > C was associated with decreased lung cancer risk (Recessive model: adjusted OR = 0.69, 95 %CI = 0.57-0.84, P < 0.001). Moreover, eQTL analysis showed that the expression level of UGT1A1 in the rs3755319 CC genotype was lower than in the AA + AC genotype (P < 0.05). The plasma concentration of soy isoflavones in the rs3755319 CC genotype was higher than in the AA + AC genotype (P = 0.008). CONCLUSIONS We identified a potentially functional SNP, UGT1A1 rs3755319 A > C, as being associated with decreased lung cancer risk. Further experiments will be needed to explore the mechanisms underlying the observed associations.
Collapse
Affiliation(s)
- Dongming Xie
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yujie Pan
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Jinbin Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Chun Mao
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Zhi Li
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Fuman Qiu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Lei Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China
| | - Yibin Deng
- Centre for Medical Laboratory Science, the Affiliated Hospital of Youjiang Medical University for Nationalities, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China; Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, No. 18 Zhongshaner Rd., Youjiang District, Baise 533000, PR China.
| | - Jiachun Lu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, PR China.
| |
Collapse
|
5
|
Goleij P, Sanaye PM, Alam W, Zhang J, Tabari MAK, Filosa R, Jeandet P, Cheang WS, Efferth T, Khan H. Unlocking daidzein's healing power: Present applications and future possibilities in phytomedicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155949. [PMID: 39217652 DOI: 10.1016/j.phymed.2024.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cancer is one of the leading causes of death and a great threat to people around the world. Cancer treatment modalities include surgery, radiotherapy, chemotherapy, radiochemotherapy, hormone therapy, and immunotherapy. The best approach is to use a combination of several types. Among the treatment methods mentioned above, chemotherapy is frequently used, but its activity is hampered by the development of drug resistance and many side effects. In this regard, the use of medicinal plants has been discussed, and in recent decades, the use of isolated phytochemicals came into the focus of interest. By critically evaluating the available evidence and emphasizing the unique perspective offered by this review, we provide insights into the potential of daidzein as a promising therapeutic agent, as well as outline future research directions to optimize its efficacy in clinical settings. PURPOSE To summarized the therapeutic potential of daidzein, an isoflavone phytoestrogen in the management of several human diseases with the focuses on the current status and future prospects as a therapeutic agent. METHODS Several search engines, including PubMed, GoogleScholar, and ScienceDirect, were used, with the search terms "daidzein", "daidzein therapeutic potential", or individual effects. The study included all peer-reviewed articles. However, the most recent publications were given priority. RESULTS Daidzein showed protective effects against malignant diseases such as breast cancer, prostate cancer but also non-malignant diseases such as diabetes, osteoporosis, and cardiovascular diseases. Daidzein activates multiple signaling pathways leading to cell cycle arrest and apoptosis as well as antioxidant and anti-metastatic effects in malignant cells. Moreover, the anticancer effects against different cancer cells were more prominent and discussed in detail. CONCLUSIONS In short, daidzein represents a promising compound for drug development. The comprehensive potential anticancer activities of daidzein through various molecular mechanisms and its therapeutic/clinical status required further detail studies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Waqas Alam
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran; Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - Philippe Jeandet
- Département de Biologie et Biochimie Faculté des Sciences Exactes et Naturelles Université de Reims BP 1039 51687, Reims CEDEX 02, France
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
6
|
Meyer Z, Soukup ST, Lubs A, Ohde D, Walz C, Schoen J, Willenberg HS, Hoeflich A, Brenmoehl J. Impact of Dietary Isoflavones in Standard Chow on Reproductive Development in Juvenile and Adult Female Mice with Different Metabolic Phenotypes. Nutrients 2024; 16:2697. [PMID: 39203833 PMCID: PMC11357413 DOI: 10.3390/nu16162697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Two factors influencing female reproduction have been repeatedly studied in different animal species and humans, namely, 1. secondary plant compounds, especially phytoestrogens (mainly isoflavones (IFs)), and 2. the physical constitution/metabolic phenotype (e.g., obesity). So far, these research results have only been considered separately. In this study, we investigated the influence on reproduction of both phytochemicals, mainly dietary IFs, and the metabolic phenotype represented by three mouse models considered as three distinct genetic groups (a control group, a mouse model with high metabolic activity, and a mouse line with obese body weight). The IF content in different investigated standard chows with similar macronutrient profiles varied significantly (p < 0.005), leading to high mean total plasma IF levels of up to 5.8 µmol/L in juvenile and 6.7 µmol/L in adult female mice. Reproductive performance was only slightly affected; only an IF dose-dependent effect on gestation length was observed in all genetic groups, as well as an effect on pregnancy rate in obese mice. Dietary IF exposure, however, caused earlier onset of vaginal opening by 4-10 days in juvenile mice (p < 0.05), dependent on the genetic group, resulting in a slight acceleration of sexual maturation in the already precocious obese model and to a strong earlier maturation in the otherwise late-maturing sporty model, bred for high treadmill performance. Therefore, our results may help to draw the missing line between the effect of dietary secondary plant constituents, such as IFs, and metabolic phenotype on sexual development.
Collapse
Affiliation(s)
- Zianka Meyer
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian T. Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Anna Lubs
- Working Group Cell Physiology & Reproduction, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Daniela Ohde
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Christina Walz
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Jennifer Schoen
- Working Group Cell Physiology & Reproduction, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Reproduction Biology Department, Leibniz Institute for Zoo and Wildlife Research IZW, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Holger S. Willenberg
- Center for Internal Medicine, Section of Endocrinology and Metabolic Diseases, University Medicine Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Andreas Hoeflich
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Julia Brenmoehl
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
7
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Martínez-López A, García-Moreno D, Espín JC, González-Sarrías A. ( R, S)-Equol 7-β-D-glucuronide, but not other circulating isoflavone metabolites, modulates migration and tubulogenesis in human aortic endothelial cells targeting the VEGF pathway. Food Funct 2024; 15:7387-7399. [PMID: 38078511 DOI: 10.1039/d3fo03946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Current knowledge indicates that the consumption of isoflavone-rich foodstuffs can have a beneficial impact on cardiovascular health. To what extent these isoflavones act as the main actors of that benefit is less clear. Genistein (GEN), daidzein (DAZ), and the DAZ-derived microbial metabolite equol (Eq) exhibit antiangiogenic effects in vitro, but their low bloodstream concentrations make it difficult to rationalize the in vivo effects. Their derived phase-II metabolites (glucuronides and sulfates) are major metabolites found in plasma, but their role as antiangiogenic molecules remains unexplored. We aimed here to first assess the anti-angiogenic activities of the main circulating isoflavone metabolites (glucuronides and sulfates) and compare them with their corresponding free forms at physiological concentrations (0.1-10 μM). The effects of the conjugated vs. free forms on tubulogenesis, cell migration, and VEGF-induced signalling were investigated in primary human aortic endothelial cells (HAECs). While (R,S)-equol 7-β-D-glucuronide (Eq 7-glur) exerted dose-dependent inhibition of tubulogenesis and endothelial migration comparable to that exerted by the free forms (GEN, DAZ, and Eq), the rest of the phase-II conjugates exhibited no significant effects. The underlying molecular mechanisms were independent of the bFGF but related to the modulation of the VEGF pathway. Besides, the observed dissimilar cellular metabolism (conjugation/deconjugation) places the phase-II metabolites as precursors of the free forms; however, the question of whether this metabolism impacts their biological activity requires additional studies. These new insights suggest that isoflavones and their circulating metabolites, including Eq 7-glur, may be involved in cardiovascular health (e.g., targeting angiogenesis).
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - María Ángeles Ávila-Gálvez
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Alicia Martínez-López
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, 28029, Madrid, Spain
- Biomedical Research Institute of Murcia (IMIB)-Pascual Parrilla, 30120, Murcia, Spain
| | - Diana García-Moreno
- Center for Biomedical Research in Rare Diseases Network (CIBERER), Carlos III Health Institute, 28029, Madrid, Spain
- Biomedical Research Institute of Murcia (IMIB)-Pascual Parrilla, 30120, Murcia, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain.
| |
Collapse
|
8
|
Li Y, Liu X, Lu F, Li H, Zhang J, Zhang Y, Li W, Wang W, Yang M, Ma Z, Zhang H, Zhou X, Xu Y, He Z, Sun J, Zhang T, Jiang Q. Natural Amino Acid-Bearing Carbamate Prodrugs of Daidzein Increase Water Solubility and Improve Phase II Metabolic Stability for Enhanced Oral Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8618-8631. [PMID: 38569082 DOI: 10.1021/acs.jafc.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Daidzein (DAN) is an isoflavone, and it is often found in its natural form in soybean and food supplements. DAN has poor bioavailability owing to its extremely low water solubility and first-pass metabolism. Herein, we hypothesized that a bioactivatable natural amino acid-bearing carbamate prodrug strategy could increase the water solubility and metabolic stability of DAN. To test our hypothesis, nine amino acid prodrugs of DAN were designed and synthesized. Compared with DAN, the optimal prodrug (daidzein-4'-O-CO-N-isoleucine, D-4'-I) demonstrated enhanced water solubility and improved phase II metabolic stability and activation to DAN in plasma. In addition, unlike the passive transport of DAN, D-4'-I maintained high permeability via organic anion-transporting polypeptide 2B1 (OATP2B1)-mediated transport. Importantly, D-4'-I increased the oral bioavailability by 15.5-fold, reduced the gender difference, and extended the linear absorption capacity in the pharmacokinetics of DAN in rats. Furthermore, D-4'-I exhibited dose-dependent protection against liver injury. Thus, the natural amino acid-bearing carbamate prodrug strategy shows potential in increasing water solubility and improving phase II metabolic stability to enhance the oral bioavailability of DAN.
