1
|
Casas-Rodríguez A, López-Vázquez CM, Guzmán-Guillén R, Ayala N, Cameán AM, Jos A, Chicano-Gálvez E. A MALDI-MSI-based approach to characterize the spatial distribution of cylindrospermopsin and lipid alterations in rat intestinal tissue. Chem Biol Interact 2025; 412:111479. [PMID: 40088997 DOI: 10.1016/j.cbi.2025.111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Global warming and eutrophication of water bodies are driving the increase in cyanobacterial blooms, which produce toxins such as cylindrospermopsin (CYN). This compound has multiple toxic effects, and following CYN exposure, its distribution in the body varies, particularly in organs such as the liver and kidneys, suggesting its potential for bioaccumulation in key tissues. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) enables visualization of the spatial distribution of a wide range of molecules. In this study, using MALDI-MSI, a new method was developed and optimized for the detection of CYN, and its quantitative spatiotemporal distribution was analyzed for the first time in intestinal samples from rats orally exposed to this toxin (500 μg/kg body weight) and sacrificed 0, 2, 4, 6 and 24 h after exposure. Furthermore, the impact of CYN on the intestinal lipid profile was evaluated. The method was validated in terms of linearity, sensitivity, and precision, measuring CYN in mimetic tissue sections at different concentrations (1-100 ppm), allowing its successful application to visualize CYN distribution in rat intestines. The results revealed alterations in different lipid families involved in the inflammatory response, increased oxidative stress, and progressive damage to the integrity of the cell membrane.
Collapse
Affiliation(s)
| | - Cristina María López-Vázquez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), 14004, Córdoba, Spain
| | | | - Nahúm Ayala
- Department of Comparative Anatomical and Pathological Anatomy and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Eduardo Chicano-Gálvez
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI). Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba (UCO), 14004, Córdoba, Spain
| |
Collapse
|
2
|
Guo Y, Yang P, Wu Z, Zhang S, You F. Mechanisms of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (huang qi) and Angelica sinensis (Oliv.) Diels (dang gui) in Ameliorating Hypoxia and Angiogenesis to Delay Pulmonary Nodule Malignant Transformation. Integr Cancer Ther 2025; 24:15347354241311917. [PMID: 39882753 PMCID: PMC11780663 DOI: 10.1177/15347354241311917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Screening for pulmonary nodules (PN) using low-dose CT has proven effective in reducing lung cancer (LC) mortality. However, current treatments relying on follow-up and surgical excision fail to fully address clinical needs. Pathological angiogenesis plays a pivotal role in supplying oxygen necessary for the progression of PN to LC. The interplay between hypoxia and angiogenesis establishes a vicious cycle, rendering anti-angiogenesis therapy alone insufficient to prevent PN to LC transformation. In traditional Chinese medicine (TCM), PN is referred to as "Feiji," which is mainly attributed to Qi and blood deficiency, correspondingly, the most commonly prescribed medicines are Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (huang qi) (AR) and Angelica sinensis (Oliv.) Diels (dang gui) (ARS). Modern pharmacological studies have demonstrated that AR and ARS possess immune-enhancing, anti-tumor, anti-inflammatory, and anti-angiogenic properties. However, the precise mechanisms through which AR and ARS exert anti-angiogenic effects to delay PN progression to LC remain inadequately understood. This review explores the critical roles of hypoxia and angiogenesis in the transition from PN to LC. It emphasizes that, compared to therapies targeting angiogenic growth factors alone, AR, ARS, and their compound-based prescriptions offer additional benefits. These include ameliorating hypoxia by restoring blood composition, enhancing vascular structure, accelerating circulation, promoting vascular normalization, and blocking or inhibiting various pro-angiogenic expressions and receptor interactions. Collectively, these actions inhibit angiogenesis and delay the PN-to-LC transformation. Finally, this review summarizes recent advancements in related research, identifies existing limitations and gaps in knowledge, and proposes potential strategies and recommendations to address these challenges.
Collapse
Affiliation(s)
- Ying Guo
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Yang
- Chengdu Fifth People’s Hospital, Chengdu, China
| | - Zihong Wu
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, China
| | - Fengming You
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Qiu T. Mass Spectrometry Imaging for Spatial Toxicology Research. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5104. [PMID: 39624029 PMCID: PMC11612705 DOI: 10.1002/jms.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024]
Abstract
The spatial information of xenobiotics distribution, metabolism, and toxicity mechanisms in situ has drawn increasing attention in both pharmaceutical and environmental toxicology research to aid drug development and environmental risk assessments. Mass spectrometry imaging (MSI) provides a label-free, multiplexed, and high-throughput tool to characterize xenobiotics, their metabolites, and endogenous molecules in situ with spatial resolution, providing knowledge on spatially resolved absorption, distribution, metabolism, excretion, and toxicity on the molecular level. In this perspective, we briefly summarize applications of MSI in toxicology on xenobiotic distribution and metabolism, quantification, toxicity mechanisms, and biomarker discovery. We identified several challenges regarding how we can fully harness the power of MSI in both fundamental toxicology research and regulatory practices. First, how can we increase the coverage, sensitivity, and specificity in detecting xenobiotics and their metabolites in complex biological matrices? Second, how can we link the spatial molecular information of xenobiotics to toxicity consequences to understand toxicity mechanisms, predict exposure outcomes, and aid biomarker discovery? Finally, how can we standardize the MSI experiment and data analysis workflow to provide robust conclusions for regulation and drug development? With these questions in mind, we provide our perspectives on the future directions of MSI as a promising tool in spatial toxicology research.
Collapse
Affiliation(s)
- Tian (Autumn) Qiu
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
4
|
Watanabe K, Takayama S, Yamada T, Hashimoto M, Tadano J, Nakagawa T, Watanabe T, Fukusaki E, Miyawaki I, Shimma S. Novel mimetic tissue standards for precise quantitative mass spectrometry imaging of drug and neurotransmitter concentrations in rat brain tissues. Anal Bioanal Chem 2024; 416:5579-5593. [PMID: 39126505 PMCID: PMC11493812 DOI: 10.1007/s00216-024-05477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Understanding the relationship between the concentration of a drug and its therapeutic efficacy or side effects is crucial in drug development, especially to understand therapeutic efficacy in central nervous system drug, quantifying drug-induced site-specific changes in the levels of endogenous metabolites, such as neurotransmitters. In recent times, evaluation of quantitative distribution of drugs and endogenous metabolites using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) has attracted much attention in drug discovery research. However, MALDI-MSI quantification (quantitative mass spectrometry imaging, QMSI) is an emerging technique, and needs to be further developed for practicable and convenient use in drug discovery research. In this study, we developed a reliable QMSI method for quantification of clozapine (antipsychotic drug) and dopamine and its metabolites in the rat brain using MALDI-MSI. An improved mimetic tissue model using powdered frozen tissue for QMSI was established as an alternative method, enabling the accurate quantification of clozapine levels in the rat brain. Furthermore, we used the improved method to evaluate drug-induced fluctuations in the concentrations of dopamine and its metabolites. This method can quantitatively evaluate drug localization in the brain and drug-induced changes in the concentration of endogenous metabolites, demonstrating the usefulness of QMSI.
