1
|
Miller M, Douillet C, Cable PH, Krupenko SA, Shang B, Hartwell HJ, Zou F, Koller BH, Fry RC, de Villena FPM, Stýblo M. Metabolism of inorganic arsenic in mice carrying the human AS3MT gene and fed folate deficient or folate supplemented diet. Toxicol Appl Pharmacol 2024; 495:117173. [PMID: 39603428 DOI: 10.1016/j.taap.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes the S-adenosylmethionine (SAM)-dependent methylation of inorganic arsenic (iAs), yielding monomethyl‑arsenic (MAs) and dimethyl‑arsenic (DMAs) metabolites. The formation of DMAs in this pathway is considered a key mechanism for iAs detoxification. Availability of SAM for iAs methylation depends in part on dietary intake of folate. Results of population studies suggest that supplementation with folate stimulates iAs methylation, increasing DMAs and decreasing iAs and MAs proportions in urine and/or blood. The goal of the present study was to determine if folate intake affects methylation and clearance of iAs in a recently established mouse strain that expresses human AS3MT and exhibits a human-like pattern of iAs metabolism. The humanized male and female mice were fed folate-deficient (FD) or folate-supplemented (FS) diet for 6 weeks, followed by exposure to 0 ppb or 400 ppb iAs in drinking water for 5 weeks, while on the same types of diet. The concentrations and proportions of iAs, MAs and DMAs were determined in urine, liver, kidneys, and spleen. The diet-, sex- and dose-related differences were assessed by t-test or a non-parametric test; Bonferroni test was used to correct for multiple comparisons. In general, proportions of DMAs were greater and proportions of iAs were smaller in urine and tissues of FS mice as compared to FD mice. However, folate supplementation also increased MAs proportions. Notably, the folate intake had no effect on the concentrations of total arsenic either in the urine or the tissues. These results suggest that, similar to humans, folate supplementation stimulates iAs methylation in the humanized mice. However, the stimulation of iAs methylation is not associated with clearance of arsenic from tissues, possibly due to an inefficient conversion of MAs to DMAs.
Collapse
Affiliation(s)
- Madison Miller
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Christelle Douillet
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Sergey A Krupenko
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; The UNC Nutrition Research Institute, Kannapolis, NC 28081, USA
| | - Bingzhen Shang
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Hadley J Hartwell
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7420, USA
| | - Beverly H Koller
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, CB#7431, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Miroslav Stýblo
- Department of Nutrition, CB# 7461, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
2
|
Whitlock BD, Ma Y, Conseil G, O'Brien AR, Banerjee M, Swanlund DP, Lin ZP, Wang Y, Le XC, Schuetz JD, Cole SPC, Leslie EM. Differential Selectivity of Human and Mouse ABCC4/Abcc4 for Arsenic Metabolites. Drug Metab Dispos 2024; 52:1417-1428. [PMID: 39313329 PMCID: PMC11585317 DOI: 10.1124/dmd.124.001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Millions of people globally are exposed to the proven human carcinogen arsenic at unacceptable levels in drinking water. In contrast, arsenic is a poor rodent carcinogen, requiring >100-fold higher doses for tumor induction, which may be explained by toxicokinetic differences between humans and mice. The human ATP-binding cassette subfamily C (ABCC) transporter hABCC4 mediates the cellular efflux of a diverse array of metabolites, including the glutathione (GSH) conjugate of the highly toxic monomethylarsonous acid (MMAIII), monomethylarsenic diglutathione [MMA(GS)2], and the major human urinary arsenic metabolite dimethylarsinic acid (DMAV). Our objective was to determine if mouse Abcc4 (mAbcc4) protected against and/or transported the same arsenic species as hABCC4. The anti-ABCC4 antibody M4I-10 epitope was first mapped to an octapeptide (411HVQDFTA418F) present in both hABCC4 and mAbcc4, enabling quantification of relative amounts of hABCC4/mAbcc4. mAbcc4 expressed in human embryonic kidney (HEK)293 cells did not protect against any of the six arsenic species tested [arsenite, arsenate, MMAIII, monomethylarsonic acid, dimethylarsinous acid, or DMAV], despite displaying remarkable resistance against the antimetabolite 6-mercaptopurine (>9-fold higher than hABCC4). Furthermore, mAbcc4-enriched membrane vesicles prepared from transfected HEK293 cells did not transport MMA(GS)2 or