1
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Verma VK, Bhardwaj P, Prajapati V, Bhatia A, Purkait S, Arya DS. Flavonoids as therapeutics for myocardial ischemia-reperfusion injury: a comprehensive review on preclinical studies. Lab Anim Res 2024; 40:32. [PMID: 39237965 PMCID: PMC11376054 DOI: 10.1186/s42826-024-00218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/07/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
Ischemic heart disease is the most prevalent cause of death worldwide affecting both the gender of all age groups. The high mortality rate is due to damage of myocardial tissue that emanates at the time of myocardial ischemia and re-oxygenation, thus averting reperfusion injury is recognized as a potential way to reduce acute cardiac injury and subsequent mortality. Flavonoids are polyphenol derivatives of plant origin and empirical shreds of evidence substantiate their numerous activities such as antioxidant, anti-inflammatory, anti-apoptotic, and anti-thrombotic activity, leading to their role in cardio protection. Recent investigations have unveiled the capacity of flavonoids to impede pivotal regulatory enzymes, signaling molecules, and transcription factors that orchestrate the mediators participating in the inflammatory cascade. The present comprehensive review, dwells on the preclinical studies on the effectiveness of flavonoids from the year 2007 to 2023, for the prevention and therapeutics for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vaishali Prajapati
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Avantika Bhatia
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sayani Purkait
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Zhang ZY, Yang ZH, Wang S, Feng SL, Wang XL, Mao JY. Regulation of optimized new Shengmai powder on cardiomyocyte apoptosis and ferroptosis in ischemic heart failure rats: The mediating role of phosphatidylinositol-3-kinase/protein kinase B/tumor protein 53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118264. [PMID: 38692417 DOI: 10.1016/j.jep.2024.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Zhi-Hua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Shao-Ling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Xian-Liang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Jing-Yuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| |
Collapse
|
4
|
Ma Y, Lai J, Chen Z, Wan Q, Shi X, Zhou H, Li J, Yang Z, Wu J. Exploring therapeutic targets and molecular mechanisms for treating diabetes mellitus-associated heart failure with Qishen Yiqi dropping pills: A network pharmacology and bioinformatics approach. Medicine (Baltimore) 2024; 103:e39104. [PMID: 39093800 PMCID: PMC11296435 DOI: 10.1097/md.0000000000039104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetes mellitus (DM) and heart failure frequently coexist, presenting significant public health challenges. QiShenYiQi Dropping Pills (QSDP) are widely employed in the treatment of diabetes mellitus concomitant with heart failure (DM-HF). Nevertheless, the precise mechanisms underlying their efficacy have yet to be elucidated. Active ingredients and likely targets of QSDP were retrieved from the TCMSP and UniProt databases. Genes associated with DM-HF were pinpointed through searches in the GeneCards, OMIM, DisGeNET, and TTD databases. Differential genes connected to DM-HF were sourced from the GEO database. Enrichment analyses via gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways, as well as immune infiltration assessments, were conducted using R software. Further analysis involved employing molecular docking strategies to explore the interactions between the identified targets and active substances in QSDP that are pertinent to DM-HF treatment. This investigation effectively discerned 108 active compounds and 257 targets relevant to QSDP. A protein-protein interaction network was constructed, highlighting 6 central targets for DM-HF treatment via QSDP. Gene ontology enrichment analysis predominantly linked these targets with responses to hypoxia, metabolism of reactive oxygen species, and cytokine receptor interactions. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways demonstrated that these targets mainly participate in pathways linked to diabetic complications, such as AGE-RAGE signaling, dyslipidemia, arteriosclerosis, the HIF-1 signaling pathway, and the tumor necrosis factor signaling pathway. Further, immune infiltration analysis implied that QSDP's mechanism in treating DM-HF might involve immune-mediated inflammation and crucial signaling pathways. Additionally, molecular docking studies showed that the active substances in QSDP have strong binding affinities with these identified targets. This research presents a new model for addressing DM-HF through the use of QSDP, providing novel insights into incorporating traditional Chinese medicine (TCM) principles in the clinical treatment of DM-HF. The implications of these findings are substantial for both clinical application and further scientific inquiry.
Collapse
Affiliation(s)
- Yirong Ma
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junyu Lai
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhengtao Chen
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qiang Wan
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianlin Shi
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Hao Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jiaming Li
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zurong Yang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianguang Wu
- Cardiology Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Wang X, Xing X, Huang P, Zhang Z, Zhou Z, Liang L, Yao R, Wu X, Yang L. A Chinese classical prescription Xuefu Zhuyu decoction in the treatment of coronary heart disease: An overview. Heliyon 2024; 10:e28919. [PMID: 38617912 PMCID: PMC11015425 DOI: 10.1016/j.heliyon.2024.e28919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Background Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide and is a hot topic in cardiovascular disease research. Western medicine treats CHD with stent implantation, anti-angina pectoris, anti-platelet aggregation and other operations or drugs. According to the whole concept and the characteristics of syndrome differentiation, traditional Chinese medicine (TCM) treats CHD according to different syndromes and points out that qi deficiency and blood stasis are the basic pathogenesis of CHD. Xuefu Zhuyu Decoction (XFZYD), as a classic prescription of TCM, has certain value in the treatment of CHD, with the effects of promoting qi, activating blood circulation, dredging collaterals and relieving pain. In addition, it also exhibits advantages in high efficiency, low toxicity, high cost performance, few side effects, and high patient acceptance. Objective The therapeutic effect and mechanism of XFZYD in the treatment of CHD were searched by literature search, and the components and targets of XFZYD in the treatment of CHD were analyzed by computer simulation technology for molecular docking, providing theoretical basis for clinical treatment of CHD. Method This study comprehensively searched CNKI, Wanfang, VIP, CBM, Pubmed, Embase, Web of science and other databases, included clinical studies with efficacy evaluation indicators in hospitals according to randomization, and excluded literatures with low quality and no efficacy evaluation indicators. Clinical cases and studies, molecular mechanisms and pharmacological effects of XFZYD in the treatment of CHD were searched, and the effective ingredients and core targets of XFZYD in the treatment of CHD were docked through molecular docking, providing theoretical support for clinical treatment of CHD. Results and Conclusion Through this study, we found that XFZYD has a significant therapeutic effect in the clinical treatment of coronary heart disease, which can play a role in the treatment of CHD by inhibiting atherosclerosis, inhibiting cardiovascular remodeling, improving oxidative stress damage, improving hemorheology, improving myocardial fibrosis and other mechanisms. Through computer simulation, it was found that the main effective components of XFZYD treatment for CHD were quercetin, kaempferol and luteolin, and the key core targets were IL6, VEGFA and P53, and each component had a high VEGFA libdock score. It is speculated that VEGFA is the key target of XFZYD in the treatment of CHD. Kaempferol and VEGFA had the highest libdock score. kaempferol and IL6 have the highest number of hydrogen bonds, kaempferol and IL6 have the highest number of hydrogen bonds, which indicates that they are most stable, indicating that kaempferol is the key component of XFZYD in the treatment of CHD, which provides a theoretical basis for follow-up experimental research.