Collapse
Affiliation(s)
- Kenichi Watanabe
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Sayo Takayama
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Toichiro Yamada
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Masayo Hashimoto
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Jun Tadano
- Research Planning & Coordination, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Tetsuya Nakagawa
- Research Planning & Coordination, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Takao Watanabe
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, Osaka, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., Osaka, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Pierozan P, Höglund A, Theodoropoulou E, Karlsson O. Perfluorooctanesulfonic acid (PFOS) induced cancer related DNA methylation alterations in human breast cells: A whole genome methylome study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174864. [PMID: 39032741 DOI: 10.1016/j.scitotenv.2024.174864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation plays a pivotal role in cancer. The ubiquitous contaminant perfluorooctanesulfonic acid (PFOS) has been epidemiologically associated with breast cancer, and can induce proliferation and malignant transformation of normal human breast epithelial cells (MCF-10A), but the information about its effect on DNA methylation is sparse. The aim of this study was to characterize the whole-genome methylome effects of PFOS in our breast cell model and compare the findings with previously demonstrated DNA methylation alterations in breast tumor tissues. The DNA methylation profile was assessed at single CpG resolution in MCF-10A cells treated with 1 μM PFOS for 72 h by using Enzymatic Methyl sequencing (EM-seq). We found 12,591 differentially methylated CpG-sites and 13,360 differentially methylated 100 bp tiles in the PFOS exposed breast cells. These differentially methylated regions (DMRs) overlapped with 2406 genes of which 494 were long non-coding RNA and 1841 protein coding genes. We identified 339 affected genes that have been shown to display altered DNA methylation in breast cancer tissue and several other genes related to cancer development. This includes hypermethylation of GACAT3, DELEC1, CASC2, LCIIAR, MUC16, SYNE1 and hypomethylation of TTN and KMT2C. DMRs were also found in estrogen receptor genes (ESR1, ESR2, ESRRG, ESRRB, GREB1) and estrogen responsive genes (GPER1, EEIG1, RERG). The gene ontology analysis revealed pathways related to cancer phenotypes such as cell adhesion and growth. These findings improve the understanding of PFOS's potential role in breast cancer and illustrate the value of whole-genome methylome analysis in uncovering mechanisms of chemical effects, identifying biomarker candidates, and strengthening epidemiological associations, potentially impacting risk assessment.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18 Stockholm, Sweden; Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
Vitorino R. Transforming Clinical Research: The Power of High-Throughput Omics Integration. Proteomes 2024; 12:25. [PMID: 39311198 PMCID: PMC11417901 DOI: 10.3390/proteomes12030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
High-throughput omics technologies have dramatically changed biological research, providing unprecedented insights into the complexity of living systems. This review presents a comprehensive examination of the current landscape of high-throughput omics pipelines, covering key technologies, data integration techniques and their diverse applications. It looks at advances in next-generation sequencing, mass spectrometry and microarray platforms and highlights their contribution to data volume and precision. In addition, this review looks at the critical role of bioinformatics tools and statistical methods in managing the large datasets generated by these technologies. By integrating multi-omics data, researchers can gain a holistic understanding of biological systems, leading to the identification of new biomarkers and therapeutic targets, particularly in complex diseases such as cancer. The review also looks at the integration of omics data into electronic health records (EHRs) and the potential for cloud computing and big data analytics to improve data storage, analysis and sharing. Despite significant advances, there are still challenges such as data complexity, technical limitations and ethical issues. Future directions include the development of more sophisticated computational tools and the application of advanced machine learning techniques, which are critical for addressing the complexity and heterogeneity of omics datasets. This review aims to serve as a valuable resource for researchers and practitioners, highlighting the transformative potential of high-throughput omics technologies in advancing personalized medicine and improving clinical outcomes.
Collapse
Affiliation(s)
- Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Surgery and Physiology, Cardiovascular R&D Centre—UnIC@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Zhang J, Mao Z, Zhang D, Guo L, Zhao H, Miao M. Mass spectrometry imaging as a promising analytical technique for herbal medicines: an updated review. Front Pharmacol 2024; 15:1442870. [PMID: 39148546 PMCID: PMC11324582 DOI: 10.3389/fphar.2024.1442870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Herbal medicines (HMs) have long played a pivotal role in preventing and treating various human diseases and have been studied widely. However, the complexities present in HM metabolites and their unclear mechanisms of action have posed significant challenges in the modernization of traditional Chinese medicine (TCM). Over the past two decades, mass spectrometry imaging (MSI) has garnered increasing attention as a robust analytical technique that enables the simultaneous execution of qualitative, quantitative, and localization analyses without complex sample pretreatment. With advances in technical solutions, MSI has been extensively applied in the field of HMs. MSI, a label-free ion imaging technique can comprehensively map the spatial distribution of HM metabolites in plant native tissues, thereby facilitating the effective quality control of HMs. Furthermore, the spatial dimension information of small molecule endogenous metabolites within animal tissues provided by MSI can also serve as a supplement to uncover pharmacological and toxicological mechanisms of HMs. In the review, we provide an overview of the three most common MSI techniques. In addition, representative applications in HM are highlighted. Finally, we discuss the current challenges and propose several potential solutions. We hope that the summary of recent findings will contribute to the application of MSI in exploring metabolites and mechanisms of action of HMs.
Collapse
Affiliation(s)
- Jinying Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Zhiguo Mao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Ding Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Lin Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Hui Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| |
Collapse
|
8
|
Rahman MF, Islam A, Islam MM, Mamun MA, Xu L, Sakamoto T, Sato T, Takahashi Y, Kahyo T, Aoyagi S, Kaibuchi K, Setou M. Mass Spectrometry Imaging Combined with Sparse Autoencoder Method Reveals Altered Phosphorylcholine Distribution in Imipramine Treated Wild-Type Mice Brains. Int J Mol Sci 2024; 25:7969. [PMID: 39063212 PMCID: PMC11276679 DOI: 10.3390/ijms25147969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mass spectrometry imaging (MSI) is essential for visualizing drug distribution, metabolites, and significant biomolecules in pharmacokinetic studies. This study mainly focuses on imipramine, a tricyclic antidepressant that affects endogenous metabolite concentrations. The aim was to use atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-MSI combined with different dimensionality reduction methods to examine the distribution and impact of imipramine on endogenous metabolites in the brains of treated wild-type mice. Brain sections from both control and imipramine-treated mice underwent AP-MALDI-MSI. Dimensionality reduction methods, including principal component analysis, multivariate curve resolution, and sparse autoencoder (SAE), were employed to extract valuable information from the MSI data. Only the SAE method identified phosphorylcholine (ChoP) as a potential marker distinguishing between the control and treated mice brains. Additionally, a significant decrease in ChoP accumulation was observed in the cerebellum, hypothalamus, thalamus, midbrain, caudate putamen, and striatum ventral regions of the treated mice brains. The application of dimensionality reduction methods, particularly the SAE method, to the AP-MALDI-MSI data is a novel approach for peak selection in AP-MALDI-MSI data analysis. This study revealed a significant decrease in ChoP in imipramine-treated mice brains.
Collapse
Affiliation(s)
- Md Foyzur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Md. Monirul Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Preppers Co., Ltd., 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Preppers Co., Ltd., 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Preppers Co., Ltd., 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology/International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| | - Satoka Aoyagi
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi 180-8633, Tokyo, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu 431-3192, Shizuoka, Japan
| |
Collapse
|
9
|
Soltwisch J, Palmer A, Hong H, Majer J, Dreisewerd K, Marshall P. Large-Scale Screening of Pharmaceutical Compounds to Explore the Application Space of On-Tissue MALDI and MALDI-2 Mass Spectrometry. Anal Chem 2024; 96:10294-10301. [PMID: 38864171 DOI: 10.1021/acs.analchem.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI. Our evaluation was made under simulated imaging conditions using liver homogenate sections as substrate, onto which the compounds were spotted to mimic biological conditions to the first order. To enable an evaluable detection by both MALDI and MALDI-2 for the majority of employed compounds, we spotted 1 μL of a 10 mM solution using a spotting robot and performed our experiments with a Bruker timsTOF fleX MALDI-2 instrument in both positive and negative ion modes. Specifically, we demonstrate using a large cohort of drug-like compounds that ∼60% of the tested compounds showed a more than 10-fold increase in signal intensity and ∼16% showed a more than 100-fold increase upon use of MALDI-2 postionization. Such increases in sensitivity could help advance pharmaceutical MALDI-MSI applications toward the single-cell level.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Andrew Palmer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Hyundae Hong
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jan Majer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Peter Marshall
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
10
|
Khalil SM, Qin X, Hakenjos JM, Wang J, Hu Z, Liu X, Wang J, Maletic-Savatic M, MacKenzie KR, Matzuk MM, Li F. MALDI Imaging Mass Spectrometry Visualizes the Distribution of Antidepressant Duloxetine and Its Major Metabolites in Mouse Brain, Liver, Kidney, and Spleen Tissues. Drug Metab Dispos 2024; 52:673-680. [PMID: 38658163 PMCID: PMC11185819 DOI: 10.1124/dmd.124.001719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
Imaging mass spectrometry (IMS) is a powerful tool for mapping the spatial distribution of unlabeled drugs and metabolites that may find application in assessing drug delivery, explaining drug efficacy, and identifying potential toxicity. This study focuses on determining the spatial distribution of the antidepressant duloxetine, which is widely prescribed despite common adverse effects (liver injury, constant headaches) whose mechanisms are not fully understood. We used high-resolution IMS with matrix-assisted laser desorption/ionization to examine the distribution of duloxetine and its major metabolites in four mouse organs where it may contribute to efficacy or toxicity: brain, liver, kidney, and spleen. In none of these tissues is duloxetine or its metabolites homogeneously distributed, which has implications for both efficacy and toxicity. We found duloxetine to be similarly distributed in spleen red pulp and white pulp but differentially distributed in different anatomic regions of the liver, kidney, and brain, with dose-dependent patterns. Comparison with hematoxylin and eosin staining of tissue sections reveals that the ion images of endogenous lipids help delineate anatomic regions in the brain and kidney, while heme ion images assist in differentiating regions within the spleen. These endogenous metabolites may serve as a valuable resource for examining the spatial distribution of other drugs in tissues when staining images are not available. These findings may facilitate future mechanistic studies of the therapeutic and adverse effects of duloxetine. In the current work, we did not perform absolute quantification of duloxetine, which will be reported in due course. SIGNIFICANCE STATEMENT: The study utilized imaging mass spectrometry to examine the spatial distribution of duloxetine and its primary metabolites in mouse brain, liver, kidney, and spleen. These results may pave the way for future investigations into the mechanisms behind duloxetine's therapeutic and adverse effects. Furthermore, the mass spectrometry images of specific endogenous metabolites such as heme could be valuable in analyzing the spatial distribution of other drugs within tissues in scenarios where histological staining images are unavailable.