DMAV despite a >3-fold higher transport activity than hABCC4-enriched vesicles for the prototypic substrate 17β-estradiol-17-(β-D-glucuronide). Abcc4(+/+) mouse embryonic fibroblasts (MEFs) were ∼3-fold more resistant to arsenate than Abcc4(-/-) MEFs; however, further characterization indicated that this was not mAbcc4 mediated. Thus, under the conditions tested, arsenicals are not transported by mAbcc4, and differences between the substrate selectivity of hABCC4 and mAbcc4 seem likely to contribute to arsenic toxicokinetic differences between human and mouse. SIGNIFICANCE STATEMENT: Toxicokinetics of the carcinogen arsenic differ among animal species. Arsenic methylation is known to contribute to this, whereas arsenic transporters have not been considered. Human ATP-binding cassette subfamily C member 4 (hABCC4) is a high-affinity transporter of toxicologically important arsenic metabolites. Here we used multiple approaches to demonstrate that mouse Abcc4 does not protect cells against or transport any arsenic species tested. Thus, differences between hABCC4 and mAbcc4 substrate selectivity likely contribute to differences in human and mouse arsenic toxicokinetics.
Collapse
Affiliation(s)
- Brayden D Whitlock
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yingze Ma
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Gwenaëlle Conseil
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Alicia R O'Brien
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Mayukh Banerjee
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Diane P Swanlund
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Z Ping Lin
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Yao Wang
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - X Chris Le
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - John D Schuetz
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Susan P C Cole
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| | - Elaine M Leslie
- Department of Physiology (B.D.W., Y.M., A.R.O., M.B., D.P.S., E.M.L.), Membrane Protein Disease Research Group (B.D.W., Y.M., M.B., D.P.S., E.M.L.), and Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology (X.C.L., E.M.L.), University of Alberta, Edmonton, Alberta, Canada; Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Sinclair Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (G.C., S.P.C.C.); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Z.P.L.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (Y.W., J.D.S.)
| |
Collapse
|
3
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596269. [PMID: 38854041 PMCID: PMC11160736 DOI: 10.1101/2024.05.29.596269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background There are >14,500 structurally diverse per- and polyfluoroalkyl substances (PFAS). Despite knowledge that these "forever chemicals" are in 99% of humans, mechanisms of toxicity and adverse health effects are incompletely known. Furthermore, the contribution of genetic variation to PFAS susceptibility and health consequences is unknown. Objectives We determined the toxicity of a structurally distinct set of PFAS in twelve genetically diverse strains of the genetic model system Caenorhabditis elegans. Methods Dose-response curves for four perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), two perfluoroalkyl sulfonic acids (PFOS and PFBS), two perfluoroalkyl sulfonamides (PFOSA and PFBSA), two fluoroether carboxylic acids (GenX and PFMOAA), one fluoroether sulfonic acid (PFEESA), and two fluorotelomers (6:2 FCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and eleven genetically diverse wild strains. Body length was quantified by image analysis at each dose after 48 hr of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). Results There was a significant range in toxicity among PFAS: PFOSA > PFBSA ≈ PFOS ≈ PFNA > PFOA > GenX ≈ PFEESA > PFBS ≈ PFPeA ≈ PFBA. Long-chain PFAS had greater toxicity than short-chain, and fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation explained variation in susceptibility to PFBSA, PFOS, PFBA, PFOA, GenX, PFEESA, PFPeA, and PFBA. There was significant variation in toxicity among C. elegans strains due to chain length, functional group, and between legacy and emerging PFAS. Conclusion C. elegans respond to legacy and emerging PFAS of diverse structures, and this depends on specific structures and genetic variation. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful New Approach Methodology (NAM) to investigate structure-activity relationships and mechanisms of toxicity which may inform regulation of other PFAS to improve human and environmental health.
