1
|
Lau C, Lu X, Chen X, Hoy KS, Davydiuk T, Graydon JA, Reichert M, LeBlanc A, Donadt C, Jhangri G, Le XC. Arsenic speciation in more than 1600 freshwater fish samples from fifty-three waterbodies in Alberta, Canada. J Environ Sci (China) 2025; 153:289-301. [PMID: 39855800 DOI: 10.1016/j.jes.2024.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
We report here arsenic speciation in 1643 freshwater fish samples, representing 14 common fish species from 53 waterbodies in Alberta, Canada. Arsenic species were extracted from fish muscle tissue. Arsenic species in the extracts were separated using anion-exchange high-performance liquid chromatography (HPLC) and quantified using inductively coupled plasma mass spectrometry (ICPMS). The total arsenic concentrations in fish ranged from 2.8 to 1200 µg/kg (in wet weight of sample) (mean 71 ± 101 µg/kg), which are all below the 2000 µg/kg (wet weight) maximum allowable total arsenic in fish, recommended by the Ontario Ministry of the Environment. In 99.7%, or 1638 of all 1643 freshwater fish samples analyzed, arsenobetaine (AsB) was detectable, with concentrations higher than the method detection limit of 0.25 µg/kg (wet weight). Dimethylarsinic acid (DMA) was detectable (concentration >0.25 µg/kg) in 92.1%, or 1514 of the 1643 freshwater fish samples. Inorganic arsenate (iAsV) was detectable (>0.25 µg/kg) in 1119 fish (i.e., 68.1% of 1643 samples). Monomethylarsonic acid (MMA) was detectable (>0.25 µg/kg) in 418 fish (25.4% of 1643 samples). The concentrations of arsenic species in the 1643 fish samples varied by as much as three orders of magnitude, ranging from below the method detection limit of 0.25 µg/kg to the maximum concentrations of 380 µg/kg for AsB, 150 µg/kg for DMA, 70 µg/kg for iAsV, and 51 µg/kg for MMA. AsB made up 46.1% ± 26.2% of total arsenic species. Arsenic speciation patterns varied between lake whitefish, northern pike, and walleye, the three most common types of fish analyzed. The relative proportion of DMA in northern pike was larger than in lake whitefish and walleye, and conversely, the relative proportion of iAsV was lower in northern pike. Seven unknown arsenic species were detected, and their chromatographic retention time did not match with those of available arsenic standards. At least one unknown arsenic species was detected in 33.4%, or 549 of 1643 freshwater fish samples. The concentrations of unknown arsenic species were as high as 61 µg/kg. Future research is necessary to identify unknown arsenic species and to determine contributing factors to the observed arsenic species patterns and concentrations.
Collapse
Affiliation(s)
- Chester Lau
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaojian Chen
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Karen S Hoy
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | | | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Adrienne LeBlanc
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Caitlyn Donadt
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Gian Jhangri
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
2
|
Lau C, Lu X, Hoy KS, Davydiuk T, Graydon JA, Reichert M, Le XC. Arsenic speciation in freshwater fish using high performance liquid chromatography and inductively coupled plasma mass spectrometry. J Environ Sci (China) 2025; 153:302-315. [PMID: 39855802 DOI: 10.1016/j.jes.2024.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption. While marine fish have attracted much research interest due to their higher arsenic content, research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels. We describe here a sensitive method and its application to the quantification of arsenic species in freshwater fish. Arsenic species from fish tissues were extracted using a methanol/water mixture (1:1 vol. ratio) and ultrasound sonication. Anion-exchange high-performance liquid chromatography (HPLC) enabled separation of arsenobetaine (AsB), inorganic arsenite (iAsIII), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (iAsV), and three new arsenic species. Inductively coupled plasma mass spectrometry (ICPMS) provided highly sensitive and specific detection of arsenic. A limit of detection of 0.25 µg/kg (wet weight fish tissue) was achieved for the five target arsenic species: AsB, iAsIII, DMA, MMA, and iAsV. A series of experiments were conducted to ensure the accuracy and validity of the analytical method. The method was successfully applied to the determination of arsenic species in lake whitefish, northern pike, and walleye, with AsB, DMA, and iAsV being frequently detected. Three new arsenic species were detected, but their chromatographic retention times did not match with those of any available arsenic standards. Future research is necessary to elucidate the identity of these new arsenic species detected in freshwater fish.
Collapse
Affiliation(s)
- Chester Lau
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada
| | - Karen S Hoy
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada
| | | | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
3
|
Naresh P, Roy SD, Pawaskar PV, Lokhande PS, Gajbhiye RL, Peraman R. Analytical quality by design guided white analytical chemistry driven green in the development of LC-ICP-MS method for arsenic speciation analysis in HEK-293 cells. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124474. [PMID: 39842273 DOI: 10.1016/j.jchromb.2025.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
An analytical quality by design-guided LC-ICP-MS method for simultaneous arsenic speciation analysis in HEK-293 cells was optimized and validated. Initially, critical method variables (CMVs) were identified to achieve the targeted critical quality attribute (CQA) of the analytical target profile (ATP). Based on knowledge and risk assessments, formic acid (X1), citric acid (X2), and pH (X3) were studied for their effect on method responses such as resolutions (Y1, Y2) and retention time of As(V), As(III) and DMA (Y3, Y4, and Y5) using central composite design (CCD). ANOVA analysis indicated that variable interaction was significant in method responses with curvature effect on resolution (Y1 and Y2). The method operable design region (MODR) afforded a 0.1% formic acid, citric acid strength of 20-30 mM, and pH 5.6-6.8 as a robust region for the appropriate method performance. Hence, the final method was optimized on the ZORBAX RRHD SB-Aq column using a mobile phase consisting of 0.1% Formic acid: Citric acid (22.5 mM) (50:50 % v/v; pH 5.6). The optimized method eluted As(V), As(III), and DMA at 2.5 ± 0.1, 2.7 ± 0.1, and 3.1 ± 0.1 min, respectively, with an acceptable resolution. The LOD of the method was 4.78, 3.39, 5.35 ppb respectively for As(V), As(III), and DMA whilst the linearity was established at 30-1000 ppb for all species with respective r2-value of 0.9967, 0.9996, and 0.9972, respectively. The % recovery (77.11-99.64 %) and precision (0.25-1.95 %) were acceptable. The method has proven robust for method variables. Notably, we conducted the Green-white analytical chemistry assessment for the developed method by three different assessment tools viz., AGREES, GAPI, and RGB of 12 algorithms. The developed method demonstrated robustness, environmental friendliness, and user-friendliness.
Collapse
Affiliation(s)
- Pothuraju Naresh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Salona Devnath Roy
- Dept. of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar 844102, India; Biological and Agricultural Engineering Department, Louisiana State University, USA
| | - Prashant Vilas Pawaskar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Puja Shamrao Lokhande
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Rahul Laxman Gajbhiye
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Bihar 844102 India.
| |
Collapse
|
4
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2025; 99:153-209. [PMID: 39567405 PMCID: PMC11742009 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
5
|
Mishra S, Botlagunta M, Rajasekaran S. Arsenic-Induced Inflammatory Response via ROS-Dependent Activation of ERK/NF-kB Signaling Pathways: Protective Role of Natural Polyphenol Tannic Acid. J Appl Toxicol 2024. [PMID: 39832189 DOI: 10.1002/jat.4748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro. Further, the anti-inflammatory effects of a natural dietary polyphenol tannic acid (TA) were also explored. In human normal bronchial (BEAS-2B), adenocarcinoma alveolar basal (A549), and murine macrophages (J774) cell lines, a trivalent form of As (as As3+) exposure markedly induced the expression of various pro-inflammatory mediators (cytokines and chemokines). Additionally, it was found that As3+ exposure induced reactive oxygen species (ROS) generation and activation of the nuclear factor-kappa B (NF-kB) p65 and extracellular signal-regulated kinase (ERK)1/2 pathways in BEAS-2B cells. As expected, the blockade of either ERK1/2 (PD98059) or NF-kB p65 (IMD0354), or both pathways attenuated As3+-induced pro-inflammatory mediators release. Interestingly, pre-treatment with ROS inhibitor N-acetylcysteine (NAC) attenuated activation of ERK/NF-kB pathways, suggesting that ROS have a critical role in pathway's activation and subsequent inflammatory response. Further, TA pre-treatment effectively attenuated As3+-induced inflammatory response by suppressing ROS production and ERK/NF-kB signaling pathways activation. Therefore, this study provides scientific evidence for the anti-inflammatory activities of TA and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sehal Mishra
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- School of Bioengineering, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | | | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
6
|
Gupta S, Naseem M, Thokchom SD, Srivastava PK, Kapoor R. Rhizophagus intraradices mediated mitigation of arsenic toxicity in wheat involves differential distribution of arsenic in subcellular fractions and modulated expression of Phts and ABCCs. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136284. [PMID: 39471615 DOI: 10.1016/j.jhazmat.2024.136284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Biomagnification of arsenic in food chain through wheat consumption poses a serious threat to human health. Therefore, it is necessary to elucidate mechanism of arsenic tolerance and detoxification in wheat. The study aimed to unravel the strategies adopted by arbuscular mycorrhizal fungi to alleviate arsenic toxicity in wheat. To accomplish this, independent and interactive effects of arsenic and Rhizophagus intraradices were assessed. Colonization by R. intraradices resulted in lower expression of high-affinity phosphate transporters (Phts) in comparison with non-mycorrhizal (NM) plants, thereby lowering arsenic concentrations in mycorrhizal (M) plants. Additionally, the subcellular fractionation analysis indicated differential distribution of arsenic. In NM plants, arsenic accumulated primarily in cell wall and organelle fractions. Conversely, in M plants arsenic was more concentrated in the cell wall and vacuolar fractions. This was related to higher levels of hydroxyl and aldehyde groups in cell wall fraction of root along with increased expression of C-type ATP-binding cassette transporters in root and leaves. These factors enabled effective sequestration of arsenic in the cell wall and vacuoles of M plants, thereby reducing its toxicity. Furthermore, the proportion of inorganic arsenic was lower in M plant, as it transformed it into less toxic organic forms.