Collapse
Affiliation(s)
- Saleh M Khalil
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Xuan Qin
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - John M Hakenjos
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Jian Wang
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Zhaoyong Hu
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Xinli Liu
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Jin Wang
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Mirjana Maletic-Savatic
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Kevin R MacKenzie
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| | - Feng Li
- Center for Drug Discovery, Department of Pathology and Immunology (S.M.K., X.Q., J.M.H., Jia.W., M.M.-S., K.R.M., M.M.M., F.L.), NMR and Drug Metabolism Core, Advanced Technology Cores (X.Q., J.M.H., Jia.W., K.R.M., F.L.), Department of Biochemistry and Molecular Pharmacology (Jin.W., K.R.M., M.M.M., F.L.), Department of Pediatrics (S.M.K., M.M.-S.), and Nephrology Division, Department of Medicine (Z.H.), Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurologic Research Institute, Texas Children's Hospital, Houston, Texas (M.M.-S.); and Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (X.L.)
| |
Collapse
|
11
|
Islam MM, Rahman MF, Islam A, Afroz MS, Mamun MA, Rahman MM, Maniruzzaman M, Xu L, Sakamoto T, Takahashi Y, Sato T, Kahyo T, Setou M. Elucidating Gender-Specific Distribution of Imipramine, Chloroquine, and Their Metabolites in Mice Kidney Tissues through AP-MALDI-MSI. Int J Mol Sci 2024; 25:4840. [PMID: 38732055 PMCID: PMC11084644 DOI: 10.3390/ijms25094840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Knowledge of gender-specific drug distributions in different organs are of great importance for personalized medicine and reducing toxicity. However, such drug distributions have not been well studied. In this study, we investigated potential differences in the distribution of imipramine and chloroquine, as well as their metabolites, between male and female kidneys. Kidneys were collected from mice treated with imipramine or chloroquine and then subjected to atmospheric pressure matrix-assisted laser desorption ionization-mass spectrometry imaging (AP-MALDI-MSI). We observed differential distributions of the drugs and their metabolites between male and female kidneys. Imipramine showed prominent distributions in the cortex and medulla in male and female kidneys, respectively. Desipramine, one of the metabolites of imipramine, showed significantly higher (*** p < 0.001) distributions in the medulla of the male kidney compared to that of the female kidney. Chloroquine and its metabolites were accumulated in the pelvis of both male and female kidneys. Interestingly, they showed a characteristic distribution in the medulla of the female kidney, while almost no distributions were observed in the same areas of the male kidney. For the first time, our study revealed that the distributions of imipramine, chloroquine, and their metabolites were different in male and female kidneys.
Collapse
Affiliation(s)
- Md. Monirul Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - Md Foyzur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Department of Biochemistry and Microbiology, School of Health and Life Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Mst. Sayela Afroz
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Md. Al Mamun
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Md. Muedur Rahman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Md Maniruzzaman
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan; (M.M.I.); (M.F.R.); (A.I.); (M.S.A.); (M.A.M.); (T.S.); (Y.T.); (T.S.); (T.K.)
- Preppers Co., Ltd., Hamamatsu City 431-3192, Shizuoka, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center, 1-20-1 Handayama, Chuo-Ku, Hamamatsu City 431-3192, Shizuoka, Japan
| |
Collapse
|
12
|
Chen M, Chen S, Wang X, Ye Z, Liu K, Qian Y, Tang M, Wu T. The discovery of regional neurotoxicity-associated metabolic alterations induced by carbon quantum dots in brain of mice using a spatial metabolomics analysis. Part Fibre Toxicol 2024; 21:19. [PMID: 38600504 PMCID: PMC11005155 DOI: 10.1186/s12989-024-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Recently, carbon quantum dots (CQDs) have been widely used in various fields, especially in the diagnosis and therapy of neurological disorders, due to their excellent prospects. However, the associated inevitable exposure of CQDs to the environment and the public could have serious severe consequences limiting their safe application and sustainable development. RESULTS In this study, we found that intranasal treatment of 5 mg/kg BW (20 µL/nose of 0.5 mg/mL) CQDs affected the distribution of multiple metabolites and associated pathways in the brain of mice through the airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) technique, which proved effective in discovery has proven to be significantly alerted and research into tissue-specific toxic biomarkers and molecular toxicity analysis. The neurotoxic biomarkers of CQDs identified by MSI analysis mainly contained aminos, lipids and lipid-like molecules which are involved in arginine and proline metabolism, biosynthesis of unsaturated fatty acids, and glutamine and glutamate metabolism, etc. as well as related metabolic enzymes. The levels or expressions of these metabolites and enzymes changed by CQDs in different brain regions would induce neuroinflammation, organelle damage, oxidative stress and multiple programmed cell deaths (PCDs), leading to neurodegeneration, such as Parkinson's disease-like symptoms. This study enlightened risk assessments and interventions of QD-type or carbon-based nanoparticles on the nervous system based on toxic biomarkers regarding region-specific profiling of altered metabolic signatures. CONCLUSION These findings provide information to advance knowledge of neurotoxic effects of CQDs and guide their further safety evaluation.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Xinyu Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, 210009, Nanjing, P.R. China.
| |
Collapse
|
13
|
Li L, Li L, Cao C, Guo F, Wang A, Lin L, Liu Z, Meng H, Zhang P, Xin G, Liu J, Ren J, Fu J. Investigation of the active ingredients of Shuangshen Ningxin Fomula and the mechanism underlying their protective effects against myocardial ischemia-reperfusion injury by mass spectrometric imaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155184. [PMID: 37951149 DOI: 10.1016/j.phymed.2023.155184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Traditional Chinese medicine, particularly Shuangshen Ningxin Capsule (SSNX), has been studied intensely. SSNX includes total ginseng saponins (from Panax ginseng Meyer), total phenolic acids from Salvia miltiorrhiza Bunge, and total alkaloids from Corydalis yanhusuo W. T. Wang. It has been suggested to protect against myocardial ischemia by a mechanism that has not been fully elucidated. METHODS The composition and content of SSNX were determined by UHPLC-Q-TOFQ-TOF / MS. Then, a rat model of myocardial ischemia-reperfusion injury was established, and the protective effect of SSNX was measured. The protective mechanism was investigated using spatial metabolomics. RESULTS We found that SSNX significantly improved left ventricular function and ameliorated pathological damages in rats with myocardial ischemia-reperfusion injury. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), the protective mechanism of SSNX was examined by comparing the monomer components of drugs targeted in myocardial tissue with the distribution of myocardial energy metabolism-related molecules and phospholipids. Interestingly, some lipids display inconsistent content distribution in the myocardial ischemia risk and non-risk zones. These discrepancies reflect the degree of myocardial injury in different regions. CONCLUSION These findings suggest that SSNX protects against myocardial ischemia-reperfusion injury by correcting abnormal myocardial energy metabolism, changing the levels and distribution patterns of phospholipids, and stabilizing the structure of the myocardial cell membrane. MALDI-TOF MS can detect the spatial distribution of small molecule metabolites in the myocardium and can be used in pharmacological research.