Collapse
Affiliation(s)
- Tess C. Leuthner
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, North Carolina, USA
| |
Collapse
|
4
|
Ventrello SW, McMurry NR, Edwards NM, Bain LJ. Chronic arsenic exposure affects stromal cells and signaling in the small intestine in a sex-specific manner. Toxicol Sci 2024; 198:303-315. [PMID: 38310360 DOI: 10.1093/toxsci/kfae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Arsenic is a toxicant that is ingested through drinking water and food, exposing nearly 140 million people to levels above the 10 ppb guideline concentration. Studies have shown that arsenic affects intestinal stem cells (ISCs), but the mechanisms by which arsenic alters the formation of adult cells in the small intestine are not well understood. Signals derived from intestinal stromal cells initiate and maintain differentiation. The goal of this study is to evaluate arsenic's effect on intestinal stromal cells, including PdgfrαLo trophocytes, located proximal to the ISCs, and PdgfrαHi telocytes, located proximal to the transit-amplifying region and up the villi. Adult Sox9tm2Crm-EGFP mice were exposed to 0, 33, and 100 ppb sodium arsenite in their drinking water for 13 weeks, and sections of duodenum were examined. Flow cytometry indicated that arsenic exposure dose-responsively reduced Sox9+ epithelial cells and trended toward increased Pdgfrα+ cells. The trophocyte marker, CD81, was reduced by 10-fold and 9.0-fold in the 100 ppb exposure group in male and female mice, respectively. Additionally, a significant 2.2- to 3.1-fold increase in PdgfrαLo expression was found in male mice in trophocytes and Igfbp5+ cells. PdgfrαHi protein expression, a telocyte marker, was more prevalent along the villus/crypt structure in females, whereas Gli1 expression (telocytes) was reduced in male mice exposed to arsenic. Principle coordinate analysis confirmed the sex-dependent response to arsenic exposure, with an increase in trophocyte and decrease in telocyte marker expression observed in male mice. These results imply that arsenic alters intestinal mesenchymal cells in a sex-dependent manner.
Collapse
Affiliation(s)
- Scott W Ventrello
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Nicholas R McMurry
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Nicholas M Edwards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
5
|
Vázquez Cervantes GI, González Esquivel DF, Ramírez Ortega D, Blanco Ayala T, Ramos Chávez LA, López-López HE, Salazar A, Flores I, Pineda B, Gómez-Manzo S, Pérez de la Cruz V. Mechanisms Associated with Cognitive and Behavioral Impairment Induced by Arsenic Exposure. Cells 2023; 12:2537. [PMID: 37947615 PMCID: PMC10649068 DOI: 10.3390/cells12212537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Arsenic (As) is a metalloid naturally present in the environment, in food, water, soil, and air; however, its chronic exposure, even with low doses, represents a public health concern. For a long time, As was used as a pigment, pesticide, wood preservative, and for medical applications; its industrial use has recently decreased or has been discontinued due to its toxicity. Due to its versatile applications and distribution, there is a wide spectrum of human As exposure sources, mainly contaminated drinking water. The fact that As is present in drinking water implies chronic human exposure to this metalloid; it has become a worldwide health problem, since over 200 million people live where As levels exceed safe ranges. Many health problems have been associated with As chronic exposure including cancer, cardiovascular diseases, gastrointestinal disturbances, and brain dysfunctions. Because As can cross the blood-brain barrier (BBB), the brain represents a target organ where this metalloid can exert its long-term toxic effects. Many mechanisms of As neurotoxicity have been described: oxidative stress, inflammation, DNA damage, and mitochondrial dysfunction; all of them can converge, thus leading to impaired cellular functions, cell death, and in consequence, long-term detrimental effects. Here, we provide a current overview of As toxicity and integrated the global mechanisms involved in cognitive and behavioral impairment induced by As exposure show experimental strategies against its neurotoxicity.