Collapse
Affiliation(s)
- Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan Eastern Road, Shenyang, Liaoning 110032, China
| | - Xiaoyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Farong Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Huichao Li
- Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang 110021, P.R. China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yawei Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Wenchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Weiping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Miaomiao Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhining Ma
- Kangya of Ningxia Pharmaceutical Co., Ltd., Ningxia 750002, P.R. China
| | - Hui Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaomian Zhou
- School of Life and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Youjun Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Westmark PR, Lyon G, Gutierrez A, Boeck B, Van Hammond O, Ripp N, Pagan-Torres NA, Brower J, Held PK, Scarlett C, Westmark CJ. Effects of Soy Protein Isolate on Fragile X Phenotypes in Mice. Nutrients 2024; 16:284. [PMID: 38257177 PMCID: PMC10819477 DOI: 10.3390/nu16020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Obesity is a pediatric epidemic that is more prevalent in children with developmental disabilities. We hypothesize that soy protein-based diets increase weight gain and alter neurobehavioral outcomes. Our objective herein was to test matched casein- and soy protein-based purified ingredient diets in a mouse model of fragile X syndrome, Fmr1KO mice. The experimental methods included assessment of growth; 24-7 activity levels; motor coordination; learning and memory; blood-based amino acid, phytoestrogen and glucose levels; and organ weights. The primary outcome measure was body weight. We find increased body weight in male Fmr1KO from postnatal day 6 (P6) to P224, male wild type (WT) from P32-P39, female Fmr1KO from P6-P18 and P168-P224, and female Fmr1HET from P9-P18 as a function of soy. Activity at the beginning of the light and dark cycles increased in female Fmr1HET and Fmr1KO mice fed soy. We did not find significant differences in rotarod or passive avoidance behavior as a function of genotype or diet. Several blood-based amino acids and phytoestrogens were significantly altered in response to soy. Liver weight was increased in WT and adipose tissue in Fmr1KO mice fed soy. Activity levels at the beginning of the light cycle and testes weight were greater in Fmr1KO versus WT males irrespective of diet. DEXA analysis at 8-months-old indicated increased fat mass and total body area in Fmr1KO females and lean mass and bone mineral density in Fmr1KO males fed soy. Overall, dietary consumption of soy protein isolate by C57BL/6J mice caused increased growth, which could be attributed to increased lean mass in males and fat mass in females. There were sex-specific differences with more pronounced effects in Fmr1KO versus WT and in males versus females.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA;
| | - Greg Lyon
- Undergraduate Research Scholars Program, University of Wisconsin, Madison, WI 53706, USA; (G.L.); (O.V.H.)
| | - Alejandra Gutierrez
- Molecular Environmental Toxicology Master’s Program, University of Wisconsin, Madison, WI 53706, USA;
| | - Brynne Boeck
- Neurology Undergraduate Research, University of Wisconsin, Madison, WI 53706, USA; (B.B.); (N.R.)
| | - Olivia Van Hammond
- Undergraduate Research Scholars Program, University of Wisconsin, Madison, WI 53706, USA; (G.L.); (O.V.H.)
| | - Nathan Ripp
- Neurology Undergraduate Research, University of Wisconsin, Madison, WI 53706, USA; (B.B.); (N.R.)
| | - Nicole Arianne Pagan-Torres
- Molecular Environmental Toxicology Summer Research Opportunities Program, University of Wisconsin, Madison, WI 53706, USA;
| | - James Brower
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA; (J.B.); (P.K.H.)
| | - Patrice K. Held
- Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706, USA; (J.B.); (P.K.H.)
| | - Cameron Scarlett
- School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA;
| | - Cara J. Westmark
- Department of Neurology and Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
10
|
Gong Y, Lv J, Pang X, Zhang S, Zhang G, Liu L, Wang Y, Li C. Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods 2023; 12:2334. [PMID: 37372545 DOI: 10.3390/foods12122334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Equol is the most potent soy isoflavone metabolite and is produced by specific intestinal microorganisms of mammals. It has promising application possibilities for preventing chronic diseases such as cardiovascular disease, breast cancer, and prostate cancer due to its high antioxidant activity and hormone-like activity. Thus, it is of great significance to systematically study the efficient preparation method of equol and its functional activity. This paper elaborates on the metabolic mechanism of equol in humans; focuses on the biological characteristics, synthesis methods, and the currently isolated equol-producing bacteria; and looks forward to its future development and application direction, aiming to provide guidance for the application and promotion of equol in the field of food and health products.
Collapse
Affiliation(s)
- Yining Gong
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
11
|
Soukup ST, Engelbert AK, Watzl B, Bub A, Kulling SE. Microbial Metabolism of the Soy Isoflavones Daidzein and Genistein in Postmenopausal Women: Human Intervention Study Reveals New Metabotypes. Nutrients 2023; 15:nu15102352. [PMID: 37242235 DOI: 10.3390/nu15102352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Soy isoflavones belong to the group of phytoestrogens and are associated with beneficial health effects but are also discussed to have adverse effects. Isoflavones are intensively metabolized by the gut microbiota leading to metabolites with altered estrogenic potency. The population is classified into different isoflavone metabotypes based on individual metabolite profiles. So far, this classification was based on the capacity to metabolize daidzein and did not reflect genistein metabolism. We investigated the microbial metabolite profile of isoflavones considering daidzein and genistein. METHODS Isoflavones and metabolites were quantified in the urine of postmenopausal women receiving a soy isoflavone extract for 12 weeks. Based on these data, women were clustered in different isoflavone metabotypes. Further, the estrogenic potency of these metabotypes was estimated. RESULTS Based on the excreted urinary amounts of isoflavones and metabolites, the metabolite profiles could be calculated, resulting in 5 metabotypes applying a hierarchical cluster analysis. The metabotypes differed in part strongly regarding their metabolite profile and their estimated estrogenic potency.
Collapse
Affiliation(s)
- Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Resveratrol Analogs and Prodrugs Differently Affect the Survival of Breast Cancer Cells Impairing Estrogen/Estrogen Receptor α/Neuroglobin Pathway. Int J Mol Sci 2023; 24:ijms24032148. [PMID: 36768470 PMCID: PMC9916867 DOI: 10.3390/ijms24032148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the first leading tumor in women in terms of incidence worldwide. Seventy percent of cases are estrogen receptor (ER) α-positive. In these malignancies, 17β-estradiol (E2) via ERα increases the levels of neuroglobin (NGB), a compensatory protein that protects cancer cells from stress-induced apoptosis, including chemotherapeutic drug treatment. Our previous data indicate that resveratrol (RSV), a plant-derived polyphenol, prevents E2/ERα-induced NGB accumulation in this cellular context, making E2-dependent breast cancer cells more prone to apoptosis. Unfortunately, RSV is readily metabolized, thus preventing its effectiveness. Here, four different RSV analogs have been developed, and their effect on the ERα/NGB pathway has been compared with RSV conjugated with highly hydrophilic gold nanoparticles as prodrug to evaluate if RSV derivatives maintain the breast cancer cells' susceptibility to the chemotherapeutic drug paclitaxel as the original compound. Results demonstrate that RSV conjugation with gold nanoparticles increases RSV efficacy, with respect to RSV analogues, reducing NGB levels and enhancing the pro-apoptotic action of paclitaxel, even preventing the anti-apoptotic action exerted by E2 treatment on these cells. Overall, RSV conjugation with gold nanoparticles makes this complex a promising agent for medical application in breast cancer treatment.
Collapse
|
13
|
Zheng T, Bielinski DF, Fisher DR, Zhang J, Shukitt-Hale B. Protective Effects of a Polyphenol-Rich Blueberry Extract on Adult Human Neural Progenitor Cells. Molecules 2022; 27:6152. [PMID: 36234687 PMCID: PMC9571008 DOI: 10.3390/molecules27196152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/15/2023] Open
Abstract
The aging process impacts neural stem cells and causes a significant decline in neurogenesis that contributes to neuronal dysfunction leading to cognitive decline. Blueberries are rich in polyphenols and have been shown to improve cognition and memory in older humans. While our previous studies have shown that blueberry supplementations can increase neurogenesis in aged rodents, it is not clear whether this finding can be extrapolated to humans. We thus investigated the effects of blueberry treatments on adult hippocampal human neural progenitor cells (AHNPs) that are involved in neurogenesis and potentially in memory and other brain functions. Cultured AHNPs were treated with blueberry extract at different concentrations. Their viability, proliferation, and differentiation were evaluated with and without the presence of a cellular oxidative stressor, dopamine, and potential cellular mechanisms were also investigated. Our data showed that blueberry extract can significantly increase the viability and proliferation rates of control hippocampal AHNPs and can also reverse decreases in viability and proliferation induced by the cellular stressor dopamine. These effects may be associated with blueberry's anti-inflammatory, antioxidant, and calcium-buffering properties. Polyphenol-rich berry extracts thus confer a neuroprotective effect on human hippocampal progenitor cells in vitro.