Collapse
Affiliation(s)
- Samta Gupta
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Mariya Naseem
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | | | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India.
| |
Collapse
|
7
|
Eldan M, Masue-Slowey Y. Environmental fate of monosodium methanearsonate (MSMA)-Part 1: Conceptual model. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1859-1875. [PMID: 38924690 DOI: 10.1002/ieam.4961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024]
Abstract
Monosodium methanearsonate (MSMA), the sodium salt of monomethylarsonic acid (MMA), is used as a selective, broad-spectrum contact herbicide to control weeds in cotton and a variety of turf. In water, MSMA dissociates into ions of sodium (Na+) and of MMA-, which is the herbicide's active component. Certain soil microorganisms can methylate MMA to dimethylarsinic acid (DMA) other microorganisms can demethylate MMA to inorganic arsenic (iAs). To predict the groundwater concentration of iAs that may result from MSMA application, the processes affecting the environmental behavior of MSMA must be quantified and modeled. There is an extensive body of literature regarding the environmental behavior of MSMA. There is a consensus among scientists that the fate of MMA in soil is controlled by microbial activity and sorption to solid surfaces and that iAs sorption is even more extensive than that of MMA. The sorption and transformation of MMA and its metabolites are affected by several factors including aeration condition, temperature, pH, and the availability of nutrients. The precise nature and extent of each of these processes vary depending on site-specific conditions; however, such variability is constrained in typical MSMA use areas that are highly managed. Monomethylarsonic acid is strongly sorbed on mineral surfaces and becomes sequestered into the soil matrix. Over time, a greater portion of MMA and iAs becomes immobile and unavailable to soil microorganisms and to leaching. This review synthesizes the results of studies that are relevant for the behavior of MSMA used as a herbicide to reliably predict the fate of MSMA in its use conditions. Integr Environ Assess Manag 2024;20:1859-1875. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Michal Eldan
- Luxembourg Industries Ltd., The Organic Arsenical Products Task Force, Washington, District of Columbia, USA
| | | |
Collapse
|
8
|
Yang BY, Chen C, Gao A, Xue XM, Huang K, Zhang J, Zhao FJ. Arsenic Methylation by a Sulfate-Reducing Bacterium from Paddy Soil Harboring a Novel ArsSM Fusion Protein. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19266-19276. [PMID: 39404172 DOI: 10.1021/acs.est.4c04730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Microbial arsenic (As) methylation is an important process of As biogeochemistry. Only a few As-methylating microorganisms have been isolated from paddy soil, hindering the mechanistic understanding of the process involved. We isolated 54 anaerobic and 32 aerobic bacteria from paddy soil with a high As methylation potential. Among the 86 isolates, 14 anaerobes, including 7 sulfate-reducing bacteria (SRB), but none of the aerobes were able to methylate arsenite [As(III)] or monomethylarsenite [MMA(III)] or both, suggesting that the As-methylating ability is much more prevalent in anaerobes than in aerobes. We performed a detailed investigation on As methylation by a SRB isolate, Solidesulfovibrio sp. TC1, and identified a novel bifunctional enzyme consisting of a fusion of As(III) S-adenosylmethionine (SAM) methyltransferase (ArsM) and a radical SAM protein. The enzyme (ArsSM) can catalyze As(III) methylation to MMA and DMA and subsequent adenosylation of DMA to form 5'-deoxy-5'-dimethylarsinoyl-adenosine (DDMAA), which is a key intermediate in the biosynthesis of arsenosugars. High concentrations of sulfide produced by SRB did not affect As(III) methylation to MMA but inhibited MMA methylation to DMA. Genes encoding ArsSM fusion proteins are widespread in anaerobes, particularly SRB, suggesting that ArsSM-carrying anaerobes may play an important role in As methylation in an anoxic environment.
Collapse
Affiliation(s)
- Bao-Yun Yang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Axiang Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Banaeeyeh S, Razavi BM, Hosseinzadeh H. Neuroprotective Effects of Morin Against Cadmium- and Arsenic-Induced Cell Damage in PC12 Neurons. Biol Trace Elem Res 2024:10.1007/s12011-024-04407-x. [PMID: 39436547 DOI: 10.1007/s12011-024-04407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Arsenic and cadmium, both toxic metals and widespread environmental pollutants, can trigger apoptosis and oxidative stress in various tissues and cells. Morin, a natural flavonoid with diverse biological properties, has been found to protect neurons from oxidative stress and apoptosis-induced damage. This research aimed to examine the protective properties of morin against neurotoxicity caused by arsenic and cadmium, utilizing PC12 cells as a model for nerve cells. The cells were pre-treated with different concentrations of morin and then exposed to arsenic and cadmium, after which cell viability and reactive oxygen species (ROS) production were assessed. Additionally, western blotting was performed to evaluate the protein levels of the Bax/Bcl-2 ratio and cleaved-caspase-3. Following exposure to arsenic and cadmium, there were significant increases in ROS, Bax/Bcl-2 ratio, and cleaved-caspase-3. However, the results of the study demonstrated the beneficial effects of morin at various concentrations, as it increased cell viability and decreased ROS production. Furthermore, morin at a concentration of 10 µM was found to reduce the elevated levels of cleaved-caspase-3 induced by arsenic and diminish the increased Bax/Bcl-2 ratio after exposure to arsenic and cadmium. The findings of this study suggest that morin can effectively protect cells from arsenic and cadmium-induced neurotoxicity through its antioxidant and anti-apoptotic effects. Thus, morin should be considered a promising agent for treating arsenic and cadmium toxicity.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Larson J, Sather B, Wang L, Westrum J, Tokmina-Lukaszewska M, Pauley J, Copié V, McDermott TR, Bothner B. Metalloproteomics Reveals Multi-Level Stress Response in Escherichia coli When Exposed to Arsenite. Int J Mol Sci 2024; 25:9528. [PMID: 39273475 PMCID: PMC11394912 DOI: 10.3390/ijms25179528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The arsRBC operon encodes a three-protein arsenic resistance system. ArsR regulates the transcription of the operon, while ArsB and ArsC are involved in exporting trivalent arsenic and reducing pentavalent arsenic, respectively. Previous research into Agrobacterium tumefaciens 5A has demonstrated that ArsR has regulatory control over a wide range of metal-related proteins and metabolic pathways. We hypothesized that ArsR has broad regulatory control in other Gram-negative bacteria and set out to test this. Here, we use differential proteomics to investigate changes caused by the presence of the arsR gene in human microbiome-relevant Escherichia coli during arsenite (AsIII) exposure. We show that ArsR has broad-ranging impacts such as the expression of TCA cycle enzymes during AsIII stress. Additionally, we found that the Isc [Fe-S] cluster and molybdenum cofactor assembly proteins are upregulated regardless of the presence of ArsR under these same conditions. An important finding from this differential proteomics analysis was the identification of response mechanisms that were strain-, ArsR-, and arsenic-specific, providing new clarity to this complex regulon. Given the widespread occurrence of the arsRBC operon, these findings should have broad applicability across microbial genera, including sensitive environments such as the human gastrointestinal tract.
Collapse
Affiliation(s)
- James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brett Sather
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Lu Wang
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Jade Westrum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | - Jordan Pauley
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Timothy R McDermott
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
11
|
Michalicová R, Hegrová J, Svoboda J, Ličbinský R. Seasonal and spatial variations of arsenic and its species in particulate matter in an urban environment of Brno, Czech Republic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55251-55262. [PMID: 39225932 DOI: 10.1007/s11356-024-34645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
The present paper deals with an analysis of total arsenic concentration using ICP-MS/MS and an analysis of concentration of several arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonate (MMA), dimethylarsenite (DMA), and trimethylarsine oxide (TMAO), using HPLC-ICP-MS/MS in the PM10 fraction of airborne urban aerosol. The samples were collected during two campaigns, in the autumn of 2022 and in the winter of 2023, at three locations within the central European city of Brno, with the aim to evaluate the seasonal and spatial variations in the PM10 composition. The results confirmed only the seasonal variability in the content of the methylated arsenic species in PM10 influenced by biomethylation processes. To gain better understanding of the possible arsenic origin, a supplementary analysis of the total arsenic concentrations was performed in samples of different size fractions of particulate matter collected using ELPI + . Local emissions, including industrial activities and heating during the winter season, were suggested as the most likely predominant source contributing to the total As content in PM10.
Collapse
Affiliation(s)
| | - Jitka Hegrová
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Josef Svoboda
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Roman Ličbinský
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| |
Collapse
|
12
|
Hoshino S, Onaka H, Abe I. Recent advances in the biosynthetic studies of bacterial organoarsenic natural products. Nat Prod Rep 2024. [PMID: 39192828 DOI: 10.1039/d4np00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Covering: 1977 to presentArsenic is widely distributed throughout terrestrial and aquatic environments, mainly in highly toxic inorganic forms. To adapt to environmental inorganic arsenic, bacteria have evolved ubiquitous arsenic metabolic strategies by combining arsenite methylation and related redox reactions, which have been extensively studied. Recent reports have shown that some bacteria have specific metabolic pathways associated with structurally and biologically unique organoarsenic natural products. In this highlight, by exemplifying the cases of oxo-arsenosugars, arsinothricin, and bisenarsan, we summarize recent advances in the identification and biosynthesis of bacterial organoarsenic natural products. We also discuss the potential discoveries of novel arsenic-containing natural products of bacterial origins.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Michalicová R, Pecina V, Hegrová J, Brtnický M, Svoboda J, Prokeš L, Baltazár T, Ličbinský R. Seasonal variation of arsenic in PM 10 and PM x in an urban park: The influence of vegetation-related biomethylation on the distribution of its organic species and air quality. CHEMOSPHERE 2024; 362:142721. [PMID: 38945226 DOI: 10.1016/j.chemosphere.2024.142721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Arsenic (As) levels in particulate matter (PM) are routinely monitored in cities of developed countries. Despite advances in the knowledge of its inorganic species in PM in urban areas, organic species are often overlooked with no information on their behaviour in urban parks - areas with increased potential for As biomethylation. Therefore, the aim of this study was to characterize As distribution, bioaccessibility, seasonal variation and speciation (AsIII, AsV, MMA, DMA and TMAO) in PMx-PM10 of an urban park. Two sites with different distance from the road were selected for winter and summer sampling. From the PM samples, we gravimetrically determined PM10 concentrations in the air and via ICP-MS the total As content there. To assess the portion of bioaccessible As, water extractable As content was analysed. Simultaneously, the As species in PM10 water extracts were analysed via coupling of HPLC with ICP-MS method. There was no seasonal difference in PM10 concentration in the park, probably due to the increased summer PM load related to recreational activities in the park and park design. Spatial distribution of total As in PM10 and As fractional distribution in PMx suggested that As mostly didn't originate from traffic although highest As content was observed in the fine fraction (PM2.5) related to combustion processes. However, significant winter increase of As (determined by AsIII and AsV) despite the unchanged concentration of PM10 indicated a decisive influence of household heating-related combustion and possibly influence of reduced vegetation density. As present in the PM10 was mostly in bioaccessible form. Seasonal influence of As biomethylation was clearly demonstrated on the TMAO specie during the summer campaign. Except the significant summer TMAO increase, the results also indicated the biomethylation influence on DMA. Therefore, an increased risk of exposure to organic As species in urban parks can be expected during summer.