Collapse
Affiliation(s)
- Gustavo Ignacio Vázquez Cervantes
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Dinora Fabiola González Esquivel
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Daniela Ramírez Ortega
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Tonali Blanco Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Lucio Antonio Ramos Chávez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Humberto Emanuel López-López
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.R.O.); (A.S.); (I.F.); (B.P.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, México City 04530, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (G.I.V.C.); (D.F.G.E.); (T.B.A.); (H.E.L.-L.)
| |
Collapse
|
6
|
Douillet C, Miller M, Cable PH, Shi Q, El-Masri H, Matoušek T, Koller BH, Thomas DJ, Stýblo M. Fate of arsenicals in mice carrying the human AS3MT gene exposed to environmentally relevant levels of arsenite in drinking water. Sci Rep 2023; 13:3660. [PMID: 36871058 PMCID: PMC9985638 DOI: 10.1038/s41598-023-30723-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Although mice are widely used to study adverse effects of inorganic arsenic (iAs), higher rates of iAs methylation in mice than in humans may limit their utility as a model organism. A recently created 129S6 mouse strain in which the Borcs7/As3mt locus replaces the human BORCS7/AS3MT locus exhibits a human-like pattern of iAs metabolism. Here, we evaluate dosage dependency of iAs metabolism in humanized (Hs) mice. We determined tissue and urinary concentrations and proportions of iAs, methylarsenic (MAs), and dimethylarsenic (DMAs) in male and female Hs and wild-type (WT) mice that received 25- or 400-ppb iAs in drinking water. At both exposure levels, Hs mice excrete less total arsenic (tAs) in urine and retain more tAs in tissues than WT mice. Tissue tAs levels are higher in Hs females than in Hs males, particularly after exposure to 400-ppb iAs. Tissue and urinary fractions of tAs present as iAs and MAs are significantly greater in Hs mice than in WT mice. Notably, tissue tAs dosimetry in Hs mice resembles human tissue dosimetry predicted by a physiologically based pharmacokinetic model. These data provide additional support for use of Hs mice in laboratory studies examining effects of iAs exposure in target tissues or cells.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Madison Miller
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Peter H Cable
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA
| | - Hisham El-Masri
- Chemical Characterization and Exposure Division, Center for Computational Toxicology & Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveří 97, 602 00, Brno, Czech Republic
| | - Beverly H Koller
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David J Thomas
- Dinkey Creek Consulting, LLC, Chapel Hill, NC, 27517, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7461, USA.
| |
Collapse
|
7
|
Xenakis JG, Douillet C, Bell TA, Hock P, Farrington J, Liu T, Murphy CEY, Saraswatula A, Shaw GD, Nativio G, Shi Q, Venkatratnam A, Zou F, Fry RC, Stýblo M, Pardo-Manuel de Villena F. An interaction of inorganic arsenic exposure with body weight and composition on type 2 diabetes indicators in Diversity Outbred mice. Mamm Genome 2022; 33:575-589. [PMID: 35819478 PMCID: PMC9761582 DOI: 10.1007/s00335-022-09957-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated with increased T2D risk. Despite growing evidence linking iAs exposure to T2D, the factors underlying inter-individual differences in susceptibility remain unclear. This study examined the interaction between chronic iAs exposure and body composition in a cohort of 75 Diversity Outbred mice. The study design mimics that of an exposed human population where the genetic diversity of the mice provides the variation in response, in contrast to a design that includes untreated mice. Male mice were exposed to iAs in drinking water (100 ppb) for 26 weeks. Metabolic indicators used as diabetes surrogates included fasting blood glucose and plasma insulin (FBG, FPI), blood glucose and plasma insulin 15 min after glucose challenge (BG15, PI15), homeostatic model assessment for [Formula: see text]-cell function and insulin resistance (HOMA-B, HOMA-IR), and insulinogenic index. Body composition was determined using magnetic resonance imaging, and the concentrations of iAs and its methylated metabolites were measured in liver and urine. Associations between cumulative iAs consumption and FPI, PI15, HOMA-B, and HOMA-IR manifested as significant interactions between iAs and body weight/composition. Arsenic speciation analyses in liver and urine suggest little variation in the mice's ability to metabolize iAs. The observed interactions accord with current research aiming to disentangle the effects of multiple complex factors on T2D risk, highlighting the need for further research on iAs metabolism and its consequences in genetically diverse mouse strains.