Collapse
Affiliation(s)
- Tong Zheng
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Donna F. Bielinski
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Derek R. Fisher
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Jianyi Zhang
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Barbara Shukitt-Hale
- Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
14
|
Estrogenic in vitro evaluation of zearalenone and its phase I and II metabolites in combination with soy isoflavones. Arch Toxicol 2022; 96:3385-3402. [PMID: 35986755 PMCID: PMC9584851 DOI: 10.1007/s00204-022-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
AbstractHumans and animals are exposed to multiple substances in their food and feed that might have a negative health impact. Among these substances, the Fusarium mycoestrogen zearalenone (ZEN) and its metabolites α-zearalenol (α-ZEL) and α-zearalanol (α-ZAL) are known to possess endocrine disruptive properties. In a mixed diet or especially animal feed, these potential contaminants might be ingested together with naturally occurring phytoestrogens such as soy isoflavones. So far, risk assessment of potential endocrine disruptors is usually based on adverse effects of single compounds whereas studies investigating combinatorial effects are scarce. In the present study, we investigated the estrogenic potential of mycoestrogens and the isoflavones genistein (GEN), daidzein (DAI) and glycitein (GLY) as well as equol (EQ), the gut microbial metabolite of DAI, in vitro alone or in combination, using the alkaline phosphatase (ALP) assay in Ishikawa cells. In the case of mycoestrogens, the tested concentration range included 0.001 to 10 nM with multiplication steps of 10 in between, while for the isoflavones 1000 times higher concentrations were investigated. For the individual substances the following order of estrogenicity was obtained: α-ZEL > α-ZAL > ZEN > GEN > EQ > DAI > GLY. Most combinations of isoflavones with mycoestrogens enhanced the estrogenic response in the investigated concentrations. Especially lower concentrations of ZEN, α-ZEL and α-ZAL (0.001—0.01 nM) in combination with low concentrations of GEN, DAI and EQ (0.001—0.1 µM) strongly increased the estrogenic response compared to the single substances.
Collapse
|
15
|
Ma X, Yu X, Min J, Chen X, Liu R, Cui X, Cheng J, Xie M, Diel P, Hu X. Genistein interferes with antitumor effects of cisplatin in an ovariectomized breast cancer xenograft tumor model. Toxicol Lett 2022; 355:106-115. [PMID: 34838996 DOI: 10.1016/j.toxlet.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 01/18/2023]
Abstract
Genistein (GEN) has been demonstrated to interfere with antitumor effects of cisplatin (CIS) in vitro. To analyze whether these findings are also relevant in vivo, we examined the effects of combined GEN and CIS treatment in an ovariectomized nude mouse breast cancer xenograft model. Tumor growth and markers for antitumor activity were determined after three weeks of treatment. Furthermore, the concentrations of GEN metabolites were measured in serum, liver, and xenograft tumor tissues using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Three weeks' oral exposure to GEN at a dose of 5 mg kg-1·d-1 resulted in an average concentration of total GEN metabolite equivalent as high as 0.2729 nmol g-1 wet weight in xenograft tumor tissues. At this dosage, GEN significantly antagonized the antitumor effects of CIS. Mechanistically, GEN blocked both the inhibition of cell proliferation and induction of apoptosis triggered by CIS. Moreover, GEN concentrations in xenograft tumor tissues were found to be significantly higher than in serum and liver. In conclusion, our findings suggested that oral GEN exposure at a level comparable to dietary exposure in humans could interfere with CIS chemotherapy.
Collapse
Affiliation(s)
- Xing Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Xiaowei Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, 330006, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jialing Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; Jiangxi Biotech Vocational College, Nanchang, 330200, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, 330006, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ren Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, 330006, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xueqing Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Jing Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, 330006, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Cologne, 50933, Germany
| | - Xiaojuan Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, 330006, China; Jiangxi Province Key Laboratory of Laboratory Animal, Nanchang, 330006, China.
| |
Collapse
|
16
|
Effects of lactiplantibacillus plantarum X7021 on physicochemical properties, purines, isoflavones and volatile compounds of fermented soymilk. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Garbiec E, Cielecka-Piontek J, Kowalówka M, Hołubiec M, Zalewski P. Genistein-Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022; 27:815. [PMID: 35164079 PMCID: PMC8840253 DOI: 10.3390/molecules27030815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein's potential side effects resulting from its estrogenic and goitrogenic effects.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Magdalena Kowalówka
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, 42 Marcelińska St., 60-354 Poznan, Poland;
| | - Magdalena Hołubiec
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| |
Collapse
|
18
|
Wang Q, Spenkelink B, Boonpawa R, Rietjens IM. Use of Physiologically Based Pharmacokinetic Modeling to Predict Human Gut Microbial Conversion of Daidzein to S-Equol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:343-352. [PMID: 34855380 PMCID: PMC8759082 DOI: 10.1021/acs.jafc.1c03950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 06/01/2023]
Abstract
A physiologically based pharmacokinetic (PBPK) model was developed for daidzein and its metabolite S-equol. Anaerobic in vitro incubations of pooled fecal samples from S-equol producers and nonproducers allowed definition of the kinetic constants. PBPK model-based predictions for the maximum daidzein plasma concentration (Cmax) were comparable to literature data. The predictions also revealed that the Cmax of S-equol in producers was only up to 0.22% that of daidzein, indicating that despite its higher estrogenicity, S-equol is likely to contribute to the overall estrogenicity upon human daidzein exposure to a only limited extent. An interspecies comparison between humans and rats revealed that the catalytic efficiency for S-equol formation in rats was 210-fold higher than that of human S-equol producers. The described in vitro-in silico strategy provides a proof-of-principle on how to include microbial metabolism in humans in PBPK modeling as part of the development of new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Qianrui Wang
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| | - Bert Spenkelink
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| | - Rungnapa Boonpawa
- Faculty
of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, 47000 Sakon Nakhon, Thailand
| | - Ivonne M.C.M. Rietjens
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| |
Collapse
|
19
|
Li Y, Liu X, Lu F, Zhang J, Zhang Y, Li W, Zhang T. Simultaneous determination of daidzein, its prodrug and major conjugative metabolites in rat plasma and application in a pharmacokinetic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj02690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The developed method successfully validated that the synthesized prodrug improved the bioavailability of DAN by reducing its phase II metabolites.
Collapse
Affiliation(s)
- Yingchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Xiaoyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Farong Lu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Jiaming Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yawei Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Wenchao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Tianhong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
20
|
Ivashkevich A. The role of isoflavones in augmenting the effects of radiotherapy. Front Oncol 2022; 12:800562. [PMID: 36936272 PMCID: PMC10016616 DOI: 10.3389/fonc.2022.800562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 08/31/2022] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major health problems and the second cause of death worldwide behind heart disease. The traditional soy diet containing isoflavones, consumed by the Asian population in China and Japan has been identified as a protective factor from hormone-related cancers. Over the years the research focus has shifted from emphasizing the preventive effect of isoflavones from cancer initiation and promotion to their efficacy against established tumors along with chemo- and radiopotentiating effects. Studies performed in mouse models and results of clinical trials emphasize that genistein or a mixture of isoflavones, containing in traditional soy diet, could be utilized to both potentiate the response of cancer cells to radiotherapy and reduce radiation-induced toxicity in normal tissues. Currently ongoing clinical research explores a potential of another significant isoflavone, idronoxil, also known as phenoxodiol, as radiation enhancing agent. In the light of the recent clinical findings, this article reviews the accumulated evidence which support the clinically desirable interactions of soy isoflavones with radiation therapy resulting in improved tumor treatment. This review discusses important aspects of the development of isoflavones as anticancer agents, and mechanisms potentially relevant to their activity in combination with radiation therapy of cancer. It gives a critical overview of studies characterizing isoflavone targets such as topoisomerases, ENOX2/PMET, tyrosine kinases and ER receptor signaling, and cellular effects on the cell cycle, DNA damage, cell death, and immune responses.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
- Noxopharm, Gordon, NSW, Australia
- *Correspondence: Alesia Ivashkevich,
| |
Collapse
|
21
|
Flasch M, Bueschl C, Del Favero G, Adam G, Schuhmacher R, Marko D, Warth B. Elucidation of xenoestrogen metabolism by non-targeted, stable isotope-assisted mass spectrometry in breast cancer cells. ENVIRONMENT INTERNATIONAL 2022; 158:106940. [PMID: 34673318 DOI: 10.1016/j.envint.2021.106940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Environmental exposure to xenoestrogens, i.e., chemicals that imitate the hormone 17β-estradiol, has the potential to influence hormone homeostasis and action. Detailed knowledge of xenobiotic biotransformation processes in cell models is key when transferring knowledge learned from in vitro models to in vivo relevance. This study elucidated the metabolism of two naturally-occurring phyto- and mycoestrogens; namely genistein and zearalenone, in an estrogen receptor positive breast cancer cell line (MCF-7) with the aid of stable isotope-assisted metabolomics and the bioinformatic tool MetExtract II. Metabolism was studied in a time course experiment after 2 h, 6 h and 24 h incubation. Twelve and six biotransformation products of zearalenone and genistein were detected, respectively, clearly demonstrating the abundant xenobiotic biotransformation capability of the cells. Zearalenone underwent extensive phase-I metabolism resulting in α-zearalenol (α-ZEL), a molecule known to possess a significantly higher estrogenicity, and several phase-II metabolites (sulfo- and glycoconjugates) of the native compound and the major phase I metabolite α-ZEL. Moreover, potential adducts of zearalenone with a vitamin and several hydroxylated metabolites were annotated. Genistein metabolism resulted in sulfation, combined sulfation and hydroxylation, acetylation, glucuronidation and unexpectedly adduct formation with pentose- and hexose sugars. Kinetics of metabolite formation and subsequent excretion into the extracellular medium revealed a time-dependent increase in most biotransformation products. The untargeted elucidation of biotransformation products formed during cell culture experiments enables an improved and more meaningful interpretation of toxicological assays and has the potential to identify unexpected or unknown metabolites.
