1
|
Widjaja F, van Boekel MAJS, Davis C, Wesseling S, Rietjens IMCM. Quantifying the effect of human interindividual kinetic differences on the relative potency value for riddelliine N-oxide at low dose levels by a new approach methodology. Regul Toxicol Pharmacol 2024:105767. [PMID: 39710333 DOI: 10.1016/j.yrtph.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Pyrrolizidine alkaloids N-oxides (PA-N-oxides) are predominant in plants and herbal foods, and are converted to pyrrolizidine alkaloids (PAs) upon consumption, leading to toxicity. The effect of interindividual kinetic differences on the relative potency values of PA-N-oxides compared to their PAs (REPPANO to PA) was studied, with riddelliine N-oxide (RIDO) and riddelliine (RID) as model compounds. In vitro kinetic data measured in incubations with 30 fecal and 25 liver S9 donor samples showed high variation across individuals, where the interindividual variability was captured with Bayesian multilevel regression. The distributions of influential PBK model parameters were used as input for physiologically based kinetic (PBK) modeling combined with Monte Carlo (MC) simulations to calculate the probability distribution of REPRIDO to RID values. At low internal dose levels, interindividual differences were shown to be a factor that influences the REPRIDO to RID value while neither dose nor endpoint used plays a role. The distribution of the REPRIDO to RID value ranged from 0.71 to 0.97 (95th percentile) with a mean value of 0.87. The approach described enables determination of interindividual REPPANO to PA values at low dose levels, which are not accessible in in vivo experiments quantifying the REP value.
Collapse
Affiliation(s)
- F Widjaja
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands.
| | - M A J S van Boekel
- Food Quality and Design, Wageningen University, PO Box 8129, 6700 EV Wageningen, the Netherlands
| | - C Davis
- Daiichi Sankyo, Inc. 211 Mt. Airy Rd. Basking Ridge, NJ, 07920, USA
| | - S Wesseling
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| | - I M C M Rietjens
- Division of Toxicology, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands
| |
Collapse
|
2
|
Guo X, Xu H, Seo JE. Application of HepaRG cells for genotoxicity assessment: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:214-237. [PMID: 38566478 DOI: 10.1080/26896583.2024.2331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
3
|
Lu YS, Qiu J, Mu XY, Qian YZ, Chen L. Levels, Toxic Effects, and Risk Assessment of Pyrrolizidine Alkaloids in Foods: A Review. Foods 2024; 13:536. [PMID: 38397512 PMCID: PMC10888194 DOI: 10.3390/foods13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring secondary metabolites of plants. To date, more than 660 types of PAs have been identified from an estimated 6000 plants, and approximately 120 of these PAs are hepatotoxic. As a result of PAs being found in spices, herbal teas, honey, and milk, PAs are considered contaminants in foods, posing a potential risk to human health. Here, we summarize the chemical structure, toxic effects, levels, and regulation of PAs in different countries to provide a better understanding of their toxicity and risk assessment. With recent research on the risk assessment of PAs, this review also discusses the challenges facing this field, aiming to provide a scientific basis for PA toxicity research and safety assessment.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Xi-Yan Mu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| | - Lu Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.-S.L.); (Y.-Z.Q.)
| |
Collapse
|
4
|
Abdalfattah S, Knorz C, Ayoobi A, Omer EA, Rosellini M, Riedl M, Meesters C, Efferth T. Identification of Antagonistic Action of Pyrrolizidine Alkaloids in Muscarinic Acetylcholine Receptor M1 by Computational Target Prediction Analysis. Pharmaceuticals (Basel) 2024; 17:80. [PMID: 38256913 PMCID: PMC10818892 DOI: 10.3390/ph17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are one of the largest distributed classes of toxins in nature. They have a wide range of toxicity, such as hepatotoxicity, pulmonary toxicity, neuronal toxicity, and carcinogenesis. Yet, biological targets responsible for these effects are not well addressed. Using methods of computational biology for target identification, we tested more than 200 PAs. We used a machine-learning approach that applies structural similarity for target identification, ChemMapper, and SwissTargetPrediction. The predicted target with high probability was muscarinic acetylcholine receptor M1. The predicted interactions between this target and PAs were further studied by molecular docking-based binding energies using AutoDock and VinaLC, which revealed good binding affinities. The PAs are bound to the same binding pocket as pirenzepine, a known M1 antagonist. These results were confirmed by in vitro assays showing that PAs increased the levels of intracellular calcium. We conclude that PAs are potential acetylcholine receptor M1 antagonists. This elucidates for the first time the serious neuro-oncological toxicities exerted by PA consumption.