Collapse
Affiliation(s)
- James G Xenakis
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy A Bell
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pablo Hock
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joseph Farrington
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline E Y Murphy
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Avani Saraswatula
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ginger D Shaw
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gustavo Nativio
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Toxicology and Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Institute for Environmental Health Solutions, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
8
|
Shao J, Li X, Luo Y, Fang H, Lin F, Zhang G, Lu F, Guo L, Sun Y. Distribution of arsenic species and pathological characteristics of tissues of the mice fed with arsenic-supplemented food simulating rice. J Toxicol Sci 2021; 46:539-551. [PMID: 34719557 DOI: 10.2131/jts.46.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The exposure and harm of arsenic have attracted wide attention. Rice is an arsenic-rich crop. The purpose of this study was to learn the distribution of arsenic species and the pathological changes in tissues of mice exposed to arsenic-supplemented food simulating rice. Test groups of mice were orally exposed with prepared arsenic feeds supplemented with four arsenic species (arsenite iAsIII, arsenate iAsV, monomethylarsonate MMA, and dimethylarsinate DMA) at three doses (total As concentration: 0.91, 9.1 and 30 μg/g), which simulated the arsenic species ratio in rice. After 112 days, the concentrations of the arsenic species in the spleen, thymus, heart, skin and hair were detected, and histopathology of the spleen, heart and skin was observed. Each arsenic species was detected and their total concentration increased in a dose-dependent manner with a few exceptions. One interesting phenomenon is that ratio of the organic arsenic to inorganic arsenic also increased in a dose-dependent manner. For the other, the order of tissues from high to low arsenic concentration was the same in the medium- and high-dose groups. The histopathological sections of the spleen, heart and skin showed dose-dependent debilitating alterations in tissue architecture. Hyperplasia, hyaline degeneration and sclerosis of fibrous connective tissue occurred in the spleen. Myocardial cell atrophy and interstitial edema occurred in the heart. Hyperpigmentation, hyperkeratosis and atypia of basal cells occurred in the skin. In summary, the long-term intake of high arsenic rice has a health risk. Further studies are needed to assess it.
Collapse
Affiliation(s)
- Junli Shao
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Xin Li
- School of Food and Biological Engineering, Guangdong Polytechnic of Science and Trade, China
| | - Yu Luo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Heng Fang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Fangyan Lin
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, China
| | - Furong Lu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Lianxian Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University; School of Public Health, Institute of Environmental Health, Guangdong Medical University, China
| | - Yanqin Sun
- Department of Pathology, Guangdong Medical University, China
| |
Collapse
|
9
|
Kim C, Ceresa BP. Using In Vitro Models to Dissect the Molecular Effects of Arsenic Exposure in Skin and Lung Cell Lines. APPLIED IN VITRO TOXICOLOGY 2021; 7:71-88. [DOI: 10.1089/aivt.2020.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Park D, Propper CR, Wang G, Salanga MC. Synonymous single nucleotide polymorphism in arsenic (+3) methyltransferase of the Western mosquitofish (Gambusia affinis) and its gene expression among field populations. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:711-718. [PMID: 33811567 PMCID: PMC8060185 DOI: 10.1007/s10646-021-02376-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Naturally occurring arsenic is toxic at extremely low concentrations, yet some species persist even in high arsenic environments. We wanted to test if these species show evidence of evolution associated with arsenic exposure. To do this, we compared allelic variation across 872 coding nucleotides of arsenic (+3) methyltransferase (as3mt) and whole fish as3mt gene expression from three field populations of Gambusia affinis, from water sources containing low (1.9 ppb), medium-low (3.3 ppb), and high (15.7 ppb) levels of arsenic. The high arsenic site exceeds the US EPA's Maximum Contamination Level for drinking water. Medium-low and high populations exhibited homozygosity, and no sequence variation across all animals sampled. Eleven of 24 fish examined (45.8%) in the low arsenic population harbored synonymous single nucleotide polymorphisms (SNPs) in exons 4 and/or 10. SNP presence in the low arsenic population was not associated with differences in as3mt transcript levels compared to fish from the medium-low site, where SNPs were noted; however, as3mt expression in fish from the high arsenic concentration site was significantly lower than the other two sites. Low sequence variation in fish populations from sites with medium-low and high arsenic concentrations suggests greater selective pressure on this allele, while higher variation in the low population suggests a relaxed selection. Our results suggest gene regulation associated with arsenic detoxification may play a more crucial role in influencing responses to arsenic than polymorphic gene sequence. Understanding microevolutionary processes to various contaminants require the evaluation of multiple populations across a wide range of pollution exposures.
