1
|
dos Santos Melo YL, Luchiari AC, Lopes BS, Ferreira Rocha Silva MG, dos Santos Pais T, Procópio Gama Cortez JE, da Silva Camillo C, Bezerra de Moura SA, da Silva-Maia JK, de Araújo Morais AH. Acute toxicity of trypsin inhibitor from tamarind seeds in embryo and adult zebrafish ( Danio rerio). Toxicol Rep 2024; 13:101766. [PMID: 39469098 PMCID: PMC11513818 DOI: 10.1016/j.toxrep.2024.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
The trypsin inhibitor isolated from tamarind seeds (TTI) is being investigated for potential applications in the treatment of noncommunicable diseases (NCD), such as hypertension, obesity, and diabetes. This study aimed to assess TTI embryotoxicity and acute toxicity in adult zebrafish (Danio rerio). TTI was extracted and isolated from tamarind seeds. Embryonic and adult zebrafish were exposed for 96 hours to three concentrations of TTI (12.5, 25, and 50 mg/L). Zebrafish embryos (n=60 per group) were evaluated for survival, hatching, malformations, and potential developmental marker alterations, in addition to cardiotoxicity and neurotoxicity tests. For acute toxicity assessment in adults (n=20 per group), survival and locomotor and anxiety-like behaviors were assessed, along with genotoxicity (micronucleus) evaluation. Embryos exposed to TTI showed no significant adverse effects, presented normal heart rates and positive reflex response in the neurotoxicity tests. In adult fish, TTI did not cause mortality or significant behavioral changes, suggesting no neurotoxicity and no genotoxicity. Histopathological analyses of the whole body showed only changes in the liver and spinal cord, similar to those observed in the control group not exposed to TTI. These findings indicate TTI's biosafety and therapeutic potential in complex organisms. Further research is required to evaluate its long-term effects and efficacy in treating non-communicable diseases.
Collapse
Affiliation(s)
| | - Ana Carolina Luchiari
- FishLab, Physiology and Behavior Department, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Psychobiology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Beatriz Silva Lopes
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Tatiana dos Santos Pais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Christina da Silva Camillo
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sérgio Adriane Bezerra de Moura
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Faulstich L, Wollenweber S, Reinhardt-Imjela C, Arendt R, Schulte A, Hollert H, Schiwy S. Ecotoxicological evaluation of surface waters in Northern Namibia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:456. [PMID: 38630192 PMCID: PMC11024038 DOI: 10.1007/s10661-024-12613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
The increasing pressure on freshwater systems due to intensive anthropogenic use is a big challenge in central-northern Namibia and its catchment areas, the Kunene and the Kavango Rivers, and the Cuvelai-Etosha Basin, that provide water for more than 1 million people. So far, there is no comprehensive knowledge about the ecological status and only few knowledge about the water quality. Therefore, it is crucial to learn about the state of the ecosystem and the ecological effects of pollutants to ensure the safe use of these resources. The surface waters of the three systems were sampled, and three bioassays were applied on three trophic levels: algae, daphnia, and zebrafish embryos. Additionally, in vitro assays were performed to analyze mutagenicity (Ames fluctuation), dioxin-like potential (micro-EROD), and estrogenicity (YES) by mechanism-specific effects. The results show that acute toxicity to fish embryos and daphnia has mainly been detected at all sites in the three catchment areas. The systems differ significantly from each other, with the sites in the Iishana system showing the highest acute toxicity. At the cellular level, only weak effects were identified, although these were stronger in the Iishana system than in the two perennial systems. Algae growth was not inhibited, and no cytotoxic effects could be detected in any of the samples. Mutagenic effects and an estrogenic potential were detected at three sites in the Iishana system. These findings are critical in water resource management as the effects can adversely impact the health of aquatic ecosystems and the organisms within them.
Collapse
Affiliation(s)
- L Faulstich
- Freie Universität Berlin, Berlin, Germany.
- Goethe-Universität Frankfurt, Frankfurt, Germany.
| | | | | | - R Arendt
- Freie Universität Berlin, Berlin, Germany
| | - A Schulte
- Freie Universität Berlin, Berlin, Germany
| | - H Hollert
- Goethe-Universität Frankfurt, Frankfurt, Germany
| | - S Schiwy
- Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Carneiro KDS, Franchi LP, Rocha TL. Carbon nanotubes and nanofibers seen as emerging threat to fish: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169483. [PMID: 38151128 DOI: 10.1016/j.scitotenv.2023.169483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/25/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
Since the discovery of the third allotropic carbon form, carbon-based one-dimensional nanomaterials (1D-CNMs) became an attractive and new technology with different applications that range from electronics to biomedical and environmental technologies. Despite their broad application, data on environmental risks remain limited. Fish are widely used in ecotoxicological studies and biomonitoring programs. Thus, the aim of the current study was to summarize and critically analyze the literature focused on investigating the bioaccumulation and ecotoxicological impacts of 1D-CNMs (carbon nanotubes and nanofibers) on different fish species. In total, 93 articles were summarized and analyzed by taking into consideration the following aspects: bioaccumulation, trophic transfer, genotoxicity, mutagenicity, organ-specific toxicity, oxidative stress, neurotoxicity and behavioral changes. Results have evidenced that the analyzed studies were mainly carried out with multi-walled carbon nanotubes, which were followed by single-walled nanotubes and nanofibers. Zebrafish (Danio rerio) was the main fish species used as model system. CNMs' ecotoxicity in fish depends on their physicochemical features, functionalization, experimental design (e.g. exposure time, concentration, exposure type), as well as on fish species and developmental stage. CNMs' action mechanism and toxicity in fish are associated with oxidative stress, genotoxicity, hepatotoxicity and cardiotoxicity. Overall, fish are a suitable model system to assess the ecotoxicity of, and the environmental risk posed by, CNMs.
Collapse
Affiliation(s)
- Karla da Silva Carneiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Leonardo Pereira Franchi
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
4
|
Teixeira JRDS, de Souza AM, de Macedo-Sampaio JV, Menezes FP, Pereira BF, de Medeiros SRB, Luchiari AC. Embryotoxic Effects of Pesticides in Zebrafish ( Danio rerio): Diflubenzuron, Pyriproxyfen, and Its Mixtures. TOXICS 2024; 12:160. [PMID: 38393255 PMCID: PMC10892354 DOI: 10.3390/toxics12020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Diflubenzuron (DFB) and pyriproxyfen (PPF) are larvicides used in crops to control insect plagues. However, these pesticides are known to impact non-target organisms like fish and mammals. Here, we aimed at assessing the embryotoxicity of purified DFB, PPF, and their mixtures in a non-target organism-zebrafish. Zebrafish embryos were exposed to different concentrations for 120 h: 0.025, 0.125, 0.25, 1.25, 2.5, and 10 mg/L of purified PPF and purified DFB, while we used 0.025 mg/L PPF + 10 mg/L DFB (Mix A), 0.125 mg/L PPF + 10 mg/L DFB (Mix B), and 0.25 mg/L PPF + 10 mg/L DFB (Mix C) for the mixtures of PPF + DFB. We observed mortality, teratogenicity, and cardiotoxicity. For the neurotoxicity tests and evaluation of reactive oxygen species (ROS) levels in the brain, embryos were exposed for 120 h to 0.379 and 0.754 mg/L of PPF and 0.025 and 0.125 mg/L of DFB. We established the LC50 for PPF as 3.79 mg/L, while the LC50 for DFB was not determinable. Survival and hatching were affected by PPF concentrations above 0.125 mg/L, DFB concentrations above 1.25 mg/L, and the lower pesticide mixtures. PPF exposure and mixtures induced different types of malformations, while a higher number of malformations were observed for the mixtures, suggesting a potentiating effect. Pesticides diminished avoidance responses and increased the levels of ROS across all concentrations, indicating neurotoxicity. Our findings underscore the detrimental impact of PPF and DFB exposure, spanning from biochemistry to morphology. There is a critical need to reconsider the global use of these pesticides and transition to more ecologically friendly forms of pest control, raising an alarm regarding repercussions on human and animal health and well-being.
Collapse
Affiliation(s)
- Júlia Robert de Sousa Teixeira
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil; (J.R.d.S.T.); (J.V.d.M.-S.)
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil; (A.M.d.S.); (S.R.B.d.M.)
| | - João Vitor de Macedo-Sampaio
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil; (J.R.d.S.T.); (J.V.d.M.-S.)
| | - Fabiano Peres Menezes
- Brazilian Institute of Environment and Renewable Natural Resources (IBAMA), Rio Grande 96200-180, RS, Brazil;
| | - Bruno Fiorelini Pereira
- Department of Biology, Federal University of São Paulo (UNIFESP), Diadema 09913-030, SP, Brazil;
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil; (A.M.d.S.); (S.R.B.d.M.)