Collapse
Affiliation(s)
- Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xunyan Xing
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhibin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xuerun Wu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
6
|
Xu H, Yu S, Lin C, Dong D, Xiao J, Ye Y, Wang M. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155409. [PMID: 38342018 DOI: 10.1016/j.phymed.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Flavonoids are extensively present in fruits, vegetables, grains, and medicinal plants. Myocardial ischemia and reperfusion (MI/R) comprise a sequence of detrimental incidents following myocardial ischemia. Research indicates that flavonoids have the potential to act as cardioprotective agents against MI/R injuries. Several specific flavonoids, e.g., luteolin, hesperidin, quercetin, kaempferol, and puerarin, have demonstrated cardioprotective activities in animal models. PURPOSE The objective of this review is to identify the cardioprotective flavonoids, investigate their mechanisms of action, and explore their application in myocardial ischemia. METHODS A search of PubMed database and Google Scholar was conducted using keywords "myocardial ischemia" and "flavonoids". Studies published within the last 10 years reporting on the cardioprotective effects of natural flavonoids on animal models were analyzed. RESULTS A total of 55 natural flavonoids were identified and discussed within this review. It can be summarized that flavonoids regulate the following main strategies: antioxidation, anti-inflammation, calcium modulation, mitochondrial protection, ER stress inhibition, anti-apoptosis, ferroptosis inhibition, autophagy modulation, and inhibition of adverse cardiac remodeling. Additionally, the number and position of OH, 3'4'-catechol, C2=C3, and C4=O may play a significant role in the cardioprotective activity of flavonoids. CONCLUSION This review serves as a reference for designing a daily diet to prevent or reduce damages following ischemia and screening of flavonoids for clinical application.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China
| | - Shenglong Yu
- Department of Cardiovascular, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Chunxi Lin
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Dingjun Dong
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense, Campus, E-32004 Ourense, Spain
| | - Yanbin Ye
- Department of Clinical Nutrition, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, PR China.
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 508060, PR China.
| |
Collapse
|
7
|
Huang W, Zhong Y, Gao B, Zheng B, Liu Y. Nrf2-mediated therapeutic effects of dietary flavones in different diseases. Front Pharmacol 2023; 14:1240433. [PMID: 37767395 PMCID: PMC10520786 DOI: 10.3389/fphar.2023.1240433] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Oxidative stress (OS) is a pathological status that occurs when the body's balance between oxidants and antioxidant defense systems is broken, which can promote the development of many diseases. Nrf2, a redox-sensitive transcription encoded by NFE2L2, is the master regulator of phase II antioxidant enzymes and cytoprotective genes. In this context, Nrf2/ARE signaling can be a compelling target against OS-induced diseases. Recently, natural Nrf2/ARE regulators like dietary flavones have shown therapeutic potential in various acute and chronic diseases such as diabetes, neurodegenerative diseases, ischemia-reperfusion injury, and cancer. In this review, we aim to summarize nrf2-mediated protective effects of flavones in different conditions. Firstly, we retrospected the mechanisms of how flavones regulate the Nrf2/ARE pathway and introduced the mediator role Nrf2 plays in inflammation and apoptosis. Then we review the evidence that flavones modulated Nrf2/ARE pathway to prevent diseases in experimental models. Based on these literature, we found that flavones could regulate Nrf2 expression by mechanisms below: 1) dissociating the binding between Nrf2 and Keap1 via PKC-mediated Nrf2 phosphorylation and P62-mediated Keap1 autophagic degradation; 2) regulating Nrf2 nuclear translocation by various kinases like AMPK, MAPKs, Fyn; 3) decreasing Nrf2 ubiquitination and degradation via activating sirt1 and PI3K/AKT-mediated GSK3 inhibition; and 4) epigenetic alternation of Nrf2 such as demethylation at the promoter region and histone acetylation. In conclusion, flavones targeting Nrf2 can be promising therapeutic agents for various OS-related disorders. However, there is a lack of investigations on human subjects, and new drug delivery systems to improve flavones' treatment efficiency still need to be developed.
Collapse
Affiliation(s)
- Wenkai Huang
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yuan Zhong
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Botao Gao
- Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Bowen Zheng
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yi Liu
- Liaoning Provincial Key Laboratory of Oral Disease, Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Shehnaz SI, Roy A, Vijayaraghavan R, Sivanesan S. Luteolin Mitigates Diabetic Dyslipidemia in Rats by Modulating ACAT-2, PPARα, SREBP-2 Proteins, and Oxidative Stress. Appl Biochem Biotechnol 2023; 195:4893-4914. [PMID: 37103741 DOI: 10.1007/s12010-023-04544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Abstract
Diabetic dyslipidemia is a crucial link between type-2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular diseases (ASCVD). Natural biologically active substances have been advocated as complementary remedies for ASCVD and T2DM. Luteolin, a flavonoid, exhibits antioxidant, hypolipidemic, and antiatherogenic effects. Hence, we aimed to determine influence of luteolin on lipid homeostasis and hepatic damage in rats with T2DM induced by high-fat-diet (HFD) and streptozotocin (STZ). After being fed HFD for 10 days, male Wistar rats received 40 mg/kg STZ intraperitoneal injection on 11th day. Seventy-two hours later, hyperglycemic rats (fasting glucose > 200 mg/dL) were randomized into groups, and oral hydroxy-propyl-cellulose, atorvastatin (5 mg/kg), or luteolin (50 mg/kg or 100 mg/kg) administered daily, while continuing HFD for 28 days. Luteolin significantly ameliorated dyslipidemia levels and concomitantly improved atherogenic index of plasma in a dose-dependent manner. Increased levels of malondialdehyde and diminished levels of superoxide dismutase, catalase, and glutathione in HFD-STZ-diabetic rats were significantly regulated by luteolin. Luteolin significantly intensified PPARα expression while decreasing expression of acyl-coenzyme A:cholesterol acyltransferase-2 (ACAT-2) and sterol regulatory element binding protein-2 (SREBP-2) proteins. Moreover, luteolin effectively alleviated hepatic impairment in HFD-STZ-diabetic rats to near-normal control levels. The findings of the present study expound mechanisms by which luteolin mitigated diabetic dyslipidemia and alleviated hepatic impairment in HFD-STZ-diabetic rats by amelioration of oxidative stress, modulation of PPARα expression, and downregulation of ACAT-2 and SREBP-2. In conclusion, our results imply that luteolin may be efficacious in management of dyslipidemia in T2DM, and future research may be essential to substantiate our findings.