Collapse
Affiliation(s)
- Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon, Kangwon, 24341, South Korea
| | - Catherine R Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Guangning Wang
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Matthew C Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| |
Collapse
|
11
|
Zhong C, He L, Lee SY, Chang H, Zhang Y, Threadgill DW, Yuan Y, Zhou F, Celniker SE, Xia Y, Snijders AM, Mao JH. Host genetics and gut microbiota cooperatively contribute to azoxymethane-induced acute toxicity in Collaborative Cross mice. Arch Toxicol 2021; 95:949-958. [PMID: 33458792 DOI: 10.1007/s00204-021-02972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Azoxymethane (AOM) is a widely used carcinogen to study chemical-induced colorectal carcinogenesis and is an agent for studying fulminant hepatic failure. The inter-strain susceptibility to acute toxicity by AOM has been reported, but its association with host genetics or gut microbiota remains largely unexplored. Here a cohort of genetically diverse Collaborative Cross (CC) mice was used to assess the contribution of host genetics and the gut microbiome to AOM-induced acute toxicity. We observed variation in AOM-induced acute liver failure across CC strains. Quantitative trait loci (QTL) analysis revealed three chromosome regions significantly associated with AOM toxicity. Genes located within these QTL, including peroxisome proliferator-activated receptor alpha (Ppara), were enriched for enzyme activator and nucleoside-triphosphatase regulator activity. We further demonstrated that the protein level of PPARα in liver tissues from sensitive strains was remarkably lower compared to levels in resistant strains, consistent with protective role of PPAR family in liver injury. We discovered that the abundance levels of gut microbial families Anaeroplasmataceae, Ruminococcaceae, Lactobacillaceae, Akkermansiaceae and Clostridiaceae were significantly higher in the sensitive strains compared to the resistant strains. Using a random forest classifier method, we determined that the relative abundance levels of these microbial families predicted AOM toxicity with the area under the receiver-operating curve (AUC) of 0.75. Combining the three genetic loci and five microbial families increased the predictive accuracy of AOM toxicity (AUC of 0.99). Moreover, we found that Ruminococcaceae and Lactobacillaceae acted as mediators between host genetics and AOM toxicity. In conclusion, this study shows that host genetics and specific microbiome members play a critical role in AOM-induced acute toxicity, which provides a framework for analysis of the health effects from environmental toxicants.
Collapse
Affiliation(s)
- Chenhan Zhong
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Li He
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Hematology, Zhongnan Hospital, Wuhan University, Donghu road 169, Wuhan, 430079, China
| | - Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Donghu road 169, Wuhan, 430079, China
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
12
|
Inesta-Vaquera F, Navasumrit P, Henderson CJ, Frangova TG, Honda T, Dinkova-Kostova AT, Ruchirawat M, Wolf CR. Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116053. [PMID: 33213951 DOI: 10.1016/j.envpol.2020.116053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 05/26/2023]
Abstract
Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs's effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Colin J Henderson
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tanya G Frangova
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Albena T Dinkova-Kostova
- Department of Molecular Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - C Roland Wolf
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
13
|
Douillet C, Ji J, Meenakshi IL, Lu K, de Villena FPM, Fry RC, Stýblo M. Diverse genetic backgrounds play a prominent role in the metabolic phenotype of CC021/Unc and CC027/GeniUNC mice exposed to inorganic arsenic. Toxicology 2021; 452:152696. [PMID: 33524430 DOI: 10.1016/j.tox.2021.152696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 01/23/2021] [Indexed: 12/30/2022]
Abstract