Collapse
Affiliation(s)
- Lingmei Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China; Kunshan Hospital of Traditional Chinese Medicine, Jiangsu 215300, China
| | - Lei Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ce Cao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Fan Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Aoao Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Li Lin
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zixin Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hongxu Meng
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Peng Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Gaojie Xin
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jianxun Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Junguo Ren
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Jianhua Fu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
14
|
Kumar BS. Recent developments and applications of ambient mass spectrometry imaging in pharmaceutical research: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:8-32. [PMID: 38088775 DOI: 10.1039/d3ay01267k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The application of ambient mass spectrometry imaging "MSI" is expanding in the areas of fundamental research on drug delivery and multiple phases of the process of identifying and developing drugs. Precise monitoring of a drug's pharmacological workflows, such as intake, distribution, metabolism, and discharge, is made easier by MSI's ability to determine the concentrations of the initiating drug and its metabolites across dosed samples without losing spatial data. Lipids, glycans, and proteins are just a few of the many phenotypes that MSI may be used to concurrently examine. Each of these substances has a particular distribution pattern and biological function throughout the body. MSI offers the perfect analytical tool for examining a drug's pharmacological features, especially in vitro and in vivo effectiveness, security, probable toxic effects, and putative molecular pathways, because of its high responsiveness in chemical and physical environments. The utilization of MSI in the field of pharmacy has further extended from the traditional tissue examination to the early stages of drug discovery and development, including examining the structure-function connection, high-throughput capabilities in vitro examination, and ex vivo research on individual cells or tumor spheroids. Additionally, an enormous array of endogenous substances that may function as tissue diagnostics can be scanned simultaneously, giving the specimen a highly thorough characterization. Ambient MSI techniques are soft enough to allow for easy examination of the native sample to gather data on exterior chemical compositions. This paper provides a scientific and methodological overview of ambient MSI utilization in research on pharmaceuticals.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent researcher, 21, B2, 27th Street, Lakshmi Flats, Nanganallur, Chennai 600061, India.
| |
Collapse
|
15
|
Abstract
Major advances in scientific discovery and insights that stem from the development and use of new techniques and models can bring remarkable progress to conventional toxicology. Although animal testing is still considered as the "gold standard" in traditional toxicity testing, there is a necessity for shift from animal testing to alternative methods regarding the drug safety testing owing to the emerging state-of-art techniques and the proposal of 3Rs (replace, reduce, and refine) towards animal welfare. This review describes some recent research methods in drug discovery toxicology, including in vitro cell and organ-on-a-chip, imaging systems, model organisms (C. elegans, Danio rerio, and Drosophila melanogaster), and toxicogenomics in modern toxicology testing.
Collapse
Affiliation(s)
- Bowen Tang
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| | - Vijay More
- PTC Therapeutics Inc, South Plainfield, NJ, USA
| |
Collapse
|
16
|
Liu S, Xu W, Zhai Y. Swab-in-Capillary Electrospray Ionization and a Miniature Mass Spectrometer for In Situ Drug Analysis. Anal Chem 2023; 95:16987-16995. [PMID: 37948617 DOI: 10.1021/acs.analchem.3c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In situ analysis of drugs has been in increasing demand in many fields. As an updated version of capillary-in-capillary electrospray ionization (CC-ESI) developed previously, a disposable swab-in-capillary electrospray ionization (SC-ESI) source was designed in this study. With a micro medical swab for sampling and an integrated filter membrane for online filtration, SC-ESI was able to directly sample and MS analyze complex samples without the need for pretreatment. Coupled with a miniature mass spectrometer, SC-ESI was applied for direct analysis of effective ingredients in therapeutic drugs (in tablet, capsule, and liquid droplet) and drugs in saliva and quantitation of therapeutic drugs in blood. The limits of detection in absolute amounts were obtained as 1 ng for fentanyl and 0.5 ng for cocaine in saliva. Combining with an internal standard method, SC-ESI acquired linear quantitation ranges of 100-5000 ng/mL for imatinib in whole blood and 100-2000 ng/mL for clozapine in serum with high accuracies and precisions. The entire analysis process, from sampling to data acquisition, can be completed in less than 2 min. As demonstrated as a cheap, portable, and sampling-effective ionization source, SC-ESI has shown great potential for in situ drug analysis, especially in border drug screening and clinical therapeutic drug monitoring.
Collapse
Affiliation(s)
- Siyu Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yanbing Zhai
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
18
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
19
|
Göldner V, Quach L, Adhitama E, Behrens A, Junk L, Winter M, Placke T, Glorius F, Karst U. Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries. iScience 2023; 26:107517. [PMID: 37636078 PMCID: PMC10448071 DOI: 10.1016/j.isci.2023.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Laser desorption/ionization-mass spectrometry (LDI-MS) is introduced as a complementary technique for the analysis of interphases formed at electrode|electrolyte interfaces in lithium ion batteries (LIBs). An understanding of these interphases is crucial for designing interphase-forming electrolyte formulations and increasing battery lifetime. Especially organic species are analyzed more effectively using LDI-MS than with established methodologies. The combination with trapped ion mobility spectrometry and tandem mass spectrometry yields additional structural information of interphase components. Furthermore, LDI-MS imaging reveals the lateral distribution of compounds on the electrode surface. Using the introduced methods, a deeper understanding of the mechanism of action of the established solid electrolyte interphase-forming electrolyte additive 3,4-dimethyloxazolidine-2,5-dione (Ala-N-CA) for silicon/graphite anodes is obtained, and active electrochemical transformation products are unambiguously identified. In the future, LDI-MS will help to provide a deeper understanding of interfacial processes in LIBs by using it in a multimodal approach with other surface analysis methods to obtain complementary information.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Linda Quach
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Egy Adhitama
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstaße 46, 48149 Münster, Germany
| | - Arne Behrens
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Luisa Junk
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Martin Winter
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstaße 46, 48149 Münster, Germany
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstraße 46, 48149 Münster, Germany
| | - Tobias Placke
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- MEET Battery Research Center, Institute of Physical Chemistry, University of Münster, Corrensstaße 46, 48149 Münster, Germany
| | - Frank Glorius
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
- International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
20
|
Mamun MA, Rahman MM, Sakamoto T, Islam A, Oyama S, Nabi MM, Sato T, Kahyo T, Takahashi Y, Setou M. Detection of Distinct Distributions of Acetaminophen and Acetaminophen-Cysteine in Kidneys up to 10 μm Resolution and Identification of a Novel Acetaminophen Metabolite Using an AP-MALDI Imaging Mass Microscope. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1491-1500. [PMID: 37308161 PMCID: PMC10327650 DOI: 10.1021/jasms.3c00149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
Drug distribution studies in tissue are crucial for understanding the pharmacokinetics and potential toxicity of drugs. Recently, matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has gained attention for drug distribution studies due to its high sensitivity, label-free nature, and ability to distinguish between parent drugs, their metabolites, and endogenous molecules. Despite these advantages, achieving high spatial resolution in drug imaging is challenging. Importantly, many drugs and metabolites are rarely detectable by conventional vacuum MALDI-MSI because of their poor ionization efficiency. It has been reported that acetaminophen (APAP) and one of its major metabolites, APAP-Cysteine (APAP-CYS), cannot be detected by vacuum MALDI-MSI without derivatization. In this context, we showed the distribution of both APAP and APAP-CYS in kidneys at high spatial resolution (25 and 10 μm) by employing an atmospheric pressure-MALDI imaging mass microscope without derivatization. APAP was highly accumulated in the renal pelvis 1 h after drug administration, while APAP-CYS exhibited characteristic distributions in the outer medulla and renal pelvis at both 30 min and 1 h after administration. Interestingly, cluster-like distributions of APAP and APAP-CYS were observed in the renal pelvis at 10 μm spatial resolution. Additionally, a novel APAP metabolite, tentatively coined as APAP-butyl sulfate (APAP-BS), was identified in the kidney, brain, and liver by combining MSI and tandem MSI. For the first time, our study revealed differential distributions of APAP, APAP-CYS (in kidneys), and APAP-BS (in kidney, brain, and liver) and is believed to enhance the understanding of the pharmacokinetics and potential nephrotoxicity of this drug.