Collapse
Affiliation(s)
| | - Václav Pecina
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic; Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00, Brno, Czech Republic
| | - Jitka Hegrová
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic; Agrovyzkum Rapotin, Ltd, Výzkumníků 267, 788 13, Rapotín, Czech Republic
| | - Josef Svoboda
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| | - Lubomír Prokeš
- Department of Physics, Chemistry and Vocational Education, Faculty of Education, Masaryk University, Poříčí 7, Brno, 603 00, Czech Republic
| | - Tivadar Baltazár
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Roman Ličbinský
- Transport Research Centre, Líšeňská 33a, Brno, 636 00, Czech Republic
| |
Collapse
|
14
|
Nayek U, Shenoy TN, Abdul Salam AA. Data mining of arsenic-based small molecules geometrics present in Cambridge structural database. CHEMOSPHERE 2024; 360:142349. [PMID: 38763400 DOI: 10.1016/j.chemosphere.2024.142349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Arsenic, ubiquitous in various industrial processes and consumer products, presents both essential functions and considerable toxicity risks, driving extensive research into safer applications. Our investigation, drawing from 7182 arsenic-containing molecules in the Cambridge Structural Database (CSD), outlines their diverse bonding patterns. Notably, 51% of these molecules exhibit cyclic connections, while 49% display acyclic ones. Arsenic forms eight distinct bonding types with other elements, with significant interactions observed, particularly with phenyl rings, O3 and F6 moieties. Top interactions involve carbon, nitrogen, oxygen, fluorine, sulfur, and arsenic itself. We meticulously evaluated average bond lengths under three conditions: without an R-factor cut-off, with R-factor ≤0.075, and with R-factor ≤0.05, supporting the credibility of our results. Comparative analysis with existing literature data enriches our understanding of arsenic's bonding behaviour. Our findings illuminate the structural attributes, molecular coordination, geometry, and bond lengths of arsenic with 68 diverse atoms, enriching our comprehension of arsenic chemistry. These revelations not only offer a pathway for crafting innovative and safer arsenic-based compounds but also foster the evolution of arsenic detoxification mechanisms, tackling pivotal health and environmental challenges linked to arsenic exposure across different contexts.
Collapse
Affiliation(s)
- Upendra Nayek
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Thripthi Nagesh Shenoy
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576 104, Karnataka, India.
| |
Collapse
|
15
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Risk assessment of small organoarsenic species in food. EFSA J 2024; 22:e8844. [PMID: 38957748 PMCID: PMC11217773 DOI: 10.2903/j.efsa.2024.8844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on small organoarsenic species in food. For monomethylarsonic acid MMA(V), decreased body weight resulting from diarrhoea in rats was identified as the critical endpoint and a BMDL10 of 18.2 mg MMA(V)/kg body weight (bw) per day (equivalent to 9.7 mg As/kg bw per day) was calculated as a reference point (RP). For dimethylarsinic acid DMA(V), increased incidence in urinary bladder tumours in rats was identified as the critical endpoint. A BMDL10 of 1.1 mg DMA(V)/kg bw per day (equivalent to 0.6 mg As/kg bw per day) was calculated as an RP. For other small organoarsenic species, the toxicological data are insufficient to identify critical effects and RPs, and they could not be included in the risk assessment. For both MMA(V) and DMA(V), the toxicological database is incomplete and a margin of exposure (MOE) approach was applied for risk characterisation. The highest chronic dietary exposure to DMA(V) was estimated in 'Toddlers', with rice and fish meat as the main contributors across population groups. For MMA(V), the highest chronic dietary exposures were estimated for high consumers of fish meat and processed/preserved fish in 'Infants' and 'Elderly' age class, respectively. For MMA(V), an MOE of ≥ 500 was identified not to raise a health concern. For MMA(V), all MOEs were well above 500 for average and high consumers and thus do not raise a health concern. For DMA(V), an MOE of 10,000 was identified as of low health concern as it is genotoxic and carcinogenic, although the mechanisms of genotoxicity and its role in carcinogenicity of DMA(V) are not fully elucidated. For DMA(V), MOEs were below 10,000 in many cases across dietary surveys and age groups, in particular for some 95th percentile exposures. The Panel considers that this would raise a health concern.
Collapse
|
16
|
Vachiraarunwong A, Gi M, Kiyono T, Suzuki S, Fujioka M, Qiu G, Guo R, Yamamoto T, Kakehashi A, Shiota M, Wanibuchi H. Characterizing the toxicological responses to inorganic arsenicals and their metabolites in immortalized human bladder epithelial cells. Arch Toxicol 2024; 98:2065-2084. [PMID: 38630284 DOI: 10.1007/s00204-024-03750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/21/2024] [Indexed: 06/13/2024]
Abstract
Arsenic is highly toxic to the human bladder. In the present study, we established a human bladder epithelial cell line that closely mimics normal human bladder epithelial cells by immortalizing primary uroplakin 1B-positive human bladder epithelial cells with human telomerase reverse transcriptase (HBladEC-T). The uroplakin 1B-positive human bladder epithelial cell line was then used to evaluate the toxicity of seven arsenicals (iAsV, iAsIII, MMAV, MMAIII, DMAV, DMAIII, and DMMTAV). The cellular uptake and metabolism of each arsenical was different. Trivalent arsenicals and DMMTAV exhibited higher cellular uptake than pentavalent arsenicals. Except for MMAV, arsenicals were transported into cells by aquaglyceroporin 9 (AQP9). In addition to AQP9, DMAIII and DMMTAV were also taken up by glucose transporter 5. Microarray analysis demonstrated that arsenical treatment commonly activated the NRF2-mediated oxidative stress response pathway. ROS production increased with all arsenicals, except for MMAV. The activating transcription factor 3 (ATF3) was commonly upregulated in response to oxidative stress in HBladEC-T cells: ATF3 is an important regulator of necroptosis, which is crucial in arsenical-induced bladder carcinogenesis. Inorganic arsenics induced apoptosis while MMAV and DMAIII induced necroptosis. MMAIII, DMAV, and DMMTAV induced both cell death pathways. In summary, MMAIII exhibited the strongest cytotoxicity, followed by DMMTAV, iAsIII, DMAIII, iAsV, DMAV, and MMAV. The cytotoxicity of the tested arsenicals on HBladEC-T cells correlated with their cellular uptake and ROS generation. The ROS/NRF2/ATF3/CHOP signaling pathway emerged as a common mechanism mediating the cytotoxicity and carcinogenicity of arsenicals in HBladEC-T cells.
Collapse
Affiliation(s)
- Arpamas Vachiraarunwong
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Division of Collaborative Research and Development, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shugo Suzuki
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masaki Fujioka
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Guiyu Qiu
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Runjie Guo
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomoki Yamamoto
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Anna Kakehashi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Shiota
- Department of Molecular Biology of Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
17
|
Gomila RM, Frontera A. On the Existence of Pnictogen Bonding Interactions in As(III) S-Adenosylmethionine Methyltransferase Enzymes. Chem Asian J 2024; 19:e202400081. [PMID: 38407495 DOI: 10.1002/asia.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
As(III) S-adenosylmethionine methyltransferases, pivotal enzymes in arsenic metabolism, facilitate the methylation of arsenic up to three times. This process predominantly yields trivalent mono- and dimethylarsenite, with trimethylarsine forming in smaller amounts. While this enzyme acts as a detoxifier in microbial systems by altering As(III), in humans, it paradoxically generates more toxic and potentially carcinogenic methylated arsenic species. The strong affinity of As(III) for cysteine residues, forming As(III)-thiolate bonds, is exploited in medical treatments, notably in arsenic trioxide (Trisenox®), an FDA-approved drug for leukemia. The effectiveness of this drug is partly due to its interaction with cysteine residues, leading to the breakdown of key oncogenic fusion proteins. In this study, we extend the understanding of As(III)'s binding mechanisms, showing that, in addition to As(III)-S covalent bonds, noncovalent O⋅⋅⋅As pnictogen bonding plays a vital role. This interaction significantly contributes to the structural stability of the As(III) complexes. Our crystallographic analysis using the PDB database of As(III) S-adenosylmethionine methyltransferases, augmented by comprehensive theoretical studies including molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM), and natural bond orbital (NBO) analysis, emphasizes the critical role of pnictogen bonding in these systems. We also undertake a detailed evaluation of the energy characteristics of these pnictogen bonds using various theoretical models. To our knowledge, this is the first time pnictogen bonds in As(III) derivatives have been reported in biological systems, marking a significant advancement in our understanding of arsenic's molecular interactions.
Collapse
Affiliation(s)
- Rosa M Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), Spain
| |
Collapse
|
18
|
Meselhy AG, Mosa K, Chhikara S, Kumar K, Musante C, White JC, Dhankher OP. Plasma membrane intrinsic protein OsPIP2;6 is involved in root-to-shoot arsenic translocation in rice (Oryza sativa L.). PLANT CELL REPORTS 2024; 43:64. [PMID: 38340214 DOI: 10.1007/s00299-024-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE This study demonstrates the crucial role of OsPIP2;6 for translocation of arsenic from roots to shoots, which can decrease arsenic accumulation in rice for improved food safety. Arsenic (As) contamination in food and water, primarily through rice consumption, poses a significant health risk due to its natural tendency to accumulate inorganic arsenic (iAs). Understanding As transport mechanisms is vital for producing As-free rice. This study investigates the role of rice plasma membrane intrinsic protein, OsPIP2;6, for AsIII tolerance and accumulation. RNAi-mediated suppression of OsPIP2;6 expression resulted in a substantial (35-65%) reduction in As accumulation in rice shoots, while root arsenic levels remained largely unaffected. Conversely, OsPIP2;6 overexpression led to 15-76% higher arsenic accumulation in shoots, with no significant change in root As content. In mature plants, RNAi suppression caused (19-26%) decrease in shoot As, with flag leaves and grains showing a 16% reduction. OsPIP2;6 expression was detected in both roots and shoots, with higher transcript levels in shoots. Localization studies revealed its presence in vascular tissues of both roots and shoots. Overall, our findings highlight OsPIP2;6's role in root-to-shoot As translocation, attributed to its specific localization in the vascular tissue of roots and leaves. This knowledge can facilitate the development of breeding programs to mitigate As accumulation in rice and other food crops for improved food safety and increasing productivity on As-contaminated soils.
Collapse
Affiliation(s)
- Ahmed G Meselhy
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Kareem Mosa
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Kundan Kumar
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
19
|
Wang YJ, Dong CY, Tang Z, Zhao FJ. Translocation, enzymatic reduction and toxicity of dimethylarsenate in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108393. [PMID: 38290344 DOI: 10.1016/j.plaphy.2024.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Dimethylarsenate [DMAs(V)] can be produced by some soil microorganisms through methylation of inorganic arsenic (As), especially in anoxic paddy soils. DMAs(V) is more phytotoxic than inorganic As and can cause the physiological disorder straighthead disease in rice. Rice cultivars vary widely in the resistance to DMAs(V), but the mechanism remains elusive. Here, we investigated the differences in DMAs(V) uptake, translocation, and reduction to dimethylarsenite [DMAs(III)], as well as the effects on the metabolome, between two rice cultivars Mars and Zhe733. We found that Mars was 11-times more resistant to DMAs(V) than Zhe733. Mars accumulated more DMAs(V) in the roots, whereas Zhe733 translocated more DMAs(V) to the shoots and reduced more DMAs(V) to DMAs(III). DMAs(III) was more toxic than DMAs(V). Using heterologous expression and in vitro enzyme assays, we showed that the glutathione-S-transferases OsGSTU17 and OsGSTU50 were able to reduce DMAs(V) to DMAs(III). The expression levels of OsGSTU17 and OsGSTU50 were higher in the shoot of Zhe733 compared to Mars. Metabolomic analysis in rice shoots showed that glutathione (GSH) metabolism was perturbed by DMAs(V) toxicity in Zhe733. Application of exogenous GSH significantly alleviated the toxicity of DMAs(V) in Zhe733. Taken together, the results suggest that Mars is more resistant to DMAs(V) than Zhe733 because of a lower root-to-shoot translocation and a smaller capacity to reduce DMAs(V) to DMAs(III).