Arsenic methyltransferase (AS3MT) is the key enzyme in the pathway for the methylation of inorganic arsenic (iAs), a potent human carcinogen and diabetogen. AS3MT converts iAs to mono- and dimethylated arsenic species (MAs, DMAs) that are excreted mainly in urine. Polymorphisms in AS3MT is a key genetic factor affecting iAs metabolism and toxicity. The present study examined the role of As3mt polymorphisms in the susceptibility to the diabetogenic effects of iAs exposure using two Collaborative Cross mouse strains, CC021/Unc and CC027/GeniUnc, carrying different As3mt haplotypes. Male mice from the two strains were exposed to iAs in drinking water (0, 0.1 or 50 ppm) for 11 weeks. Blood glucose and plasma insulin levels were measured after 6-h fasting and 15 min after i.p. injection of glucose. Body composition was determined using magnetic resonance imaging. To asses iAs metabolism, the concentrations of iAs, MAs and DMAs were measured in urine. The results show that CC021 mice, both iAs-exposed and controls, had higher body fat percentage, lower fasting blood glucose, higher fasting plasma insulin, and were more insulin resistant than their CC027 counterparts. iAs exposure had a minor effect on diabetes indicators and only in CC027 mice. Blood glucose levels 15 min after glucose injection were significantly higher in CC027 mice exposed to 0.1 ppm iAs than in control mice. No significant differences were found in the concentrations or proportions of arsenic species in urine of CC021 and CC027 mice at the same exposure level. These results suggest that the differences in As3mt haplotypes did not affect the profiles of iAs or its metabolites in mouse urine. The major differences in diabetes indicators were associated with the genetic backgrounds of CC021 and CC027 mice. The effects of iAs exposure, while minor, were genotype- and dose-dependent.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinglin Ji
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Immaneni Lakshmi Meenakshi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Douillet C, Koller BH, Stýblo M. Metabolism of Inorganic Arsenic in Mice Lacking Genes Encoding GST-P, GST-M, and GST-T. Chem Res Toxicol 2020; 33:2043-2046. [PMID: 32700902 PMCID: PMC7802361 DOI: 10.1021/acs.chemrestox.0c00273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the role of glutathione transferases (GSTs) in the metabolism of inorganic arsenic (iAs), we compared the disposition of iAs and its metabolites in wild-type mice and mice lacking genes encoding GST-P, -M and -T after exposure to 100 ppb iAs in drinking water. We found no differences between the two genotypes in the concentrations of total arsenic or arsenic species in urine, liver, and kidneys. No genotype-dependent differences were found in proportions of arsenicals in the tissues, and only small differences were observed in the urine. Thus, under these conditions, GST-P, -M and -T did not play a significant role in iAs metabolism in mice.
Collapse
|
15
|
Koller BH, Snouwaert JN, Douillet C, Jania LA, El-Masri H, Thomas DJ, Stýblo M. Arsenic Metabolism in Mice Carrying a BORCS7/AS3MT Locus Humanized by Syntenic Replacement. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:87003. [PMID: 32779937 PMCID: PMC7418654 DOI: 10.1289/ehp6943] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Chronic exposure to inorganic arsenic (iAs) is a significant public health problem. Methylation of iAs by arsenic methyltransferase (AS3MT) controls iAs detoxification and modifies risks of iAs-induced diseases. Mechanisms underlying these diseases have been extensively studied using animal models. However, substantive differences between humans and laboratory animals in efficiency of iAs methylation have hindered the translational potential of the laboratory studies. OBJECTIVES The goal of this study was to determine whether humanization of the As3mt gene confers a human-like pattern of iAs metabolism in mice. METHODS We generated a mouse strain in which the As3mt gene along with the adjacent Borcs7 gene was humanized by syntenic replacement. We compared expression of the mouse As3mt and the human AS3MT and the rate and pattern of iAs metabolism in the wild-type and humanized mice. RESULTS AS3MT expression in mouse tissues closely modeled that of human and differed substantially from expression of As3mt. Detoxification of iAs was much less efficient in the humanized mice than in wild-type mice. Profiles for iAs and its methylated metabolites in tissues and excreta of the humanized mice were consistent with those reported in humans. Notably, the humanized mice expressed both the full-length AS3MT that catalyzes iAs methylation and the human-specific AS3MTd2d3 splicing variant that has been linked to schizophrenia. CONCLUSIONS These results suggest that AS3MT is the primary genetic locus responsible for the unique pattern of iAs metabolism in humans. Thus, the humanized mouse strain can be used to study the role of iAs methylation in the pathogenesis of iAs-induced diseases, as well as to evaluate the role of AS3MTd2d3 in schizophrenia. https://doi.org/10.1289/EHP6943.