Collapse
Affiliation(s)
- Mira Flasch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Christoph Bueschl
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; University of Vienna, Faculty of Chemistry, Department of Analytical Chemistry, Währinger Str. 38, 1090 Vienna, Austria
| | - Giorgia Del Favero
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Gerhard Adam
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad-Lorenz-Str. 24, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Str. 38, 1090 Vienna, Austria.
| |
Collapse
|
22
|
Grgic D, Varga E, Novak B, Müller A, Marko D. Isoflavones in Animals: Metabolism and Effects in Livestock and Occurrence in Feed. Toxins (Basel) 2021; 13:836. [PMID: 34941674 PMCID: PMC8705642 DOI: 10.3390/toxins13120836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Soybeans are a common ingredient of animal feed. They contain isoflavones, which are known to act as phytoestrogens in animals. Isoflavones were described to have beneficial effects on farm animals. However, there are also reports of negative outcomes after the consumption of isoflavones. This review summarizes the current knowledge of metabolization of isoflavones (including the influence of the microbiome, phase I and phase II metabolism), as well as the distribution of isoflavones and their metabolites in tissues. Furthermore, published studies on effects of isoflavones in livestock species (pigs, poultry, ruminants, fish) are reviewed. Moreover, published studies on occurrence of isoflavones in feed materials and co-occurrence with zearalenone are presented and are supplemented with our own survey data.
Collapse
Affiliation(s)
- Dino Grgic
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Anneliese Müller
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (B.N.); (A.M.)
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; (D.G.); (E.V.)
| |
Collapse
|
23
|
Agustina R, Masuo Y, Kido Y, Shinoda K, Ishimoto T, Kato Y. Identification of Food-Derived Isoflavone Sulfates as Inhibition Markers for Intestinal Breast Cancer Resistance Proteins. Drug Metab Dispos 2021; 49:972-984. [PMID: 34413161 DOI: 10.1124/dmd.121.000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Potential inhibition of the breast cancer resistance protein (BCRP), a drug efflux transporter, is a key issue during drug development, and the use of its physiologic substrates as biomarkers can be advantageous to assess inhibition. In this study, we aimed to identify BCRP substrates by an untargeted metabolomic approach. Mice were orally administered lapatinib to inhibit BCRP in vivo, and plasma samples were assessed by liquid chromatography/time of flight/mass spectrometry with all-ion fragmentation acquisition and quantified by liquid chromatography with tandem mass spectrometry. A differential metabolomic analysis was also performed for plasma from Bcrp -/- and wild-type mice. Plasma peaks of food-derived isoflavone metabolites, daidzein sulfate (DS), and genistein sulfate (GS) increased after lapatinib administration and in Bcrp -/- mice. Administration of lapatinib and another BCRP inhibitor febuxostat increased the area under the plasma concentration-time curve (AUC) of DS, GS, and equol sulfate (ES) by 3.6- and 1.8-, 5.6- and 4.1-, and 1.6- and 4.8-fold, respectively. BCRP inhibitors also increased the AUC and maximum plasma concentration of DS and ES after coadministration with each parent compound. After adding parent compounds to the apical side of induced pluripotent stem cell-derived small intestinal epithelial-like cells, DS, GS, and ES in the basal compartment significantly increased in the presence of lapatinib and febuxostat, suggesting the inhibition of intestinal BCRP. ATP-dependent uptake of DS and ES in BCRP-expressing membrane vesicles was reduced by both inhibitors, indicating inhibition of BCRP-mediated DS and ES transport. Thus, we propose the first evidence of surrogate markers for BCRP inhibition. SIGNIFICANCE STATEMENT: This study performed untargeted metabolomics to identify substrates of BCRP/ABCG2 to assess changes in its transport activity in vivo by BCRP/ABCG2 inhibitors. Food-derived isoflavone sulfates were identified as useful markers for evaluating changes in BCRP-mediated transport in the small intestine by its inhibitors.
Collapse
Affiliation(s)
- Rina Agustina
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yasuto Kido
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Kyosuke Shinoda
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (R.A., Y.M., K.S., T.I., Y.Ka.); Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia (R.A.); and Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan (Y.Ki.)
| |
Collapse
|
24
|
Alshehri MM, Sharifi-Rad J, Herrera-Bravo J, Jara EL, Salazar LA, Kregiel D, Uprety Y, Akram M, Iqbal M, Martorell M, Torrens-Mas M, Pons DG, Daştan SD, Cruz-Martins N, Ozdemir FA, Kumar M, Cho WC. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6331630. [PMID: 34539970 PMCID: PMC8448605 DOI: 10.1155/2021/6331630] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Daidzein is a phytoestrogen isoflavone found in soybeans and other legumes. The chemical composition of daidzein is analogous to mammalian estrogens, and it could be useful with a dual-directional purpose by substituting/hindering with estrogen and estrogen receptor (ER) complex. Hence, daidzein puts forth shielding effects against a great number of diseases, especially those associated with the control of estrogen, such as breast cancer, diabetes, osteoporosis, and cardiovascular disease. However, daidzein also has other ER-independent biological activities, such as oxidative damage reduction acting as an antioxidant, immune regulator as an anti-inflammatory agent, and apoptosis regulation, directly linked to its potential anticancer effects. In this sense, the present review is aimed at providing a deepen analysis of daidzein pharmacodynamics and its implications in human health, from its best-known effects alleviating postmenopausal symptoms to its potential anticancer and antiaging properties.
Collapse
Affiliation(s)
- Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Evelyn L. Jara
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Yadav Uprety
- Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Margalida Torrens-Mas
- Translational Research In Aging and Longevity (TRIAL Group), Health Research Institute of the Balearic Islands (IdISBA), 07122 Palma, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma, Spain
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
25
|
Soy Isoflavones Intake and Obesity in Chinese Adults: A Cross-Sectional Study in Shanghai, China. Nutrients 2021; 13:nu13082715. [PMID: 34444874 PMCID: PMC8399780 DOI: 10.3390/nu13082715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
This study was designed to examine the association of soy isoflavones (SI) intake with different body measurements indicative of obesity in Chinese adults of Shanghai, a population consuming foods rich in SI. This study used baseline data from the Shanghai Gaofeng cohort study. SI intake was measured by using a self-reported food frequency questionnaire (FFQ). A restricted cubic spline (RCS) was performed to examine the possible nonlinear relationship of SI intake with obesity. A logistic regression model was applied to estimate the odds ratios (OR) and 95% confidence interval (CI). Compared with the lowest tertile group of SI intake, the highest tertile group had a lower prevalence of obesity and central obesity. The OR for overall obesity was 0.91 (95% CI: 0.85, 0.98) in the highest versus the lowest SI tertile group; the associations differed by sex and menopausal status. A negative association was also observed between SI intake and central obesity, and a significant modifying effect of sex was found on the association. No significant interactions were observed between SI intake and physical activity (PA) levels. Our results suggest that Chinese adults with higher dietary intake of SI may be less likely to be obese, particularly for postmenopausal women.