Collapse
Affiliation(s)
- Sara Abdalfattah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Caroline Knorz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Akhtar Ayoobi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran 19938 93973, Iran
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Max Riedl
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Christian Meesters
- High Performance Computing Group, University of Mainz, 55131 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| |
Collapse
|
5
|
Lehmann A, Geburek I, These A, Hessel-Pras S, Hengstler JG, Albrecht W, Mielke H, Müller-Graf C, Yang X, Kloft C, Hethey C. PBTK modeling of the pyrrolizidine alkaloid retrorsine to predict liver toxicity in mouse and rat. Arch Toxicol 2023; 97:1319-1333. [PMID: 36906727 PMCID: PMC10110657 DOI: 10.1007/s00204-023-03453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Retrorsine is a hepatotoxic pyrrolizidine alkaloid (PA) found in herbal supplements and medicines, food and livestock feed. Dose-response studies enabling the derivation of a point of departure including a benchmark dose for risk assessment of retrorsine in humans and animals are not available. Addressing this need, a physiologically based toxicokinetic (PBTK) model of retrorsine was developed for mouse and rat. Comprehensive characterization of retrorsine toxicokinetics revealed: both the fraction absorbed from the intestine (78%) and the fraction unbound in plasma (60%) are high, hepatic membrane permeation is dominated by active uptake and not by passive diffusion, liver metabolic clearance is 4-fold higher in rat compared to mouse and renal excretion contributes to 20% of the total clearance. The PBTK model was calibrated with kinetic data from available mouse and rat studies using maximum likelihood estimation. PBTK model evaluation showed convincing goodness-of-fit for hepatic retrorsine and retrorsine-derived DNA adducts. Furthermore, the developed model allowed to translate in vitro liver toxicity data of retrorsine to in vivo dose-response data. Resulting benchmark dose confidence intervals (mg/kg bodyweight) are 24.1-88.5 in mice and 79.9-104 in rats for acute liver toxicity after oral retrorsine intake. As the PBTK model was built to enable extrapolation to different species and other PA congeners, this integrative framework constitutes a flexible tool to address gaps in the risk assessment of PA.
Collapse
Affiliation(s)
- Anja Lehmann
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Ina Geburek
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anja These
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, 44139, Dortmund, Germany
| | - Hans Mielke
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Christine Müller-Graf
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, People's Republic of China
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169, Berlin, Germany
| | - Christoph Hethey
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
6
|
Widjaja F, Alhejji Y, Rietjens IMCM. The Role of Kinetics as Key Determinant in Toxicity of Pyrrolizidine Alkaloids and Their N-Oxides. PLANTA MEDICA 2022; 88:130-143. [PMID: 34741297 PMCID: PMC8807025 DOI: 10.1055/a-1582-9794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of plant constituents of which especially the 1,2- unsaturated PAs raise a concern because of their liver toxicity and potential genotoxic carcinogenicity. This toxicity of PAs depends on their kinetics. Differences in absorption, distribution, metabolism, and excretion (ADME) characteristics of PAs may substantially alter the relative toxicity of PAs. As a result, kinetics will also affect relative potency (REP) values. The present review summarizes the current state-of-the art on PA kinetics and resulting consequences for toxicity and illustrates how physiologically-based kinetic (PBK) modelling can be applied to take kinetics into account when defining the relative differences in toxicity between PAs in the in vivo situation. We conclude that toxicokinetics play an important role in the overall toxicity of pyrrolizidine alkaloids. and that kinetics should therefore be considered when defining REP values for combined risk assessment. New approach methodologies (NAMs) can be of use to quantify these kinetic differences between PAs and their N-oxides, thus contributing to the 3Rs (Replacement, Reduction and Refinement) in animal studies.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University and Research, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University and Research, The Netherlands