Collapse
Affiliation(s)
- Yi-Jie Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Yan Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
21
|
Ariafar S, Makhdoomi S, Mohammadi M. Arsenic and Tau Phosphorylation: a Mechanistic Review. Biol Trace Elem Res 2023; 201:5708-5720. [PMID: 37211576 DOI: 10.1007/s12011-023-03634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
Arsenic poisoning can affect the peripheral nervous system and cause peripheral neuropathy. Despite different studies on the mechanism of intoxication, the complete process is not explained yet, which can prevent further intoxication and produce effective treatment. In the following paper, we would like to consider the idea that arsenic might cause some diseases via inflammation induction, and tauopathy in neurons. Tau protein, one of the microtubule-associated proteins expressed in neurons, contributes to neuronal microtubules structure. Arsenic may be involved in cellular cascades involved in modulating tau function or hyperphosphorylation of tau protein, which ultimately leads to nerve destruction. For proof of this assumption, some investigations have been planned to measure the association between arsenic and quantities of phosphorylation of tau protein. Additionally, some researchers have investigated the association between microtubule trafficking in neurons and the levels of tau protein phosphorylation. It should be noticed that changing tau phosphorylation in arsenic toxicity may add a new feature to understanding the mechanism of poisonousness and aid in discovering novel therapeutic candidates such as tau phosphorylation inhibitors for drug development.
Collapse
Affiliation(s)
- Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
22
|
Jiang M, Ma X, Zheng Y, Yang Z, Guo J, Huang C, Liu Q. Association between Arsenic Methylation in Early Pregnancy and Gestational Diabetes Mellitus: A Prospective Cohort Study. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:343-351. [PMID: 39474282 PMCID: PMC11503887 DOI: 10.1021/envhealth.3c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 12/09/2024]
Abstract
The metabolism of arsenic (As) plays a crucial role in its health effects. However, the impact of arsenic methylation during early pregnancy on gestational diabetes mellitus (GDM) remains unclear. This study aimed to investigate the associations between As methylation in the first and second trimesters and the incidence of GDM by conducting a prospective cohort study in Chongqing, China. Urine samples from first (n = 131) and second (n = 53) trimester pregnant women were analyzed for arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) concentrations. Logistic regressions assessed associations between the concentrations of As species, methylation indices, and GDM risk. As species concentrations showed no significant differences between GDM and non-GDM groups. Higher MMA% (OR = 1.11; 95% CI = 1.02, 1.22) and lower secondary methylation index (SMI) (OR = 0.81; 95% CI = 0.71, 0.93) correlated with GDM risk, primarily in the first trimester. MMA% decreased and DMA% and SMI increased from the first to the second trimester. Results of stratified analyses revealed these associations in women under 28 or with normal BMIs (18-24 kg/m2). The study underscores inefficient arsenic methylation as a GDM risk, modified by age and BMI, with the first trimester as a critical period.
Collapse
Affiliation(s)
- Min Jiang
- College
of Resources and Environment, Southwest
University, Chongqing 400716, China
| | - Xiujuan Ma
- Department
of Obstetrics, The Ninth People’s
Hospital of Chongqing, Chongqing 400700, China
| | - Yin Zheng
- Department
of Obstetrics, The Ninth People’s
Hospital of Chongqing, Chongqing 400700, China
| | - Zhengmei Yang
- Department
of Obstetrics, The Ninth People’s
Hospital of Chongqing, Chongqing 400700, China
| | - Juanjuan Guo
- Research
Center of Stem Cells and Aging, Chongqing
Institute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, China
| | - Chengzhi Huang
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Chongqing
Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing
Science and Technology Commission, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, China
| | - Qingqing Liu
- College
of Resources and Environment, Southwest
University, Chongqing 400716, China
- Key
Laboratory of Luminescence Analysis and Molecular Sensing, Ministry
of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Chongqing
Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing
Science and Technology Commission, College of Chemistry and Chemical
Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Chen C, Li L, Wang Y, Dong X, Zhao FJ. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease. THE ISME JOURNAL 2023; 17:1851-1861. [PMID: 37604918 PMCID: PMC10579292 DOI: 10.1038/s41396-023-01498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Microorganisms play a key role in arsenic (As) biogeochemistry, transforming As species between inorganic and organic forms and different oxidation states. Microbial As methylation is enhanced in anoxic paddy soil, producing primarily dimethylarsenic (DMAs), which can cause rice straighthead disease and large yield losses. DMAs can also be demethylated in paddy soil, but the microorganisms driving this process remain unclear. In this study, we showed that the enrichment culture of methylotrophic methanogens from paddy soil demethylated pentavalent DMAs(V) efficiently. DMAs(V) was reduced to DMAs(III) before demethylation. 16S rRNA gene diversity and metagenomic analysis showed that Methanomassiliicoccus dominated in the enrichment culture, with Methanosarcina and Methanoculleus also being present. We isolated Methanomassiliicoccus luminyensis CZDD1 and Methanosarcina mazei CZ1 from the enrichment culture; the former could partially demethylate trivalent DMAs(III) but not DMAs(V) and the latter could demethylate neither. Addition of strain CZDD1 to the enrichment culture greatly accelerated DMAs(V) demethylation. Demethylation of DMAs(V) in the enrichment culture was suppressed by ampicillin, suggesting the involvement of bacteria. We isolated three anaerobic bacterial strains including Clostridium from the enrichment culture, which could produce hydrogen and reduce DMAs(V) to DMAs(III). Furthermore, augmentation of the Methanomassiliicoccus-Clostridium coculture to a paddy soil decreased DMAs accumulation by rice and alleviated straighthead disease. The results reveal a synergistic relationship whereby anaerobic bacteria reduce DMAs(V) to DMAs(III) for demethylation by Methanomassiliicoccus and also produce hydrogen to promote the growth of Methanomassiliicoccus; enhancing their populations in paddy soil can help alleviate rice straighthead disease.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingyan Li
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China
| | - Xiuzhu Dong
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Feng R, Liu J, Yang Z, Yao T, Ye P, Li X, Zhang J, Jiang H. Realgar-Induced Neurotoxicity: Crosstalk Between the Autophagic Flux and the p62-NRF2 Feedback Loop Mediates p62 Accumulation to Promote Apoptosis. Mol Neurobiol 2023; 60:6001-6017. [PMID: 37400749 DOI: 10.1007/s12035-023-03452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Realgar is a traditional Chinese medicine that contains arsenic. It has been reported that the abuse of medicine-containing realgar has potential central nervous system (CNS) toxicity, but the toxicity mechanism has not been elucidated. In this study, we established an in vivo realgar exposure model and selected the end product of realgar metabolism, DMA, to treat SH-SY5Y cells in vitro. Many assays, including behavioral, analytical chemistry, and molecular biology, were used to elucidate the roles of the autophagic flux and the p62-NRF2 feedback loop in realgar-induced neurotoxicity. The results showed that arsenic could accumulate in the brain, causing cognitive impairment and anxiety-like behavior. Realgar impairs the ultrastructure of neurons, promotes apoptosis, perturbs autophagic flux homeostasis, amplifies the p62-NRF2 feedback loop, and leads to p62 accumulation. Further analysis showed that realgar promotes the formation of the Beclin1-Vps34 complex by activating JNK/c-Jun to induce autophagy and recruit p62. Meanwhile, realgar inhibits the activities of CTSB and CTSD and changes the acidity of lysosomes, leading to the inhibition of p62 degradation and p62 accumulation. Moreover, the amplified p62-NRF2 feedback loop is involved in the accumulation of p62. Its accumulation promotes neuronal apoptosis by upregulating the expression levels of Bax and cleaved caspase-9, resulting in neurotoxicity. Taken together, these data suggest that realgar can perturb the crosstalk between the autophagic flux and the p62-NRF2 feedback loop to mediate p62 accumulation, promote apoptosis, and induce neurotoxicity. Realgar promotes p62 accumulation to produce neurotoxicity by perturbing the autophagic flux and p62-NRF2 feedback loop crosstalk.
Collapse
Affiliation(s)
- Rui Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Ping Ye
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Xiuhan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jiaxin Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
| |
Collapse
|
25
|
Qiu T, Wu C, Yao X, Han Q, Wang N, Yuan W, Zhang J, Shi Y, Jiang L, Liu X, Yang G, Sun X. AS3MT facilitates NLRP3 inflammasome activation by m 6A modification during arsenic-induced hepatic insulin resistance. Cell Biol Toxicol 2023; 39:2165-2181. [PMID: 35226250 PMCID: PMC8882720 DOI: 10.1007/s10565-022-09703-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
N6-methyladenosine (m6A) messenger RNA methylation is the most widespread gene regulatory mechanism affecting liver functions and disorders. However, the relationship between m6A methylation and arsenic-induced hepatic insulin resistance (IR), which is a critical initiating event in arsenic-induced metabolic syndromes such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD), remains unclear. Here, we showed that arsenic treatment facilitated methyltransferase-like 14 (METTL14)-mediated m6A methylation, and that METTL14 interference reversed arsenic-impaired hepatic insulin sensitivity. We previously showed that arsenic-induced NOD-like receptor protein 3 (NLRP3) inflammasome activation contributed to hepatic IR. However, the regulatory mechanisms underlying the role of arsenic toward the post-transcriptional modification of NLRP3 remain unclear. Here, we showed that NLRP3 mRNA stability was enhanced by METTL14-mediated m6A methylation during arsenic-induced hepatic IR. Furthermore, we demonstrated that arsenite methyltransferase (AS3MT), an essential enzyme in arsenic metabolic processes, interacted with NLRP3 to activate the inflammasome, thereby contributing to arsenic-induced hepatic IR. Also, AS3MT strengthened the m6A methylase association with NLRP3 to stabilize m6A-modified NLRP3. In summary, we showed that AS3MT-induced m6A modification critically regulated NLRP3 inflammasome activation during arsenic-induced hepatic IR, and we identified a novel post-transcriptional function of AS3MT in promoting arsenicosis.
Collapse
Affiliation(s)
- Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Chenbing Wu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Qiuyue Han
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Ningning Wang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Weizhuo Yuan
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Yan Shi
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
- Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, 116044, People's Republic of China.
| |
Collapse
|
26
|
Noh CH, Chun SH, Lim J, Kim MH, Choi S, Joo YS, Lee KW. Monitoring arsenic species concentration in rice-based processed products distributed in South Korean markets and related risk assessment. Food Sci Biotechnol 2023; 32:1361-1372. [PMID: 37457401 PMCID: PMC10348953 DOI: 10.1007/s10068-023-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/09/2023] Open
Abstract
Rice is an important grain as a major source of carbohydrates in Asia but contains more arsenic (As) than other grains. A total of 239 rice-based processed foods (rice, n = 30; rice cake, n = 30; porridge, n = 39; noodles, n = 33; bread, n = 20; snack, n = 59; powder, n = 28) were purchased in 2019 from domestic markets to measure total As (tAs) and As species. The average tAs and inorganic As (iAs) in each sample group ranged from 20 to 180 μg/kg (porridge for baby to noodle) and 4.4-85 μg/kg (porridge for baby to powder), respectively. The correlation between the iAs and tAs was affected by the variety of ingredients, such as the presence of seaweed (tAs) and the milling type of rice (iAs). Although rice cakes and baby rice-based powders are a source of concern for both adults and children, respectively, risk assessments indicate that most rice-based foods are generally safe to consume in South Korea. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01270-9.
