1
|
Allbright K, Villandre J, Crotty Alexander LE, Zhang M, Benam KH, Evankovich J, Königshoff M, Chandra D. The paradox of the safer cigarette: understanding the pulmonary effects of electronic cigarettes. Eur Respir J 2024; 63:2301494. [PMID: 38609098 DOI: 10.1183/13993003.01494-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
Electronic cigarette (e-cigarette) use continues to rise globally. E-cigarettes have been presented as safer alternatives to combustion cigarettes that can mitigate the harm associated with tobacco products; however, the degree to which e-cigarette use itself can lead to morbidity and mortality is not fully defined. Herein we describe how e-cigarettes function; discuss the current knowledge of the effects of e-cigarette aerosol on lung cell cytotoxicity, inflammation, antipathogen immune response, mucociliary clearance, oxidative stress, DNA damage, carcinogenesis, matrix remodelling and airway hyperresponsiveness; and summarise the impact on lung diseases, including COPD, respiratory infection, lung cancer and asthma. We highlight how the inclusion of nicotine or flavouring compounds in e-liquids can impact lung toxicity. Finally, we consider the paradox of the safer cigarette: the toxicities of e-cigarettes that can mitigate their potential to serve as a harm reduction tool in the fight against traditional cigarettes, and we summarise the research needed in this underinvestigated area.
Collapse
Affiliation(s)
- Kassandra Allbright
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Villandre
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura E Crotty Alexander
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Michael Zhang
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kambez H Benam
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Evankovich
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie Königshoff
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divay Chandra
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Kastratovic N, Markovic V, Harrell CR, Arsenijevic A, Stojanovic MD, Djonov V, Volarevic V. Effects of Combustible Cigarettes and Electronic Nicotine Delivery Systems on the Development and Progression of Chronic Lung Inflammation in Mice. Nicotine Tob Res 2024; 26:704-714. [PMID: 38018885 DOI: 10.1093/ntr/ntad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/01/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Although detrimental effects of combustible cigarettes (CCs) on the progression of lung inflammatory diseases are well known, changes in electronic nicotine delivery systems (ENDS)-exposed lung-infiltrated immune cells are still unrevealed. AIMS AND METHODS The analysis of blood gas parameters, descriptive and quantitative histology of lung tissues, determination of serum cytokines, intracellular staining, and flow cytometry analysis of lung-infiltrated immune cells were used to determine the differences in the extent of lung injury and inflammation between mice from experimental (CC and ENDS-exposed animals) and control groups (Air-exposed mice). RESULTS Continuous exposition to either CCs or ENDS induced severe systemic inflammatory response, increased activation of NLRP3 inflammasome in neutrophils and macrophages and enhanced dendritic cell-dependent activation of Th1 and Th17 cells in the lungs. ENDS induced less severe immune response than CCs. Serum concentrations of inflammatory cytokines were significantly lower in the samples of ENDS-exposed mice. Compared to CCs, ENDS recruited lower number of circulating leukocytes in injured lungs and had less capacity to induce CD14/TLR2-dependent activation of NLRP3 inflammasome in lung-infiltrated neutrophils and macrophages. ENDS-primed dendritic cells had reduced capacity for the generation of Th1 and Th17 cell-driven lung inflammation. Accordingly, extensive immune cell-driven lung injury resulted in severe respiratory dysfunction in CCs-exposed mice, while ENDS caused moderate respiratory dysfunction in experimental animals. CONCLUSIONS Continuous exposition to either CCs or ENDS induced immune cell-driven lung damage in mice. ENDS triggered immune response, which was less potent than inflammatory response elicited by CCs and, therefore, caused less severe lung injury and inflammation. IMPLICATIONS This is the first study that compared the effects of CCs and ENDS on lung-infiltrated immune cells. Although both CCs and ENDS elicited systemic inflammatory response, immune cell-driven lung injury and inflammation were less severe in ENDS-exposed than in CC-exposed animals. Continuous exposition to ENDS-sourced aerosols was less harmful for respiratory function of experimental animals than CC-derived smoke.