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil; (J.R.d.S.T.); (J.V.d.M.-S.)
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59072-970, RN, Brazil
| |
Collapse
|
5
|
Chen H, Zhao Y, Zhao T, Li Y, Ren B, Liang H, Liang H. Multi-walled carbon nanotubes enhance the toxicity effects of dibutyl phthalate on early life stages of zebrafish (Danio rerio): Research in physiological, biochemical and molecular aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165684. [PMID: 37482360 DOI: 10.1016/j.scitotenv.2023.165684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers. PAEs are ubiquitous in natural water bodies, with dibutyl phthalate (DBP) being one of the most common PAEs. DBP is prone to leaching or migration into the environment, posing serious health and environmental risks. Carbon nanotubes (CNTs) have been widely used in various fields with the rapid development of nanotechnology. CNTs could alter the environmental behavior and toxicity of co-existing pollutants. CNTs have been shown to rapidly adsorb PEAs. However, current knowledge about the effects of CNTs on DBP toxicity is limited. Here we show that the toxic effects of single and combined exposure to DBP (0.1, 0.5, 1.0 mg/L) and different CNTs (MWCNTs/MWCNTs-COOH, 0.5 mg/L) on the early growth stage of zebrafish. The results suggested that a significant increase in heart rate and heart malformation rate was observed after co-exposure of DBP and MWCNTs/MWCNTs-COOH (p < 0.05). Furthermore, combined exposure increased antioxidant enzyme activity during early developmental stages in zebrafish (p < 0.05). The qRT-PCR results revealed that DBP and MWCNTs/MWCNTs-COOH co-exposure significantly interfered with the expression of genes related to oxidative stress, energy metabolism, development of cardiac function, and apoptosis (p < 0.05). In addition, for oxidative stress and cardiotoxicity, MWCNTs/MWCNTs-COOH aggravated the toxic effects of 0.5 mg/L DBP on embryos/larvae. The metabolomics results showed that co-exposure mitigated the disturbance of amino acid metabolism mediated by single DBP exposure. In general, MWCNTs/MWCNTs-COOH increased the impact of DBP in the early developmental stages of zebrafish. This study provides new insights into the toxicology of early developmental stages of aquatic organisms exposed to co-exist pollutants of DBP and CNTs.
Collapse
Affiliation(s)
- Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
6
|
Pais TDS, Luchiari AC, de Souza AM, Medeiros I, Silva MGFR, Dos Santos YL, Silva-Maia JK, Passos TS, Morais AHDA. Assessment of acute toxicity of crude extract rich in carotenoids from Cantaloupe melon (Cucumis melo L.) and the gelatin-based nanoparticles using the zebrafish (Danio rerio) model. Food Chem Toxicol 2023; 181:114091. [PMID: 37804917 DOI: 10.1016/j.fct.2023.114091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cantaloupe melon is known for its carotenoid-rich orange pulp. However, carotenoids are sensitive to oxygen, light, and heat, potentially reducing their benefits. Nanoencapsulation can preserve these benefits but raises concerns about toxicity. We aimed to assess the safety and bioactive potential of crude extract-rich carotenoids (CE) and nanoparticles based on gelatin loaded with CE (EPG) by investigating parameters such as cardio or neurotoxicity, especially acute toxicity. EPG was obtained by O/W emulsification and characterized by different methods. Zebrafish embryos were exposed to CE and EPG at 12.5 mg/L and 50 mg/L for 96h and were investigated for survival, hatching, malformations, and seven days post fertilization (dpf) larvae's visual motor response. Adult fish underwent behavioral tests after acute exposure of 96h. CE and EPG showed no acute toxicity in zebrafish embryos, and both improved the visual motor response in 7dpf larvae (p = 0.01), suggesting the potential antioxidant and provitamin A effect of carotenoids in cognitive function and response in the evaluated model. Adult fish behavior remained with no signs of anxiety, stress, swimming pattern changes, or sociability that would indicate toxicity. This study highlights the safety and potential benefits of carotenoids in zebrafish. Further research is needed to explore underlying mechanisms and long-term effects.
Collapse
Affiliation(s)
- Tatiana Dos Santos Pais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Physiology and Behavior Department, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Psychobiology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Augusto Monteiro de Souza
- Biotechnology Program - Northeast Biotechnology Network (RENORBIO), Technology Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Yohanna Layssa Dos Santos
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Kelly Silva-Maia
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil; Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Nutrition Department, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
7
|
Zhang X, Tang G, Zhou Z, Wang H, Li X, Yan G, Liu Y, Huang Y, Wang J, Cao Y. Fabrication of Enzyme-Responsive Prodrug Self-Assembly Based on Fluazinam for Reducing Toxicity to Aquatic Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12678-12687. [PMID: 37595273 DOI: 10.1021/acs.jafc.3c03762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Prodrug-based nanodrug delivery systems were drug formulations by covalently conjugating drugs with inversely polar groups via a cleavable bond to self-assemble into nanoparticles for efficient drug delivery. To improve the utilization efficiency of fluazinam (FZN), enzyme-responsive prodrugs were prepared by conjugating FZN with different alkyl aliphatic acids through a nucleophilic substitution reaction and subsequently self-assembled into nanoparticles (FZNP NPs) without using any harmful adjuvant. The obtained FZNP NPs exhibited excellent efficacies against Sclerotinia sclerotiorum as a result of improved physicochemical properties, including low surface tension, high retention, and enhanced photostability. The LC50 values of FZNP NPs toward zebrafish were 3-8 times that of FZN, which illustrated that the FZNP NPs reduced the detriments of FZN to the aquatic organisms while retaining good biological activity. Therefore, prodrug self-assembly technology would offer a potential method for improving the utilization efficiency of pesticides and lowering the risks to the ecological environment.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Wang Y, Li L, Ning X, Sang N, Li G. Potential toxicity of landfill leachate to zebrafish and mung beans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82807-82817. [PMID: 37336852 DOI: 10.1007/s11356-023-28086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Landfill leachate has become a major public health concern due to its adverse health effects. However, its toxicological effects have not been thoroughly determined because of its complex composition. To address this issue, two model organisms were used in this study, including mung beans and zebrafish. Bean seedlings were exposed to different concentrations of landfill leachate (1%, 5%, 10%, 15%, and 20%, v/v, leachate/deionized water) for 7 days. Low concentrations (1%) of landfill leachate increased the growth of mung beans, whereas high concentrations (15% and 20%) of landfill leachate inhibited the growth and development of seedlings. Furthermore, landfill leachate reduced chlorophyll levels but increased malondialdehyde levels, leading to an increased rate of root-tip micronuclei. Zebrafish embryos were exposed to different concentrations of landfill leachate (0.5%, 1.0%, 1.2%, and 1.5%, v/v, leachate/E3 medium) for 120 h. The results showed that landfill leachate significantly decreased lower levels of hatching rate and heart rate but increased the mortality and malformation rates of embryos. Moreover, 1.0% landfill leachate reduced the frequency of spontaneous movement and the light stimulation reaction of embryos. Embryos exposed to leachate showed less exploratory behavior and fewer mirror attacks in the black and white areas. Our results suggest that exposure to landfill leachate could cause developmental toxicity and genotoxicity in plants and fish. The findings can improve our understanding of the environmental toxicity of landfill leachate and provide additional evidence for its risk assessment and management.
Collapse
Affiliation(s)
- Yue Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Lin Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China.
| |
Collapse
|
9
|
Pereira SPP, Boyle D, Nogueira AJA, Handy RD. Comparison of toxicity of silver nanomaterials and silver nitrate on developing zebrafish embryos: Bioavailability, osmoregulatory and oxidative stress. CHEMOSPHERE 2023:139236. [PMID: 37330064 DOI: 10.1016/j.chemosphere.2023.139236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The mechanisms of toxicity of engineered nanomaterials (ENMs) to the early life stages of freshwater fish, and the relative hazard compared to dissolved metals, is only partially understood. In the present study, zebrafish (Danio rerio) embryos were exposed to lethal concentrations of silver nitrate (AgNO3) or silver (Ag) ENMs (primary size 42.5 ± 10.2 nm). The 96 h-LC50 for AgNO3 was 32.8 ± 0.72 μg Ag L-1 (mean ± 95% CI) compared to 6.5 ± 0.4 mg L-1 of the whole material for Ag ENMs; with the ENMs being orders of magnitude less toxic than the metal salt. The EC50 for hatching success was 30.5 ± 1.4 μg Ag L-1 and 6.04 ± 0.4 mg L-1 for AgNO3 and Ag ENMs, respectively. Further sub-lethal exposures were performed with the estimated LC10 concentrations for both AgNO3 or Ag ENMs over 96 h where about 3.7% of the total Ag as AgNO3 was internalised, as measured by Ag accumulation in the dechorionated embryos. However, for the ENMs exposures, nearly all (99.8%) of the total Ag was associated with chorion; indicating the chorion as an effective barrier to protect the embryo in the short term. Calcium (Ca2+) and sodium (Na+) depletion was induced in embryos by both forms of Ag, but hyponatremia was more pronounced in the nano form. Total glutathione (tGSH) levels declined in embryos exposed to both Ag forms, but a superior depletion occurred with the nano form. Nevertheless, oxidative stress was mild as superoxide dismutase (SOD) activity stayed uniform and the sodium pump (Na+/K+-ATPase) activity had no appreciable inhibition compared to the control. In conclusion, AgNO3 was more toxic to the early life stage zebrafish than the Ag ENMs, still differences were found in the exposure and toxic mechanisms of both Ag forms.