Collapse
Affiliation(s)
- Syed Ilyas Shehnaz
- Department of Pharmacology, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
| | - Anitha Roy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Rajagopalan Vijayaraghavan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Senthilkumar Sivanesan
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
- Department of Biosciences, Institute of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
9
|
Wang IC, Lin JH, Lee WS, Liu CH, Lin TY, Yang KT. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol 2023; 375:74-86. [PMID: 36513286 DOI: 10.1016/j.ijcard.2022.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) is associated with severe cellular damage and death. Ferroptosis, a new form of regulated cell death caused by the accumulation of iron-mediated lipid peroxidation, has been found in several diseases including I/R injury, which was reported to be suppressed by flavonoids. Baicalein (BAI) and luteolin (Lut) are flavonoids and were shown to reduce the myocardial I/R injury. BAI was found to suppress ferroptosis in cancer cells via reducing reactive oxygen species (ROS) generation. However, the anti-ferroptosis effect of Lut on ferroptosis has not been reported. This study aimed to investigate whether ferroptosis reduction contributes to the BAI- and Lut-protected cardiomyocytes. METHODS This research used erastin, RSL3, and Fe-SP to induce ferroptosis. Cell viability was examined using MTT assay. Annexin V-FITC, CM-H2DCFDA, and Phen Green SK diacetate (PGSK) fluorescent intensity were detected to analyze apoptotsis, ROS levels, and Fe2+ concentrations, respectively. qPCR and Western blot analysis were conducted to detect the levels of mRNA and protein, respectively. RESULTS Our data show that BAI and Lut protected cardiomyocytes against ferroptosis caused by ferroptosis inducers and I/R. Moreover, both BAI and Lut decreased ROS and malondialdehyde (MDA) generation and the protein levels of ferroptosis markers, and restored Glutathione peroxidase 4 (GPX4) protein levels in cardiomyocytes reduced by ferroptosis inducers. BAI and Lut reduced the I/R-induced myocardium infarction and decreased the levels of Acsl4 and Ptgs2 mRNA. CONCLUSIONS BAI and Lut could protect the cardiomyocytes against the I/R-induced ferroptosis via suppressing accumulation of ROS and MDA.
Collapse
Affiliation(s)
- I-Chieh Wang
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| | - Jian-Hong Lin
- Division of Experimental Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3, Zhongyang Rd., Hualien, Taiwan.
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Xinyi Dist., Taipei 110301, Taiwan; Department of Physiology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| | - Chin-Hung Liu
- Department of Pharmacology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| | - Ting-Yuan Lin
- Division of Cardiology, Department of Internal Medicine, Taipei City Hospital, Renai Branch, No. 10, Sec. 4, Ren'ai Rd., Da'an Dist., Taipei 10341, Taiwan.
| | - Kun-Ta Yang
- Department of Physiology, School of Medicine, Tzu Chi University, No.701, Zhongyang Rd., Sec. 3, Hualien 97004, Taiwan.
| |
Collapse
|
10
|
Mechanism Repositioning Based on Integrative Pharmacology: Anti-Inflammatory Effect of Safflower in Myocardial Ischemia–Reperfusion Injury. Int J Mol Sci 2023; 24:ijms24065313. [PMID: 36982389 PMCID: PMC10048972 DOI: 10.3390/ijms24065313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Safflower (Carthamus tinctorius. L) possesses anti-tumor, anti-thrombotic, anti-oxidative, immunoregulatory, and cardio-cerebral protective effects. It is used clinically for the treatment of cardio-cerebrovascular disease in China. This study aimed to investigate the effects and mechanisms of action of safflower extract on myocardial ischemia–reperfusion (MIR) injury in a left anterior descending (LAD)-ligated model based on integrative pharmacology study and ultra-performance liquid chromatography–quadrupole time-of-flight-tandem mass spectrometer (UPLC-QTOF-MS/MS). Safflower (62.5, 125, 250 mg/kg) was administered immediately before reperfusion. Triphenyl tetrazolium chloride (TTC)/Evans blue, echocardiography, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) ability, and superoxide dismutase (SOD) levels were determined after 24 h of reperfusion. Chemical components were obtained using UPLC-QTOF-MS/MS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to analyze mRNA and protein levels, respectively. Safflower dose-dependently reduced myocardial infarct size, improved cardiac function, decreased LDH levels, and increased SOD levels in C57/BL6 mice. A total of 11 key components and 31 hub targets were filtered based on the network analysis. Comprehensive analysis indicated that safflower alleviated inflammatory effects by downregulating the expression of NFκB1, IL-6, IL-1β, IL-18, TNFα, and MCP-1 and upregulating NFκBia, and markedly increased the expression of phosphorylated PI3K, AKT, PKC, and ERK/2, HIF1α, VEGFA, and BCL2, and decreased the level of BAX and phosphorylated p65. Safflower shows a significant cardioprotective effect by activating multiple inflammation-related signaling pathways, including the NFκB, HIF-1α, MAPK, TNF, and PI3K/AKT signaling pathways. These findings provide valuable insights into the clinical applications of safflower.
Collapse
|
11
|
Tao Y, Yu X, Wu S, Nong G. Synthesis of Luteolin–Selenium Dioxide Complex under Acidic Catalysis. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Pan Q, Liu Y, Ma W, Kan R, Zhu H, Li D. Cardioprotective Effects and Possible Mechanisms of Luteolin for Myocardial Ischemia-Reperfusion Injury: A Systematic Review and Meta-Analysis of Preclinical Evidence. Front Cardiovasc Med 2022; 9:685998. [PMID: 35548432 PMCID: PMC9081501 DOI: 10.3389/fcvm.2022.685998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAt present, effective clinical therapies for myocardial ischemia-reperfusion injury (MIRI) are lacking. We investigated if luteolin conferred cardioprotective effects against MIRI and elucidated the potential underlying mechanisms.MethodFour databases were searched for preclinical studies of luteolin for the treatment of MIRI. The primary outcomes were myocardial infarct size (IS) and intracardiac hemodynamics. The second outcomes were representative indicators of apoptosis, oxidative stress, and inflammatory. The Stata and RevMan software packages were utilized for data analysis.ResultsLuteolin administration was confirmed to reduce IS and ameliorate hemodynamics as compared to the control groups (p < 0.01). IS had decreased by 2.50%, 2.14%, 2.54% in three subgroups. Amelioration of hemodynamics was apparent in two different myocardial infarct models (model of left anterior descending branch ligation and model of global heart ischemia), as left ventricular systolic pressure improved by 21.62 and 35.40 mmHg respectively, left ventricular end-diastolic pressure decreased by 7.79 and 4.73 mmHg respectively, maximum rate of left ventricular pressure rise increased by 737.48 and 750.47 mmHg/s respectively, and maximum rate of left ventricular pressure decrease increased by 605.66 and 790.64 mmHg/s respectively. Apoptosis of cardiomyocytes also significantly decreased, as indicated by thelevels of MDA, an oxidative stress product, and expression of the inflammatory factor TNF-α (p < 0.001).ConclusionPooling of the data demonstrated that luteolin exerts cardioprotective effects against MIRI through different signaling pathways. As possible mechanisms, luteolin exerts anti-apoptosis, anti-oxidation, and anti-inflammation effects against MIRI.