Collapse
Affiliation(s)
- Md. Al Mamun
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md. Muedur Rahman
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takumi Sakamoto
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Ariful Islam
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Soho Oyama
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Md. Mahamodun Nabi
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International
Mass Imaging Center, Hamamatsu University
School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Takahashi
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Preppers
Co., Ltd., Hamamatsu University School of
Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department
of Cellular & Molecular Anatomy, Hamamatsu
University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- International
Mass Imaging Center, Hamamatsu University
School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department
of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research
Center, 1-20-1 Handayama,
Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
21
|
Maciel LÍL, Bernardo RA, Martins RO, Batista Junior AC, Oliveira JVA, Chaves AR, Vaz BG. Desorption electrospray ionization and matrix-assisted laser desorption/ionization as imaging approaches for biological samples analysis. Anal Bioanal Chem 2023:10.1007/s00216-023-04783-8. [PMID: 37329466 DOI: 10.1007/s00216-023-04783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
The imaging of biological tissues can offer valuable information about the sample composition, which improves the understanding of analyte distribution in such complex samples. Different approaches using mass spectrometry imaging (MSI), also known as imaging mass spectrometry (IMS), enabled the visualization of the distribution of numerous metabolites, drugs, lipids, and glycans in biological samples. The high sensitivity and multiple analyte evaluation/visualization in a single sample provided by MSI methods lead to various advantages and overcome drawbacks of classical microscopy techniques. In this context, the application of MSI methods, such as desorption electrospray ionization-MSI (DESI-MSI) and matrix-assisted laser desorption/ionization-MSI (MALDI-MSI), has significantly contributed to this field. This review discusses the evaluation of exogenous and endogenous molecules in biological samples using DESI and MALDI imaging. It offers rare technical insights not commonly found in the literature (scanning speed and geometric parameters), making it a comprehensive guide for applying these techniques step-by-step. Furthermore, we provide an in-depth discussion of recent research findings on using these methods to study biological tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
22
|
Haartmans MJJ, Claes BSR, Emanuel KS, Tuijthof GJM, Heeren RMA, Emans PJ, Cillero-Pastor B. Sample preparation for lipid analysis of intra-articular adipose tissue by using matrix-assisted laser desorption/ionization imaging. Anal Biochem 2023; 662:115018. [PMID: 36521559 DOI: 10.1016/j.ab.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique enabling the visualization of the spatial distribution of different molecules in tissue biopsies with different pathologies. Sample handling and preparing adipose tissue for MSI is challenging and prone to molecular delocalization due to tissue melting. In this work, we developed a method for matrix-assisted laser desorption/ionization (MALDI)-MSI to study lipids in human infrapatellar fat pad (IPFP), a biomarker source in musculoskeletal pathologies, while preserving molecular spatial distribution. Cryosectioning at 15 μm with a temperature below -30 °C, thaw-mounting, and sublimation, was demonstrated to preserve IPFP's heterogeneous appearance and spatial distribution of lipids.
Collapse
Affiliation(s)
- Mirella J J Haartmans
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Britt S R Claes
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Kaj S Emanuel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands; Amsterdam UMC, Amsterdam Movement Sciences, Department of Orthopedic Surgery and Sports Medicine, Amsterdam, the Netherlands.
| | - Gabrielle J M Tuijthof
- Faculty of Engineering Technology, Biomedical Device Design and Production Technology (BDDP), Twente University, Twente, the Netherlands.
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands.
| | - Pieter J Emans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Joint-Preserving Clinic, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center+, Maastricht, the Netherlands.
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands; MERLN Institute for Technology-inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
23
|
Analyses and Localization of Phosphatidylcholine and Phosphatidylserine in Murine Ocular Tissue Using Imaging Mass Spectrometry. Methods Mol Biol 2023; 2625:149-161. [PMID: 36653641 DOI: 10.1007/978-1-0716-2966-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Imaging mass spectrometry (IMS) allows for spatial visualization of proteins, lipids, and metabolite distributions in a tissue. Identifying these compounds through mass spectrometry, combined with mapping the compound distribution in the sample in a targeted or untargeted approach, renders IMS a powerful tool for lipidomics. IMS analysis for lipid species such as phosphatidylcholine and phosphatidylserine allows researchers to pinpoint areas of lipid deficiencies or accumulations associated with ocular disorders such as age-related macular degeneration and diabetic retinopathy. Here, we describe an end-to-end IMS approach from sample preparation to data analysis for phosphatidylcholine and phosphatidylserine analysis.
Collapse
|
24
|
Krishnan V, Meehan S, Hayter C, Bhattacharya SK. Analyses and Localization of Serotonin and L-DOPA in Ocular Tissues by Imaging Mass Spectrometry. Methods Mol Biol 2023; 2571:157-168. [PMID: 36152160 DOI: 10.1007/978-1-0716-2699-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Imaging mass spectrometry (IMS) allows for visualization of the spatial distribution of proteins, lipids, and other metabolites in a targeted or untargeted approach. The identification of compounds through mass spectrometry combined with the mapping of compound distribution in the sample establishes IMS as a powerful tool for metabolomics. IMS analysis for serotonin will allow researchers to pinpoint areas of deficiencies or accumulations associated with ocular disorders such as serotonin selective reuptake inhibitor optic neuropathy. Furthermore, L-DOPA has shown great promise as a therapeutic approach for disorders such as age-related macular degeneration, and IMS allows for localization, and relative magnitudes, of L-DOPA in the eye. We describe here an end-to-end approach of IMS from sample preparation to data analysis for serotonin and L-DOPA analysis.
Collapse
Affiliation(s)
- Varun Krishnan
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sean Meehan
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Colin Hayter
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Integrative Metabolomics Research Center, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Miami Integrative Metabolomics Research Center, Miami, FL, USA.
- University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
25
|
Spencer CE, Duckett CJ, Rumbelow S, Clench MR. The Adaptation of the QV600 LLI Milli-Fluidics System to House Ex Vivo Gastrointestinal Tissue Suitable for Drug Absorption and Permeation Studies, Utilizing MALDI MSI and LC-MS/MS. Methods Mol Biol 2023; 2688:71-82. [PMID: 37410285 DOI: 10.1007/978-1-0716-3319-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Careful formulation of pharmaceuticals for oral delivery is essential to ensure that the optimal amount of the active ingredient reaches its intended site of action. This chapter demonstrates how mass spectrometry can be used in conjunction with ex vivo tissue and an adapted milli-fluidics system to carry out a drug absorption study. MALDI MSI is used to visualize the drug within the small intestine tissue from the absorption experimentation. LC-MS/MS is used to complete a mass balance of the experiment and quantify the amount of drug that has permeated through the tissue.
Collapse
Affiliation(s)
- Chloe E Spencer
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Catherine J Duckett
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
26
|
Akakpo JY, Jaeschke MW, Etemadi Y, Artigues A, Toerber S, Olivos H, Shrestha B, Midey A, Jaeschke H, Ramachandran A. Desorption Electrospray Ionization Mass Spectrometry Imaging Allows Spatial Localization of Changes in Acetaminophen Metabolism in the Liver after Intervention with 4-Methylpyrazole. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2094-2107. [PMID: 36223142 PMCID: PMC9901546 DOI: 10.1021/jasms.2c00202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the US, and hepatotoxicity is initiated by a reactive metabolite which induces characteristic centrilobular necrosis. The only clinically available antidote is N-acetylcysteine, which has limited efficacy, and we have identified 4-methylpyrazole (4MP, Fomepizole) as a strong alternate therapeutic option, protecting against generation and downstream effects of the cytotoxic reactive metabolite in the clinically relevant C57BL/6J mouse model and in humans. However, despite the regionally restricted necrosis after APAP, our earlier studies on APAP metabolites in biofluids or whole tissue homogenate lack the spatial information needed to understand region-specific consequences of reactive metabolite formation after APAP overdose. Thus, to gain insight into the regional variation in APAP metabolism and study the influence of 4MP, we established a desorption electrospray ionization mass spectrometry imaging (DESI-MSI) platform for generation of ion images for APAP and its metabolites under ambient air, without chemical labeling or a prior coating of tissue which reduces chemical interference and perturbation of small molecule tissue localization. The spatial intensity and distribution of both oxidative and nonoxidative APAP metabolites were determined from mouse liver sections after a range of APAP overdoses. Importantly, exclusive differential signal intensities in metabolite abundance were noted in the tissue microenvironment, and 4MP treatment substantially influenced this topographical distribution.