Collapse
Affiliation(s)
- Susana P P Pereira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal; School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| | - David Boyle
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| | - António J A Nogueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|
10
|
Pereira SPP, Boyle D, Nogueira A, Handy RD. Differences in toxicity and accumulation of metal from copper oxide nanomaterials compared to copper sulphate in zebrafish embryos: Delayed hatching, the chorion barrier and physiological effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114613. [PMID: 36796205 DOI: 10.1016/j.ecoenv.2023.114613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The mechanisms of toxicity of engineered nanomaterials (ENMs) to the early life stages of freshwater fish, and the relative hazard compared to dissolved metals, is only partially understood. In the present study, zebrafish embryos were exposed to lethal concentrations of copper sulphate (CuSO4) or copper oxide (CuO) ENMs (primary size ∼15 nm), and then the sub-lethal effects investigated at the LC10 concentrations over 96 h. The 96 h-LC50 (mean ± 95% CI) for CuSO4 was 303 ± 14 µg Cu L-1 compared to 53 ± 9.9 mg L-1 of the whole material for CuO ENMs; with the ENMs being orders of magnitude less toxic than the metal salt. The EC50 for hatching success was 76 ± 11 µg Cu L-1 and 0.34 ± 0.78 mg L-1 for CuSO4 and CuO ENMs respectively. Failure to hatch was associated with bubbles and foam-looking perivitelline fluid (CuSO4), or particulate material smothering the chorion (CuO ENMs). In the sub-lethal exposures, about 42% of the total Cu as CuSO4 was internalised, as measured by Cu accumulation in the de-chorionated embryos, but for the ENMs exposures, nearly all (94%) of the total Cu was associated with chorion; indicating the chorion as an effective barrier to protect the embryo from the ENMs in the short term. Both forms of Cu exposure caused sodium (Na+) and calcium (Ca2+), but not magnesium (Mg2+), depletion from the embryos; and CuSO4 caused some inhibition of the sodium pump (Na+/K+-ATPase) activity. Both forms of Cu exposure caused some loss of total glutathione (tGSH) in the embryos, but without induction of superoxide dismutase (SOD) activity. In conclusion, CuSO4 was much more toxic than CuO ENMs to early life stage zebrafish, but there are subtle differences in the exposure and toxic mechanisms for each substance.
Collapse
Affiliation(s)
- Susana P P Pereira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| | - David Boyle
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| | - António Nogueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
11
|
Connolly M, Moles G, Carniel FC, Tretiach M, Caorsi G, Flahaut E, Soula B, Pinelli E, Gauthier L, Mouchet F, Navas JM. Applicability of OECD TG 201, 202, 203 for the aquatic toxicity testing and assessment of 2D Graphene material nanoforms to meet regulatory needs. NANOIMPACT 2023; 29:100447. [PMID: 36563784 DOI: 10.1016/j.impact.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Tests using algae and/or cyanobacteria, invertebrates (crustaceans) and fish form the basic elements of an ecotoxicological assessment in a number of regulations, in particular for classification of a substance as hazardous or not to the aquatic environment according to the Globally Harmonised System of Classification and Labelling of Chemicals (GHS-CLP) (GHS, 2022) and the REACH regulation (Registration, Evaluation, Authorisation and Restriction of Chemicals, EC, 2006). Standardised test guidelines (TGs) of the Organisation for Economic Co-operation and Development (OECD) are available to address the regulatory relevant endpoints of growth inhibition in algae and cyanobacteria (TG 201), acute toxicity to invertebrates (TG 202), and acute toxicity in fish (TG 203). Applying these existing OECD TGs for testing two dimensional (2D) graphene nanoforms may require more attention, additional considerations and/or adaptations of the protocols, because graphene materials are often problematic to test due to their unique attributes. In this review a critical analysis of all existing studies and approaches to testing used has been performed in order to comment on the current state of the science on testing and the overall ecotoxicity of 2D graphene materials. Focusing on the specific tests and available guidance's, a complete evaluation of aquatic toxicity testing for hazard classification of 2D graphene materials, as well as the use of alternative tests in an integrated approach to testing and assessment, has been made. This information is essential to ensure future assessments generate meaningful data that will fulfil regulatory requirements for the safe use of this "wonder" material.
Collapse
Affiliation(s)
- M Connolly
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain.
| | - G Moles
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| | - F Candotto Carniel
- UNITS, Department of Chemical and Pharmaceutical Sciences, University of Trieste, via L. Giorgieri 1, Trieste I-34127, Italy
| | - M Tretiach
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - G Caorsi
- UNITS, Department of Life Sciences, University of Trieste, via L. Giorgieri 10, Trieste I-34127, Italy
| | - E Flahaut
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - B Soula
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - E Pinelli
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - L Gauthier
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - F Mouchet
- CNRS CIRIMAT/ECOLAB, Centre National de la Recherche Scientifique, Centre Inter-universitaire de Recherche et d'Ingénierie en Matériaux (CIRIMAT)/Laboratoire Ecologie Fonctionnelle et Environnement, 16 Av Edouard Belin, 31400 Toulouse, France
| | - J M Navas
- INIA-CSIC, Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas, Ctra. de La Coruña, km 7, 5, 28040 Madrid, Spain
| |
Collapse
|
12
|
de Oliveira Eiras MI, Costa LSD, Barbieri E. Copper II oxide nanoparticles (CuONPs) alter metabolic markers and swimming activity in zebra-fish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109343. [PMID: 35421598 DOI: 10.1016/j.cbpc.2022.109343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The present study aimed to compare the metabolic effects caused by using copper oxide nanoparticles with two distinct morphologies nanorods and nanosphere. The CuONPs in the form of nanorods were characterized in the order of 500 nm, on a scale of 20, 100, and 500 nm. Meanwhile, the nanosphere CuONPs were characterized in the order of 5 nm, on a 30 nm scale. The analysis of metabolic rate was performed using the closed respirometry technique, specific ammonia excretion, and swimming ability as biomarkers, the physiological effects on Danio rerio were investigated. For the experiments, 88 fish were used, exposed for 24 h at concentrations of 0, 50, 100, and 200 μg/L of copper oxide nanoparticles in the form of nanospheres and nanorods, respectively. The tests carried out with the nanorods demonstrated metabolic alterations in fish, with an increase of 294% and 321% in the metabolic rate at concentrations of 100 μg/L and 200 μg/L, respectively. Furthermore, there was a decrease in specific ammonia excretion by 34% and 83% and in swimming capacity by 34% and 55% at concentrations of 100 and 200 μg/L, respectively, when compared to the control. The tests performed with nanospheres did not show significant changes compared to the control. These experiments showed that different morphological structures of the same copper oxide nanoparticle caused different effects on fish metabolism. It is concluded that the characterization of nanoparticles is essential to understand their effects on fish, since their structural forms can cause different toxic effects on D. rerio.