Collapse
|
26
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
27
|
Yokosuka K, Rutledge C, Kamio Y, Kuwabara A, Sato H, Rahmani R, Purcell J, Eguchi S, Baranoski JF, Margaryan T, Tovmasyan A, Ai J, Lawton MT, Hashimoto T. Roles of Phytoestrogen in the Pathophysiology of Intracranial Aneurysm. Stroke 2021; 52:2661-2670. [PMID: 34157864 DOI: 10.1161/strokeaha.120.032042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kimihiko Yokosuka
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco (C.R.)
| | - Yoshinobu Kamio
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Atsushi Kuwabara
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Hiroki Sato
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Redi Rahmani
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
- Department of Neurosurgery, University of Rochester Medical Center, NY (R.R.)
| | - James Purcell
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.E.)
| | - Jacob F Baranoski
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Tigran Margaryan
- Division of Neurobiology, Ivy Brain Tumor Center (T.M., A.T.), Barrow Neurological Institute, Phoenix, AZ
| | - Artak Tovmasyan
- Division of Neurobiology, Ivy Brain Tumor Center (T.M., A.T.), Barrow Neurological Institute, Phoenix, AZ
| | - Jinglu Ai
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Michael T Lawton
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
- Department of Neurosurgery (M.T.L.), Barrow Neurological Institute, Phoenix, AZ
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
28
|
Yuste S, Ludwig IA, Romero M, Piñol‐Felis C, Catalán Ú, Pedret A, Valls RM, Fernández‐Castillejo S, Motilva M, Macià A, Rubió L. Metabolic Fate and Cardiometabolic Effects of Phenolic Compounds from Red‐Fleshed Apple in Hypercholesterolemic Rats: A Comparative Study with Common White‐Fleshed Apple. The AppleCOR Study. Mol Nutr Food Res 2021; 65:e2001225. [DOI: 10.1002/mnfr.202001225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Silvia Yuste
- Food Technology Department XaRTA‐TPV Agrotecnio Center Escola Tècnica Superior d'Enginyeria Agrària University of Lleida, Avda/Alcalde Rovira Roure 191 Catalonia 25198 Lleida Spain
| | - Iziar A. Ludwig
- Food Technology Department XaRTA‐TPV Agrotecnio Center Escola Tècnica Superior d'Enginyeria Agrària University of Lleida, Avda/Alcalde Rovira Roure 191 Catalonia 25198 Lleida Spain
- Department de Medicina i Cirurgia Facultat de Medicina i Ciències de la Salut Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC‐Salut) Universitat Rovira i Virgili C/Sant Llorenç 21 Reus 43201 Spain
| | - María‐Paz Romero
- Food Technology Department XaRTA‐TPV Agrotecnio Center Escola Tècnica Superior d'Enginyeria Agrària University of Lleida, Avda/Alcalde Rovira Roure 191 Catalonia 25198 Lleida Spain
| | - Carme Piñol‐Felis
- Department of Medicine University of Lleida, Lleida Catalonia Spain
- Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré IRBLleida, Lleida Catalonia Spain
| | - Úrsula Catalán
- Department de Medicina i Cirurgia Facultat de Medicina i Ciències de la Salut Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC‐Salut) Universitat Rovira i Virgili C/Sant Llorenç 21 Reus 43201 Spain
- Eurecat Centre Tecnologic de Catalunya Unitat de Nutrició i Salut Reus Catalonia Spain
| | - Anna Pedret
- Department de Medicina i Cirurgia Facultat de Medicina i Ciències de la Salut Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC‐Salut) Universitat Rovira i Virgili C/Sant Llorenç 21 Reus 43201 Spain
- Eurecat Centre Tecnologic de Catalunya Unitat de Nutrició i Salut Reus Catalonia Spain
| | - Rosa M. Valls
- Department de Medicina i Cirurgia Facultat de Medicina i Ciències de la Salut Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC‐Salut) Universitat Rovira i Virgili C/Sant Llorenç 21 Reus 43201 Spain
- Eurecat Centre Tecnologic de Catalunya Unitat de Nutrició i Salut Reus Catalonia Spain
| | - Sara Fernández‐Castillejo
- Department de Medicina i Cirurgia Facultat de Medicina i Ciències de la Salut Functional Nutrition, Oxidation and Cardiovascular Diseases Group (NFOC‐Salut) Universitat Rovira i Virgili C/Sant Llorenç 21 Reus 43201 Spain
| | - María‐José Motilva
- Food Technology Department XaRTA‐TPV Agrotecnio Center Escola Tècnica Superior d'Enginyeria Agrària University of Lleida, Avda/Alcalde Rovira Roure 191 Catalonia 25198 Lleida Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV) Consejo Superior de Investigaciones Científicas‐CSIC, Gobierno de La Rioja, Universidad de La Rioja, Finca “La Grajera” Carretera de Burgos km 6 La Rioja 26007, Logroño Spain
| | - Alba Macià
- Food Technology Department XaRTA‐TPV Agrotecnio Center Escola Tècnica Superior d'Enginyeria Agrària University of Lleida, Avda/Alcalde Rovira Roure 191 Catalonia 25198 Lleida Spain
| | - Laura Rubió
- Food Technology Department XaRTA‐TPV Agrotecnio Center Escola Tècnica Superior d'Enginyeria Agrària University of Lleida, Avda/Alcalde Rovira Roure 191 Catalonia 25198 Lleida Spain
| |
Collapse
|
29
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
30
|
Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021; 13:nu13020387. [PMID: 33513742 PMCID: PMC7911141 DOI: 10.3390/nu13020387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence, pathogenesis, and manifestation is differentially influenced by biological sex. Berry polyphenols target several signaling pathways pertinent to CVD development, including inflammation, oxidative stress, and cardiac and vascular remodeling, and there are innate differences in these pathways that also vary by sex. There is limited research systematically investigating sex differences in berry polyphenol effects on these pathways, but there are fundamental findings at this time that suggest a sex-specific effect. This review will detail mechanisms within these pathological pathways, how they differ by sex, and how they may be individually targeted by berry polyphenols in a sex-specific manner. Because of the substantial polyphenolic profile of berries, berry consumption represents a promising interventional tool in the treatment and prevention of CVD in both sexes, but the mechanisms in which they function within each sex may vary.
Collapse
Affiliation(s)
- Rami S. Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
| | - Casey G. Turner
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Brett J. Wong
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA 30302, USA; (C.G.T.); (B.J.W.)
| | - Rafaela G. Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| |
Collapse
|
31
|
Sun Z, Li D, Li Y, Chen D, Yu B, Yu J, Mao X, Zheng P, Luo Y, Luo J, He J. Effects of dietary daidzein supplementation on growth performance, carcass characteristics, and meat quality in growing-finishing pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Zhang Y, Takao K, Abe C, Sasaki K, Ochiai K, Matsui T. Intestinal Absorption of Prenylated Isoflavones, Glyceollins, in Sprague-Dawley Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8205-8211. [PMID: 32648443 DOI: 10.1021/acs.jafc.0c02475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although prenylated isoflavones or glyceollins elicit physiological effects more potent than those by isoflavones, the bioavailability remains unclear. The present study aimed to clarify the intestinal absorption behavior of glyceollins in Sprague-Dawley rats. Upon oral administration of 1.0 mg/kg glyceollin I or III (daidzein as comparative compound) to the rats, no peaks corresponding to the intact forms of the compounds were detected in plasma by liquid chromatography-time-of-flight/mass spectrometry (LC-TOF/MS) analysis. In contrast, enzymatic deconjugation of plasma resulted in successful MS detection of each glyceollin; glyceollin I absorption was >10 times higher than that of daidzein, given its high log P value. The present study demonstrated for the first time that glyceollins were more absorbable than mother isoflavones due to their high hydrophobicity, and they metabolized to form sulfated, glucuronized, and methylated conjugates during the intestinal absorption process.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuhiro Takao
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chizumi Abe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kuni Sasaki
- Daiz. Inc., 3-14-3 Minami-kumamoto, Chuo-ku, Kumamoto 860-0812, Japan
| | - Koji Ochiai
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Daiz. Inc., 3-14-3 Minami-kumamoto, Chuo-ku, Kumamoto 860-0812, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
33
|
Lv Z, Dai H, Wei Q, Jin S, Wang J, Wei X, Yuan Y, Yu D, Shi F. Dietary genistein supplementation protects against lipopolysaccharide-induced intestinal injury through altering transcriptomic profile. Poult Sci 2020; 99:3411-3427. [PMID: 32616235 PMCID: PMC7597844 DOI: 10.1016/j.psj.2020.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Genistein is abundant in the corn-soybean meal feed. Little information is available about the effect of dietary genistein on the intestinal transcriptome of chicks, especially when suffering from intestinal injury. In this study, 180 one-day-old male ROSS 308 broiler chickens were randomly allocated to 3 groups, with 4 replicates (cages) of 15 birds each. The treatments were as follows: chicks received a basal diet (CON), a basal diet and underwent lipopolysaccharide-challenge (LPS), or a basal diet supplemented with 40 mg/kg genistein and underwent LPS-challenge (GEN). LPS injection induced intestinal injury and inflammatory reactions in the chicks. Transcriptomic analysis identified 7,131 differently expressed genes (3,281 upregulated and 3,851 downregulated) in the GEN group compared with the LPS group (P adjusted value < 0.05, |fold change| > 1.5), which revealed that dietary genistein exposure altered the gene expression profile and signaling pathways in the ileum of LPS-treated chicks. Furthermore, dietary genistein improved intestinal morphology, mucosal immune function, tight junction, antioxidant activity, apoptotic process, and growth performance, which were adversely damaged by LPS injection. Therefore, adding genistein into the diet of chicks can alter RNA expression profile and ameliorate intestinal injury in LPS-challenged chicks, thereby improving the growth performance of chicks with intestinal injury.