Collapse
Affiliation(s)
- Chang-Hyun Noh
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - Su-Hyun Chun
- Institute of Biomedical Science and Food Safety, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
- Pro_B Co., Ltd, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - JoonKi Lim
- Department of Statistics, College of Natural Science, Dongguk University, 30, Pildong-Ro 1-Gil, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Min-hyuk Kim
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - Seogyeong Choi
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| | - Yong-Sung Joo
- Department of Statistics, College of Natural Science, Dongguk University, 30, Pildong-Ro 1-Gil, Jung-Gu, Seoul, 04620 Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science & Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
27
|
Sun J, Wu L, Wu M, Liu Q, Cao H. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact 2023; 382:110626. [PMID: 37442288 DOI: 10.1016/j.cbi.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Arsenic, a metalloid toxicant, has caused serious environmental pollution and is presently a global health issue. Long-term exposure to arsenic causes diverse organ and system dysfunctions, including liver disease. Arsenic-induced liver disease comprises a spectrum of liver pathologies, ranging from hepatocyte damage, steatosis, fibrosis, to hepatocellular carcinoma. Various mechanisms, including an imbalance in redox reactions, mitochondrial dysfunction and epigenetic changes, participate in the pathogenesis of arsenic-induced liver disease. Altered epigenetic processes involved in its initiation and progression. Dysregulated modulations of non-coding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, exert regulating effects on these processes. Here, we have reviewed the underlying pathogenic mechanisms that lead to progressive arsenic-induced liver disease, and we provide a discussion focusing on the effects of ncRNAs on dysfunctions in intercellular communication and on the activation of hepatic stellate cells and malignant transformation of hepatocytes. Further, we have discussed the roles of ncRNAs in intercellular communication via extracellular vesicles and cytokines, and have provided a perspective for the application of ncRNAs as biomarkers in the early diagnosis and evaluation of the pathogenesis of arsenic-induced liver disease. Further investigations of ncRNAs will help us to understand the nature of arsenic-induced liver disease and to identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Hong Cao
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
28
|
Gastellu T, Le Bizec B, Rivière G. Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:951-970. [PMID: 37428801 DOI: 10.1080/19440049.2023.2231086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Risk assessment methodology, mostly commonly used, faces the complexity of the environment. Populations are exposed to multiple sources of chemicals throughout life and the chemical mixtures they are exposed change during time (lifestyle factors, regulatory decisions, etc). The risk assessment needs to consider these dynamics and the evolution of the body with age, in order to refine the exposure assessment to chemicals and to predict the health impact of these exposures. This review highlights the latest methodologies developed to improve risk assessment, especially cor heavy metals. The methodologies aim to better describe the chemical toxicokinetic and toxicodynamic as well as the exposure assessment. Human Biomonitoring (HBM) data give great opportunities to link biomarkers of exposure with an adverse effect. Physiologically-Based Toxicokinetic (PBTK) models are more and more used to simulate the evolution of biomarkers in organisms, considering the external exposures and the physiological evolutions. PBTK models may also be used to determine the routes of exposure or to predict the impacts of schemes of exposure. The major limit is the integration of several chemicals in mixture with common adverse effects and the interactions between them.
Collapse
Affiliation(s)
- Thomas Gastellu
- Oniris, INRAE, LABERCA, Nantes, France
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Gilles Rivière
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| |
Collapse
|
29
|
Hoy KS, Davydiuk T, Chen X, Lau C, Schofield JRM, Lu X, Graydon JA, Mitchell R, Reichert M, Le XC. Arsenic speciation in freshwater fish: challenges and research needs. FOOD QUALITY AND SAFETY 2023; 7:fyad032. [PMID: 37744965 PMCID: PMC10515374 DOI: 10.1093/fqsafe/fyad032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/12/2023] [Indexed: 09/26/2023]
Abstract
Food and water are the main sources of human exposure to arsenic. It is important to determine arsenic species in food because the toxicities of arsenic vary greatly with its chemical speciation. Extensive research has focused on high concentrations of arsenic species in marine organisms. The concentrations of arsenic species in freshwater fish are much lower, and their determination presents analytical challenges. In this review, we summarize the current state of knowledge on arsenic speciation in freshwater fish and discuss challenges and research needs. Fish samples are typically homogenized, and arsenic species are extracted using water/methanol with the assistance of sonication and enzyme treatment. Arsenic species in the extracts are commonly separated using high-performance liquid chromatography (HPLC) and detected using inductively coupled plasma mass spectrometry (ICPMS). Electrospray ionization tandem mass spectrometry, used in combination with HPLC and ICPMS, provides complementary information for the identification and characterization of arsenic species. The methods and perspectives discussed in this review, covering sample preparation, chromatography separation, and mass spectrometry detection, are directed to arsenic speciation in freshwater fish and applicable to studies of other food items. Despite progress made in arsenic speciation analysis, a large fraction of the total arsenic in freshwater fish remains unidentified. It is challenging to identify and quantify arsenic species present in complex sample matrices at very low concentrations. Further research is needed to improve the extraction efficiency, chromatographic resolution, detection sensitivity, and characterization capability.
Collapse
Affiliation(s)
- Karen S Hoy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tetiana Davydiuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaojian Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Xiufen Lu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Ruth Mitchell
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - Megan Reichert
- Alberta Health, Health Protection Branch, Edmonton, Alberta, Canada
| | - X Chris Le
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Geng A, Lian W, Wang X, Chen G. Regulatory Mechanisms Underlying Arsenic Uptake, Transport, and Detoxification in Rice. Int J Mol Sci 2023; 24:11031. [PMID: 37446207 DOI: 10.3390/ijms241311031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Arsenic (As) is a metalloid environmental pollutant ubiquitous in nature that causes chronic and irreversible poisoning to humans through its bioaccumulation in the trophic chain. Rice, the staple food crop for 350 million people worldwide, accumulates As more easily compared to other cereal crops due to its growth characteristics. Therefore, an in-depth understanding of the molecular regulatory mechanisms underlying As uptake, transport, and detoxification in rice is of great significance to solving the issue of As bioaccumulation in rice, improving its quality and safety and protecting human health. This review summarizes recent studies on the molecular mechanisms of As toxicity, uptake, transport, redistribution, regulation, and detoxification in rice. It aims to provide novel insights and approaches for preventing and controlling As bioaccumulation in rice plants, especially reducing As accumulation in rice grains.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
31
|
Sun SK, Chen J, Zhao FJ. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3286-3299. [PMID: 36861339 DOI: 10.1093/jxb/erad074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/08/2023]
Abstract
Soil contamination with trace metals and metalloids can cause toxicity to plants and threaten food safety and human health. Plants have evolved sophisticated mechanisms to cope with excess trace metals and metalloids in soils, including chelation and vacuolar sequestration. Sulfur-containing compounds, such as glutathione and phytochelatins, play a crucial role in their detoxification, and sulfur uptake and assimilation are regulated in response to the stress of toxic trace metals and metalloids. This review focuses on the multi-level connections between sulfur homeostasis in plants and responses to such stresses, especially those imposed by arsenic and cadmium. We consider recent progress in understanding the regulation of biosynthesis of glutathione and phytochelatins and of the sensing mechanism of sulfur homeostasis for tolerance of trace metals and metalloids in plants. We also discuss the roles of glutathione and phytochelatins in controlling the accumulation and distribution of arsenic and cadmium in plants, and possible strategies for manipulating sulfur metabolism to limit their accumulation in food crops.
Collapse
Affiliation(s)
- Sheng-Kai Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Qiu F, Zhang H, Liu H, Zheng T, Xia W, Xu S, Xiao H, Li Y. Association of arsenic exposure and clinical hematological changes during pregnancy: Findings from a prospective Wuhan birth cohort study. ENVIRONMENTAL RESEARCH 2023; 224:115559. [PMID: 36828249 DOI: 10.1016/j.envres.2023.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Animal studies have reported arsenic-induced disturbed erythropoiesis parameters. However, the effects of exposure to arsenic on hematological parameters among pregnant women are unclear. OBJECTIVES We aimed to evaluate trimester-specific associations between arsenic metabolites and erythropoietic parameters measured repeatedly during pregnancy. METHODS A total of 1945 pregnant women from a birth cohort study were included. We detected arsenic species in urine sampled at each trimester and extracted erythropoietic parameters in different trimesters from the medical records. We used linear regressions with generalized estimating equations (GEEs) to examine the relationship between arsenic metabolites concentrations at different trimesters and erythropoietic parameters. We utilized GEEs to calculate the odds ratio (OR) for anemia during pregnancy. RESULTS Adjusted trimester-specific analysis showed that higher monomethylated arsenic (MMA) and %MMA were related to remarkably reduced hemoglobin (Hb) and mean corpuscular hemoglobin (MCH). Additionally, elevated urinary MMA concentration and %MMA in the early trimester were associated with an increased risk of microcytic anemias in the late trimester. CONCLUSIONS Our study demonstrated a significant inverse relationship between gestational arsenic exposure and Hb and MCH. Notably, higher MMA and lower methylation capacity to metabolize inorganic arsenic (iAs) in early pregnancy might increase the likelihood of microcytic anemia among pregnant women in late pregnancy.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, 430016, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
33
|
Mehanathan S, Jaafar J, Nasir AM, Ismail AF, Matsuura T, Othman MHD, Rahman MA, Yusof N. Magnesium Oxide Nanoparticles for the Adsorption of Pentavalent Arsenic from Water: Effects of Calcination. MEMBRANES 2023; 13:membranes13050475. [PMID: 37233536 DOI: 10.3390/membranes13050475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The occurrence of heavy metal ions in water is intractable, and it has currently become a serious environmental issue to deal with. The effects of calcining magnesium oxide at 650 °C and the impacts on the adsorption of pentavalent arsenic from water are reported in this paper. The pore nature of a material has a direct impact on its ability to function as an adsorbent for its respective pollutant. Calcining magnesium oxide is not only beneficial in enhancing its purity but has also been proven to increase the pore size distribution. Magnesium oxide, as an exceptionally important inorganic material, has been widely studied in view of its unique surface properties, but the correlation between its surface structure and physicochemical performance is still scarce. In this paper, magnesium oxide nanoparticles calcined at 650 °C are assessed to remove the negatively charged arsenate ions from an aqueous solution. The increased pore size distribution was able to give an experimental maximum adsorption capacity of 115.27 mg/g with an adsorbent dosage of 0.5 g/L. Non-linear kinetics and isotherm models were studied to identify the adsorption process of ions onto the calcined nanoparticles. From the adsorption kinetics study, the non-linear pseudo-first order showed an effective adsorption mechanism, and the most suitable adsorption isotherm was the non-linear Freundlich isotherm. The resulting R2 values of other kinetic models, namely Webber-Morris and Elovich, were still below those of the non-linear pseudo-first-order model. The regeneration of magnesium oxide in the adsorption of negatively charged ions was determined by making comparisons between fresh and recycled adsorbent that has been treated with a 1 M NaOH solution.