Collapse
Affiliation(s)
- Maria Izabel de Oliveira Eiras
- Programa de pós Graduação do Instituto de Pesca - APTA-SAA/SP, Governo do Estado de São Paulo, 11990-000 Cananéia, São Paulo, Brazil
| | - Luelc Souza da Costa
- Instituto Federal de Educação, Ciências e Tecnologia de São Paulo - IFSP, 18707-150, Avaré, SP, Brazil
| | - Edison Barbieri
- Instituto de Pesca - APTA SAA/SP, Governo do Estado de São Paulo, 11990-000 Cananeia, SP, Brazil..
| |
Collapse
|
13
|
Vallim JH, Clemente Z, Castanha RF, do Espírito Santo Pereira A, Campos EVR, Assalin MR, Maurer-Morelli CV, Fraceto LF, de Castro VLSS. Chitosan nanoparticles containing the insecticide dimethoate: A new approach in the reduction of harmful ecotoxicological effects. NANOIMPACT 2022; 27:100408. [PMID: 35659539 DOI: 10.1016/j.impact.2022.100408] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate insecticides such as dimethoate (DMT) are widely used in agriculture. As a side effect, however, these insecticides contaminate bodies of water, resulting in damage to aquatic organisms. The development of nanopesticides may be an innovative alternative in the control of agricultural pests, increasing effectiveness and reducing their toxicological effects. Based upon this, the present study has investigated encapsulated DMT in alginate chitosan nanoparticles (nanoDMT) and evaluated its toxicological effects on non-target organisms. The nanoparticles were characterized by DLS, NTA and AFM, as well as being evaluated by the release profile. Nanoparticle toxicity was also evaluated in comparison with DMT, empty nanoparticles and DMT (NP + DMT), and commercial formulations (cDMT), in the embryos and larvae of Danio rerio (zebrafish) according to lethality, morphology, and behavior. The nanoparticle control (NP) showed hydrodynamic size values of 283 ± 4 nm, a PDI of 0.5 ± 0.05 and a zeta potential of -31 ± 0.4 mV. For nanoparticles containing dimethoate, the nanoparticles showed 301 ± 7 nm size values, a PDI of 0.45 ± 0.02, a zeta potential of -27.9 ± 0.2 mV, and an encapsulation of 75 ± 0.32%, with slow-release overtime (52% after 48 h). The AFM images showed that both types of nanoparticles showed spherical morphology. Major toxic effects on embryo larval development were observed in commercial dimethoate exposure followed by the technical pesticide, predominantly in the highest tested concentrations. With regard to the toxic effects of sodium alginate/chitosan, although there was an increase for LC50-96 h concerning the technical dimethoate, the behavior of the larvae was not affected. The data obtained demonstrate that nanoencapsulated dimethoate reduces the toxicity of insecticides on zebrafish larvae, suggesting that nanoencapsulation may be safer for non-target species, by eliminating collateral effects and thus promoting sustainable agriculture.
Collapse
Affiliation(s)
- José Henrique Vallim
- Embrapa Environment, Rod SP 340, km 127.5, 13918-110, Jaguariúna, São Paulo, Brazil
| | - Zaira Clemente
- Embrapa Environment, Rod SP 340, km 127.5, 13918-110, Jaguariúna, São Paulo, Brazil
| | | | - Anderson do Espírito Santo Pereira
- Department of Environmental Engineering, Sorocaba Institute of Science and Technology (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo, Brazil
| | - Estefânia Vangelie Ramos Campos
- Department of Environmental Engineering, Sorocaba Institute of Science and Technology (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo, Brazil
| | | | - Cláudia Vianna Maurer-Morelli
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (Unicamp), 13087-883, Campinas, São Paulo, Brazil
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, Sorocaba Institute of Science and Technology (ICTS), São Paulo State University (Unesp), Avenida Três de Março, 511, 18087-180, Sorocaba, São Paulo, Brazil
| | | |
Collapse
|
14
|
Zhao T, Ren B, Zhao Y, Chen H, Wang J, Li Y, Liang H, Li L, Liang H. Multi-walled carbon nanotubes impact on the enantioselective bioaccumulation and toxicity of the chiral insecticide bifenthrin to zebrafish (Danio rerio). CHEMOSPHERE 2022; 294:133690. [PMID: 35063547 DOI: 10.1016/j.chemosphere.2022.133690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The effects of different multi-walled carbon nanotubes on the enantioselective bioaccumulation and toxicity of the chiral pesticide bifenthrin to zebrafish were investigated in this work. The results showed that MWCNTs and MWCNTs-COOH did not affect the preferential bioaccumulation of 1R-cis-BF in zebrafish following exposure to cis-BF enantiomers for 28 days, but which increased cis-BF accumulation amount by 1.03-1.48 times. Further research demonstrated that the genes related to immunity, endocrine activity and neurotoxicity showed enantioselective expression in different zebrafish tissues, and sex-specific differences were observed. The levels of c-fos, th, syn2a, 17β-hsd and cc-chem were expressed as 1.09-2.84 times higher in females and males treated with 1R-cis-BF than in the 1S-cis-BF-treated groups. However, in the presence of MWCNTs or MWCNTs-COOH, c-fos, th, syn2a, 17β-hsd and cc-chem levels were expressed as 1.53-14.92 times higher in females and males treated with 1S-cis-BF than in 1R-cis-BF-treated groups, which indicated that enantioselective expression was altered. The effects of different types of MWCNTs on the enantioselective bioaccumulation and toxicity of BF in zebrafish have little difference. In summary, the presence of MWCNTs or MWCNTs-COOH increased the impact of BF on zebrafish. Therefore, the risks posed by coexisting nanomaterials and chiral pesticides in aquatic environments should be considered.
Collapse
Affiliation(s)
- Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Ju Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, PR China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, The Inner Mongolia Autonomous Region Hohhot College Road No. 235, 010021, China.
| |
Collapse
|
15
|
Kundu BK, Pragti, Carlton Ranjith WA, Shankar U, Kannan RR, Mobin SM, Bandyopadhyay A, Mukhopadhyay S. Cancer-Targeted Chitosan-Biotin-Conjugated Mesoporous Silica Nanoparticles as Carriers of Zinc Complexes to Achieve Enhanced Chemotherapy In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2022; 5:190-204. [PMID: 35014809 DOI: 10.1021/acsabm.1c01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite being the most common component of numerous metalloenzymes in the human body, zinc complexes are still under-rated as chemotherapeutic agents. Herein, the present study opens up a key route toward enhanced chemotherapy with the help of two ZnII complexes (ZnMBC) synthesized alongside Mannich base ligands to upsurge biological potency. Further, well-established mesoporous silica nanoparticles (MSNs) have been chosen as carriers of the titled metallodrugs in order to achieve anticancer drug delivery. A pH-sensitive additive, namely, chitosan (CTS) conjugated with biotin is tagged to MSNs for the targeted release of core agents inside tumors selectively. In general, CTS blocks ZnMBC inside the mesopores of MSNs, and biotin acts as a targeting ligand to improve tumor-specific cellular uptake. CTS-biotin surface decoration significantly enhanced the cellular uptake of ZnMBC through endocytosis. A panel of four human cancer cell lines has revealed that ZnMBC (1/2)@MSNs-CTS-biotin nanoparticles (NPs) exhibits unprecedented enhanced cytotoxicity toward cancer cells with IC50 values ranging from 6.5 to 28.8 μM through induction of apoptosis. NPs also possess great selectivity between normal and cancer cells despite this potency. Two-photon-excited in vitro imaging of normal (HEK) and cancer (HeLa) cells has been performed to confirm the biased drug delivery. Also, NP-induced apoptosis was found to be dependent on targeting DNA and ROS generation. Moreover, a lower range of LD50 values (153.6-335.5 μM) were observed upon treatment zebrafish embryos with NPs in vivo. Because of the anatomical similarity to the human heart, the heart rate of NP-treated zebrafish has been analyzed in assessing the cardiac functions, which is in favor of the early clinical trials of ZnMBC (1/2)@MSNs-CTS-biotin candidates for their further evaluation as a chemotherapeutic and chemopreventive agent toward human cancers, especially adenocarcinoma.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India.,Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Pragti
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Wilson Alphonse Carlton Ranjith
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600119 Tamil Nadu, India
| | - Uday Shankar
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee Saharanpur Campus, Saharanpur 247001, India
| | - Rajaretinam Rajesh Kannan
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600119 Tamil Nadu, India
| | - Shaikh M Mobin
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Anasuya Bandyopadhyay
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee Saharanpur Campus, Saharanpur 247001, India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
16
|
Wang X, Luo H, Zheng W, Wang X, Xiao H, Zheng Z. Effects of Polydopamine Microspheres Loaded with Silver Nanoparticles on Lolium multiflorum: Bigger Size, Less Toxic. TOXICS 2021; 9:toxics9070151. [PMID: 34209749 PMCID: PMC8309745 DOI: 10.3390/toxics9070151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
The rapid development of nanotechnology and its widespread use have given rise to serious concerns over the potential adverse impacts of nanomaterials on the Earth’s ecosystems. Among all the nanomaterials, silver nanoparticles (AgNPs) are one of the most extensively used nanomaterials due to their excellent antibacterial property. However, the toxic mechanism of AgNPs in nature is still unclear. One of the questions under debate is whether the toxicity is associated with the size of AgNPs or the silver ions released from AgNPs. In our previous study, a sub-micron hybrid sphere system with polydopamine-stabilized AgNPs (Ag@PDS) was synthesized through a facile and green method, exhibiting superior antibacterial properties. The current study aims to explore the unique toxicity profile of this hybrid sphere system by studying its effect on germination and early growth of Lolium multiflorum, with AgNO3 and 15 nm AgNPs as a comparison. The results showed the seed germination was insensitive/less sensitive to all three reagents; however, vegetative growth was more sensitive. Specifically, when the Ag concentration was lower than 40 mg/L, Ag@PDS almost had no adverse effects on the root and shoot growth of Lolium multiflorum seeds. By contrast, when treated with AgNO3 at a lower Ag concentration of 5 mg/L, the plant growth was inhibited significantly, and was reduced more in the case of AgNP treatment at the same Ag concentration. As the exposures of Ag@PDS, AgNO3, and AgNPs increased, so did the Ag content in the root and shoot. In general, Ag@PDS was proven to be a potential useful hybrid material that retains antibacterial property with light phytotoxicity.