Collapse
Affiliation(s)
- Qinyuan Pan
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wenrui Ma
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Rongsheng Kan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Hong Zhu
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dongye Li
| |
Collapse
|
13
|
Wen C, Xue FS, Wang YH, Jin JH, Liao X. Hypercholesterolemia attenuates cardioprotection of ischemic preconditioning and postconditioning with α7 nicotinic acetylcholine receptor agonist by enhancing inflammation and inhibiting the PI3K/Akt/eNOS pathway. Exp Ther Med 2022; 23:342. [PMID: 35401808 PMCID: PMC8988135 DOI: 10.3892/etm.2022.11272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to evaluate the effects of hypercholesterolemia on cardioprotection of ischemic preconditioning and α7 nicotinic acetylcholine receptor (α7nAChR) agonist postconditioning and explore the potential mechanisms that hypercholesterolemia affected their cardioprotection. Hypercholesterolemic and normal rats were divided into the four groups that received the following treatments: i) Hypercholesterolemic control and normal control groups; ii) hypercholesterolemic ischemia/reperfusion (HI) and normal ischemia/reperfusion (NI) groups; iii) hypercholesterolemic ischemic preconditioning (HIPC) and normal ischemic preconditioning (NIPC) groups; and iv) hypercholesterolemic PNU282987 postconditioning (HPNU) and normal PNU282987 postconditioning (NPNU) groups. Serum lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) levels after ischemia/reperfusion were assayed. Furthermore, infarct size and expression levels of Akt, phosphorylated (p)-Akt and endothelial nitric oxide synthase (eNOS) in ischemic myocardium were assessed. Compared with the NI group, serum LDH, CK-MB, cTnI, TNF-α and IL-6 levels and infarct size were significantly decreased, and myocardial p-Akt/Akt and eNOS/GAPDH ratios were significantly increased in the NIPC and NPNU groups. Compared with the HI group, serum CK-MB, cTnI, TNF-α and IL-6 levels and infarct size were significantly decreased in the HIPC group; however, myocardial p-Akt/Akt and eNOS/GAPDH ratios did not significantly change in the HIPC group. Furthermore, there were no significant difference between the HI and HPNU groups in serum LDH, CK-MB, cTnI, TNF-α and IL-6 levels, infarct size, myocardial p-Akt/Akt and eNOS/GAPDH ratios. In conclusion, hypercholesterolemia could aggravate myocardial ischemia/reperfusion injury, attenuate cardioprotection of ischemic preconditioning and eliminate cardioprotection from α7nAChR agonist postconditioning by enhancing inflammation and inhibiting PI3K/Akt/eNOS pathway.
Collapse
Affiliation(s)
- Chao Wen
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Fu-Shan Xue
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Yu-Hui Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Jin-Hua Jin
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Xu Liao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| |
Collapse
|
14
|
Hybertson BM, Gao B, McCord JM. Effects of the Phytochemical Combination PB123 on Nrf2 Activation, Gene Expression, and the Cholesterol Pathway in HepG2 Cells. OBM INTEGRATIVE AND COMPLIMENTARY MEDICINE 2022; 7. [PMID: 35252766 PMCID: PMC8896855 DOI: 10.21926/obm.icm.2201002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There has been a long history of human usage of the biologically-active phytochemicals in Salvia rosmarinus, Zingiber officinale, and Sophora japonica for health purposes, and we recently reported on a combination of those plant materials as the PB123 dietary supplement. In the present work we extended those studies to evaluate activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and differential gene expression in cultured HepG2 (hepatocellular carcinoma) cells treated with PB123. We determined transcriptome changes using mRNA-seq methods, and analyzed the affected pathways using Ingenuity Pathway Analysis and BioJupies, indicating that primary effects included increasing the Nrf2 pathway and decreasing the cholesterol biosynthesis pathway. Pretreatment of cultured HepG2 cells with PB123 upregulated Nrf2-dependent cytoprotective genes and increased cellular defenses against cumene hydroperoxide-induced oxidative stress. In contrast, pretreatment of cultured HepG2 cells with PB123 downregulated cholesterol biosynthesis genes and decreased cellular cholesterol levels. These findings support the possible beneficial effects of PB123 as a healthspan-promoting dietary supplement.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Liu Z, Gao S, Bu Y, Zheng X. Luteolin Protects Cardiomyocytes Cells against Lipopolysaccharide-Induced Apoptosis and Inflammatory Damage by Modulating Nlrp3. Yonsei Med J 2022; 63:220-228. [PMID: 35184424 PMCID: PMC8860941 DOI: 10.3349/ymj.2022.63.3.220] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE In this article, we aimed to investigate the influences of luteolin on inflammatory injury to cardiomyocytes induced by lipopolysaccharide (LPS). MATERIALS AND METHODS H9c2 cells were pretreated with different concentrations of luteolin (10, 20, and 50 µM) for 12 h and then stimulated with 10 µg/mL LPS or no LPS for 6 h. Cell viability was detected by CCK-8 assay. Cell apoptosis was determined by flow cytometry. QRT-PCR and Western blotting were utilized to examine mRNA and protein levels. ELISA was used to determine the levels of monocyte chemoattractant protein-1, tumor necrosis factor-alpha, interleukin (IL)-6, IL-1β, and IL-18 in cell supernatants among different groups of H9c2 cells. Immunofluorescence was applied to evaluate reactive oxygen species formation in H9c2 cells. M-mode images of echocardiography, the ejection fraction test, fractional shortening test, end-systolic volume test, and end-diastolic volume test of mouse heart function were obtained by ultrasonic electrocardiogram. RESULTS Luteolin could alleviate inflammatory damage and inflammatory factor expression among LPS-induced H9c2 cells. Additionally, we found that luteolin decreased LPS-stimulated inflammatory damage in H9c2 cells by down-regulating NOD-like receptor family pyrin domain containing 3 (Nlrp3). Luteolin also improved myocardial function in mice treated with LPS and reduced myocardial relaxation. Luteolin reversed myocardial histological abnormalities in mice and reduced inflammation and cardiomyocyte apoptosis. Additionally, luteolin inhibited oxidative stress-mediated myocardial and systemic tissue damage in mice. Finally, luteolin reduced LPS-induced inflammatory damage in mouse cardiomyocytes by down-regulating Nlrp3. CONCLUSION We found that luteolin could reduce inflammatory damage to cardiomyocytes induced by LPS by down-regulating Nlrp3.