Collapse
Affiliation(s)
- Beverly H. Koller
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John N. Snouwaert
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Christelle Douillet
- Department of Nutrition, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Leigh A. Jania
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hisham El-Masri
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David J. Thomas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Miroslav Stýblo
- Department of Nutrition, UNC Gillings School of Public Health, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Hirano S. Biotransformation of arsenic and toxicological implication of arsenic metabolites. Arch Toxicol 2020; 94:2587-2601. [PMID: 32435915 DOI: 10.1007/s00204-020-02772-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Arsenic is a well-known environmental carcinogen and chronic exposure to arsenic through drinking water has been reported to cause skin, bladder and lung cancers, with arsenic metabolites being implicated in the pathogenesis. In contrast, arsenic trioxide (As2O3) is an effective therapeutic agent for the treatment of acute promyelocytic leukemia, in which the binding of arsenite (iAsIII) to promyelocytic leukemia (PML) protein is the proposed initial step. These findings on the two-edged sword characteristics of arsenic suggest that after entry into cells, arsenic reaches the nucleus and triggers various nuclear events. Arsenic is reduced, conjugated with glutathione, and methylated in the cytosol. These biotransformations, including the production of reactive metabolic intermediates, appear to determine the intracellular dynamics, target organs, and biological functions of arsenic.
Collapse
Affiliation(s)
- Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
17
|
Carmean CM, Kirkley AG, Landeche M, Ye H, Chellan B, Aldirawi H, Roberts AA, Parsons PJ, Sargis RM. Arsenic Exposure Decreases Adiposity During High-Fat Feeding. Obesity (Silver Spring) 2020; 28:932-941. [PMID: 32196994 PMCID: PMC7180103 DOI: 10.1002/oby.22770] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Arsenic is an endocrine-disrupting chemical associated with diabetes risk. Increased adiposity is a significant risk factor for diabetes and its comorbidities. Here, the impact of chronic arsenic exposure on adiposity and metabolic health was assessed in mice. METHODS Male C57BL/6J mice were provided ad libitum access to a normal or high-fat diet and water +/- 50 mg/L of sodium arsenite. Changes in body weight, body composition, insulin sensitivity, energy expenditure, and locomotor activity were measured. Measures of adiposity were compared with accumulated arsenic in the liver. RESULTS Despite uniform arsenic exposure, internal arsenic levels varied significantly among arsenic-exposed mice. Hepatic arsenic levels in exposed mice negatively correlated with overall weight gain, individual adipose depot masses, and hepatic triglyceride accumulation. No effects were observed in mice on a normal diet. For mice on a high-fat diet, arsenic exposure reduced fasting insulin levels, homeostatic model assessment of insulin resistance and β-cell function, and systemic insulin resistance. Arsenic exposure did not alter energy expenditure or activity. CONCLUSIONS Collectively, these data indicate that arsenic is antiobesogenic and that concentration at the source poorly predicts arsenic accumulation and phenotypic outcomes. In future studies, investigators should consider internal accumulation of arsenic rather than source concentration when assessing the outcomes of arsenic exposure.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
| | - Andrew G. Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine,
University of Chicago, Chicago, Illinois
| | - Michael Landeche
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
| | - Honggang Ye
- Department of Medicine, University of Chicago, Chicago,
IL
| | - Bijoy Chellan
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
| | - Hani Aldirawi
- Department of Mathematics, Statistics, and Computer
Science, University of Chicago, Chicago, IL
| | - Austin A. Roberts
- Division of Environmental Health Sciences, Wadsworth
Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, The University
at Albany, State University of New York, Albany, NY, USA
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth
Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, The University
at Albany, State University of New York, Albany, NY, USA
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes, and Metabolism,
Department of Medicine, College of Medicine, University of Illinois at Chicago,
Chicago, Illinois
- Committee on Molecular Pathogenesis and Molecular Medicine,
University of Chicago, Chicago, Illinois
- Chicago Center for Health and Environment (CACHET),
University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|