Collapse
Affiliation(s)
- Xinrui Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
| | - Hongyong Luo
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
| | - Weihua Zheng
- Serionix, Inc. 60 Hazelwood Dr., Champaign, IL 61820, USA;
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
| | - Haijun Xiao
- Central Hospital of Fengxian District, South Hospital of the Sixth People’s Hospital, Shanghai 201499, China
- Correspondence: (H.X.); (Z.Z.)
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; (X.W.); (H.L.); (X.W.)
- Correspondence: (H.X.); (Z.Z.)
| |
Collapse
|
17
|
Luis AIS, Campos EVR, Oliveira JL, Vallim JH, Proença PLF, Castanha RF, de Castro VLSS, Fraceto LF. Ecotoxicity evaluation of polymeric nanoparticles loaded with ascorbic acid for fish nutrition in aquaculture. J Nanobiotechnology 2021; 19:163. [PMID: 34059056 PMCID: PMC8166143 DOI: 10.1186/s12951-021-00910-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Background Ascorbic acid (AA) is a micronutrient essential for the mechanisms of reproduction, growth, and defense in fish. However, the biosynthesis of this micronutrient does not occur in fish, so it must be supplied with food. A difficulty is that plain AA is unstable, due to the effects of light, high temperature, and oxygen, among others. The use of nanoencapsulation may provide protection and preserve the physicochemical characteristics of AA for extended periods of time, decreasing losses due to environmental factors. Method This study evaluated the protective effect of nanoencapsulation in polymeric nanoparticles (chitosan and polycaprolactone) against AA degradation. Evaluation was made of the physicochemical stability of the nanoformulations over time, as well as the toxicological effects in zebrafish (Danio rerio), considering behavior, development, and enzymatic activity. For the statistical tests, ANOVA (two-way, significance of p < 0.05) was used. Results Both nanoparticle formulations showed high encapsulation efficiency and good physicochemical stability during 90 days. Chitosan (CS) and polycaprolactone (PCL) nanoparticles loaded with AA had mean diameters of 314 and 303 nm and polydispersity indexes of 0.36 and 0.28, respectively. Both nanosystems provided protection against degradation of AA exposed to an oxidizing agent, compared to plain AA. Total degradation of AA was observed after 7, 20, and 480 min for plain AA, the CS nanoparticle formulation, and the PCL nanoparticle formulation, respectively. For zebrafish larvae, the LC50 values were 330.7, 57.4, and 179.6 mg/L for plain AA, the CS nanoparticle formulation, and the PCL nanoparticle formulation, respectively. In toxicity assays using AA at a concentration of 50 mg/L, both types of nanoparticles loaded with AA showed lower toxicity towards the development of the zebrafish, compared to plain AA at the same concentration. Although decreased activity of the enzyme acetylcholinesterase (AChE) did not affect the swimming behavior of zebrafish larvae in the groups evaluated, it may have been associated with the observed morphometric changes, such as curvature of the tail. Conclusions This study showed that the use of nanosystems is promising for fish nutritional supplementation in aquaculture. In particular, PCL nanoparticles loaded with AA seemed to be most promising, due to higher protection against AA degradation, as well as lower toxicity to zebrafish, compared to the chitosan nanoparticles. The use of nanotechnology opens new perspectives for aquaculture, enabling the reduction of feed nutrient losses, leading to faster fish growth and improved sustainability of this activity. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00910-8.
Collapse
Affiliation(s)
- Angélica I S Luis
- Institute of Science and Technology, Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, 18087-180, Brazil
| | | | - Jhones L Oliveira
- Institute of Science and Technology, Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, 18087-180, Brazil.,Faculty of Agronomy and Veterinary Science, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - José Henrique Vallim
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, SP, 13918-110, Brazil
| | - Patrícia L F Proença
- Institute of Science and Technology, Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, 18087-180, Brazil
| | - Rodrigo F Castanha
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, SP, 13918-110, Brazil
| | - Vera L S S de Castro
- Laboratory of Ecotoxicology and Biosafety, Embrapa Environment, Jaguariúna, SP, 13918-110, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology, Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, 18087-180, Brazil.
| |
Collapse
|
18
|
Zhao J, Luo W, Xu Y, Ling J, Deng L. Potential reproductive toxicity of multi-walled carbon nanotubes and their chronic exposure effects on the growth and development of Xenopus tropicalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142652. [PMID: 33092835 DOI: 10.1016/j.scitotenv.2020.142652] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
The increasing production and use of multi-walled carbon nanotubes (MWCNTs) will inevitably lead to discharge into the environment and exert negative effects on organisms. Many studies have focused on the toxicity of MWCNTs to aquatic animals, but little is known about their possible potential reproductive toxicity. In this study, 6 sexually mature Xenopus tropicalis were exposed to 0.5 and 2.5 mg/L MWCNTs suspensions for 56 days, and the toxicity of MWCNTs to the growth and reproduction of X. tropicalis were studied. The results showed that MWCNTs could inhibit the growth of body, including the testis, ovaries and fat of X. tropicalis. Histopathological section analysis showed that MWCNTs affected the formation of spermatogonia and oocytes, while had no notable effect on the heart or liver. MWCNTs would be accumulated in lungs of X. tropicalis inducing lung cannons. In addition, MWCNTs changed the microbial community structure and diversity of gut microbiota but did not change its abundance significantly. Moreover, MWCNTs could even decrease the fertilized and survival rate of X. tropicalis embryos. These results indicated that chronic exposure to MWCNTs would not only affect the growth and development of X. tropicalis, but also pose a potential risk on their reproduction.
Collapse
Affiliation(s)
- Jianbin Zhao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenshi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiayin Ling
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Longhua Deng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Gu J, Guo M, Huang C, Wang X, Zhu Y, Wang L, Wang Z, Zhou L, Fan D, Shi L, Ji G. Titanium dioxide nanoparticle affects motor behavior, neurodevelopment and axonal growth in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142315. [PMID: 33254858 DOI: 10.1016/j.scitotenv.2020.142315] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
More attention has been recently paid to the ecotoxicity of titanium dioxide nanoparticles (nano-TiO2) owing to its common use in many fields. Although previous studies have shown that nano-TiO2 is neurotoxic, the mechanism is still largely unknown. In the present study, zebrafish embryos were exposed to 0.01, 0.1, and 1.0 mg/L nano-TiO2 and 1.0 mg/L micro-TiO2 for up to 6 days post-fertilization (dpf). Exposure to 1.0 mg/L nano-TiO2 significantly decreased the body length and weight of zebrafish larvae; however, the hatching and mortality rate of zebrafish embryos did not change. Behavioral tests showed that nano-TiO2 exposure significantly reduced the swimming speed and clockwise rotation times of the larvae. The results revealed that nano-TiO2 treatment adversely affected motor neuron axon length in Tg (hb9-GFP) zebrafish and decreased central nervous system (CNS) neurogenesis in Tg (HuC-GFP) zebrafish. Additionally, real-time polymerase chain reaction analysis demonstrated that genes associated with neurogenesis (nrd and elavl3) and axonal growth (α1-tubulin, mbp, and gap43) were significantly affected by nano-TiO2 exposure. In conclusion, our study demonstrated that early-life stage exposure of zebrafish to nano-TiO2 causes adverse neural outcomes through the inhibition of neurodevelopment and motor neuron axonal growth.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Xi Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanhui Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
20
|
Cordeiro MF, Gomides LS, Vian CO, Carboni MT, Santos AP, Bruch GE, Horn AP, Barros DM. Multi-walled carbon nanotubes functionalized with pyrene-PEG via π-π interactions: toxicological assessment in zebrafish embryos. NANOTECHNOLOGY 2020; 31:465103. [PMID: 32857732 DOI: 10.1088/1361-6528/abae2f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multi-walled carbon nanotubes (MWCNT) have many promising biological applications, even though functionalization is needed for better biocompatibility. Functionalization of MWCNT with polyethylene glycol (PEG) is a promising and widely studied approach, but the best PEGylation method is still under investigation. In this work, we have tested the biological implications of MWCNT functionalized via π-stacking with pyrene-PEG (MWCNT-Pyr-PEG) in zebrafish embryos. As Pyr toxicity is well documented and represents a major concern for the safety of the proposed approach, we have also tested the effects of the exposure to the isolated conjugate (Pyr-PEG). The resulting suspensions were stable in saline medium and well dispersed. Zebrafish embryos at 24 h post-fertilization (hpf) were dechorionated and randomly assigned to seven experimental groups (n = 50 per group): control, MWCNT-Pyr-PEG at 0.2, 2.0, and 20.0 mg l-1, and Pyr-PEG at the same concentrations, and exposures were performed in 96-well plates. Specimens were observed for heart rate, malformations, body length, mortality, traveled distance, and number of new movements. Heart rate was reduced in embryos exposed to any tested concentration of MWCNT-Pyr-PEG, while this effect was observed with Pyr-PEG from 2 mg l-1. The highest concentration of MWCNT-Pyr-PEG also led to increased occurrence of malformations, shortened body length and reduced traveled distance. The functionalization approach shows promise due to the stability in saline media, even though toxic effects were observed in the highest tested concentrations, being the MWCNT the main actors underlying these outcomes.