Collapse
Affiliation(s)
- Zhongfen Liu
- Department of Emergency Medical, The People's Hospital of Zhangqiu District, Jinan, Shandong, China
| | - Shaohua Gao
- Department of Ultrasound, The Traditional Chinese Medical Hospital of Zhangqiu District, Jinan, Shandong, China
| | - Ying Bu
- Department of Emergency Medical, The People's Hospital of Zhangqiu District, Jinan, Shandong, China
| | - Xiaoyan Zheng
- Department of Logistics Support, Jinan Central Hospital, Jinan, Shandong, China.
| |
Collapse
|
16
|
Chen QM. Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med 2022; 179:133-143. [PMID: 34921930 DOI: 10.1016/j.freeradbiomed.2021.12.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
Myocardial infarction is the most common form of acute coronary syndrome. Blockage of a coronary artery due to blood clotting leads to ischemia and subsequent cell death in the form of necrosis, apoptosis, necroptosis and ferroptosis. Revascularization by coronary artery bypass graft surgery or non-surgical percutaneous coronary intervention combined with pharmacotherapy is effective in relieving symptoms and decreasing mortality. However, reactive oxygen species (ROS) are generated from damaged mitochondria, NADPH oxidases, xanthine oxidase, and inflammation. Impairment of mitochondria is shown as decreased metabolic activity, increased ROS production, membrane permeability transition, and release of mitochondrial proteins into the cytoplasm. Oxidative stress activates Nrf2 transcription factor, which in turn mediates the expression of mitofusin 2 (Mfn 2) and proteasomal genes. Increased expression of Mfn2 and inhibition of mitochondrial fission due to decreased Drp1 protein by proteasomal degradation contribute to mitochondrial hyperfusion. Damaged mitochondria can be removed by mitophagy via Parkin or p62 mediated ubiquitination. Mitochondrial biogenesis compensates for the loss of mitochondria, but requires mitochondrial DNA replication and initiation of transcription or translation of mitochondrial genes. Experimental evidence supports a role of Nrf2 in mitophagy, via up-regulation of PINK1 or p62 gene expression; and in mitochondrial biogenesis, by influencing the expression of PGC-1α, NResF1, NResF2, TFAM and mitochondrial genes. Oxidative stress causes Nrf2 activation via Keap1 dissociation, de novo protein translation, and nuclear translocation related to inactivation of GSK3β. The mechanism of Keap 1 mediated Nrf2 activation has been hijacked for Nrf2 activation by small molecules derived from natural products, some of which have been shown capable of mitochondrial protection. Multiple lines of evidence support the importance of Nrf2 in protecting mitochondria and preserving or renewing energy metabolism following tissue injury.
Collapse
Affiliation(s)
- Qin M Chen
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, 1295 N. Martin Avenue, Tucson, AZ, 85721, United States.
| |
Collapse
|
17
|
Qin X, Qin H, Li Z, Xue S, Huang B, Liu X, Wang D. Luteolin alleviates ischemia/reperfusion injury-induced no-reflow by regulating Wnt/β-catenin signaling in rats. Microvasc Res 2022; 139:104266. [PMID: 34688627 DOI: 10.1016/j.mvr.2021.104266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
The no-reflow phenomenon induced by ischemia-reperfusion (I/R) injury seriously limits the therapeutic value of coronary recanalization and leads to a poor prognosis. Previous studies have shown that luteolin (LUT) is a vasoprotective factor. However, whether LUT can be used to prevent the no-reflow phenomenon remains unknown. Positron emission tomography perfusion imaging, performed to detect the effects of LUT on the no-reflow phenomenon in vivo, revealed that LUT treatment was able to reduce the no-reflow area in rat I/R models. In vitro, LUT was shown to reduce the hypoxia-reoxygenation injury-induced endothelial permeability and apoptosis. The levels of malondialdehyde, reactive oxygen species and NADPH were also measured and the results indicated that LUT could inhibit the oxidative stress. Western blot analysis revealed that LUT protected endothelial cells from I/R injury by regulating the Wnt/β-catenin pathway. Overall, we concluded that the use of LUT to minimize I/R induced microvascular damage is a feasible strategy to prevent the no-reflow phenomenon.
Collapse
Affiliation(s)
- Xichun Qin
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Hao Qin
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Zhimin Li
- Xuzhou Central Hospital, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Song Xue
- Department of Cardiology, Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Bing Huang
- Department of Cardiology, Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
Yang J, Tang L, Zhang F, Yang T, Lu T, Sun K, Sun N, Ren J, Yan M. Sevoflurane preconditioning promotes mesenchymal stem cells to relieve myocardial ischemia/reperfusion injury via TRPC6-induced angiogenesis. Stem Cell Res Ther 2021; 12:584. [PMID: 34809715 PMCID: PMC8607627 DOI: 10.1186/s13287-021-02649-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/06/2021] [Indexed: 01/09/2023] Open
Abstract
Background Ischemic heart diseases is one of the leading causes of death worldwide. Although revascularization timely is an effective therapeutic intervention to salvage the ischemic myocardium, reperfusion itself causes additional myocardial injury called ischemia/reperfusion (I/R) injury. Bone marrow-derived mesenchymal stem cells (MSCs) is one of the promising cells to alleviate ischemic myocardial injury. However, this cell therapy is limited by poor MSCs survival after transplantation. Here, we investigated whether sevoflurane preconditioning could promote MSCs to attenuate myocardial I/R injury via transient receptor potential canonical channel 6 (TRPC6)-induced angiogenesis. Methods The anti-apoptotic effect of sevoflurane preconditioning on MSCs was determined by Annexin V-FITC/propidium iodide staining. TRPC6, hypoxia-inducible factor-1α (HIF-1α), Chemokine receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF) protein expressions and VEGF release from MSCs were determined after hypoxia and reoxygenation (H/R). Small interfering RNA (siRNA) was used to knock down TRPC6 gene expression in MSCs. The angiogenesis of human umbilical vein endothelial cells (HUVECs) co-cultured with MSCs was determined by Matrigel tube formation. Myocardial I/R mouse model was induced by occluding left anterior descending coronary artery for 30 min and then reperfusion. MSCs or sevoflurane preconditioned MSCs were injected around the ligature border zone 5 min before reperfusion. Left ventricle systolic function, infarction size, serum LDH, cTnI and inflammatory cytokines were determined after reperfusion. Results Sevoflurane preconditioning up-regulated TRPC6, HIF-1α, CXCR4 and VEGF expressions in MSCs and VEGF release from MSCs under H/R, which were reversed by knockdown of TRPC6 gene using siRNA in MSCs. Furthermore, sevoflurane preconditioning promoted the angiogenic and anti-inflammatory effect of HUVECs co-cultured with MSCs. Sevoflurane preconditioned MSCs improved left ventricle systolic function and alleviated myocardial infarction and inflammation in mice subjected to I/R insult. Conclusion The current findings reveal that sevoflurane preconditioned MSCs boost angiogenesis in HUVECs subjected to H/R insult and attenuate myocardial I/R injury, which may be mediated by TRPC6 up-regulated HIF-1α, CXCR4 and VEGF. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02649-3.