Collapse
Affiliation(s)
- Shaymala Mehanathan
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Atikah Mohd Nasir
- Centre for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| |
Collapse
|
34
|
Zalewska T, Grajewska A, Danowska B, Rybka-Murat M, Saniewski M, Iwaniak M. Warning system for potential releases of chemical warfare agents from dumped munition in the Baltic Sea. MARINE POLLUTION BULLETIN 2023; 191:114930. [PMID: 37071941 DOI: 10.1016/j.marpolbul.2023.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The research aimed to determine the scale of the potential contamination of the southern Baltic by substances from dumped chemical weapons, in the context of applying a strategy for detecting the potential releases of toxic materials. The research included the analysis of total arsenic in sediments, macrophytobenthos, fish, and yperite with derivatives and arsenoorganic compounds in sediments and as an integral part of the warning system the threshold values for arsenic in these matrices were set. Arsenic concentrations in sediments ranged from 11 to 18 mg kg-1 with an increase to 30 mg kg-1 in layers dated to 1940-1960, what was accompanied by the detection of triphenylarsine (600 mg kg-1). The presence of yperite or arsenoorganic-related chemical warfare agents was not confirmed in other areas. Arsenic ranged from 0.14 to 1.46 mg kg-1 in fish and from 0.8 to 3 mg kg-1 in macrophytobenthos.
Collapse
Affiliation(s)
- Tamara Zalewska
- Institute of Meteorology and Water Management - National Research Institute Waszyngtona 42, 81-342 Gdynia, Poland.
| | - Agnieszka Grajewska
- Institute of Meteorology and Water Management - National Research Institute Waszyngtona 42, 81-342 Gdynia, Poland
| | - Beata Danowska
- Institute of Meteorology and Water Management - National Research Institute Waszyngtona 42, 81-342 Gdynia, Poland
| | - Marta Rybka-Murat
- Institute of Meteorology and Water Management - National Research Institute Waszyngtona 42, 81-342 Gdynia, Poland
| | - Michał Saniewski
- Institute of Meteorology and Water Management - National Research Institute Waszyngtona 42, 81-342 Gdynia, Poland
| | - Michał Iwaniak
- Institute of Meteorology and Water Management - National Research Institute Waszyngtona 42, 81-342 Gdynia, Poland
| |
Collapse
|
35
|
Chang X, Cai X, Yin N, Wang P, Fan C, Liu X, Li Y, Wang S, Cui L, Cui Y. Arsenic and iron bioavailability in Caco-2 cells: The influence of their co-existence and concentration. Food Chem Toxicol 2023; 175:113727. [PMID: 36925043 DOI: 10.1016/j.fct.2023.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Arsenic (As) exposure in humans is primarily caused through food and drinking water. Iron (Fe) is one of the most common element of the human and can influence the toxicity and bioavailability of As. However, information on the interaction between As and Fe when present together is limited. In this study, the interaction effects of Fe(III) (0, 3, and 10 mg/L) and As (As(III) at 0, 0.05, 0.1 mg/L, and As(V) at 0, 0.1, and 2 mg/L, respectively) on their absorption and bioavailability in Caco-2 cells were analyzed. As(III) absorption significantly decreased with the addition of Fe, while Fe absorption significantly increased. Compared with 0.1 mg/L As(III) addition alone, 3 and 10 mg/L Fe(III) addition significantly reduced the As(III) absorption by 8.6 and 11 μg/L, respectively. The absorption of As and Fe(III) and the bioavailability of Fe(III) significantly increased with the addition of As(III/V). Compared with 10 mg/L Fe(III) alone, the absorption of As(III) was significantly increased by 1 and 1.3 mg/L with 0.05 and 0.1 mg/L As(III) addition, respectively. Furthermore, the absorption and bioavailability of Fe(III) were significantly increased by 1.2 mg/L and 8% and 1.2 mg/L and 8.2%, respectively, after adding 0.1 and 2 mg/L As(V).
Collapse
Affiliation(s)
- Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuping Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Liwei Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
36
|
Zhang Y, Xing H, Hu Z, Xu W, Tang Y, Zhang J, Niu Q. Independent and combined associations of urinary arsenic exposure and serum sex steroid hormones among 6-19-year old children and adolescents in NHANES 2013-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160883. [PMID: 36526194 DOI: 10.1016/j.scitotenv.2022.160883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Arsenic exposure may disrupt sex steroid hormones, causing endocrine disruption. However, human evidence is limited and inconsistent, especially for children and adolescents. To evaluate the independent and combined associations between arsenic exposure and serum sex steroid hormones in children and adolescents, we conducted a cross-sectional analysis of data from 1063 participants aged 6 to 19 years from the 2013-2016 National Health and Nutrition Examination Survey (NHANES). Three urine arsenic metabolites were examined, as well as three serum sex steroid hormones, estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG). The ratio of TT to E2 (TT/E2) and the free androgen index (FAI) generated by TT/SHBG were also assessed. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were used to evaluate the associations of individual or arsenic metabolite combinations with sex steroid hormones by gender and age stratification. Positive associations were found between total arsenic and arsenic metabolites with TT, E2, and FAI. In contrast, negative associations were found between arsenic metabolites and SHBG. Furthermore, there was an interaction after gender-age stratification between DMA and SHBG in female adolescents. Notably, based on the WQS and BKMR model results, the combined association of arsenic and its metabolites was positively associated with TT, E2, and FAI and negatively associated with SHBG. Moreover, DMA and MMA dominated the highest weights among the arsenic metabolites. Overall, our results indicate that exposure to arsenic, either alone or in mixtures, may alter sex steroid hormone levels in children and adolescents.
Collapse
Affiliation(s)
- Yuanli Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
37
|
Virk RK, Garla R, Kaushal N, Bansal MP, Garg ML, Mohanty BP. The relevance of arsenic speciation analysis in health & medicine. CHEMOSPHERE 2023; 316:137735. [PMID: 36603678 DOI: 10.1016/j.chemosphere.2023.137735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/24/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Long term exposure to arsenic through consumption of contaminated groundwater has been a global issue since the last five decades; while from an alternate standpoint, arsenic compounds have emerged as unparallel chemotherapeutic drugs. This review highlights the contribution from arsenic speciation studies that have played a pivotal role in the progression of our understanding of the biological behaviour of arsenic in humans. We also discuss the limitations of the speciation studies and their association with the interpretation of arsenic metabolism. Chromatographic separation followed by spectroscopic detection as well as the utilization of biotinylated pull-down assays, protein microarray and radiolabelled arsenic have been instrumental in identifying hundreds of metabolic arsenic conjugates, while, computational modelling has predicted thousands of them. However, these species exhibit a variegated pattern, which supports more than one hypothesis for the metabolic pathway of arsenic. Thus, the arsenic species are yet to be integrated into a coherent mechanistic pathway depicting its chemicobiological fate. Novel biorelevant arsenic species have been identified due to significant evolution in experimental methodologies. However, these methods are specific for the identification of only a group of arsenicals sharing similar physiochemical properties; and may not be applicable to other constituents of the vast spectrum of arsenic species. Consequently, the identity of arsenic binding partners in vivo and the sequence of events in arsenic metabolism are still elusive. This resonates the need for additional focus on the extraction and characterization of both low and high molecular weight arsenicals in a combinative manner.
Collapse
Affiliation(s)
- Rajbinder K Virk
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Roobee Garla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohinder P Bansal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Mohan L Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| | - Biraja P Mohanty
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
38
|
Faria MCDS, Hott RDC, dos Santos MJ, Santos MS, Andrade TG, Bomfeti CA, Rocha BA, Barbosa F, Rodrigues JL. Arsenic in Mining Areas: Environmental Contamination Routes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4291. [PMID: 36901297 PMCID: PMC10002384 DOI: 10.3390/ijerph20054291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The emission and accumulation of toxic elements such as arsenic in various environmental compartments have become increasingly frequent primarily due to anthropogenic actions such as those observed in agricultural, industrial, and mining activities. An example of environmental arsenic contamination in Brazil exists in the city of Paracatu, MG, due to the operation of a gold mine. The aim of this work is to evaluate the routes and effects of arsenic contamination in environmental compartments (air, water, and soil) and environmental organisms (fish and vegetables) from mining regions as well as the trophic transfer of the element for a risk assessment of the population. In this study, high levels of arsenic were found in the waters of the Rico stream ranging from 4.05 µg/L during the summer season to 72.4 µg/L during the winter season. Moreover, the highest As concentration was 1.668 mg kg-1 in soil samples, which are influenced by seasonal variation and by proximity to the gold mine. Inorganic and organic arsenic species were found above the allowed limit in biological samples, indicating the transfer of arsenic found in the environment and demonstrating a great risk to the population exposed to this area. This study demonstrates the importance of environmental monitoring to diagnose contamination and encourage the search for new interventions and risk assessments for the population.
Collapse
Affiliation(s)
- Márcia Cristina da Silva Faria
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil
| | - Rodrigo de Carvalho Hott
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil
| | - Maicon Junior dos Santos
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil
| | - Mayra Soares Santos
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil
| | - Thainá Gusmão Andrade
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil
| | - Cleide Aparecida Bomfeti
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil
| | - Bruno Alves Rocha
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Fernando Barbosa
- Analytical and System Toxicology Laboratory, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Jairo Lisboa Rodrigues
- Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Teófilo Otoni 39803-371, MG, Brazil
| |
Collapse
|
39
|
Medina S, Zhang H, Santos-Medina LV, Yee ZA, Martin KJ, Wan G, Bolt AM, Zhou X, Stýblo M, Liu KJ. Arsenite Methyltransferase Is an Important Mediator of Hematotoxicity Induced by Arsenic in Drinking Water. WATER 2023; 15:448. [PMID: 36936034 PMCID: PMC10019457 DOI: 10.3390/w15030448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chronic arsenic exposures via the consumption of contaminated drinking water are clearly associated with many deleterious health outcomes, including anemia. Following exposure, trivalent inorganic arsenic (AsIII) is methylated through a series of arsenic (+III oxidation state) methyltransferase (As3MT)-dependent reactions, resulting in the production of several intermediates with greater toxicity than the parent inorganic arsenicals. The extent to which inorganic vs. methylated arsenicals contribute to AsIII-induced hematotoxicity remains unknown. In this study, the contribution of As3MT-dependent biotransformation to the development of anemia was evaluated in male As3mt-knockout (KO) and wild-type, C57BL/6J, mice following 60-day drinking water exposures to 1 mg/L (ppm) AsIII. The evaluation of hematological indicators of anemia revealed significant reductions in red blood cell counts, hemoglobin levels, and hematocrit in AsIII-exposed wild-type mice as compared to unexposed controls. No such changes in the blood of As3mt-KO mice were detected. Compared with unexposed controls, the percentages of mature RBCs in the bone marrow and spleen (measured by flow cytometry) were significantly reduced in the bone marrow of AsIII-exposed wild-type, but not As3mt-KO mice. This was accompanied by increased levels of mature RBCS in the spleen and elevated levels of circulating erythropoietin in the serum of AsIII-exposed wild-type, but not As3mt-KO mice. Taken together, the findings from the present study suggest that As3MT-dependent biotransformation has an essential role in mediating the hematotoxicity of AsIII following drinking water exposures.