Collapse
Affiliation(s)
- Marcos F Cordeiro
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, SC, Brazil. Programa de Pós-Graduação em Ciências Fisiológicas (PPGCF), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Boyle D, Clark NJ, Handy RD. Toxicities of copper oxide nanomaterial and copper sulphate in early life stage zebrafish: Effects of pH and intermittent pulse exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:109985. [PMID: 31841893 DOI: 10.1016/j.ecoenv.2019.109985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Effort has been made to standardise regulatory ecotoxicity tests for engineered nanomaterials (ENMs), but the environmental realism of altered water quality and/or pulse exposure to these pollutants should be considered. This study aimed to investigate the relative toxicity to early life-stage zebrafish of CuO ENMs at acid pH and then under pulse exposure conditions, all compared to CuSO4. At all pH values, CuSO4 was more toxic to zebrafish than CuO ENMs. Additions of H+ were protective of CuSO4 toxicity, with median lethal concentrations LC50 (with 95% confidence intervals) of: 0.36 (0.33-0.40), 0.22 (0.20-0.24) and 0.27 (0.25-0.29) mg L-1 at pH 5, pH 6 and pH 7, respectively. In contrast, the toxicity of CuO ENMs increased with acidity; LC50 values were: 6.6 (4.5-8.5), 19.4 (11.6-27.2) and >100 mg L-1 at pH 5, pH 6 and pH 7, respectively. The increased toxicity of the CuO ENMs in acid water corresponded with greater dissolution of dissolved Cu from the particles at low pH, suggesting free Cu2+ ion delivery to the zebrafish was responsible for the pH-effect. In continuous 96 h exposures to the substances at the LC10 values and at pH 6, both CuSO4 and CuO ENMs caused Cu accumulation, inhibition of Na+/K+-ATPase and depletion of total glutathione in zebrafish. However, two 24 h pulses of CuSO4 or CuO ENMs at the same peak concentration caused similar effects to the continuous 96 h exposure, despite the shorter exposure durations of the former; suggesting that the pulses were more hazardous than the continuous exposure. In conclusion, the current water quality correction for pH with respect to Cu toxicity to freshwater fish should not be applied to the nano form. Crucially, CuO ENMs are more toxic in pulse than continuous exposure and new corrections for both water pH and the Cu exposure profile are needed for environmental risk assessment.
Collapse
Affiliation(s)
- David Boyle
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK
| | - Richard D Handy
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
22
|
Bai C, Tang M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J Appl Toxicol 2019; 40:37-63. [DOI: 10.1002/jat.3910] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public HealthSoutheast University Nanjing People's Republic of China
| |
Collapse
|
23
|
Pereira AC, Gomes T, Ferreira Machado MR, Rocha TL. The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1841-1853. [PMID: 31325757 DOI: 10.1016/j.envpol.2019.06.100] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Nanotechnology and use of nanomaterials (NMs) improve life quality, economic growth and environmental health. However, the increasing production and use of NMs in commercial products has led to concerns about their potential toxicity on human and environment health, as well as its toxicological classification and regulation. In this context, there is an urgent need to standardize and validate procedures for nanotoxicity testing. Since the zebrafish embryotoxicity test (ZET) has been indicated as a suitable approach for the toxicity assessment of traditional and emergent pollutants, the aim of this review is to summarize the existing literature on embryotoxic and teratogenic effects of NMs on zebrafish. In addition, morphological changes in zebrafish embryos induced by NMs were classified in four reaction models, allowing classification of the mode of action and toxicity of different types of NM. Revised data showed that the interaction and bioaccumulation of NMs on zebrafish embryos were associated to several toxic effects, while the detoxification process was limited. In general, NMs induced delayed hatching, circulatory changes, pigmentation and tegumentary alterations, musculoskeletal disorders and yolk sac alterations on zebrafish embryos. Recommendations for nanotoxicological tests are given, including guidance for future research. This review reinforces the use of the ZET as a suitable approach to assess the health risks of NM exposure.
Collapse
Affiliation(s)
- Aryelle Canedo Pereira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
24
|
Icoglu Aksakal F, Ciltas A, Simsek Ozek N. A holistic study on potential toxic effects of carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) on zebrafish (Danio rerio) embryos/larvae. CHEMOSPHERE 2019; 225:820-828. [PMID: 30904762 DOI: 10.1016/j.chemosphere.2019.03.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have widespread use in industrial and consumer products and great potential in biomedical applications. This leads to inevitably their release into the environment and the formation of their toxic effects on organisms. These effects can change depending on their physicochemical characteristics. Therefore, the toxicological findings of MWCNTs are inconsistent. Their toxicities related to surface modification have not been elucidated in a holistic manner. Hence, this study was conducted to clarify their potential toxic effects on zebrafish embryos/larvae in a comprehensive approach using morphologic, biochemical and molecular parameters. Zebrafish embryos were exposed to 5, 10, 20 mg/L doses of MWCNTs-COOH at 4 h after fertilization and grown until 96 hpf. Physiological findings demonstrated that they induced a concentration-dependent increase in the mortality rate, delayed hatching and decrease in the heartbeat rate. Moreover, it caused abnormalities including yolk sac edema, pericardial edema, head, tail malformations, and vertebral deformities. These effects may be due to the alterations in antioxidant and immune system related gene expressions after their entry into zebrafish embryo/larvae. The entry was confirmed from the evaluation of Raman spectra collected from the head, yolk sac, and tail of control and the nanotube treated groups. The gene expression analysis indicated the changes in the expression of oxidative stress (mtf-1, hsp70, and nfkb) and innate immune system (il-1β, tlr-4, tlr-22, trf, and cebp) related genes, especially an increased in the expression of the hsp70 and il-1β. These findings proved the developmental toxicities of MWCNTs-COOH on the zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Feyza Icoglu Aksakal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey.
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, 25240, Erzurum, Turkey; East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
25
|
Sant KE, Timme-Laragy AR. Zebrafish as a Model for Toxicological Perturbation of Yolk and Nutrition in the Early Embryo. Curr Environ Health Rep 2019; 5:125-133. [PMID: 29417450 DOI: 10.1007/s40572-018-0183-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Developmental toxicity assessments often focus on structural outcomes and overlook subtle metabolic differences which occur during the early embryonic period. Deviant embryonic nutrition can result in later-life disease, including diabetes, obesity, and cardiovascular disease. Prior to placenta-mediated nutrient exchange, the human embryo requires maternally supplied nutritional substrates for growth, called yolk. Here, we compare the biology of the human and zebrafish yolk and review examples of toxicant-mediated perturbation of yolk defects, composition, and utilization. RECENT FINDINGS Zebrafish embryos, like human embryos, have a protruding yolk sac that serves as a nutritional cache. Aberrant yolk morphology is a common qualitative finding in fish embryotoxicity studies, but quantitative assessment and characterization provides an opportunity to uncover mechanistic targets of toxicant effects on embryonic nutrition. The zebrafish and the study of its yolk sac is an excellent model for uncovering toxicant disruptions to early embryonic nutrition and has potential to discover mechanistic insights into the developmental origins of health and disease.