Collapse
Affiliation(s)
- Jinting Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lihui Tang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fengjiang Zhang
- Clinical Skill Training Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tingting Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, 710061, China
| | - Ting Lu
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kai Sun
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Na Sun
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
19
|
Syed AM, Ram C, Murty US, Sahu BD. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother Res 2021; 35:5068-5102. [PMID: 33894007 DOI: 10.1002/ptr.7137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| |
Collapse
|
20
|
Zhou XR, Ru XC, Xiao C, Pan J, Lou YY, Tang LH, Yang JT, Qian LB. Sestrin2 is involved in the Nrf2-regulated antioxidative signaling pathway in luteolin-induced prevention of the diabetic rat heart from ischemia/reperfusion injury. Food Funct 2021; 12:3562-3571. [PMID: 33900303 DOI: 10.1039/d0fo02942d] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Luteolin attenuates myocardial ischemia/reperfusion (I/R) injury in diabetes through activating the nuclear factor erythroid 2-related factor 2 (Nrf2)-related antioxidative response. Though sestrin2, a highly conserved stress-inducible protein, is regarded as a modulator of Nrf2 and reduces I/R injury, the effect of sestrin2 on luteolin-induced prevention of the diabetic heart from I/R injury remains unclear. We hypothesized that luteolin could relieve myocardial I/R injury in diabetes by activating the sestrin2-modulated Nrf2 antioxidative response. Diabetes was induced in rats using a single dose of streptozotocin (65 mg kg-1, i.p.) for 6 weeks, and then luteolin (100 mg kg-1 d-1, i.g.), Nrf2 inhibitor brusatol, or sestrin2 blocker leucine was administered for 2 consecutive weeks. After that, the hearts were isolated and exposed to global I/R (30 min/120 min). Luteolin markedly improved cardiac function, myocardial viability and expressions of Nrf2-regulated antioxidative genes, and reduced lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R hearts. Ca2+-induced mitochondrial permeability transition and membrane potential disruption were markedly inhibited in luteolin-treated diabetic ventricular myocytes. All these effects of luteolin were significantly reversed by Nrf2 inhibitor brusatol or sestrin2 inhibitor leucine. Luteolin-induced diminished Keap1 and augmented nuclear translocation and ARE binding activity of Nrf2 were hampered by leucine in the diabetic I/R heart. In addition, luteolin-induced augmented transcription of sestrin2 was markedly blocked by brusatol in the diabetic I/R heart. These data suggest that sestrin2 and Nrf2 positively interact to promote antioxidative actions and attenuate mitochondrial damage, by which luteolin relieves diabetic myocardial I/R injury.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang Z, Zeng M, Wang Z, Qin F, Chen J, He Z. Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1441-1454. [PMID: 33522240 DOI: 10.1021/acs.jafc.0c08085] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Luteolin, a flavone subclass of flavonoids, is commonly found in food plants and has multiple biological activities. Recently, evidence is growing with regard to the potential of luteolin intake to beneficially affect glycolipid metabolism disorders (GLMDs), particularly insulin resistance, diabetes, and obesity. The aim of this contribution is to provide an overview of recent advances in identifying and understanding the pharmacokinetic properties (absorption, metabolism, and bioavailability) of luteolin, its regulatory effects on glycolipid metabolism, and the underlying mechanisms of action of luteolin in the brain, liver, adipose tissues, and other tissues/organs. Collectively, luteolin or its principal metabolites may contribute to counteracting GLMDs, especially for human obesity and diabetes.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
22
|
Zheng S, Baak JP, Li S, Xiao W, Ren H, Yang H, Gan Y, Wen C. Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fundamental support to the clinical use of LHQW. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153336. [PMID: 32949888 PMCID: PMC7474845 DOI: 10.1016/j.phymed.2020.153336] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND The traditional Chinese Medicine (TCM) herbal formula Lian Hua Qing Wen (LHQW) improves the results of COVID-19 treatment. Three very recent studies analyzed with network pharmacology some working mechanisms of LHQW. However, we used more techniques and also included Angiotensin converting enzyme 2 (ACE2) (a SARS-CoV receptor, possibly the viral entry point in alveolar lung cells) and the immune system, as cytokine storm is essential in the late phase. PURPOSE Extensive detailed Network Pharmacology analysis of the LHQW- treatment mechanism in COVID-19. METHODS TCM-herb-meridian and protein interaction network (PIN) of LHQW, based on LHQW herbs meridian information and the protein-protein interaction (PPI) information of the LHQW-component targets. Hub and topological property analyses to obtain crucial targets and construct the crucial LHQW-PIN. Functional modules determination using MCODE, GO and KEGG pathway analysis of biological processes and pathway enrichment. Intersection calculations between the LHQW-proteins and ACE2 co-expression-proteins. RESULTS LHQW herbs have relationships to Stomach-, Heart-, Liver- and Spleen-systems, but most (10 of the 13 herbs) to the Lung system, indicating specific effects in lung diseases. The crucial LHQW PIN has the scale-free property, contains 2,480 targets, 160,266 PPIs and thirty functional modules. Six modules are enriched in leukocyte-mediated immunity, the interferon-gamma-mediated signaling pathway, immune response regulating signaling pathway, interleukin 23 mediated signaling pathway and Fc gamma receptor-mediated phagocytosis (GO analysis). These 6 are also enriched in cancer, immune system-, and viral infection diseases (KEGG). LHQW shared 189 proteins with ACE2 co-expression proteins. CONCLUSIONS Detailed network analysis shows, that LHQW herbal TCM treatment modulates the inflammatory process, exerts antiviral effects and repairs lung injury. Moreover, it also relieves the "cytokine storm" and improves ACE2-expression-disorder-caused symptoms. These innovative findings give a rational pharmacological basis and support for treating COVID-19 and possibly other diseases with LHQW.