Collapse
Affiliation(s)
- Nikolina Kastratovic
- Faculty of Medical Sciences, Center for Biological and Chemical Hazards Research, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Markovic
- Faculty of Medical Sciences, Center for Biological and Chemical Hazards Research, Department of Microbiology and Immunology, University of Kragujevac, Kragujevac, Serbia
| | | | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Biological and Chemical Hazards Research, Department of Microbiology and Immunology, University of Kragujevac, Kragujevac, Serbia
| | | | - Valentin Djonov
- Faculty of Medical Sciences, Department of Pathology, University of Kragujevac, Kragujevac, Serbia
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Vladislav Volarevic
- Faculty of Medical Sciences, Center for Biological and Chemical Hazards Research, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
- Faculty of Medical Sciences, Center for Biological and Chemical Hazards Research, Department of Microbiology and Immunology, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
3
|
Ali N, Xavier J, Engur M, Pv M, Bernardino de la Serna J. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131828. [PMID: 37320902 DOI: 10.1016/j.jhazmat.2023.131828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Joseph Xavier
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | - Melih Engur
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | | |
Collapse
|
4
|
Chandra D, Bogdanoff RF, Bowler RP, Benam KH. Electronic cigarette menthol flavoring is associated with increased inhaled micro and sub-micron particles and worse lung function in combustion cigarette smokers. Respir Res 2023; 24:108. [PMID: 37038183 PMCID: PMC10088218 DOI: 10.1186/s12931-023-02410-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023] Open
Abstract
Flavored electronic cigarettes (ECs) present a serious health challenge globally. Currently, it is unknown whether the addition of highly popular menthol flavoring to e-liquid is associated with changes in the number of aerosolized particles generated or altered lung function. Here, we first performed preclinical studies using our novel robotic platform Human Vaping Mimetic Real-Time Particle Analyzer (HUMITIPAA). HUMITIPAA generates fresh aerosols for any desired EC in a very controlled and user-definable manner and utilizes an optical sensing system to quantitate and analyze sub-micron and microparticles from every puff over the course of vaping session in real-time while emulating clinically relevant breathing mechanics and vaping topography. We discovered that addition of menthol flavoring to freshly prepared e-liquid base propylene glycol-vegetable glycerin leads to enhanced particle counts in all tested size fractions, similar to the effect of adding vitamin E acetate to e-liquid we previously reported. Similarly, we found that menthol vs. non-menthol (tobacco) flavored pods from commercially available ECs leads to generation of significantly higher quantities of 1-10 µm particles upon inhalation. We then retrospectively analyzed data from the COPDGene study and identified an association between the use of menthol flavored ECs and reduced FEV1% predicted and FEV1/FVC independent of age, gender, race, pack-years of smoking, and use of nicotine or cannabis-containing vaping products. Our results reveal an association between enhanced inhaled particle due to menthol addition to ECs and worse lung function indices. Detailed causal relation remains to be demonstrated in future large-scale prospective clinical studies. Importantly, here we demonstrate utility of the HUMITIPAA as a predictive enabling technology to identify inhalation toxicological potential of emerging ECs as the chemical formulation of e-liquid gets modified.