Collapse
Affiliation(s)
- Karilyn E Sant
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Goessman 171, 686 N Pleasant St, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Goessman 171, 686 N Pleasant St, Amherst, MA, 01003, USA.
| |
Collapse
|
26
|
Huang Z, Xu B, Huang X, Zhang Y, Yu M, Han X, Song L, Xia Y, Zhou Z, Wang X, Chen M, Lu C. Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe 2O 3 NP-induced embryonic development toxicity via mitochondria damage. Nanotoxicology 2019; 13:204-220. [PMID: 30663479 DOI: 10.1080/17435390.2018.1537411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Iron oxides nanoparticles (FeOX NPs), including α-Fe2O3, γ-Fe2O3, and Fe3O4, are employed in many technological applications. However, very few studies have investigated the embryonic developmental toxicity of FeOX NPs. In this study, metabolomics analysis were used to uncover the potential mechanisms of FeOX NPs developmental toxicity on embryo-larval zebrafish and mice. Our results indicated that γ-Fe2O3 NP treatment could cause increased mortality, dropped hatching rate, etc., while α-Fe2O3 and Fe3O4 NPs showed no obvious effect. Through metabolomics analysis, a total of 42 metabolites were found to be significantly changed between the γ-Fe2O3 NP-treated group and the control group (p < 0.05). Pathway enrichment analysis indicated the impairment of mitochondria function. γ-Fe2O3 NP treatment caused abnormal mitochondrion structure and a decrease in mitochondrial membrane potential in zebrafish embryos. Meanwhile, ATP synthesis was decreased while oxidative stress levels were affected. It is noteworthy that acetyl-l-carnitine (ALCAR) (p = 6.79E - 04) and l-carnitine (p = 1.43E - 03) were identified with minimal p values, the relationship between the two counter-balance was regulated by acetyltransferase (crata). Subsequently, we performed rescue experiments with ALCAR on zebrafish embryos, and found that the mortality rates reduced and hatching rates raised significantly in the γ-Fe2O3 NP-treated group. Additionally, γ-Fe2O3 exposure could lead to increased absorbed fetus rate, decreased placental weight, lower expression of acetyltransferase (Crat), reduced ATP synthesis as well as increased oxidative stress (p < 0.05). Our findings demonstrated that γ-Fe2O3 NP might affect the mitochondrial membrane potential and ATP synthesis by affecting the metabolism of ALCAR, thereby stimulating oxidative stress, cell apoptosis, and causing embryonic development toxicity.
Collapse
Affiliation(s)
- Zhenyao Huang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Bo Xu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Xiaomin Huang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Yuqing Zhang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Mingming Yu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Xiumei Han
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Ling Song
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Yankai Xia
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Zhu Zhou
- c Thomas J. Long School of Pharmacy and Health Sciences , University of the Pacific , Stockton , CA , USA
| | - Xinru Wang
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Minjian Chen
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Chuncheng Lu
- a State Key Laboratory of Reproductive Medicine, Institute of Toxicology , Nanjing Medical University , Nanjing , China.,b Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health , Nanjing Medical University , Nanjing , China
| |
Collapse
|
27
|
Phyco-linked vs chemogenic magnetite nanoparticles: Route selectivity in nano-synthesis, antibacterial and acute zooplanktonic responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:324-340. [PMID: 31147005 DOI: 10.1016/j.msec.2019.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Despite the fact that magnetic iron oxide nanoparticles (Fe3O4-MNPs) considered as the most promising nanoparticles (NPs) in biomedicine and environmental biotechnology, their safety and ecotoxicological impacts of biogenic and chemogenic routes of Fe3O4-MNPs in the marine aquatic system is scarcely studied. In this work, we report the optimized and suitable phyco-synthesis route for nano-Fe3O4 based on the six selected species of the Persian Gulf seaweeds: Ulva prolifera, U. flexuosa, U. linza, U. intestinalis, U. clathrata, and Sargassum boveanum. Moreover, antibacterial activities and acute zooplanktonic responses in Artemia salina and acorn barnacle Amphibalanus amphitrite to chemogenic and biogenic Fe3O4-MNPs, were evaluated. Although all the seaweeds extract showed reducing potential for Fe3O4-MNPs green synthesis - mainly on the basis of characterization results- the algal route selectivity has been demonstrated to be important for the biosynthesis of magnetite NPs. Herein, the cubo-spherical and polydisperse U. prolifera-derived Fe3O4-MNPs with particles sizes of 9.59 nm were the best ones. The comparative zooplanktonic cytotoxicity of chemo- and bio-route of Fe3O4-MNPs exhibited no acute toxicity in nauplii and adults of A. salina (96-h EC50 ≥ 1000 mg/L) and the potential of toxicity in A. amphitrite nauplii (48-h EC50 = 466.5 and 842.3 mg/L for chemo- and bio-route of Fe3O4-MNPs, respectively). The in vitro antimicrobial activity of both chemo- and bio-route of magnetite NPs to selective human pathogenic bacteria and fungi (i.e. n = 11) showed strong antagonistic activity against Staphylococcus epidermidis, Bacillus subtilis, B. pumulis, and Saccharomyces cerevisiae. In conclusion, these findings demonstrate the optimized phyco-fabrication of Fe3O4-MNPs as promising nontoxic approach in ecobiotechnology, the new insight about the potential adverse effects of chemosynthesized Fe3O4-MNPs to crustacean zoo-organisms after their possible entrance into the marine environments, and bio/chemo-route Fe3O4-MNPs as pivotal agent for nanoantimicrobials.
Collapse
|
28
|
Vassallo J, Besinis A, Boden R, Handy RD. The minimum inhibitory concentration (MIC) assay with Escherichia coli: An early tier in the environmental hazard assessment of nanomaterials? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:633-646. [PMID: 30033160 DOI: 10.1016/j.ecoenv.2018.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
There are now over a thousand nano-containing products on the market and the antibacterial properties of some nanomaterials has created interest in their use as cleaning agents, biocides and disinfectants. Engineered nanomaterials (ENMs) are being released into the environment and this raises concerns about their effects on microbes in the receiving ecosystems. This study evaluated the bacterial toxicity of a wide range of nanomaterials with different surface coatings on Escherichia coli K-12 MG1655. The minimum inhibitory concentration (MIC) assay, which quantifies the threshold for growth inhibition in suspensions of bacteria, was used to rank the toxicity of silver (Ag), cupric oxide (CuO), cadmium telluride (CdTe) quantum dots, titanium dioxide (TiO2), nanodiamonds and multi-walled carbon nanotubes (MWCNTs). Bacteria were exposed for 12 h at 37 °C to a dilution series of the test suspensions in 96-well plates. The precision and accuracy of the method was good with coefficients of variation < 10%. In terms of the measured MIC values, the toxicity order of the ENMs was as follows: CdTe quantum dots ammonium-coated, 6 mg L-1 > Ag nanoparticles, 12 mg L-1 > CdTe quantum dots carboxylate-coated, 25 mg L-1 > CdTe quantum dots polyethylene glycol-coated, 100 mg L-1. The MIC values were above the highest test concentration used (100 mg L-1) for CuO, TiO2, nanodiamonds and MWCNTs, indicating low toxicity. The MIC assay can be a useful tool for the initial steps of ENMs hazard assessment.
Collapse
Affiliation(s)
- J Vassallo
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - A Besinis
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; School of Engineering, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Plymouth University Peninsula Schools of Medicine and Dentistry, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth PL6 8BU, UK
| | - R Boden
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - R D Handy
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
29
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Clark NJ, Shaw BJ, Handy RD. Low hazard of silver nanoparticles and silver nitrate to the haematopoietic system of rainbow trout. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:121-131. [PMID: 29407778 DOI: 10.1016/j.ecoenv.2018.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Silver nanoparticles (Ag NPs) are known for their antibacterial properties and are used in a growing number of nano-enabled products, with inevitable concerns for releases to the environment. Nanoparticles may also be antigenic and toxic to the haematopoietic system, but the immunotoxic effect of Ag NPs on non-target species such as fishes is poorly understood. This study aimed to assess the effect of Ag NP exposure via the water on the haematopoietic system of rainbow trout, Oncorhynchus mykiss, and to determine whether or not the hazard from Ag NPs was different from that of AgNO3. Fish were exposed for 7 days to a control (dechlorinated Plymouth freshwater), dispersant control, 1µgl-1 Ag as AgNO3 or 100µgl-1 Ag NPs. Animals were sampled on days 0, 4 and 7 for haematology, tissue trace metal concentration, biochemistry for evidence of oxidative stress/inflammation in the spleen and histopathology of the blood cells and spleen. The Ag NP treatment significantly increased the haematocrit, but the haematological changes were within the normal physiological range of the animal. Thrombocytes in spleen prints at day 4, and melanomacrophage deposits at day 7 in the spleen, of Ag NP exposed-fish displayed significant increases compared to all the other treatments within the time point. A dialysis experiment confirmed that dissolution rates were very low and any pathology observed is likely from the NP form rather than dissolved metal released from it. Overall, the data showed subtle differences in the effects of Ag NPs compared to AgNO3 on the haematopoietic system. The lack of pathology in the circulating blood cells and melanomacrophage deposits in the spleen suggests a compensatory physiological effort by the spleen to maintain normal circulating haematology during Ag NP exposure.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
31
|
A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14111348. [PMID: 29113114 PMCID: PMC5707987 DOI: 10.3390/ijerph14111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022]
Abstract
Metallic nanoparticles (NPs) differ from other metal forms with respect to their large surface to volume ratio and subsequent inherent reactivity. Each new modification to a nanoparticle alters the surface to volume ratio, fate and subsequently the toxicity of the particle. Newly-engineered NPs are commonly available only in low quantities whereas, in general, rather large amounts are needed for fate characterizations and effect studies. This challenge is especially relevant for those NPs that have low inherent toxicity combined with low bioavailability. Therefore, within our study, we developed new testing strategies that enable working with low quantities of NPs. The experimental testing method was tailor-made for NPs, whereas we also developed translational models based on different dose-metrics allowing to determine dose-response predictions for NPs. Both the experimental method and the predictive models were verified on the basis of experimental effect data collected using zebrafish embryos exposed to metallic NPs in a range of different chemical compositions and shapes. It was found that the variance in the effect data in the dose-response predictions was best explained by the minimal diameter of the NPs, whereas the data confirmed that the predictive model is widely applicable to soluble metallic NPs. The experimental and model approach developed in our study support the development of (eco)toxicity assays tailored to nano-specific features.