Collapse
Affiliation(s)
- Shichao Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Jan P Baak
- Stavanger University Hospital, 4068 Stavanger, Norway; Dr. Med Jan Baak AS, 4056 Tananger, Norway.
| | - Shuang Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Wenke Xiao
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Hong Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Huan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China
| | - Yanxiong Gan
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China; China Pharmaceutical University, Nanjing 210009, China.
| | - Chuanbiao Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu 61711137, China.
| |
Collapse
|
23
|
Wang S, Ling Y, Yao Y, Zheng G, Chen W. Luteolin inhibits respiratory syncytial virus replication by regulating the MiR-155/SOCS1/STAT1 signaling pathway. Virol J 2020; 17:187. [PMID: 33239033 PMCID: PMC7688008 DOI: 10.1186/s12985-020-01451-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in infants, children, immunocompromised adults, and elderly individuals. Currently, there are few therapeutic options available to prevent RSV infection. The present study aimed to investigate the effects of luteolin on RSV replication and the related mechanisms. Material and methods We pretreated cells and mice with luteolin before infection with RSV, the virus titer, expressions of RSV-F, interferon (IFN)-stimulated genes (ISGs), and production of IFN-α and IFN-β were determined by plaque assay, RT-qPCR, and ELISA, respectively. The activation of Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling pathway was detected by Western blotting and luciferase assay. Proteins which negatively regulate STAT1 were determined by Western blotting. Then cells were transfected with suppressor of cytokine signaling 1 (SOCS1) plasmid and virus replication and ISGs expression were determined. Luciferase reporter assay and Western blotting were performed to detect the relationship between SOCS1 and miR-155. Results Luteolin inhibited RSV replication, as shown by the decreased viral titer and RSV-F mRNA expression both in vitro and in vivo. The antiviral activity of luteolin was attributed to the enhanced phosphorylation of STAT1, resulting in the increased production of ISGs. Further study showed that SOCS1 was downregulated by luteolin and SOCS1 is a direct target of microRNA-155 (miR-155). Inhibition of miR-155 rescued luteolin-mediated SOCS1 downregulation, whereas upregulation of miR-155 enhanced the inhibitory effect of luteolin. Conclusion Luteolin inhibits RSV replication by regulating the miR-155/SOCS1/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Saisai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yiting Ling
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Yuanyuan Yao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Gang Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
| |
Collapse
|
24
|
Bai YY, Yan D, Zhou HY, Li WX, Lou YY, Zhou XR, Qian LB, Xiao C. Betulinic acid attenuates lipopolysaccharide-induced vascular hyporeactivity in the rat aorta by modulating Nrf2 antioxidative function. Inflammopharmacology 2020; 28:165-174. [PMID: 31352642 DOI: 10.1007/s10787-019-00622-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Betulinic acid (BA), a pentacyclic triterpenoid, has been reported to inhibit cardiovascular dysfunction under sepsis-induced oxidative stress. Nuclear factor erythroid-2 related factor-2 (Nrf2) is regarded as a key transcription factor regulating expression of endogenous antioxidative genes. To explore the preventive effects of BA against vascular hyporeactivity and the related antioxidative mechanism in sepsis, contraction and relaxation in aortas isolated from lipopolysaccharide (LPS)-challenged rats were performed. Male Sprague-Dawley rats were pretreated with brusatol (Bru, 0.4 mg/kg/2 days, i.p.), an inhibitor of Nrf2, and BA (10, 25, 50 mg/kg/day, i.g.) for 3 days and injected with LPS (10 mg/kg, i.p.) at the 4th day. Rats were anesthetized and killed by cervical dislocation after they were treated with LPS for 4 h. Thoracic aortas were immediately dissected out to determine contraction and relaxation using the organ bath system. Pro-inflammatory factors interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) and oxidative stress were measured in aortic tissues and plasma. mRNA expression of Nrf2-regulated antioxidative enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and heme oxygenase-1 (HO-1), in rat aortas was determined. Increases of IL-1β, TNF-α, nitric oxide, and malondialdehyde and the decrease of glutathione induced by LPS were significantly attenuated by pretreatment with different doses of BA in plasma and aortas (p < 0.05 versus LPS), all of which were blocked by Bru (p < 0.01). Inhibition of phenylephrine (PE)- and KCl-induced contractions and acetylcholine (ACh)-induced vasodilatation in aortas from LPS-challenged rats was dose-dependently reduced by BA (p < 0.05; percentage improvements by BA in PE-induced contraction were 55.38%, 96.41%, and 104.33%; those in KCl-induced contraction were 15.11%, 23.96%, and 22.96%; and those in ACh-induced vasodilatation were 16.08%, 42.99%, and 47.97%), all of which were reversed by Bru (p < 0.01). Improvements of SOD, GPx, and HO-1 mRNA expression conferred by BA in LPS-challenged rat aortas were inhibited by Bru (p < 0.01; 145.45% versus 17.42%, 160.69% versus 22.76%, and 166.88% versus 23.57%). These findings suggest that BA attenuates impairments of aortic contraction and relaxation in LPS-challenged rats by activating Nrf2-regulated antioxidative pathways.
Collapse
Affiliation(s)
- Yao-Yao Bai
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Radiology, Hangzhou Medical College, Hangzhou, 310053, China
| | - Dong Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Radiology, Hangzhou Medical College, Hangzhou, 310053, China
| | - Hui-Ying Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Radiology, Hangzhou Medical College, Hangzhou, 310053, China
| | - Wei-Xin Li
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
25
|
Liu Q, Xie YJ, Qu LH, Zhang MX, Mo ZC. Dyslipidemia involvement in the development of polycystic ovary syndrome. Taiwan J Obstet Gynecol 2020; 58:447-453. [PMID: 31307731 DOI: 10.1016/j.tjog.2019.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is widely accepted as the most common endocrine abnormality in women of childbearing age and may be accompanied by dyslipidemia, hyperandrogenism, hyperinsulinemia, oxidative stress and infertility. Dyslipidemia is now known to play an important role in the development of PCOS. Lipid abnormalities, including elevated low-density lipoprotein and triglyceride levels and reduced high-density lipoprotein levels, are often found in women with PCOS and play an important role in PCOS; therefore, we summarize the effect of lipid abnormalities on hyperandrogenism, insulin resistance, oxidative stress and infertility in PCOS and review the effects of common lipid-lowering drugs on patients with PCOS. The purpose of this article is to elucidate the mechanisms of lipid metabolism abnormalities in the development of PCOS.