Collapse
Affiliation(s)
- Jephte Yao Akakpo
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew Wolfgang Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yasaman Etemadi
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Antonio Artigues
- Department of Biochemistry, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
27
|
Mass spectrometry imaging of diclofenac and its metabolites in tissues using nanospray desorption electrospray ionization. Anal Chim Acta 2022; 1233:340490. [DOI: 10.1016/j.aca.2022.340490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
28
|
Huang J, Gao S, Wang K, Zhang J, Pang X, Shi J, He J. Design and characterizing of robust probes for enhanced mass spectrometry imaging and spatially resolved metabolomics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Chen Y, Xie Y, Li L, Wang Z, Yang L. Advances in mass spectrometry imaging for toxicological analysis and safety evaluation of pharmaceuticals. MASS SPECTROMETRY REVIEWS 2022:e21807. [PMID: 36146929 DOI: 10.1002/mas.21807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Safety issues caused by pharmaceuticals have frequently occurred worldwide, posing a tremendous threat to human health. As an essential part of drug development, the toxicological analysis and safety evaluation is of great significance. In addition, the risk of pharmaceuticals accumulation in the environment and the monitoring of the toxicity from natural medicines have also received ongoing concerns. Due to a lack of spatial distribution information provided by common analytical methods, analyses that provide spatial dimensions could serve as complementary safety evaluation methods for better prediction and evaluation of drug toxicity. With advances in technical solutions and software algorithms, mass spectrometry imaging (MSI) has received increasing attention as a popular analytical tool that enables the simultaneous implementation of qualitative, quantitative, and localization without complex sample pretreatment and labeling steps. In recent years, MSI has become more attractive, powerful, and sensitive and has been applied in several scientific fields that can meet the safety assessment requirements. This review aims to cover a detailed summary of the various MSI technologies utilized in the biomedical and pharmaceutical area, including technical principles, advantages, current status, and future trends. Representative applications and developments in the safety-related issues of different pharmaceuticals and natural medicines are also described to provide a reference for pharmaceutical research, improve rational clinical medicine use, and ensure public safety.
Collapse
Affiliation(s)
- Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiao Xie
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|
31
|
Bailey MJ, de Puit M, Romolo FS. Surface Analysis Techniques in Forensic Science: Successes, Challenges, and Opportunities for Operational Deployment. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:173-196. [PMID: 35167323 DOI: 10.1146/annurev-anchem-061020-124221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface analysis techniques have rapidly evolved in the last decade. Some of these are already routinely used in forensics, such as for the detection of gunshot residue or for glass analysis. Some surface analysis approaches are attractive for their portability to the crime scene. Others can be very helpful in forensic laboratories owing to their high spatial resolution, analyte coverage, speed, and specificity. Despite this, many proposed applications of the techniques have not yet led to operational deployment. Here, we explore the application of these techniques to the most important traces commonly found in forensic casework. We highlight where there is potential to add value and outline the progress that is needed to achieve operational deployment. We consider within the scope of this review surface mass spectrometry, surface spectroscopy, and surface X-ray spectrometry. We show how these tools show great promise for the analysis of fingerprints, hair, drugs, explosives, and microtraces.
Collapse
Affiliation(s)
- Melanie J Bailey
- Department of Chemistry, Stag Hill Campus, University of Surrey, Guildford, United Kingdom;
| | - Marcel de Puit
- Netherlands Forensic Institute, The Hague, The Netherlands
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
32
|
Analytical Performance Evaluation of New DESI Enhancements for Targeted Drug Quantification in Tissue Sections. Pharmaceuticals (Basel) 2022; 15:ph15060694. [PMID: 35745613 PMCID: PMC9228120 DOI: 10.3390/ph15060694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
Desorption/ionization (DI)-mass spectrometric (MS) methods offer considerable advantages of rapidity and low-sample input for the analysis of solid biological matrices such as tissue sections. The concept of desorption electrospray ionization (DESI) offers the possibility to ionize compounds from solid surfaces at atmospheric pressure, without the addition of organic compounds to initiate desorption. However, severe drawbacks from former DESI hardware stability made the development of assays for drug quantification difficult. In the present study, the potential of new prototype source setups (High Performance DESI Sprayer and Heated Transfer Line) for the development of drug quantification assays in tissue sections was evaluated. It was demonstrated that following dedicated optimization, new DESI XS enhancements present promising options regarding targeted quantitative analyses. As a model compound for these developments, ulixertinib, an inhibitor of extracellular signal-regulated kinase (ERK) 1 and 2 was used.
Collapse
|
33
|
|
34
|
Sample preparation optimization of insects and zebrafish for whole-body mass spectrometry imaging. Anal Bioanal Chem 2022; 414:4777-4790. [PMID: 35508646 DOI: 10.1007/s00216-022-04102-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/01/2022]
Abstract
Appropriate sample preparation is one of the most critical steps in mass spectrometry imaging (MSI), which is closely associated with reproducible and reliable images. Despite that model insects and organisms have been widely used in various research fields, including toxicology, drug discovery, disease models, and neurobiology, a systematic investigation on sample preparation optimization for MSI analysis has been relatively rare. Unlike mammalian tissues with satisfactory homogeneity, freezing sectioning of the whole body of insects is still challenging because some insect tissues are hard on the outside and soft on the inside, especially for some small and fragile insects. Herein, we systematically investigated the sample preparation conditions of various insects and model organisms, including honeybees (Apis cerana), oriental fruit flies (Bactrocera dorsalis), zebrafish (Danio rerio), fall armyworms (Spodoptera frugiperda), and diamondback moths (Plutella xylostella), for MSI. Three cutting temperatures, four embedding agents, and seven thicknesses were comprehensively investigated to achieve optimal sample preparation protocols for MSI analysis. The results presented herein indicated that the optimal cutting temperature and embedding agent were -20 °C and gelatin, respectively, providing better tissue integrity and less mass spectral interference. However, the optimal thickness for different organisms can vary with each individual. Using this optimized protocol, we exploited the potential of MSI for visualizing the tissue-specific distribution of endogenous lipids in four insects and zebrafish. Taken together, this work provides guidelines for the optimized sample preparation of insects and model organisms, facilitating the expansion of the potential of MSI in the life sciences and environmental sciences.
Collapse
|
35
|
Inglese P, Huang HX, Wu V, Lewis MR, Takats Z. Mass recalibration for desorption electrospray ionization mass spectrometry imaging using endogenous reference ions. BMC Bioinformatics 2022; 23:133. [PMID: 35428194 DOI: 10.1101/2021.03.29.437482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.
Collapse
Affiliation(s)
- Paolo Inglese
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK.
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
36
|
Inglese P, Huang HX, Wu V, Lewis MR, Takats Z. Mass recalibration for desorption electrospray ionization mass spectrometry imaging using endogenous reference ions. BMC Bioinformatics 2022; 23:133. [PMID: 35428194 PMCID: PMC9013061 DOI: 10.1186/s12859-022-04671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.
Collapse
Affiliation(s)
- Paolo Inglese
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK.
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Helen Xuexia Huang
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Vincen Wu
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Matthew R Lewis
- National Phenome Centre, Imperial College London, Hammersmith Campus, IRDB Building, London, W12 0NN, UK
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zoltan Takats
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
37
|
Huang H, Ouyang D, Lin ZA. Recent Advances in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry and Its Imaging for Small Molecules. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Good CJ, Neumann EK, Butrico CE, Cassat JE, Caprioli RM, Spraggins JM. High Spatial Resolution MALDI Imaging Mass Spectrometry of Fresh-Frozen Bone. Anal Chem 2022; 94:3165-3172. [PMID: 35138834 PMCID: PMC9741954 DOI: 10.1021/acs.analchem.1c04604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone and bone marrow are vital to mammalian structure, movement, and immunity. These tissues are also commonly subjected to molecular alterations giving rise to debilitating diseases like rheumatoid arthritis and osteomyelitis. Technologies such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) facilitate the discovery of spatially resolved chemical information in biological tissue samples to help elucidate the complex molecular processes underlying pathology. Traditionally, preparation of osseous tissue for MALDI IMS has been difficult due to its mineralized composition and heterogeneous morphology, and compensation for these challenges with decalcification and fixation protocols can remove or delocalize molecular species. Here, sample preparation methods were advanced to enable multimodal MALDI IMS of undecalcified, fresh-frozen murine femurs, allowing the distribution of endogenous lipids to be linked to tissue structures and cell types. Adhesive-bound bone sections were mounted onto conductive glass slides with microscopy-compatible glue and freeze-dried to minimize artificial bone marrow damage. High spatial resolution (10 μm) MALDI IMS was employed to characterize lipid distributions, and use of complementary microscopy modalities aided tissue and cell assignments. For example, various phosphatidylcholines localize to the bone marrow, adipose tissue, marrow adipose tissue, and muscle. Further, sphingomyelin(42:1) was abundant in megakaryocytes, whereas sphingomyelin(42:2) was diminished in this cell type. These data reflect the vast molecular and cellular heterogeneity indicative of the bone marrow and the soft tissue surrounding the femur. Multimodal MALDI IMS has the potential to advance bone-related biomedical research by offering deep molecular coverage with spatial relevance in a preserved native bone microenvironment.