Collapse
Affiliation(s)
- Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Jin
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Jiao Wang
- Animal Disease Control Center of Changzhou, Jiangsu 213003, China
| | - Xihui Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunwei Yuan
- Poultry Production Department, Jiangsu Hesheng Food Limited Company, Taizhou 225300, China
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
Shi Z, Lv Z, Hu C, Zhang Q, Wang Z, Hamdard E, Dai H, Mustafa S, Shi F. Oral Exposure to Genistein during Conception and Lactation Period Affects the Testicular Development of Male Offspring Mice. Animals (Basel) 2020; 10:ani10030377. [PMID: 32111017 PMCID: PMC7143625 DOI: 10.3390/ani10030377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Spermatogenesis and hormones secretions are important life-threating and complicated process, which can be affected by environmental estrogens. Genistein, a type of isoflavones, widely exists in the soybean products diet, which exerts a controversial role in reproductive regulation for its special structures or functions. The results of the study revealed that low-dose genistein treatment increased the level of testosterone in the mice serum, and positively regulated expression of spermatogenesis-related genes, which enhanced spermatogenesis and testicular development. However, High-dose genistein treatment induced apoptosis of germ cells and inhibited proliferation of germ cells during spermatogenesis. Reproductive alterations in the structures and functions of testis were dose-dependent in different genistein treatments. Abstract Sexual hormones are essential for the process of spermatogenesis in the testis. However, the effect of maternal genistein (GEN) on the pups’ testicular development remain-unclear. Our present study evaluated the effects of supplementing GEN for parental and offspring mice on the reproductive function and growth performance of the male pups. Mothers during gestation and lactation period were assigned to a control diet (CON group), low dose GEN (LGE group) diet (control diet +40 mg/kg GEN), and high dose of GEN (HGE group) diet (control diet +800 mg/kg GEN). Their male offspring underwent the same treatment of GEN after weaning. LGE treatment (40 mg/kg GEN) significantly increased body weights (p < 0.001), testes weights (p < 0.05), diameters of seminiferous tubule (p < 0.001) and heights of seminiferous epithelium (p < 0.05) of offspring mice. LGE treatment also increased serum testosterone (T) levels and spermatogenesis scoring (p < 0.05). However, HGE treatment (800mg/kg GEN) significantly decreased body weights (p < 0.001), testes weights (p < 0.05) and testis sizes (p < 0.001). Furthermore, mRNA expressions of ESR2 (p < 0.05), CYP19A1 (p < 0.001), SOX9 (p < 0.001) and BRD7 (p < 0.001) in testis of mice were increased in the LGE group. Similarly, HGE treatment increased mRNA expressions of ESR2 (p < 0.05) and CYP19A1 (p < 0.001). However, mRNA expressions of SOX9 and BRD7 were decreased significantly in the HGE group (p < 0.001). Meanwhile, higher ratio apoptotic germ cells and abnormal sperms were detected in the HGE group (p < 0.001). In conclusion, exposure to a low dose of GEN during fetal and neonatal life could improve testicular development of offspring mice, whereas, unfavorable adverse effects were induced by a high dose of GEN.
Collapse
|
35
|
Helppi J, Naumann R, Zierau O. Phytoestrogen-containing diets offer benefits for mouse embryology but lead to fewer offspring being produced. Lab Anim 2020; 54:536-545. [PMID: 32050842 DOI: 10.1177/0023677219898486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most commonly used protein sources in rodent diets is soy, which is naturally rich in phytoestrogens. Although phytoestrogens have shown potential health benefits in humans, they may also have the ability to disrupt reproduction. Consequently, there has been a tendency to try to exclude them from rodent diets. In the current study, we investigated whether phytoestrogen content in the mouse diet could affect reproduction in mice used as embryo donors. Donor mice (C57BL/6JOlaHsd) were maintained with three different diets: high phytoestrogen (ca. 400 mg/kg genistein), low phytoestrogen (ca. 10 mg/kg genistein) and standard breeding diet (ca. 120 mg/kg genistein). Mice fed a high phytoestrogen diet had a high yield of plugs, embryos, and injectable embryos, as well as producing good quality embryos. Results from donor mice fed a low phytoestrogen diet were consistently but only slightly inferior, whereas mice fed a standard diet performed the poorest. Interestingly, the largest number of born and weaned offspring were observed when recipient females received embryos from the standard diet group. Sperm yield and quality of stud males did not differ between the groups. We surmize that for experimental endpoints requiring fertilized embryos it may be more beneficial to feed mice a diet containing phytoestrogen, but if the goal is to produce transgenic mice, a diet high in phytoestrogen may be inadvisable. In conclusion, care should be taken when selecting a diet for experimental mouse colonies as phytoestrogen could influence the study outcome.
Collapse
Affiliation(s)
- Jussi Helppi
- Max Planck Institute of Molecular Cell Biology and Genetics, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Germany
| | - Oliver Zierau
- Institute of Zoology, Technische Universität Dresden, Germany
| |
Collapse
|
36
|
Montalesi E, Cipolletti M, Cracco P, Fiocchetti M, Marino M. Divergent Effects of Daidzein and its Metabolites on Estrogen-Induced Survival of Breast Cancer Cells. Cancers (Basel) 2020; 12:E167. [PMID: 31936631 PMCID: PMC7017042 DOI: 10.3390/cancers12010167] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023] Open
Abstract
Although soy consumption is associated with breast cancer prevention, the low bioavailability and the extensive metabolism of soy-active components limit their clinical application. Here, the impact of daidzein (D) and its metabolites on estrogen-dependent anti-apoptotic pathway has been evaluated in breast cancer cells. In estrogen receptor α-positive breast cancer cells treated with D and its metabolites, single or in mixture, ERα activation and Neuroglobin (NGB) levels, an anti-apoptotic estrogen/ERα-inducible protein, were evaluated. Moreover, the apoptotic cascade activation, as well as the cell number after stimulation was assessed in the absence/presence of paclitaxel to determine the compound effects on cell susceptibility to a chemotherapeutic agent. Among the metabolites, only D-4'-sulfate maintains the anti-estrogenic effect of D, reducing the NGB levels and rendering breast cancer cells more prone to the paclitaxel treatment, whereas other metabolites showed estrogen mimetic effects, or even estrogen independent effects. Intriguingly, the co-stimulation of D and gut metabolites strongly reduced D effects. The results highlight the important and complex influence of metabolic transformation on isoflavones physiological effects and demonstrate the need to take biotransformation into account when assessing the potential health benefits of consumption of soy isoflavones in cancer.
Collapse
Affiliation(s)
| | | | | | | | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (E.M.); (M.C.); (P.C.); (M.F.)
| |
Collapse
|
37
|
Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019; 11:E2231. [PMID: 31527435 PMCID: PMC6770660 DOI: 10.3390/nu11092231] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Epidemiological data suggest that regular intake of isoflavones from soy reduces the incidence of estrogen-dependent and aging-associated disorders, such as menopause symptoms in women, osteoporosis, cardiovascular diseases and cancer. Equol, produced from daidzein, is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. Consequently, equol has been endorsed as having many beneficial effects on human health. The conversion of daidzein into equol takes place in the intestine via the action of reductase enzymes belonging to incompletely characterized members of the gut microbiota. While all animal species analyzed so far produce equol, only between one third and one half of human subjects (depending on the community) are able to do so, ostensibly those that harbor equol-producing microbes. Conceivably, these subjects might be the only ones who can fully benefit from soy or isoflavone consumption. This review summarizes current knowledge on the microorganisms involved in, the genetic background to, and the biochemical pathways of, equol biosynthesis. It also outlines the results of recent clinical trials and meta-analyses on the effects of equol on different areas of human health and discusses briefly its presumptive mode of action.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
38
|
Mallien AS, Soukup ST, Pfeiffer N, Brandwein C, Kulling SE, Chourbaji S, Gass P. Effects of Soy in Laboratory Rodent Diets on the Basal, Affective, and Cognitive Behavior of C57BL/6 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:532-541. [PMID: 31466555 DOI: 10.30802/aalas-jaalas-18-000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Soy is one of the most common sources of protein in many commercial formulas for laboratory rodent diets. Soy contains isoflavones, which are estrogenic. Therefore, soy-containing animal diets might influence estrogen-regulated systems, including basal behavioral domains, as well as affective behavior and cognition. Furthermore, the isoflavone content of soy varies, potentially unpredictably confounding behavioral results. Therefore researchers are increasingly considering completely avoiding dietary soy to circumvent this problem. Several animal studies have investigated the effects of soy free diets but produced inconsistent results. In addition, most of these previous studies were performed in outbred rat or mouse strains. In the current study, we assessed whether a soy-free diet altered locomotion, exploration, nesting, anxiety-related behaviors, learning, and memory in C57BL/6 mice, the most common inbred strain used in biomedical research. The parameters evaluated address measures of basic health, natural behavior, and affective state that also are landmarks for animal welfare. We found minor differences between feeding groups but no indications of altered welfare. We therefore suggest that a soy-free diet can be used as a standard diet to prevent undesirable side effects of isoflavones and to further optimize diet standardization, quality assurance, and ultimately increase the reproducibility of experiments.