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | | |
Collapse
|
7
|
Schrenk D, Fahrer J, Allemang A, Fu P, Lin G, Mahony C, Mulder PPJ, Peijnenburg A, Pfuhler S, Rietjens IMCM, Sachse B, Steinhoff B, These A, Troutman J, Wiesner J. Novel Insights into Pyrrolizidine Alkaloid Toxicity and Implications for Risk Assessment: Occurrence, Genotoxicity, Toxicokinetics, Risk Assessment-A Workshop Report. PLANTA MEDICA 2022; 88:98-117. [PMID: 34715696 DOI: 10.1055/a-1646-3618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports on the major contributions and results of the 2nd International Workshop of Pyrrolizidine Alkaloids held in September 2020 in Kaiserslautern, Germany. Pyrrolizidine alkaloids are among the most relevant plant toxins contaminating food, feed, and medicinal products of plant origin. Hundreds of PA congeners with widespread occurrence are known, and thousands of plants are assumed to contain PAs. Due to certain PAs' pronounced liver toxicity and carcinogenicity, their occurrence in food, feed, and phytomedicines has raised serious human health concerns. This is particularly true for herbal teas, certain food supplements, honey, and certain phytomedicinal drugs. Due to the limited availability of animal data, broader use of in vitro data appears warranted to improve the risk assessment of a large number of relevant, 1,2-unsaturated PAs. This is true, for example, for the derivation of both toxicokinetic and toxicodynamic data. These efforts aim to understand better the modes of action, uptake, metabolism, elimination, toxicity, and genotoxicity of PAs to enable a detailed dose-response analysis and ultimately quantify differing toxic potencies between relevant PAs. Accordingly, risk-limiting measures comprising production, marketing, and regulation of food, feed, and medicinal products are discussed.
Collapse
Affiliation(s)
- Dieter Schrenk
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Peter Fu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Catherine Mahony
- Procter & Gamble, Technical Centres Limited, Weybridge, Surrey, United Kingdom
| | - Patrick P J Mulder
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - Benjamin Sachse
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | - Anja These
- German Federal Institute of Risk Assessment (BfR), Berlin, Germany
| | | | | |
Collapse
|
8
|
Wiesner J. Regulatory Perspectives of Pyrrolizidine Alkaloid Contamination in Herbal Medicinal Products. PLANTA MEDICA 2022; 88:118-124. [PMID: 34169489 DOI: 10.1055/a-1494-1363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The toxicity of plants containing certain pyrrolizidine alkaloids has long been recognized in grazing animals and humans. Genotoxicity and carcinogenicity data from in vitro and in vivo (animal) studies were published over the last few decades for some of the 1,2-unsaturated pyrrolizidine alkaloids, leading to regulatory action on herbal medicinal products with pyrrolizidine alkaloid-containing plants more than 30 years ago. In recent years, it has become evident that in addition to herbal medicinal products containing pyrrolizidine alkaloid-containing plants, these products may also contain pyrrolizidine alkaloids without actually including pyrrolizidine alkaloid-containing plants. This is explained by contamination by accessory herbs (weeds). The national competent authorities of the European member states and the European Medicines Agency, in this case, the Committee on Herbal Medicinal Products, reacted to these findings by setting limits for all herbal medicinal products. This review article will briefly discuss the data leading to the establishment of thresholds and the regulatory developments and consequences, as well as the current discussions and research in this area.