Collapse
Affiliation(s)
- Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | | | - Zachary A. Yee
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Kaitlin J. Martin
- Department of Biology, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | - Guanghua Wan
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Alicia M. Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
40
|
Chen C, Yu Y, Wang Y, Gao A, Yang B, Tang Z, Zhao FJ. Reduction of Dimethylarsenate to Highly Toxic Dimethylarsenite in Paddy Soil and Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:822-830. [PMID: 36490306 DOI: 10.1021/acs.est.2c07418] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dimethylarsenate [DMAs(V)] is a common methylated As species in soils and plants and can cause the physiological disorder straighthead disease in rice. Because DMAs(V) is relatively noncytotoxic, we hypothesize that phytotoxicity of DMAs(V) may arise from trivalent dimethylarsenite [DMAs(III)]. DMAs(III) has been detected in human urine samples but not in environmental samples, likely due to its instability under oxic conditions. We first established methods for preservation and detections of DMAs(III) in soil and plant samples. We showed that DMAs(III) was a major As species in soil solution from an anoxic paddy soil. Enrichment cultures for fermentative, sulfate-reducing, and denitrifying bacteria from the paddy soil could reduce DMAs(V) to DMAs(III). Twenty-two strains of anaerobic bacteria isolated from the soil showed some ability to reduce DMAs(V). Rice plants grown in hydroponic culture with DMAs(V) also showed the ability to reduce DMAs(V) to DMAs(III). Rice plants and grains grown in a flooded paddy soil contained both DMAs(V) and DMAs(III); their concentrations were higher in the spikelets with straighthead disease than those without. DMAs(III) was much more toxic to the protoplasts isolated from rice plants than DMAs(V). Taken together, the ability to reduce DMAs(V) to highly toxic DMAs(III) is common to soil anaerobes and rice plants.
Collapse
Affiliation(s)
- Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Yu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yijie Wang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Axiang Gao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baoyun Yang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhu Tang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Nail AN, Ferragut Cardoso AP, Montero LK, States JC. miRNAs and arsenic-induced carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:203-240. [PMID: 36858773 PMCID: PMC10184182 DOI: 10.1016/bs.apha.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arsenic-induced carcinogenesis is a worldwide health problem. Identifying the molecular mechanisms responsible for the induction of arsenic-induced cancers is important for developing treatment strategies. MicroRNA (miRNA) dysregulation is known to affect development and progression of human cancer. Several studies have identified an association between altered miRNA expression in cancers from individuals chronically exposed to arsenic and in cell models for arsenic-induced carcinogenesis. This chapter provides a comprehensive review for miRNA dysregulation in arsenic-induced cancer.
Collapse
Affiliation(s)
- Alexandra N Nail
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Lakyn K Montero
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
42
|
Qiu F, Zhang H, He Y, Liu H, Zheng T, Xia W, Xu S, Zhou J, Li Y. Associations of arsenic exposure with blood pressure and platelet indices in pregnant women: A cross-sectional study in Wuhan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114378. [PMID: 36525950 DOI: 10.1016/j.ecoenv.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental inorganic arsenic (iAs) exposure is potentially related to abnormal blood pressure (BP) changes and abnormal platelet activation. However, limited epidemiological studies have explored the impacts of iAs exposure on platelet change mediated by BP, especially for pregnant women. OBJECTIVES Our purpose was to investigate the associations of arsenic exposure with blood pressure and platelet indices among pregnant women. METHODS The present study population included 765 pregnant women drawn from a prospective birth cohort study in Wuhan, China, recruited between October 2013 and April 2016. Urine sampled in the second trimester were used to assess arsenic species concentrations. The relative distribution of urinary arsenic species was used to measure human methylation capacity. BP parameters and platelet indices originated from the medical record. We applied multivariable linear regression models to explore the cross-sectional relationships between urinary arsenic metabolites, BP parameters, and platelet indices. We utilized mediation analysis to investigate the impacts of arsenic exposure on platelet indices through BP as mediator variables. RESULTS We observed significant positive correlations between iAs and systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP). Pregnant women with higher methylation capacity to metabolize iAs characterized by higher secondary methylation index (SMI) and total methylation index (TMI) had a more significant reduction in SBP, DBP, and MAP. Pregnant women with higher DBP and MAP had higher platelet counts (PLC). A decreased PLC was found in subjects wither higher SMI. Additionally, SMI was negatively linked to PLC mediated through MAP. CONCLUSIONS Obtained results suggested that higher methylation capacity to metabolize iAs might contribute to decreased PLC among pregnant women, and MAP might mediate the influence of SMI on PLC.
Collapse
Affiliation(s)
- Feng Qiu
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jieqiong Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Department of Gynaecology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanyuan Li
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan 430016, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
43
|
Metabolic Changes and Their Associations with Selected Nutrients Intake in the Group of Workers Exposed to Arsenic. Metabolites 2023; 13:metabo13010070. [PMID: 36676995 PMCID: PMC9866863 DOI: 10.3390/metabo13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Arsenic (As) exposure causes numerous adverse health effects, which can be reduced by the nutrients involved in the metabolism of iAs (inorganic As). This study was carried out on two groups of copper-smelting workers: WN, workers with a urinary total arsenic (tAs) concentration within the norm (n = 75), and WH, workers with a urinary tAs concentration above the norm (n = 41). This study aimed to analyze the association between the intake level of the nutrients involved in iAs metabolism and the signal intensity of the metabolites that were affected by iAs exposure. An untargeted metabolomics analysis was carried out on urine samples using liquid chromatography-mass spectrometry, and the intake of the nutrients was analyzed based on 3-day dietary records. Compared with the WN group, five pathways (the metabolism of amino acids, carbohydrates, glycans, vitamins, and nucleotides) with twenty-five putatively annotated metabolites were found to be increased in the WH group. In the WN group, the intake of nutrients (methionine; vitamins B2, B6, and B12; folate; and zinc) was negatively associated with six metabolites (cytosine, D-glucuronic acid, N-acetyl-D-glucosamine, pyroglutamic acid, uridine, and urocanic acid), whereas in the WH group, it was associated with five metabolites (D-glucuronic acid, L-glutamic acid, N-acetyl-D-glucosamine, N-acetylneuraminic acid, and uridine). Furthermore, in the WH group, positive associations between methionine, folate, and zinc intake and the signal intensity of succinic acid and 3-mercaptolactic acid were observed. These results highlight the need to educate the participants about the intake level of the nutrients involved in iAs metabolism and may contribute to further considerations with respect to the formulation of dietary recommendations for people exposed to iAs.
Collapse
|
44
|
Zhuang F, Huang J, Li H, Peng X, Xia L, Zhou L, Zhang T, Liu Z, He Q, Luo F, Yin H, Meng D. Biogeochemical behavior and pollution control of arsenic in mining areas: A review. Front Microbiol 2023; 14:1043024. [PMID: 37032850 PMCID: PMC10080717 DOI: 10.3389/fmicb.2023.1043024] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Arsenic (As) is one of the most toxic metalloids that possess many forms. As is constantly migrating from abandoned mining area to the surrounding environment in both oxidation and reducing conditions, threatening human health and ecological safety. The biogeochemical reaction of As included oxidation, reduction, methylation, and demethylation, which is closely associated with microbial metabolisms. The study of the geochemical behavior of arsenic in mining areas and the microbial remediation of arsenic pollution have great potential and are hot spots for the prevention and remediation of arsenic pollution. In this study, we review the distribution and migration of arsenic in the mining area, focus on the geochemical cycle of arsenic under the action of microorganisms, and summarize the factors influencing the biogeochemical cycle of arsenic, and strategies for arsenic pollution in mining areas are also discussed. Finally, the problems of the risk control strategies and the future development direction are prospected.
Collapse
Affiliation(s)
- Fan Zhuang
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Jingyi Huang
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hongguang Li
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, China
| | - Xing Peng
- Hunan Renhe Environment Co., Ltd., Changsha, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, Hubei, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing, China
| | - Teng Zhang
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Zhenghua Liu
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Huaqun Yin
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Delong Meng
- Key Laboratory of Biometallurgy Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- *Correspondence: Delong Meng
| |
Collapse
|
45
|
Jia XH, Su Z, Zhao FH, Zhou QH, Fan YG, Qiao YL. Synergy of arsenic with smoking in causing cardiovascular disease mortality: A cohort study with 27 follow-up years in China. Front Public Health 2022; 10:1012267. [PMID: 36589990 PMCID: PMC9795054 DOI: 10.3389/fpubh.2022.1012267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Background To explore the patterns of the exposure-response relationship between arsenic exposure and cardiovascular disease (CVD) mortality and investigate the effect of cigarette smoking on the association. Methods Seven thousand seven hundred thirty-five tin miners with at least 10 years of arsenic exposure were enrolled since 1992 and followed up for 27 years. Each individual's air arsenic exposure at workplace was calculated by time weighted average arsenic concentration × exposure months. Detailed information on smoking was collected at baseline, and information on smoking status was collected for five consecutive years from 1992 to 1996. Hazard ratio (HR) and 95% confidence interval (CI) for the risk of CVD were estimated using Cox proportional hazards models. Results A total of 1,046 CVD deaths occurred in this cohort over 142,287.7 person-years of follow up. We firstly reported that for equal cumulative exposure, participants exposed to higher concentrations over shorter duration had a higher risk of CVD mortality than those exposed to lower concentration over longer duration. The HR and 95% CI were 1.38 (95%CI: 1.03-1.85) in participants exposed to arsenic concentration (45.5-99.5 mg/m3), 1.29 (95%CI: 1.02-1.67) in 99.5-361.0 mg/m3. Further, participants with age at first exposure <18 years had a significantly higher risk of morality from CVD, cerebrovascular and heart diseases than those with ≥18 years. Finally, all synergy indices were greater than 1 (range, 1.11-2.39), indicating that the joint effect of arsenic exposure and cigarette smoking on CVD mortality was greater than the sum of their individual effect. Conclusions Exposure to air arsenic at workplace is adversely associated with mortality from CVD, especially among smokers younger than 18 years and smokers.