Collapse
Affiliation(s)
- Anne S Mallien
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;,
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Brandwein
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility, Heidelberg University, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
39
|
Moorehead RA. Rodent Models Assessing Mammary Tumor Prevention by Soy or Soy Isoflavones. Genes (Basel) 2019; 10:E566. [PMID: 31357528 PMCID: PMC6722900 DOI: 10.3390/genes10080566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
While epidemiological studies performed in Asian countries generally show that high levels of dietary soy are associated with reduced breast cancer risk, studies in Western countries have typically failed to show this correlation. In an attempt to model the preventative actions of soy on mammary tumor development, rodent models have been employed. Thirty-four studies were identified that evaluated the impact of soy products or purified soy isoflavones on mammary tumor initiation (studies evaluating established mammary tumors or mammary tumor cell lines were not included) and these studies were separated into mammary tumors induced by chemical carcinogens or transgenic expression of oncogenes based on the timing of soy administration. Regardless of when soy-based diets or purified isoflavones were administered, no consistent protective effects were observed in either carcinogen-induced or oncogene-induced mammary tumors. While some studies demonstrated that soy or purified isoflavones could reduce mammary tumor incidence, other studies showed either no effect or tumor promoting effects of soy products or isoflavones. Most importantly, only five studies found a decrease in mammary tumor incidence and six studies observed a decrease in tumor multiplicity, two relevant measures of the tumor preventative effects of soy or isoflavones. The variable outcomes of the studies examined were not completely surprising given that few studies employed the same experimental design. Future studies should be carefully designed to more accurately emulate soy consumption observed in Asian cultures including lifetime exposure to less refined soy products and potentially the incorporation of multigenerational feeding studies.
Collapse
Affiliation(s)
- Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
40
|
S-equol glucuronidation in liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice. Food Chem Toxicol 2019; 131:110542. [PMID: 31163218 DOI: 10.1016/j.fct.2019.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022]
Abstract
S-equol, an active metabolite of the soy isoflavone daidzein, is mainly metabolized into glucuronide(s) by UDP-glucuronosyltransferase (UGT) enzymes in mammals. In the present study, S-equol glucuronidation was examined in the liver and intestinal microsomes of humans, monkeys, dogs, rats, and mice using a kinetic analysis. CLint values for 7- and 4'-glucuronidation by liver microsomes were higher than those by intestinal microsomes in all species. CLint values for total glucuronidation (sum of 7- and 4'-glucuronidation) were rats (7.6) > monkeys (5.8) > mice (4.9) > dogs (2.8) > humans (1.0) for liver microsomes, and rats (9.6) > mice (2.8) > dogs (1.3) ≥ monkeys (1.2) > humans (1.0) for intestinal microsomes, respectively. Regarding regioselective glucuronidation by liver and intestinal microsomes, CLint values were 7-glucuronidation > 4'-glucuronidation for humans, monkeys, dogs, and mice, and 4'-glucuronidation > 7-glucuronidation for rats. These results suggest that the metabolic abilities of UGT enzymes toward S-equol in the liver and intestines markedly differ among humans, monkeys, dogs, rats, and mice.
Collapse
|
41
|
Martínez-Riera R, Pérez-Mañá C, Papaseit E, Fonseca F, de la Torre R, Pizarro N, Torrens M, Farré M. Soy Isoflavone Extract Does Not Increase the Intoxicating Effects of Acute Alcohol Ingestion in Human Volunteers. Front Pharmacol 2019; 10:131. [PMID: 30873023 PMCID: PMC6400998 DOI: 10.3389/fphar.2019.00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/05/2019] [Indexed: 11/16/2022] Open
Abstract
Soy beans contain isoflavones, including daidzein and genistein, with biological activities related to therapeutic effects in reducing osteoporosis, decreasing adverse menopausal manifestations, providing protection from cardiovascular diseases, and reducing hormone-dependent cancers and age-related cognitive-decline. Daidzein has been described as inhibiting the aldehyde-dehydrogenase-2 enzyme (ALDH2), and reducing alcohol use in clinical pilot studies. Our aim was to evaluate the possible interactions between a soy extract product and alcohol in a crossover, single blind, randomized study. Ten healthy male volunteers participated in two experimental sessions: one with a single dose of alcohol (0.5 g/kg, Vodka Absolut, Sweden), and the other with four capsules of a soy extract product (Super-Absorbable Soy Isoflavones, Life-Extension, United States) and, 2 h later, the same dose of alcohol. Results showed no differences in vital signs except a slightly higher significative reduction in diastolic blood pressure at 2, 3, 4, and 8 h after administration with alcohol alone in comparison with soy extract+alcohol. Ethanol-induced subjective and adverse effects were similar for both conditions with the exception of headache (higher at 8 h after alcohol alone). Our results demonstrate that a single dose of a soy isoflavone extract did not influence alcohol pharmacokinetics and pharmacological effects and did not induce any disulfiram-reaction symptoms. Soy extract and alcohol did not interact and can be administered safely.
Collapse
Affiliation(s)
- Roser Martínez-Riera
- Institut de Neuropsiquiatria i Addiccions, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department of Psychiatry and Legal Medicine and Department of Pharmacology, Therapeutics and Toxicoloy, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain.,Red de Salud Mental Gipuzkoa, Osakidetza, San Sebastián-Donostia, Spain
| | - Clara Pérez-Mañá
- Department of Psychiatry and Legal Medicine and Department of Pharmacology, Therapeutics and Toxicoloy, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain.,Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Esther Papaseit
- Department of Psychiatry and Legal Medicine and Department of Pharmacology, Therapeutics and Toxicoloy, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain.,Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Francina Fonseca
- Institut de Neuropsiquiatria i Addiccions, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department of Psychiatry and Legal Medicine and Department of Pharmacology, Therapeutics and Toxicoloy, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department of Experimental and Health Sciences (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Nieves Pizarro
- Department of Psychiatry and Legal Medicine and Department of Pharmacology, Therapeutics and Toxicoloy, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain.,Integrative Pharmacology and Systems Neurosciences Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Marta Torrens
- Institut de Neuropsiquiatria i Addiccions, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Department of Psychiatry and Legal Medicine and Department of Pharmacology, Therapeutics and Toxicoloy, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Magí Farré
- Department of Psychiatry and Legal Medicine and Department of Pharmacology, Therapeutics and Toxicoloy, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain.,Clinical Pharmacology Unit, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| |
Collapse
|
42
|
Zheng XX, Du Y, Xu BJ, Wang TY, Zhong QQ, Li Z, Ji S, Guo MZ, Yang DZ, Tang DQ. Off-line two-dimensional liquid chromatography coupled with diode array detection and quadrupole-time of flight mass spectrometry for the biotransformation kinetics of Ginkgo biloba leaves extract by diabetic rat liver microsomes. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1109:1-9. [DOI: 10.1016/j.jchromb.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
|
43
|
Hüser S, Guth S, Joost HG, Soukup ST, Köhrle J, Kreienbrock L, Diel P, Lachenmeier DW, Eisenbrand G, Vollmer G, Nöthlings U, Marko D, Mally A, Grune T, Lehmann L, Steinberg P, Kulling SE. Effects of isoflavones on breast tissue and the thyroid hormone system in humans: a comprehensive safety evaluation. Arch Toxicol 2018; 92:2703-2748. [PMID: 30132047 PMCID: PMC6132702 DOI: 10.1007/s00204-018-2279-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary plant constituents of certain foods and feeds such as soy, linseeds, and red clover. Furthermore, isoflavone-containing preparations are marketed as food supplements and so-called dietary food for special medical purposes to alleviate health complaints of peri- and postmenopausal women. Based on the bioactivity of isoflavones, especially their hormonal properties, there is an ongoing discussion regarding their potential adverse effects on human health. This review evaluates and summarises the evidence from interventional and observational studies addressing potential unintended effects of isoflavones on the female breast in healthy women as well as in breast cancer patients and on the thyroid hormone system. In addition, evidence from animal and in vitro studies considered relevant in this context was taken into account along with their strengths and limitations. Key factors influencing the biological effects of isoflavones, e.g., bioavailability, plasma and tissue concentrations, metabolism, temporality (pre- vs. postmenopausal women), and duration of isoflavone exposure, were also addressed. Final conclusions on the safety of isoflavones are guided by the aim of precautionary consumer protection.