Collapse
|
9
|
Physiologically based kinetic modelling predicts the in vivo relative potency of riddelliine N-oxide compared to riddelliine in rat to be dose dependent. Arch Toxicol 2021; 96:135-151. [PMID: 34669010 PMCID: PMC8748370 DOI: 10.1007/s00204-021-03179-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are toxic plant constituents occurring often in their N-oxide form. This raises the question on the relative potency (REP) values of PA-N-oxides compared to the corresponding parent PAs. The present study aims to quantify the in vivo REP value of riddelliine N-oxide compared to riddelliine using physiologically based kinetic (PBK) modelling, taking into account that the toxicity of riddelliine N-oxide depends on its conversion to riddelliine by intestinal microbiota and in the liver. The models predicted a lower Cmax and higher Tmax for the blood concentration of riddelliine upon oral administration of riddelliine N-oxide compared to the Cmax and Tmax predicted for an equimolar oral dose of riddelliine. Comparison of the area under the riddelliine concentration–time curve (AUCRID) obtained upon dosing either the N-oxide or riddelliine itself revealed a ratio of 0.67, which reflects the in vivo REP for riddelliine N-oxide compared to riddelliine, and appeared to closely match the REP value derived from available in vivo data. The models also predicted that the REP value will decrease with increasing dose level, because of saturation of riddelliine N-oxide reduction by the intestinal microbiota and of riddelliine clearance by the liver. It is concluded that PBK modeling provides a way to define in vivo REP values of PA-N-oxides as compared to their parent PAs, without a need for animal experiments.
Collapse
|
10
|
Duivenvoorde LPM, Louisse J, Pinckaers NET, Nguyen T, van der Zande M. Comparison of gene expression and biotransformation activity of HepaRG cells under static and dynamic culture conditions. Sci Rep 2021; 11:10327. [PMID: 33990636 PMCID: PMC8121841 DOI: 10.1038/s41598-021-89710-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/27/2021] [Indexed: 11/08/2022] Open
Abstract
Flow conditions have been shown to be important in improving longevity and functionality of primary hepatocytes, but the impact of flow on HepaRG cells is largely unknown. We studied the expression of genes encoding CYP enzymes and transporter proteins and CYP1 and CYP3A4 activity during 8 weeks of culture in HepaRG cells cultured under static conditions (conventional 24-/96-well plate culture with common bicarbonate/CO2 buffering) and under flow conditions in an organ-on-chip (OOC) device. Since the OOC-device is a closed system, bicarbonate/CO2 buffering was not possible, requiring application of another buffering agent, such as HEPES. In order to disentangle the effects of HEPES from the effects of flow, we also applied HEPES-supplemented medium in static cultures and studied gene expression and CYP activity. We found that cells cultured under flow conditions in the OOC-device, as well as cells cultured under static conditions with HEPES-supplemented medium, showed more stable gene expression levels. Furthermore, only cells cultured in the OOC-device showed relatively high baseline CYP1 activity, and their gene expression levels of selected CYPs and transporters were most similar to gene expression levels in human primary hepatocytes. However, there was a decrease in baseline CYP3A4 activity under flow conditions compared to HepaRG cells cultured under static conditions. Altogether, the present study shows that HepaRG cells cultured in the OOC-device were more stable than in static cultures, being a promising in vitro model to study hepatoxicity of chemicals upon chronic exposure.
Collapse
Affiliation(s)
- Loes P M Duivenvoorde
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| | - Jochem Louisse
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Nicole E T Pinckaers
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Tien Nguyen
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Meike van der Zande
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| |
Collapse
|
11
|
Pyrrolizidine alkaloids cause cell cycle and DNA damage repair defects as analyzed by transcriptomics in cytochrome P450 3A4-overexpressing HepG2 clone 9 cells. Cell Biol Toxicol 2021; 38:325-345. [PMID: 33884520 PMCID: PMC8986750 DOI: 10.1007/s10565-021-09599-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 10/26/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a large group of highly toxic chemical compounds, which are found as cross-contaminants in numerous food products (e.g., honey), dietary supplements, herbal teas, and pharmaceutical herbal medicines. PA contaminations are responsible for serious hepatotoxicity and hepatocarcinogenesis. Health authorities have to set legal limit values to guarantee the safe consumption of plant-based nutritional and medical products without harmful health. Toxicological and chemical analytical methods are conventionally applied to determine legally permitted limit values for PAs. In the present investigation, we applied a highly sensitive transcriptomic approach to investigate the effect of low concentrations of five PAs (lasiocarpine, riddelliine, lycopsamine, echimidine, and monocrotaline) on human cytochrome P450 3A4-overexpressing HepG2 clone 9 hepatocytes. The transcriptomic profiling of deregulated gene expression indicated that the PAs disrupted important signaling pathways related to cell cycle regulation and DNA damage repair in the transfected hepatocytes, which may explain the carcinogenic PA effects. As PAs affected the expression of genes that involved in cell cycle regulation, we applied flow cytometric cell cycle analyses to verify the transcriptomic data. Interestingly, PA treatment led to an arrest in the S phase of the cell cycle, and this effect was more pronounced with more toxic PAs (i.e., lasiocarpine and riddelliine) than with the less toxic monocrotaline. Using immunofluorescence, high fractions of cells were detected with chromosome congression defects upon PA treatment, indicating mitotic failure. In conclusion, the tested PAs revealed threshold concentrations, above which crucial signaling pathways were deregulated resulting in cell damage and carcinogenesis. Cell cycle arrest and DNA damage repair point to the mutagenicity of PAs. The disturbance of chromosome congression is a novel mechanism of Pas, which may also contribute to PA-mediated carcinogenesis. Transcriptomic, cell cycle, and immunofluorescence analyses should supplement the standard techniques in toxicology to unravel the biological effects of PA exposure in liver cells as the primary target during metabolization of PAs.