Collapse
Affiliation(s)
- Divay Chandra
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Rachel F Bogdanoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Russell P Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Sabo AN, Filaudeau E, Da Silva S, Becker G, Monassier L, Kemmel V. Flavoured and nicotine-containing e-liquids impair homeostatic properties of an alveolar-capillary cell model. Food Chem Toxicol 2023; 174:113650. [PMID: 36758787 DOI: 10.1016/j.fct.2023.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Most people consider that electronic cigarettes are safer than tobacco and are marketed as quit-smoking products. The e-liquid, which usually contains propylene glycol (PG) and vegetable glycerin (VG) in different ratios, nicotine and a wide variety of flavours, is heated by a coil and the aerosol droplets are primarily delivered to the alveolar area where nicotine and other molecules cross the alveolar-capillary barrier (ACB). However, e-cigarettes effects on the ACB are not yet established. In our study, a well-characterised in vitro model of the ACB was exposed to PG and VG and to five flavoured e-liquids with and without nicotine. The vehicles, due to their hypertonic properties, modulated the ACB integrity by modifying occludin expression. Below a 10% concentration, the vehicles did not trigger oxidative stress or cell death. Different results were observed between flavoured e-liquids: while red fruits and mint-eucalyptus disrupted ACB integrity, triggered oxidative stress and cell death, blond tobacco had no worse effect compared to the vehicles. However, the addition of nicotine in the latter e-liquid increased oxidative stress and cell death compared to the vehicles. Finally, mint-eucalyptus e-liquid increased some inflammation markers. Our results revealed that e-liquids alter ACB homeostasis, depending on flavour and nicotine presence.
Collapse
Affiliation(s)
- Amelia-Naomi Sabo
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200, Strasbourg, France.
| | - Emma Filaudeau
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Sylvia Da Silva
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Guillaume Becker
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Pôle Pharmacie-Pharmacologie, 67200, France.
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France.
| | - Véronique Kemmel
- Laboratoire de Pharmacologie et Toxicologie Neurocardiovasculaire, UR 7296, Faculté de Médecine de Maïeutique et des Métiers de la Santé, Centre de Recherche en Biomédecine de Strasbourg (CRBS), 67085, Strasbourg, France; Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200, Strasbourg, France.
| |
Collapse
|
6
|
Luca AC, Curpăn AȘ, Iordache AC, Mîndru DE, Țarcă E, Luca FA, Pădureț IA. Cardiotoxicity of Electronic Cigarettes and Heat-Not-Burn Tobacco Products-A Problem for the Modern Pediatric Cardiologist. Healthcare (Basel) 2023; 11:healthcare11040491. [PMID: 36833024 PMCID: PMC9957306 DOI: 10.3390/healthcare11040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS) have become increasingly popular among adolescents, either as an alternative to conventional cigarettes (CCs) or as a newly acquired recreational habit. Although considered by most users as a safer option for nicotine intake, these devices pose significant health risks, resulting in multisystem damage. Heat-not-burn products, which, unlike ENDS, contain tobacco, are also alternatives to CCs that consumers use based on the idea that their safety profile is superior to that of cigarettes. Recent studies in the USA and EU show that adolescents are particularly prone to using these devices. Pediatric cardiologists, as well as other healthcare professionals, should be aware of the complications that may arise from acute and chronic consumption of these substances, considering the cardiovascular damage they elicit. This article summarized the known data about the impact of ENDS on the cardiovascular system, with emphasis on the pathophysiological and molecular changes that herald the onset of systemic lesions alongside the clinical cardiovascular manifestations in this scenario.
Collapse
Affiliation(s)
- Alina-Costina Luca
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandrina-Ștefania Curpăn
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bd. Carol I, 20A, 700505 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Alin-Constantin Iordache
- Department of Mother and Child Medicine–Pediatric Cardiology, “Grigore T. Popa”, University of Medicine and Pharmacy of Iasi, 16 Universitatii Str., 700115 Iași, Romania
| | - Dana Elena Mîndru
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Elena Țarcă
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Surgery II—Pediatric Surgery, Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Florin-Alexandru Luca
- Department BMTM, “Gheorghe Asachi” Technical University of Iasi, 700050 Iaşi, Romania
| | | |
Collapse
|
7
|
A Review of Toxicity Mechanism Studies of Electronic Cigarettes on Respiratory System. Int J Mol Sci 2022; 23:ijms23095030. [PMID: 35563421 PMCID: PMC9102406 DOI: 10.3390/ijms23095030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Electronic cigarettes (e-cigarettes) have attracted much attention as a new substitute for conventional cigarettes. E-cigarettes are first exposed to the respiratory system after inhalation, and studies on the toxicity mechanisms of e-cigarettes have been reported. Current research shows that e-cigarette exposure may have potentially harmful effects on cells, animals, and humans, while the safety evaluation of the long-term effects of e-cigarette use is still unknown. Similar but not identical to conventional cigarettes, the toxicity mechanisms of e-cigarettes are mainly manifested in oxidative stress, inflammatory responses, and DNA damage. This review will summarize the toxicity mechanisms and signal pathways of conventional cigarettes and e-cigarettes concerning the respiratory system, which could give researchers a better understanding and direction on the effects of e-cigarettes on our health.