Collapse
Affiliation(s)
- S Hüser
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - S Guth
- Institute for Food Toxicology, Senate Commission on Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - H G Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - S T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - J Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, CVK, Berlin, Germany
| | - L Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - P Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - D W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt Karlsruhe, Karlsruhe, Germany
| | - G Eisenbrand
- Division of Food Chemistry and Toxicology, Molecular Nutrition, Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - G Vollmer
- Department of Biology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - U Nöthlings
- Department of Nutrition and Food Sciences, Nutritional Epidemiology, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
| | - D Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - A Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - T Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - L Lehmann
- Department of Food Chemistry, Institute for Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - P Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - S E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany.
| |
Collapse
|
44
|
Hanioka N, Ohkawara S, Isobe T, Ochi S, Tanaka-Kagawa T, Jinno H. Regioselective glucuronidation of daidzein in liver and intestinal microsomes of humans, monkeys, rats, and mice. Arch Toxicol 2018; 92:2809-2817. [DOI: 10.1007/s00204-018-2265-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
|
45
|
Takaoka O, Mori T, Ito F, Okimura H, Kataoka H, Tanaka Y, Koshiba A, Kusuki I, Shigehiro S, Amami T, Kitawaki J. Daidzein-rich isoflavone aglycones inhibit cell growth and inflammation in endometriosis. J Steroid Biochem Mol Biol 2018; 181:125-132. [PMID: 29679753 DOI: 10.1016/j.jsbmb.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/17/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
Endometriosis is an estrogen-dependent disease, and isoflavones interact with estrogen receptors. The purposes of this study are to investigate the in vitro and in vivo effects of daidzein-rich isoflavone aglycones (DRIAs), dietary supplements, on cellular proliferation in endometriosis. Stromal cells isolated from ovarian endometrioma (OESCs) and normal endometrium (NESCs) were cultured with DRIAs, i.e., each of the DRIA components (daidzein, genistein, or glycitein), or isoflavone glycosides (IG; DRIA precursors). A mouse model of endometriosis was established by transplanting donor-mouse uterine fragments into recipient mice. Our results showed that DRIAs (0.2-20 μM) inhibited the proliferation of OESCs (P < 0.05 for 0.2 μM; P < 0.01 for 2 and 20 μM) but not of NESCs. However, daidzein, genistein, glycitein, and IG did not inhibit their proliferation. DRIA-induced suppression was reversed by inhibition of the estrogen receptor (ER)β by an antagonist, PHTPP, or by ERβ siRNA (P < 0.05), but not by MPP, an ERα antagonist. In OESCs, DRIAs led to reduced expression of IL-6, IL-8, COX-2, and aromatase, as well as reduced aromatase activity, serum glucocorticoid-regulated kinase levels, and PGE2 levels (P < 0.05). Western blot and immunofluorescence assays revealed that DRIAs inhibited TNF-α-induced IκB phosphorylation and p65 uptake into the nuclei of OESCs. In the mouse model, a DRIA-containing feed significantly decreased the number, weight, and Ki-67 proliferative activity of endometriosis-like lesions compared to in mice fed with an IG-containing feed and the control feed (P < 0.01). In conclusion, DRIAs inhibit cellular proliferation in endometriosis, thus representing a potential therapeutic option for the management of endometriosis.
Collapse
Affiliation(s)
- O Takaoka
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - T Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan.
| | - F Ito
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - H Okimura
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - H Kataoka
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - Y Tanaka
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - A Koshiba
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - I Kusuki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| | - S Shigehiro
- Nichimo Biotics Co., Ltd., Tokyo, 140-0002, Japan
| | - T Amami
- Nichimo Biotics Co., Ltd., Tokyo, 140-0002, Japan
| | - J Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, 602-8566, Japan
| |
Collapse
|
46
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
47
|
Borgert CJ, Matthews JC, Baker SP. Human-relevant potency threshold (HRPT) for ERα agonism. Arch Toxicol 2018; 92:1685-1702. [PMID: 29632997 PMCID: PMC5962616 DOI: 10.1007/s00204-018-2186-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
The European Commission has recently proposed draft criteria for the identification of endocrine disrupting chemicals (EDCs) that pose a significant hazard to humans or the environment. Identifying and characterizing toxic hazards based on the manner by which adverse effects are produced rather than on the nature of those adverse effects departs from traditional practice and requires a proper interpretation of the evidence regarding the chemical’s ability to produce physiological effect(s) via a specific mode of action (MoA). The ability of any chemical to produce a physiological effect depends on its pharmacokinetics and the potency by which it acts via the various MoAs that can lead to the particular effect. A chemical’s potency for a specific MoA—its mechanistic potency—is determined by two properties: (1) its affinity for the functional components that comprise the MoA, i.e., its specific receptors, enzymes, transporters, transcriptional elements, etc., and (2) its ability to alter the functional state of those components (activity). Using the agonist MoA via estrogen receptor alpha, we illustrate an empirical method for determining a human-relevant potency threshold (HRPT), defined as the minimum level of mechanistic potency necessary for a chemical to be able to act via a particular MoA in humans. One important use for an HRPT is to distinguish between chemicals that may be capable of, versus those likely to be incapable of, producing adverse effects in humans via the specified MoA. The method involves comparing chemicals that have different ERα agonist potencies with the ability of those chemicals to produce ERα-mediated agonist responses in human clinical trials. Based on this approach, we propose an HRPT for ERα agonism of 1E-04 relative to the potency of the endogenous estrogenic hormone 17β-estradiol or the pharmaceutical estrogen, 17α-ethinylestradiol. This approach provides a practical way to address Hazard Identification according to the draft criteria for identification of EDCs recently proposed by the European Commission.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology, Inc. and CEHT, Univ. FL College of Vet. Med., Gainesville, FL, USA.
| | - John C Matthews
- University of Mississippi School of Pharmacy, University, MS, USA
| | - Stephen P Baker
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
48
|
Warth B, Raffeiner P, Granados A, Huan T, Fang M, Forsberg EM, Benton HP, Goetz L, Johnson CH, Siuzdak G. Metabolomics Reveals that Dietary Xenoestrogens Alter Cellular Metabolism Induced by Palbociclib/Letrozole Combination Cancer Therapy. Cell Chem Biol 2018; 25:291-300.e3. [PMID: 29337187 PMCID: PMC5856613 DOI: 10.1016/j.chembiol.2017.12.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
Abstract
Recently, the palbociclib/letrozole combination therapy was granted accelerated US FDA approval for the treatment of estrogen receptor (ER)-positive breast cancer. Since the underlying metabolic effects of these drugs are yet unknown, we investigated their synergism at the metabolome level in MCF-7 cells. As xenoestrogens interact with the ER, we additionally aimed at deciphering the impact of the phytoestrogen genistein and the estrogenic mycotoxin zearalenone. A global metabolomics approach was applied to unravel metabolite and pathway modifications. The results clearly showed that the combined effects of palbociclib and letrozole on cellular metabolism were far more pronounced than that of each agent alone and potently influenced by xenoestrogens. This behavior was confirmed in proliferation experiments and functional assays. Specifically, amino acids and central carbon metabolites were attenuated, while higher abundances were observed for fatty acids and most nucleic acid-related metabolites. Interestingly, exposure to model xenoestrogens appeared to counteract these effects.
Collapse
Affiliation(s)
- Benedikt Warth
- The Scripps Research Institute, Scripps Center for Metabolomics and Mass Spectrometry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währingerstraße 38, 1090 Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, 1090 Vienna, Austria.
| | - Philipp Raffeiner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ana Granados
- The Scripps Research Institute, Scripps Center for Metabolomics and Mass Spectrometry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tao Huan
- The Scripps Research Institute, Scripps Center for Metabolomics and Mass Spectrometry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mingliang Fang
- Nanyang Technological University, School of Civil and Environmental Engineering, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Erica M Forsberg
- The Scripps Research Institute, Scripps Center for Metabolomics and Mass Spectrometry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Paul Benton
- The Scripps Research Institute, Scripps Center for Metabolomics and Mass Spectrometry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Laura Goetz
- Department of Surgery, Scripps Clinic Medical Group, La Jolla, CA 92037, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Gary Siuzdak
- The Scripps Research Institute, Scripps Center for Metabolomics and Mass Spectrometry, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; The Scripps Research Institute, Department of Integrative and Computational Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Rizzo G, Baroni L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018; 10:E43. [PMID: 29304010 PMCID: PMC5793271 DOI: 10.3390/nu10010043] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023] Open
Abstract
Soy is a basic food ingredient of traditional Asian cuisine used for thousands of years. In Western countries, soybeans have been introduced about a hundred years ago and recently they are mainly used for surrogate foods production. Soy and soy foods are common nutritional solutions for vegetarians, due to their high protein content and versatility in the production of meat analogues and milk substitutes. However, there are some doubts about the potential effects on health, such as the effectiveness on cardiovascular risk reduction or, conversely, on the possible disruption of thyroid function and sexual hormones. The soy components that have stimulated the most research interest are isoflavones, which are polyphenols with estrogenic properties highly contained in soybeans. In this review, we discuss the characteristics of soy and soy foods, focusing on their nutrient content, including phytoestrogens and other bioactive substances that are noteworthy for vegetarians, the largest soy consumers in the Western countries. The safety of use will also be discussed, given the growing trend in adoption of vegetarian styles and the new soy-based foods availability.
Collapse
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2, 31100 Treviso, Italy.
| |
Collapse
|
50
|
Jarić I, Živanović J, Miler M, Ajdžanović V, Blagojević D, Ristić N, Milošević V, Nestorović N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol Appl Pharmacol 2018; 339:73-84. [DOI: 10.1016/j.taap.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|