Collapse
Affiliation(s)
- Xin-Hua Jia
- The State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China,Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Su
- Department of Tobacco Control and Prevention of Respiratory Disease, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China,WHO Collaborating Center for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China,National Clinical Research Center for Respiratory Diseases, Beijing, China,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China,National Center for Respiratory Medicine, Beijing, China
| | - Fang-Hui Zhao
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Fang-Hui Zhao
| | - Qing-Hua Zhou
- Sichuan Lung Cancer Center, Sichuan Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ya-Guang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China,Ya-Guang Fan
| | - You-Lin Qiao
- Department of Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,Center for Global Health, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Joint Action Toxicity of Arsenic (As) and Lead (Pb) Mixtures in Developing Zebrafish. Biomolecules 2022; 12:biom12121833. [PMID: 36551261 PMCID: PMC9776292 DOI: 10.3390/biom12121833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Arsenic (As) and lead (Pb) are environmental pollutants found in common sites and linked to similar adverse health effects. Multiple studies have investigated the toxicity of each metal individually or in complex mixtures. Studies defining the joint interaction of a binary exposure to As and Pb, especially during the earliest stages of development, are limited and lack confirmation of the predicted mixture interaction. We hypothesized that a mixture of As (iAsIII) and Pb will have a concentration addition (CA) interaction informed by common pathways of toxicity of the two metals. To test this hypothesis, developing zebrafish (1-120 h post fertilization; hpf) were first exposed to a wide range of concentrations of As or Pb separately to determine 120 hpf lethal concentrations. These data were then used in the CA and independent action (IA) models to predict the type of mixture interaction from a co-exposure to As and Pb. Three titration mixture experiments were completed to test prediction of observed As and Pb mixture interaction by keeping the Pb concentration constant and varying As concentrations in each experiment. The prediction accuracy of the two models was then calculated using the prediction deviation ratio (PDR) and Chi-square test and regression modeling applied to determine type of interaction. Individual metal exposures determined As and Pb concentrations at which 25% (39.0 ppm Pb, 40.2 ppm As), 50% (73.8 ppm Pb, 55.4 ppm As), 75% (99.9 ppm Pb, 66.6 ppm As), and 100% (121.7 ppm Pb, 77.3 ppm As) lethality was observed at 120 hpf. These data were used to graph the predicted mixture interaction using the CA and IA models. The titration experiments provided experimental observational data to assess the prediction. PDR values showed the CA model approached 1, whereas all PDR values for the IA model had large deviations from predicted data. In addition, the Chi-square test showed most observed results were significantly different from the predictions, except in the first experiment (Pb LC25 held constant) with the CA model. Regression modeling for the IA model showed primarily a synergistic response among all exposure scenarios, whereas the CA model indicated additive response at lower exposure concentrations and synergism at higher exposure concentrations. The CA model was a better predictor of the Pb and As binary mixture interaction compared to the IA model and was able to delineate types of mixture interactions among different binary exposure scenarios.
Collapse
|
47
|
Shang B, Venkatratnam A, Hartwell H, Douillet C, Cable P, Liu T, Zou F, Ideraabdullah FY, Fry RC, Stýblo M. Ex vivo exposures to arsenite and its methylated trivalent metabolites alter gene transcription in mouse sperm cells. Toxicol Appl Pharmacol 2022; 455:116266. [PMID: 36209798 PMCID: PMC9753555 DOI: 10.1016/j.taap.2022.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
Abstract
We have previously reported that preconception exposure to iAs may contribute to the development of diabetes in mouse offspring by altering gene expressions in paternal sperm. However, the individual contributions of iAs and its methylated metabolites, monomethylated arsenic (MAs) and dimethylated arsenic (DMAs), to changes in the sperm transcriptome could not be determined because all three As species are present in sperm after in vivo iAs exposure. The goal of the present study was to assess As species-specific effects using an ex vivo model. We exposed freshly isolated mouse sperm to either 0.1 or 1 μM arsenite (iAsIII) or the methylated trivalent arsenicals, MAsIII and DMAsIII, and used RNA-sequencing to identify differentially expressed genes, enriched pathways, and associated protein networks. For all arsenicals tested, the exposures to 0.1 μM concentrations had greater effects on gene expression than 1 μM exposures. Transcription factor AP-1 and B cell receptor complexes were the most significantly enriched pathways in sperm exposed to 0.1 μM iAsIII. The Mre11 complex and Antigen processing were top pathways targeted by exposure to 0.1 μM MAsIII and DMAsIII, respectively. While there was no overlap between gene transcripts altered by ex vivo exposures in the present study and those altered by in vivo exposure in our prior work, several pathways were shared, including PI3K-Akt signaling, Focal adhesion, and Extracellular matrix receptor interaction pathways. Notably, the protein networks associated with these pathways included those with known roles in diabetes. This study is the first to assess the As species-specific effects on sperm transcriptome, linking these effects to the diabetogenic effects of iAs exposure.
Collapse
Affiliation(s)
- Bingzhen Shang
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA; Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Hadley Hartwell
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Peter Cable
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Folami Y Ideraabdullah
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
48
|
Zhou M, Liu Z, Zhang B, Yang J, Hu B. Interaction between arsenic metabolism genes and arsenic leads to a lose-lose situation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119971. [PMID: 36055451 DOI: 10.1016/j.envpol.2022.119971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are essential for modifying arsenic morphology, mobility, and toxicity. Still, knowledge of the microorganisms responsible for arsenic metabolism in specific arsenic-contaminated fields, such as metallurgical plants is limited. We sampled on-field soils from three depths at 70 day intervals to explore the distribution and transformation of arsenic in the soil. Arsenic-metabolizing microorganisms were identified from the mapped gene sequences. Arsenic metabolism pathways were constructed with metagenomics and AsChip analysis (a high-throughput qPCR chip for arsenic metabolism genes). It has been shown in the result that 350 genera of arsenic-metabolizing microorganisms carrying 17 arsenic metabolism genes in field soils were identified, as relevant to arsenic reduction, arsenic methylation, arsenic respiration, and arsenic oxidation, respectively. Arsenic reduction genes were the only genes shared by the 10 high-ranking arsenic-metabolizing microorganisms. Arsenic reduction genes (arsABCDRT and acr3) accounted for 73.47%-78.11% of all arsenic metabolism genes. Such genes dominated arsenic metabolism, mediating the reduction of 14.11%-19.86% of As(V) to As(III) in 0-100 cm soils. Arsenic reduction disrupts microbial energy metabolism, DNA replication and repair and membrane transport. Arsenic reduction led to a significant decrease in the abundance of 17 arsenic metabolism genes (p < 0.0001). The critical role of arsenic-reducing microorganisms in the migration and transformation of arsenic in metallurgical field soils, was emphasized with such results. These results were of pronounced significance for understanding the transformation behavior of arsenic and the precise regulation of arsenic in field soil.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China
| | - Baofeng Zhang
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, China
| | - Jiawen Yang
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
49
|
Choi JW, Song YC, Cheong NY, Lee K, Kim S, Lee KM, Ji K, Shin MY, Kim S. Concentrations of blood and urinary arsenic species and their characteristics in general Korean population. ENVIRONMENTAL RESEARCH 2022; 214:113846. [PMID: 35820651 DOI: 10.1016/j.envres.2022.113846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) exposure has been extensively studied by investigating As species (e.g., inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)) in urine, yet recent research suggests that blood could be a possible biomarker of As exposure. These investigations, however, were conducted on iAs-contaminated areas, and evidence on populations exposed to low levels of iAs is limited. This study aimed to describe the levels and distributions of As species in urine and blood, as well as to estimate methylation efficiency and related factors in the Korean population. Biological samples were obtained by the Korean Ministry of Food and Drug Safety. A total of 2025 urine samples and 598 blood samples were utilized in this study. Six As species were measured using ultra-high-performance liquid chromatography with inductively coupled plasma mass spectrometry (UPLC-ICP-MS): As(V), As(III), MMA, DMA, arsenobetaine (AsB), and arsenocholine (AsC). Multiple linear regression models were used to examine the relationship between As species (concentrations and proportions) and covariates. AsB was the most prevalent species in urine and blood. The relative composition of iAs, MMA, DMA, and AsC in urine and blood differed significantly. Consumption of blue-backed fish was linked to higher levels of AsB in urine and blood. Type of drinking water and multigrain rice consumption were associated with increased iAs concentration in urine. Except for iAs, every species had correlations in urine and blood in both univariate and multivariate analyses. Adolescents and smokers presented a lower methylation efficiency (higher %MMA and lower %DMA in urine) and females presented a higher methylation efficiency (lower %iAs, %MMA, and higher %DMA in urine). In conclusion, blood iAs concentration cannot represent urinary iAs; nonetheless, different compositions of urine and blood might reflect distinct information about iAs exposure. Further investigations on exposure factors and health are needed using low-exposure groups.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yoon Chae Song
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Nam-Yong Cheong
- Korea Apparel Testing and Research Institute (KATRI), Anyang, Gyeonggi-do, South Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Sunmi Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Kyoung-Mu Lee
- Department of Environmental Health, Korea National Open University, Seoul, South Korea
| | - Kyunghee Ji
- Department of Occupational and Environmental Health, Yongin University, Yongin, Gyeonggi-do, South Korea
| | - Mi-Yeon Shin
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Office of Dental Education, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
50
|
Shi G, Liu H, Zhou D, Zhou H, Fan G, Chen W, Li J, Lou L, Gao Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1032681. [PMID: 36275602 PMCID: PMC9580998 DOI: 10.3389/fpls.2022.1032681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Accumulation of arsenic (As) and cadmium (Cd) in wheat grain is a serious threat to human health. Sulfur (S) can simultaneously decrease wheat grain As and Cd concentrations by decreasing their translocation in wheat; however, the mechanisms are unclear. We conducted hydroponic experiments to explore the mechanisms by which S modulates As and Cd translocation and their toxicity in wheat. Wheat seedlings were grown in deficient sulfate (2.5 µM) or sufficient sulfate (1.0 mM) nutrient solutions for 6 days and then exposed to zero (control), low As+Cd (1 µM As plus 0.5 µM Cd), or high As+Cd (50 µM As plus 30 µM Cd) for another 6 days. Compared with the control, plant growth was not affected by low As+Cd, but was significantly inhibited by high As+Cd. In the low As+Cd treatment, S supply had no significant effect on plant growth or root-to-shoot As and Cd translocation. In the high As+Cd treatment, sufficient S supply significantly alleviated As and Cd toxicity and their translocation by increasing phytochelatin (PC) synthesis and the subsequent vacuolar sequestration of As and Cd in roots, compared with deficient S supply. The use of L-buthionine sulfoximine (a specific inhibitor of γ-glutamylcysteine synthetase) confirmed that the alleviation of As and Cd translocation and toxicity in wheat by S is mediated by increased PC production. Also, TaHMA3 gene expression in wheat root was not affected by the As+Cd and S treatments, but the expression of TaABCC1 was upregulated by the high As+Cd treatment and further increased by sufficient S supply and high As+Cd treatment. These results indicate that S-induced As and Cd subcellular changes affect As and Cd translocation mainly by regulating thiol metabolism and ABCC1 expression in wheat under As and Cd stress.
Collapse
Affiliation(s)
- Gaoling Shi
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Luhe Agro-Environment Experimental Station of National Agricultural Observation and Research Station, Nanjing, China
| | - Huan Liu
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Huimin Zhou
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guangping Fan
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiangye Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Gao
- Key Laboratory of Agro-Environment in Downstream of Yangtze River Plain, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Luhe Agro-Environment Experimental Station of National Agricultural Observation and Research Station, Nanjing, China
| |
Collapse
|