Collapse
|
8
|
Been T, Traboulsi H, Paoli S, Alakhtar B, Mann KK, Eidelman DH, Baglole CJ. Differential impact of JUUL flavors on pulmonary immune modulation and oxidative stress responses in male and female mice. Arch Toxicol 2022; 96:1783-1798. [PMID: 35254488 DOI: 10.1007/s00204-022-03269-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022]
Abstract
JUUL is a popular e-cigarette brand that manufactures e-liquids in a variety of flavors, such as mango and mint. Despite their popularity, the pulmonary effects of flavored JUUL e-liquids that are aerosolized and subsequently inhaled are not known. Therefore, the purpose of this study was to evaluate if acute exposure to JUUL e-cigarette aerosols in three popular flavors elicits an immunomodulatory or oxidative stress response in mice. We first developed a preclinical model that mimics human use patterns of e-cigarettes using 1 puff/min or 4 puffs/min exposure regimes. Based on cotinine levels, these exposures were representative of light/occasional and moderate JUUL users. We then exposed C57BL/6 mice to JUUL e-cigarette aerosols in mango, mint, and Virginia tobacco flavors containing 5% nicotine for 3 days, and assessed the inflammatory and oxidative stress response in the lungs and blood. In response to the 1 puff/min regime (light/occasional user), there were minimal changes in BAL cell composition or lung mRNA expression. However, at 4 puffs/min (moderate user), mint-flavored JUUL significantly increased lung neutrophils, while mango-flavored JUUL significantly increased Tnfα and Il13 mRNA in the lungs. Both the 1- and 4 puffs/min regimes significantly increased oxidative stress markers in the blood, indicating systemic effects. Thus, JUUL products are not inert; even short-term inhalation of flavored JUUL e-cigarette aerosols differentially causes immune modulation and oxidative stress responses.
Collapse
Affiliation(s)
- Terek Been
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sofia Paoli
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Bayan Alakhtar
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J Baglole
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada. .,Department of Pathology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Wang L, Wang Y, Chen J, Yang XM, Jiang XT, Liu P, Li M. Comparison of biological and transcriptomic effects of conventional cigarette and electronic cigarette smoke exposure at toxicological dose in BEAS-2B cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112472. [PMID: 34229167 DOI: 10.1016/j.ecoenv.2021.112472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Cigarette seriously affects human health, and electronic cigarette (e-cigarette), considered as cigarette substitutes, become popular as its contribution to quit smoking. But scientific evidence about the absolute safety of e-cigarette is insufficient. Previous studies also have indicated that different dosages of cigarette can lead to different biological effects. Thus, the impact of cigarette at toxicological dose such as IC50 compared with that of e-cigarette are highly needed. In this study, we investigated the effects of cigarette smoke condensate (CSC) at toxicological dose compared with e-cigarette smoke condensate (ECSC) in equivalent nicotine level. Nicotine content of CSC and ECSC were determined by UPLC. Human lung epithelial cells (BEAS-2B) were exposed to 0-32 μg/ml of CSC and ECSC for 24 h to determine IC50 of cell viability and morphological assessment. Inflammation, apoptosis, cell cycle analysis and RNA-Seq transcriptome analysis were performed to characterize the differences between CSC and ECSC. We found that acute exposure of BEAS-2B cells to CSC at IC50 leaded to morphological change, inflammatory cytokines production and cell apoptosis, while ECSC did not exert such cell effects in equivalent nicotine level. The transcriptome analysis showed that differentially expressed genes in CSC were far more than that in ECSC, and mainly enriched in the category of cell cycle, DNA repair, cancer, and metabolic related pathways. Such cell cycle arrest was further experimentally confirmed. These results suggested that toxicological dose of ECSC might be much higher than that of CSC. Based on equivalent nicotine content, an acute exposure to CSC had significant impacts on cell effects and gene expression profile compared to ECSC. Our results provided a reference for the safety studies of conventional cigarette and e-cigarette.