Collapse
Affiliation(s)
- Christopher J Good
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Casey E Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
39
|
Adaptation of the Kirkstall QV600 LLI Microfluidics System for the Study of Gastrointestinal Absorption by Mass Spectrometry Imaging and LC-MS/MS. Pharmaceutics 2022; 14:pharmaceutics14020364. [PMID: 35214096 PMCID: PMC8878338 DOI: 10.3390/pharmaceutics14020364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Absorption studies on oral drugs can be difficult due to the challenge of replicating the complex structure and environment of the GI tract. Drug absorption studies can be conducted using in vivo and ex vivo animal tissue or animal-free techniques. These studies typically involve the use of Caco-2 cells. However, Caco-2 cells do not incorporate all the cell types found in intestinal tissue and lack P450 metabolizing enzymes. The QV600 LLI system is a microfluidics system designed for use with cell culture. Here, it has been adapted to house appropriate sections of ex vivo porcine tissue to act as a system that models the duodenum section of the small intestine. A pH regulated solution of Atorvastatin was flowed over the apical layer of the GI tissue and a nutrient solution flowed over the basal layer of the tissue to maintain tissue viability. The tissue samples were snap-frozen, cryosectioned, and imaged using MALDI Mass Spectrometry Imaging (MSI). A proof-of-concept study on the effect of excipients on absorption was conducted. Different concentrations of the solubilizing agent were added to the donor circuit of the QV600 LLI. The amount of Atorvastatin in the acceptor circuit was determined to study the effect of the excipient on the amount of drug that had permeated through the tissue. Using these data, Papp, pig values were calculated and compared with the literature.
Collapse
|
40
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
41
|
Morosi L, Matteo C, Meroni M, Ceruti T, Fuso Nerini I, Bello E, Frapolli R, D'Incalci M, Zucchetti M, Davoli E. Quantitative measurement of pioglitazone in neoplastic and normal tissues by AP-MALDI mass spectrometry imaging. Talanta 2022; 237:122918. [PMID: 34736656 DOI: 10.1016/j.talanta.2021.122918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Pioglitazone is a Peroxisome Proliferator-Activated Receptor (PPAR) agonist of the thiazolidinedione class of compounds with promising anticancer activity. An innovative quantitative mass spectrometry imaging (MSI) method and a HPLC-UV method were developed and validated to investigate its distribution in tumor and liver tissues. The MSI method is based on stable isotope normalization and resulted highly specific and sensitive (0.2 pmol/spot). The correct identification of the drug ion signal is confirmed by MS/MS analysis on tissue. The method shows an optimal lateral resolution (25 μm) relying on the ionization efficiency and fine laser diameter of the atmospheric pressure MALDI source. The HPLC-UV method is simple and straightforward involving quick protein precipitation and shows good sensitivity (50ng/sample) using a small starting volume of biological sample. Thus, it is applicable to samples obtained from both preclinical models and clinical surgical procedures. MSI and HPLC-UV assays were validated assessing linearity, intra- and inter-day precision and accuracy, limit of quantification, selectivity and recovery. These are the first methods developed and validated for the analysis of pioglitazone in tissues, and they were applied successfully to myxoid liposarcoma xenograft-bearing mice, which received clinically relevant drug doses. Pioglitazone was measured by either method in sections of tumor and liver 2, 6 and 24 h post-treatment. Drug distribution was relatively homogeneous.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Cristina Matteo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Marina Meroni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Tommaso Ceruti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Ilaria Fuso Nerini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Ezia Bello
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy.
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology, Via Mario Negri 2, Milan, Italy
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Mass Spectrometry Research Center for Health and Environment and Laboratory of Mass Spectrometry, Via Mario Negri 2, Milan, Italy
| |
Collapse
|
42
|
Houdelet C, Arafah K, Bocquet M, Bulet P. Molecular histoproteomy by MALDI mass spectrometry imaging to uncover markers of the impact of Nosema on Apis mellifera. Proteomics 2022; 22:e2100224. [PMID: 34997678 DOI: 10.1002/pmic.202100224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology used to investigate the spatio-temporal distribution of a huge number of molecules throughout a body/tissue section. In this paper, we report the use of MALDI IMS to follow the molecular impact of an experimental infection of Apis mellifera with the microsporidia Nosema ceranae. We performed representative molecular mass fingerprints of selected tissues obtained by dissection. This was followed by MALDI IMS workflows optimization including specimen embedding and positioning as well as washing and matrix application. We recorded the local distribution of peptides/proteins within different tissues from experimentally infected versus non infected honeybees. As expected, a distinction in these molecular profiles between the two conditions was recorded from different anatomical sections of the gut tissue. More importantly, we observed differences in the molecular profiles in the brain, thoracic ganglia, hypopharyngeal glands, and hemolymph. We introduced MALDI IMS as an effective approach to monitor the impact of N. ceranae infection on A. mellifera. This opens perspectives for the discovery of molecular changes in peptides/proteins markers that could contribute to a better understanding of the impact of stressors and toxicity on different tissues of a bee in a single experiment.
Collapse
Affiliation(s)
- Camille Houdelet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.,Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| | - Karim Arafah
- Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| | | | - Philippe Bulet
- CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France.,Saint Julien-en Genevois, Plateforme BioPark d'Archamps, France
| |
Collapse
|
43
|
Hamm G, Maglennon G, Williamson B, Macdonald R, Doherty A, Jones S, Harris J, Blades J, Harmer AR, Barton P, Rawlins PB, Smith P, Winter-Holt J, McMurray L, Johansson J, Fitzpatrick P, McCoull W, Coen M. Pharmacological inhibition of MERTK induces in vivo retinal degeneration: a multimodal imaging ocular safety assessment. Arch Toxicol 2022; 96:613-624. [PMID: 34973110 PMCID: PMC8837544 DOI: 10.1007/s00204-021-03197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022]
Abstract
The receptor tyrosine kinase, MERTK, plays an essential role in homeostasis of the retina via efferocytosis of shed outer nuclear segments of photoreceptors. The Royal College of Surgeons rat model of retinal degeneration has been linked to loss-of-function of MERTK, and together with the MERTK knock-out mouse, phenocopy retinitis pigmentosa in humans with MERTK mutations. Given recent efforts and interest in MERTK as a potential immuno-oncology target, development of a strategy to assess ocular safety at an early pre-clinical stage is critical. We have applied a state-of-the-art, multi-modal imaging platform to assess the in vivo effects of pharmacological inhibition of MERTK in mice. This involved the application of mass spectrometry imaging (MSI) to characterize the ocular spatial distribution of our highly selective MERTK inhibitor; AZ14145845, together with histopathology and transmission electron microscopy to characterize pathological and ultra-structural change in response to MERTK inhibition. In addition, we assessed the utility of a human retinal in vitro cell model to identify perturbation of phagocytosis post MERTK inhibition. We identified high localized total compound concentrations in the retinal pigment epithelium (RPE) and retinal lesions following 28 days of treatment with AZ14145845. These lesions were present in 4 of 8 treated animals, and were characterized by a thinning of the outer nuclear layer, loss of photoreceptors (PR) and accumulation of photoreceptor outer segments at the interface of the RPE and PRs. Furthermore, the lesions were very similar to that shown in the RCS rat and MERTK knock-out mouse, suggesting a MERTK-induced mechanism of PR cell death. This was further supported by the observation of reduced phagocytosis in the human retinal cell model following treatment with AZ14145845. Our study provides a viable, translational strategy to investigate the pre-clinical toxicity of MERTK inhibitors but is equally transferrable to novel chemotypes.