Collapse
|
12
|
He Y, Zhu L, Ma J, Wong L, Zhao Z, Ye Y, Fu PP, Lin G. Comprehensive investigation and risk study on pyrrolizidine alkaloid contamination in Chinese retail honey. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115542. [PMID: 33254676 DOI: 10.1016/j.envpol.2020.115542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are common phytotoxins. We performed the first comprehensive investigation on PA contamination in Chinese honeys. LC-MS analysis revealed that 58% of 255 honey samples purchased from 17 regions across Mainland China and Taiwan contained PAs with total content ranging over 0.2-281.1 μg/kg. Monocrotaline (from Crotalaria spp), a PA never found in honey in other regions, together with echimidine (Echium plantagineum) and lycopsamine (from Senecio spp.), were three predominant PAs in PA-contaminated Chinese honeys. Further, PAs present in honeys were found to have geographically distinct pattern, indicating possible control of such contamination in future honey production. Moreover, we proposed a new risk estimation approach, which considered both content and toxic potency of individual PAs in honeys, and found that 12% of the PA-contaminated Chinese honeys tested might pose potential health risk. This study revealed a high prevalence and potential health risk of PA contamination in Chinese honeys.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Lailai Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yang Ye
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Peter P Fu
- National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between the Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China.
| |
Collapse
|
13
|
Abdullah R, Wesseling S, Spenkelink B, Louisse J, Punt A, Rietjens IM. Defining in vivo dose-response curves for kidney DNA adduct formation of aristolochic acid I in rat, mouse and human by an in vitro and physiologically based kinetic modeling approach. J Appl Toxicol 2020; 40:1647-1660. [PMID: 33034907 PMCID: PMC7689901 DOI: 10.1002/jat.4024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing.
Collapse
Affiliation(s)
- Rozaini Abdullah
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
- Department of Environmental & Occupational Health, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSelangorMalaysia
| | | | - Bert Spenkelink
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Jochem Louisse
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | - Ans Punt
- Division of ToxicologyWageningen UniversityWageningenThe Netherlands
| | | |
Collapse
|
14
|
Brugnerotto P, Seraglio SKT, Schulz M, Gonzaga LV, Fett R, Costa ACO. Pyrrolizidine alkaloids and beehive products: A review. Food Chem 2020; 342:128384. [PMID: 33214040 DOI: 10.1016/j.foodchem.2020.128384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of plants, which are mostly found in the genus Senecio, Echium, Crotalaria, and Eupatorium. The presence of 1,2-unsaturated PA in foods is a concern to food regulators around the world because these compounds have been associated to acute and chronic toxicity, mainly in the liver. The intake foods with PA/PANO usually occur through accidental ingestion of plants and their derivatives, besides to products of vegetal-animal origin, such as honey. PA/PANO are transferred to honey by their presence in nectar, honeydew, and pollen, which are collected from the flora by bees. In addition to honey, other beekeeping products, such as pollen, royal jelly, propolis, and beeswax, are also vulnerable to PA contamination. In this context, this review provides information about chemical characteristics, regulation, and toxicity, as well as summarizes and critically discusses scientific publications that evaluated PA in honeys, pollens, royal jelly, and propolis.
Collapse
Affiliation(s)
- Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|