Collapse
Affiliation(s)
- Lilan Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yao Wang
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jianwen Chen
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xue-Min Yang
- RELX Lab, Shenzhen RELX Tech. Co,. Ltd., Shenzhen, Guangdong 518000, China
| | - Xing-Tao Jiang
- RELX Lab, Shenzhen RELX Tech. Co,. Ltd., Shenzhen, Guangdong 518000, China
| | - Peiqing Liu
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Min Li
- School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
10
|
Guo J, Liao M, Hu X, Wang J. Tumour-Derived Reg3A Educates Dendritic Cells to Promote Pancreatic Cancer Progression. Mol Cells 2021; 44:647-657. [PMID: 34504050 PMCID: PMC8490200 DOI: 10.14348/molcells.2021.0145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022] Open
Abstract
As a pancreatic inflammatory marker, regenerating islet-derived protein 3A (Reg3A) plays a key role in inflammation-associated pancreatic carcinogenesis by promoting cell proliferation, inhibiting apoptosis, and regulating cancer cell migration and invasion. This study aimed to reveal a novel immuno-regulatory mechanism by which Reg3A modulates tumour-promoting responses during pancreatic cancer (PC) progression. In an in vitro Transwell system that allowed the direct co-culture of human peripheral blood-derived dendritic cells (DCs) and Reg3A-overexpressing/ silenced human PC cells, PC cell-derived Reg3A was found to downregulate CD80, CD83 and CD86 expression on educated DCs, increase DC endocytic function, inhibit DC-induced T lymphocyte proliferation, reduce IL-12p70 production, and enhance IL-23 production by DCs. The positive effect of tumour-derived Reg3A-educated human DCs on PC progression was demonstrated in vivo by intraperitoneally transferring them into PC-implanted severe combined immunodeficiency (SCID) mice reconstituted with human T cells. A Reg3A-JAK2/STAT3 positive feedback loop was identified in DCs educated with Reg3A. In conclusion, as a tumour-derived factor, Reg3A acted to block the differentiation and maturation of the most important antigen-presenting cells, DCs, causing them to limit their potential anti-tumour responses, thus facilitating PC escape and progression.