Collapse
|
32
|
Rossbach LM, Shaw BJ, Piegza D, Vevers WF, Atfield AJ, Handy RD. Sub-lethal effects of waterborne exposure to copper nanoparticles compared to copper sulphate on the shore crab (Carcinus maenas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:245-255. [PMID: 28888166 DOI: 10.1016/j.aquatox.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of soluble copper (Cu) to marine organisms is reasonably well described. However, the hazard of Cu engineered nanomaterial (ENMs) is poorly understood. The aim of the present study was to compare the toxicity of Cu ENMs to Cu as CuSO4 in the shore crab, Carcinus maenas. The crabs were exposed via the water using a semi-static approach to 0.2 or 1mgL-1 of Cu ENMs or 1mgL-1 of Cu as CuSO4. Gills, hepatopancreas, chela muscle and haemolymph were collected at days 0, 4 and 7 for the body burden of Cu, histology and biochemical analysis [thiobarbituric acid reactive substances (TBARS) and total glutathione (GSH)]. Nominal exposure concentrations of both the ENMs and the metal salt were maintained at over 80% in each treatment throughout the experiment. By day 7, 54% mortality was recorded in the 1mgL-1 CuSO4 treatment, compared to just 21% in the 1mgL-1 Cu ENM-exposed crabs. The target organs for Cu accumulation were similar for both forms of Cu with highest concentrations in the gills, particularly the posterior gills; followed by the hepatopancreas, and with the lowest concentrations in the chela muscle. No changes were observed in the osmolarity of the haemolymph (ANOVA, P>0.05). TBARS were measured as an indicator of lipid peroxidation and showed the greatest change in the anterior and posterior gills and hepatopancreas of animals exposed to 1mgL-1 Cu ENMs (ANOVA or Kruskal-Wallis, P<0.05). No statistically significant changes in total GSH were observed (ANOVA, P>0.05; n=6 crabs per treatment). Histological analysis revealed organ injuries in all treatments. The types of pathologies observed in the Cu ENM treatments were broadly similar to those of the Cu as CuSO4 treatment. Overall, the target organs and Cu accumulation from Cu ENMs were comparable to that following exposure to Cu as CuSO4, and although there were some differences in the sub-lethal effects, the metal salt was more acutely toxic.
Collapse
Affiliation(s)
- Lisa M Rossbach
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Dawid Piegza
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - William F Vevers
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Andrew J Atfield
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D Handy
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, United Kingdom.
| |
Collapse
|
33
|
Zou Y, Zhang Y, Han L, He Q, Hou H, Han J, Wang X, Li C, Cen J, Liu K. Oxidative stress-mediated developmental toxicity induced by isoniazide in zebrafish embryos and larvae. J Appl Toxicol 2017; 37:842-852. [DOI: 10.1002/jat.3432] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/22/2016] [Accepted: 12/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Zou
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng 475004 Henan Province People's Republic of China
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Yun Zhang
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Liwen Han
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Qiuxia He
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Hairong Hou
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Shandong Provincial Engineering Laboratory for Biological Testing Technology; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Jian Han
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Biosensor of Shandong Province; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Ximin Wang
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Shandong Provincial Engineering Laboratory for Biological Testing Technology; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Biosensor of Shandong Province; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Chengyun Li
- Ecology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| | - Juan Cen
- Key Laboratory of Natural Medicine and Immuno-Engineering; Henan University; Kaifeng 475004 Henan Province People's Republic of China
| | - Kechun Liu
- Biology Institute of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
- Key Laboratory for Biosensor of Shandong Province; 19 Keyuan Road, Lixia District Jinan 250014 Shandong Province People's Republic of China
| |
Collapse
|
34
|
A data-driven weighting scheme for multivariate phenotypic endpoints recapitulates zebrafish developmental cascades. Toxicol Appl Pharmacol 2017; 314:109-117. [PMID: 27884602 DOI: 10.1016/j.taap.2016.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/04/2016] [Accepted: 11/20/2016] [Indexed: 12/18/2022]
Abstract
Zebrafish have become a key alternative model for studying health effects of environmental stressors, partly due to their genetic similarity to humans, fast generation time, and the efficiency of generating high-dimensional systematic data. Studies aiming to characterize adverse health effects in zebrafish typically include several phenotypic measurements (endpoints). While there is a solid biomedical basis for capturing a comprehensive set of endpoints, making summary judgments regarding health effects requires thoughtful integration across endpoints. Here, we introduce a Bayesian method to quantify the informativeness of 17 distinct zebrafish endpoints as a data-driven weighting scheme for a multi-endpoint summary measure, called weighted Aggregate Entropy (wAggE). We implement wAggE using high-throughput screening (HTS) data from zebrafish exposed to five concentrations of all 1060 ToxCast chemicals. Our results show that our empirical weighting scheme provides better performance in terms of the Receiver Operating Characteristic (ROC) curve for identifying significant morphological effects and improves robustness over traditional curve-fitting approaches. From a biological perspective, our results suggest that developmental cascade effects triggered by chemical exposure can be recapitulated by analyzing the relationships among endpoints. Thus, wAggE offers a powerful approach for analysis of multivariate phenotypes that can reveal underlying etiological processes.
Collapse
|
35
|
Hund-Rinke K, Baun A, Cupi D, Fernandes TF, Handy R, Kinross JH, Navas JM, Peijnenburg W, Schlich K, Shaw BJ, Scott-Fordsmand JJ. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles. Nanotoxicology 2016; 10:1442-1447. [PMID: 27592624 DOI: 10.1080/17435390.2016.1229517] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Regulatory ecotoxicity testing of chemicals is of societal importance and a large effort is undertaken at the OECD to ensure that OECD test guidelines (TGs) for nanomaterials (NMs) are available. Significant progress to support the adaptation of selected TGs to NMs was achieved in the context of the project MARINA ( http://www.marina-fp7.eu/ ) funded within the 7th European Framework Program. Eight OECD TGs were adapted based on the testing of at least one ion-releasing NM (Ag) and two inert NMs (TiO2). With the materials applied, two main variants of NMs (ion releasing vs. inert NMs) were addressed. As the modifications of the test guidelines refer to general test topics (e.g. test duration or measuring principle), we assume that the described approaches and modifications will be suitable for the testing of further NMs with other chemical compositions. Firm proposals for modification of protocols with scientific justification(s) are presented for the following tests: growth inhibition using the green algae Raphidocelis subcapitata (formerly: Pseudokirchneriella subcapitata; TG 201), acute toxicity with the crustacean Daphnia magna (TG 202), development toxicity with the fish Danio rerio (TG 210), reproduction of the sediment-living worm Lumbriculus variegatus (TG 225), activity of soil microflora (TGs 216, 217), and reproduction of the invertebrates (Enchytraeus crypticus, Eisenia fetida, TGs 220, 222). Additionally, test descriptions for two further test systems (root elongation of plants in hydroponic culture; test on fish cells) are presented. Ecotoxicological data obtained with the modified test guidelines for TiO2 NMs and Ag NM and detailed method descriptions are available.
Collapse
Affiliation(s)
- Kerstin Hund-Rinke
- a Fraunhofer Institute for Molecular Biology and Applied Ecology , Schmallenberg , Germany
| | - Anders Baun
- b Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| | - Denisa Cupi
- b Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| | | | - Richard Handy
- d School of Biological Sciences, University of Plymouth , Plymouth , UK
| | - John H Kinross
- c School of Life Sciences, Heriot-Watt University , Edinburgh , UK
| | | | - Willie Peijnenburg
- f National Institute for Public Health and the Environment , Bilthoven , Netherlands.,g University Leiden , Leiden , Netherlands , and
| | - Karsten Schlich
- a Fraunhofer Institute for Molecular Biology and Applied Ecology , Schmallenberg , Germany
| | - Benjamin J Shaw
- d School of Biological Sciences, University of Plymouth , Plymouth , UK
| | | |
Collapse
|