Collapse
Affiliation(s)
- Qi Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan, 421001, China.
| | - Yuan-Jie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan, 421001, China.
| | - Li-Hua Qu
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan, 421001, China.
| | - Meng-Xia Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan, 421001, China; Department of Histology and Embryology, Human University of Chinese Medicine, Changsha, 410208, China.
| | - Zhong-Cheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
26
|
Kobayashi S. The Effect of Polyphenols on Hypercholesterolemia through Inhibiting the Transport and Expression of Niemann-Pick C1-Like 1. Int J Mol Sci 2019; 20:ijms20194939. [PMID: 31590417 PMCID: PMC6801711 DOI: 10.3390/ijms20194939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 01/30/2023] Open
Abstract
The Niemann-Pick C1-like 1 (NPC1L1) protein is a cholesterol transporter that is expressed in the small intestine. This report describes the discovery of NPC1L1, its transport properties, and the inhibitory effects of polyphenols on NPC1L1. NPC1L1 was identified in 2004 while searching for ezetimibe molecular targets. Excessive synthesis of cholesterol results in hyperlipidemia, which increases the amount of bile cholesterol excreted into the duodenum. The inhibition of NPC1L1 decreases blood cholesterol because food and bile cholesterol are also absorbed from NPC1L1 in the intestine. Some polyphenols, particularly luteolin, have been reported as NPC1L1-mediated anti-dyslipidemia constituents. Luteolin affects NPC1L1 through two mechanisms. Luteolin directly inhibits NPC1L1 by binding to it, which occurs in a short timeframe similar to that for ezetimibe. The other mechanism is the inhibition of NPC1L1 expression. Luteolin reduced the binding of Sterol-regulatory element-binding protein 2 (SREBP2) in the promoter region of the NPC1L1 gene and decreased mRNA levels of SREBP2 and hepatocyte nuclear factor 4α. These data suggest that luteolin decreases the expression of NPC1L1 through regulation of transcription factors. This review also explores the effect of other polyphenols on NPC1L1 and hypercholesterolemia.
Collapse
Affiliation(s)
- Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
27
|
Li L, Luo W, Qian Y, Zhu W, Qian J, Li J, Jin Y, Xu X, Liang G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152774. [PMID: 31009852 DOI: 10.1016/j.phymed.2018.11.034] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Diabetes mellitus is a well-known risk factor for the development of heart failure. Inflammation and oxidative stress play a key role in the development of diabetic cardiomyopathy (DCM), and this nexus represents an attractive target to combat this disease. Naturally occurring flavonoid luteolin exhibits both anti-inflammatory and antioxidant activities in various systems. HYPOTHESIS/PURPOSE In this study, we aimed to investigate potential cardioprotective effects of luteolin in cultured cardiomyocytes and in mice with type 1 diabetes. METHODS C57BL/6 mice were intraperitoneal injection of streptozotocin (STZ) to induce DCM. High glucose (HG) was used to induce H9C2 cells injury in vitro. Cardiac fibrosis, hypertrophy, inflammation and oxidative stress were studied both in vitro and in vivo. RESULTS Our studies show that luteolin significantly reduces HG-induced inflammatory phenotype and oxidative stress in H9C2 cardiomyocytes. We found that the mechanisms involved inhibition of nuclear factor-kappa B (NF-κB) pathway and the activation of antioxidant nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway. Modulation of these pathways resulted in reduced expression of matrix proteins and cellular hypertrophy. Luteolin also prevented cardiac fibrosis, hypertrophy, and dysfunction in STZ-induced diabetic mice. These readouts were also associated with reduced levels of inflammatory cytokines and oxidative stress biomarkers. CONCLUSION Our results indicate that luteolin protects heart tissues in STZ-induced diabetic mice through modulating Nrf2-mediated oxidative stress and NF-κB-mediated inflammatory responses. These findings suggest that luteolin may be a potential therapeutic agent for DCM.
Collapse
Affiliation(s)
- Li Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuzhong Xu
- Department of Anesthesiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
28
|
Xiao C, Xia ML, Wang J, Zhou XR, Lou YY, Tang LH, Zhang FJ, Yang JT, Qian LB. Luteolin Attenuates Cardiac Ischemia/Reperfusion Injury in Diabetic Rats by Modulating Nrf2 Antioxidative Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2719252. [PMID: 31089405 PMCID: PMC6476158 DOI: 10.1155/2019/2719252] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/30/2022]
Abstract
Luteolin has been reported to attenuate ischemia/reperfusion (I/R) injury in the diabetic heart through endothelial nitric oxide synthase- (eNOS-) related antioxidative response. Though the nuclear factor erythroid 2-related factor 2 (Nrf2) is regarded as a key endogenous factor to reduce diabetic oxidative stress, whether luteolin reduces cardiac I/R injury in the diabetic heart via enhancing Nrf2 function needs to be clarified. We hypothesized that pretreatment with luteolin could alleviate cardiac I/R injury in the diabetic heart by affecting the eNOS/Nrf2 signaling pathway. The diabetic rat was produced by a single injection of streptozotocin (65 mg/kg, i.p.) for 6 weeks, and then, luteolin (100 mg/kg/day, i.g.), eNOS inhibitor L-NAME, or Nrf2 inhibitor brusatol was administered for the succedent 2 weeks. After that, the isolated rat heart was exposed to 30 min of global ischemia and 120 min of reperfusion to establish I/R injury. Luteolin markedly ameliorated cardiac function and myocardial viability; upregulated expressions of heme oxygenase-1, superoxide dismutase, glutathione peroxidase, and catalase; and reduced myocardial lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R heart. All these ameliorating effects of luteolin were significantly reversed by L-NAME or brusatol. Luteolin also markedly reduced S-nitrosylation of Kelch-like ECH-associated protein 1 (Keap1) and upregulated Nrf2 and its transcriptional activity. This effect of luteolin on Keap1/Nrf2 signaling was attenuated by L-NAME. These data reveal that luteolin protects the diabetic heart against I/R injury by enhancing eNOS-mediated S-nitrosylation of Keap1, with subsequent upregulation of Nrf2 and the Nrf2-related antioxidative signaling pathway.
Collapse
Affiliation(s)
- Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Man-Li Xia
- Institute of Physiological Function, Medical College of Jiaxing University, Jiaxing 314001, China
| | - Jue Wang
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yang-Yun Lou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Li-Hui Tang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Feng-Jiang Zhang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jin-Ting Yang
- Department of Anesthesiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|