Collapse
Affiliation(s)
- Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
- New Medicine Innovation and Development Institute, Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
11
|
Zhang W, Park HB, Yadav D, Hwang J, An EK, Eom HY, Kim SJ, Kwak M, Lee PCW, Jin JO. Comparison of human peripheral blood dendritic cell activation by four fucoidans. Int J Biol Macromol 2021; 174:477-484. [PMID: 33513426 DOI: 10.1016/j.ijbiomac.2021.01.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Brown seaweed is an important source of fucoidan, which displays immunomodulatory effects by activating various immune cells. However, these effects of fucoidans from various sources of brown seaweed have not yet been explored in human blood dendritic cells. We studied fucoidans extracted from Ecklonia cava, Macrocystis pyrifera, Undaria pinnatifida, and Fucus vesiculosus for their effects on human monocyte-derived dendritic cells (MODC) and human peripheral blood DC (PBDC) activation. Ecklonia cava fucoidan (ECF) strongly upregulated co-stimulatory molecules, major histocompatibility complex class I and II, and the production of proinflammatory cytokines in MODCs and PBDCs compared to those by the other three fucoidans. Moreover, ECF elicited the strongest effect in the induction of syngeneic T cell proliferation and IFN-γ production compared to those of other fucoidans. These results suggest that ECF could be a suitable candidate molecule for enhancing immune activation in humans compared to that with the other three fucoidans.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Hae-Bin Park
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hee-Yun Eom
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry, Pukyong National University, Busan 48513, South Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul 05505, South Korea.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China; Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
12
|
Keith R, Bhatnagar A. Cardiorespiratory and Immunologic Effects of Electronic Cigarettes. CURRENT ADDICTION REPORTS 2021; 8:336-346. [PMID: 33717828 PMCID: PMC7935224 DOI: 10.1007/s40429-021-00359-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Although e-cigarettes have become popular, especially among youth, the health effects associated with e-cigarette use remain unclear. This review discusses current evidence relating to the cardiovascular, pulmonary, and immunological effects of e-cigarettes. RECENT FINDINGS The use of e-cigarettes by healthy adults has been shown to increase blood pressure, heart rate, and arterial stiffness, as well as resistance to air flow in lungs. Inhalation of e-cigarette aerosol has been shown to elicit immune responses and increase the production of immunomodulatory cytokines in young tobacco-naïve individuals. In animal models, long-term exposure to e-cigarettes leads to marked changes in lung architecture, dysregulation of immune genes, and low-grade inflammation. Exposure to e-cigarette aerosols in mice has been shown to induce DNA damage, inhibit DNA repair, and promote carcinogenesis. Chronic exposure to e-cigarettes has also been reported to result in the accumulation of lipid-laden macrophages in the lung and dysregulation of lipid metabolism and transport in mice. Although, the genotoxic and inflammatory effects of e-cigarettes are milder than those of combustible cigarettes, some of the cardiorespiratory effects of the two insults are comparable. The toxicity of e-cigarettes has been variably linked to nicotine, as well as other e-cigarette constituents, operating conditions, and use patterns. SUMMARY The use of e-cigarettes in humans is associated with significant adverse cardiorespiratory and immunological changes. Data from animal models and in vitro studies support the notion that long-term use of e-cigarettes may pose significant health risks.
Collapse
Affiliation(s)
- Rachel Keith
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| | - Aruni Bhatnagar
- American Heart Association Tobacco Regulation and Addiction Center & The Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, 302E Muhammad Ali Blvd, Louisville, KY 40202 USA
| |
Collapse
|
13
|
Lechasseur A, Morissette MC. The fog, the attractive and the addictive: pulmonary effects of vaping with a focus on the contribution of each major vaping liquid constituent. Eur Respir Rev 2020; 29:29/157/200268. [PMID: 33060167 DOI: 10.1183/16000617.0268-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/25/2020] [Indexed: 11/05/2022] Open
Abstract
Vaping has become increasingly popular over the past decade. This pragmatic review presents the published biological effects of electronic cigarette vapour inhalation with a focus on the pulmonary effects. Special attention has been devoted to providing the documented effects specific to each major ingredient, namely propylene glycol/glycerol, nicotine and flavouring agents. For each ingredient, findings are divided according to the methodology used, being in vitro studies, animal studies and clinical studies. Finally, we provide thoughts and insights on the current state of understanding of the pulmonary effects of vaping, as well as novel research avenues and methodologies.
Collapse
Affiliation(s)
- Ariane Lechasseur
- Quebec Heart and Lung Institute, Université Laval, Quebec, Canada.,Faculty of Medicine, Université Laval, Quebec, Canada
| | - Mathieu C Morissette
- Quebec Heart and Lung Institute, Université Laval, Quebec, Canada.,Dept of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
14
|
Bolt HM. Electronic cigarettes and vaping: toxicological awareness is increasing. Arch Toxicol 2020; 94:1783-1785. [PMID: 32440856 PMCID: PMC7240249 DOI: 10.1007/s00204-020-02786-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU, Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|