Collapse
Affiliation(s)
- Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Ruth Macdonald
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ann Doherty
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jayne Harris
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - James Blades
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alexander R Harmer
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Paul Smith
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Julia Johansson
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Muireann Coen
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
44
|
Shedlock CJ, Stumpo KA. Data parsing in mass spectrometry imaging using R Studio and Cardinal: A tutorial. J Mass Spectrom Adv Clin Lab 2022; 23:58-70. [PMID: 35072143 PMCID: PMC8762469 DOI: 10.1016/j.jmsacl.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mass spectrometry imaging (MSI) has emerged as a rapidly expanding field in the MS community. The analysis of large spectral data is further complicated by the added spatial dimension of MSI. A plethora of resources exist for expert users to begin parsing MSI data in R, but there is a critical lack of guidance for absolute beginners. This tutorial is designed to serve as a one-stop guide to start using R with MSI data and describe the possibilities that data science can bring to MSI analysis.
Collapse
Key Words
- AuNP, gold nanoparticle
- Cardinal
- DESI, desorption electrospray ioniziation
- Data validation
- IACUC, Institutional Animal Care and Use Committee
- ITO, indium tin oxide
- MSI, mass spectrometry imaging
- Mass spectrometry imaging
- PCA, principal component analysis
- R Studio
- RAM, random access memory
- RMS, root mean squared
- SNR, signal to noise ratio
- SSC, spatial shrunken centroid
- SSD, solid state drive
- TIC, total ion current
Collapse
Affiliation(s)
- Cameron J. Shedlock
- Department of Chemistry, University of Scranton, Scranton, PA 18510, United States
| | - Katherine A. Stumpo
- Department of Chemistry, University of Scranton, Scranton, PA 18510, United States
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
- Bruker Scientific, Billerica, MA 01821, United States
| |
Collapse
|
45
|
Schnackenberg LK, Thorn DA, Barnette D, Jones EE. MALDI imaging mass spectrometry: an emerging tool in neurology. Metab Brain Dis 2022; 37:105-121. [PMID: 34347208 DOI: 10.1007/s11011-021-00797-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Neurological disease and disorders remain a large public health threat. Thus, research to improve early detection and/or develop more effective treatment approaches are necessary. Although there are many common techniques and imaging modalities utilized to study these diseases, existing approaches often require a label which can be costly and time consuming. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a label-free, innovative and emerging technique that produces 2D ion density maps representing the distribution of an analyte(s) across a tissue section in relation to tissue histopathology. One main advantage of MALDI IMS over other imaging modalities is its ability to determine the spatial distribution of hundreds of analytes within a single imaging run, without the need for a label or any a priori knowledge. Within the field of neurology and disease there have been several impactful studies in which MALDI IMS has been utilized to better understand the cellular pathology of the disease and or severity. Furthermore, MALDI IMS has made it possible to map specific classes of analytes to regions of the brain that otherwise may have been lost using more traditional methods. This review will highlight key studies that demonstrate the potential of this technology to elucidate previously unknown phenomenon in neurological disease.
Collapse
Affiliation(s)
- Laura K Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - David A Thorn
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - Dustyn Barnette
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - E Ellen Jones
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA.
| |
Collapse
|
46
|
Zubair F. MALDI mass Spectrometry based proteomics for drug discovery & development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:29-35. [PMID: 34916018 DOI: 10.1016/j.ddtec.2021.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
Matrix-assisted laser desorption/ ionization (MALDI) is a soft ionization technique for introducing wide range of analytes into a mass spectrometer (MS). MALDI MS is a powerful tool in drug discovery research and development, providing a high-throughput molecular analysis technique in both preclinical and clinical systems. In particular, MALDI MS is invaluable in the study of peptides and proteins that drive all biological functions. This technology is label-free, provides high specificity in molecular identification, and is high-throughput. MALDI MS has been used in biomarker discovery and quantitation in virtually all tissues, serum, plasma, CSF, and urine for diagnostics, patient stratification, and monitoring drug efficacy. Other applications include characterization of biological drugs, spatial mapping of biomarkers and drugs in tissues, drug screening, and toxicological assessment.
Collapse
|
47
|
Solon E, Groseclose MR, Ho S, Tanaka K, Nakada N, Linehan S, Nishidate M, Yokoi H, Kaji H, Urasaki Y, Watanabe K, Ishida T, Komatsu R, Yoshida K, Yamazaki H, Saito K, Saito Y, Tanaka Y. Imaging Mass Spectrometry (IMS) for drug discovery and development survey: Results on methods, applications and regulatory compliance. Drug Metab Pharmacokinet 2021; 43:100438. [DOI: 10.1016/j.dmpk.2021.100438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
|
48
|
Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021; 11:metabo11110780. [PMID: 34822438 PMCID: PMC8625079 DOI: 10.3390/metabo11110780] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Ambient mass spectrometry imaging (AMSI) has attracted much attention in recent years. As a kind of unlabeled molecular imaging technique, AMSI can enable in situ visualization of a large number of compounds in biological tissue sections in ambient conditions. In this review, the developments of various AMSI techniques are discussed according to one-step and two-step ionization strategies. In addition, recent applications of AMSI for lipid and metabolite analysis (from 2016 to 2021) in disease diagnosis, animal model research, plant science, drug metabolism and toxicology research, etc., are summarized. Finally, further perspectives of AMSI in spatial resolution, sensitivity, quantitative ability, convenience and software development are proposed.
Collapse
|
49
|
Innovation in drug toxicology: Application of mass spectrometry imaging technology. Toxicology 2021; 464:153000. [PMID: 34695509 DOI: 10.1016/j.tox.2021.153000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful molecular imaging technology that can obtain qualitative, quantitative, and location information by simultaneously detecting and mapping endogenous or exogenous molecules in biological tissue slices without specific chemical labeling or complex sample pretreatment. This article reviews the progress made in MSI and its application in drug toxicology research, including the tissue distribution of toxic drugs and their metabolites, the target organs (liver, kidney, lung, eye, and central nervous system) of toxic drugs, the discovery of toxicity-associated biomarkers, and explanations of the mechanisms of drug toxicity when MSI is combined with the cutting-edge omics methodologies. The unique advantages and broad prospects of this technology have been fully demonstrated to further promote its wider use in the field of pharmaceutical toxicology.
Collapse
|
50
|
Merdas M, Lagarrigue M, Umbdenstock T, Lhumeau A, Dartiguelongue F, Vanbellingen Q, Da Violante G, Pineau C. Study of the Distribution of Acetaminophen and Its Metabolites in Rats, from the Whole-Body to Isolated Organ Levels, by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging after On-Tissue Chemical Derivatization. Anal Chem 2021; 93:13242-13250. [PMID: 34546718 DOI: 10.1021/acs.analchem.1c02487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During drug development, detailed investigations of the pharmacokinetic profile of the drug are required to characterize its absorption, distribution, metabolism, and excretion properties. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an established technique for studies of the distribution of drugs and their metabolites. It has advantages over autoradiography, which is conventionally used for distribution studies: it does not require the radiolabeling of drugs and can distinguish between the drug and its metabolites directly in the tissue. However, its lack of sensitivity in certain cases remains challenging. Novel procedures, such as on-tissue chemical derivatization (OTCD), could be developed to increase sensitivity. We used OTCD to enhance the sensitivity of MALDI-MSI for one of the most widely used drugs, acetaminophen, and to study its distribution in tissues. Without derivatization, this drug and some of its metabolites are undetectable by MALDI-MSI in the tissues of treated rats. We used 2-fluoro-1-methylpyridinium p-toluene sulfonate as a derivatization reagent, to increase the ionization yield of acetaminophen and some of its metabolites. The OTCD protocol made it possible to study the distribution of acetaminophen and its metabolites in whole-body sections at a spatial resolution of 400 μm and in complex anatomical structures, such as the testis and epididymis, at a spatial resolution <50 μm. The OTCD is also shown to be compatible with the quantification of acetaminophen by MALDI-MSI in whole-body tissues. This protocol could be applied to other molecules bearing phenol groups and presenting a low ionization efficiency.
Collapse
Affiliation(s)
- Mira Merdas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France.,DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Mélanie Lagarrigue
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| | - Thierry Umbdenstock
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Antoine Lhumeau
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Françoise Dartiguelongue
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Quentin Vanbellingen
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Georges Da Violante
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| |
Collapse
|