1
|
Basal Forebrain Chemogenetic Inhibition Converts the Attentional Control Mode of Goal-Trackers to That of Sign-Trackers. eNeuro 2022; 9:ENEURO.0418-22.2022. [PMID: 36635246 PMCID: PMC9794377 DOI: 10.1523/eneuro.0418-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Sign tracking versus goal tracking in rats indicate vulnerability and resistance, respectively, to Pavlovian cue-evoked addictive drug taking and relapse. Here, we tested hypotheses predicting that the opponent cognitive-behavioral styles indexed by sign tracking versus goal tracking include variations in attentional performance which differentially depend on basal forebrain projection systems. Pavlovian Conditioned Approach (PCA) testing was used to identify male and female sign-trackers (STs) and goal-trackers (GTs), as well as rats with an intermediate phenotype (INTs). Upon reaching asymptotic performance in an operant task requiring the detection of visual signals (hits) as well as the reporting of signal absence for 40 min per session, GTs scored more hits than STs, and hit rates across all phenotypes correlated with PCA scores. STs missed relatively more signals than GTs specifically during the last 15 min of a session. Chemogenetic inhibition of the basal forebrain decreased hit rates in GTs but was without effect in STs. Moreover, the decrease in hits in GTs manifested solely during the last 15 min of a session. Transfection efficacy in the horizontal limb of the diagonal band (HDB), but not substantia innominate (SI) or nucleus basalis of Meynert (nbM), predicted the behavioral efficacy of chemogenetic inhibition in GTs. Furthermore, the total subregional transfection space, not transfection of just cholinergic neurons, correlated with performance effects. These results indicate that the cognitive-behavioral phenotype indexed by goal tracking, but not sign tracking, depends on activation of the basal forebrain-frontal cortical projection system and associated biases toward top-down or model-based performance.
Collapse
|
2
|
Henkel ND, Wu X, O'Donovan SM, Devine EA, Jiron JM, Rowland LM, Sarnyai Z, Ramsey AJ, Wen Z, Hahn MK, McCullumsmith RE. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 2022; 27:2393-2404. [PMID: 35264726 DOI: 10.1038/s41380-022-01494-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Nicholas D Henkel
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Xiajoun Wu
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sinead M O'Donovan
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Emily A Devine
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jessica M Jiron
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute for Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Margaret K Hahn
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Robert E McCullumsmith
- Department of Neurosciences, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
3
|
Smith SM, Zequeira S, Ravi M, Johnson SA, Hampton AM, Ross AM, Pyon W, Maurer AP, Bizon JL, Burke SN. Age-related impairments on the touchscreen paired associates learning (PAL) task in male rats. Neurobiol Aging 2022; 109:176-191. [PMID: 34749169 PMCID: PMC9351724 DOI: 10.1016/j.neurobiolaging.2021.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Discovery research in rodent models of cognitive aging is instrumental for identifying mechanisms of behavioral decline in old age that can be therapeutically targeted. Clinically relevant behavioral paradigms, however, have not been widely employed in aged rats. The current study aimed to bridge this translational gap by testing cognition in a cross-species touchscreen-based platform known as paired-associates learning (PAL) and then utilizing a trial-by-trial behavioral analysis approach. This study found age-related deficits in PAL task acquisition in male rats. Furthermore, trial-by-trial analyses and testing rats on a novel interference version of PAL suggested that age-related impairments were not due to differences in vulnerability to an irrelevant distractor, motivation, or to forgetting. Rather, impairment appeared to arise from vulnerability to accumulating, proactive interference, with aged animals performing worse than younger rats in later trial blocks within a single testing session. The detailed behavioral analysis employed in this study provides new insights into the etiology of age-associated cognitive deficits.
Collapse
Affiliation(s)
- Samantha M Smith
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sabrina Zequeira
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Meena Ravi
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sarah A Johnson
- Department of Neuroscience and Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Andriena M Hampton
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aleyna M Ross
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Wonn Pyon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, Neuroscience Concentration, University of Florida College of Medicine, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, University of Florida College of Medicine, Gainesville, FL, USA; Institute on Aging, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons. J Neurosci 2020; 40:6049-6067. [PMID: 32554512 DOI: 10.1523/jneurosci.0220-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Older persons and, more severely, persons with Parkinson's disease (PD) exhibit gait dysfunction, postural instability and a propensity for falls. These dopamine (DA) replacement-resistant symptoms are associated with losses of basal forebrain and striatal cholinergic neurons, suggesting that falls reflect disruption of the corticostriatal transfer of movement-related cues and their striatal integration with movement sequencing. To advance a rodent model of the complex movement deficits of Parkinsonian fallers, here we first demonstrated that male and female rats with dual cortical cholinergic and striatal DA losses (DL rats) exhibit cued turning deficits, modeling the turning deficits seen in these patients. As striatal cholinergic interneurons (ChIs) are positioned to integrate movement cues with gait, and as ChI loss has been associated with falls in PD, we next used this task, as well as a previously established task used to reveal heightened fall rates in DL rats, to broadly test the role of ChIs. Chemogenetic inhibition of ChIs in otherwise intact male and female rats caused cued turning deficits and elevated fall rates. Spontaneous turning was unaffected. Furthermore, chemogenetic stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. Stimulation of ChIs was relatively more effective in rats with viral transfection spaces situated lateral to the DA depletion areas in the dorsomedial striatum. These results indicate that striatal ChIs are essential for the control of complex movements, and they suggest a therapeutic potential of stimulation of ChIs to restore gait and balance, and to prevent falls in PD.SIGNIFICANCE STATEMENT In persons with Parkinson's disease, gait dysfunction and the associated risk for falls do not benefit from dopamine replacement therapy and often result in long-term hospitalization and nursing home placement. Here, we first validated a new task to demonstrate impairments in cued turning behavior in rodents modeling the cholinergic-dopaminergic losses observed in Parkinsonian fallers. We then demonstrated the essential role of striatal cholinergic interneurons for turning behavior as well as for traversing dynamic surfaces and avoiding falls. Stimulation of these interneurons in the rat model rescued turning performance and reduced fall rates. Our findings indicate the feasibility of investigating the neuronal circuitry underling complex movement control in rodents, and that striatal cholinergic interneurons are an essential node of such circuitry.
Collapse
|
5
|
Joshi SV, Patel EP, Vyas BA, Lodha SR, Kalyankar GG. Repurposing of Iloperidone: Antihypertensive and ocular hypotensive activity in animals. Eur J Pharm Sci 2019; 143:105173. [PMID: 31809906 DOI: 10.1016/j.ejps.2019.105173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Iloperidone, second generation antipsychotic drug, reported in clinical trial to produce orthostatic hypotension as side effect. It was claimed to be antagonistic at alpha adrenergic receptor in central nervous system. We evaluated effect of Iloperidone on peripheral alpha 1 adrenoreceptor by in silico and in vitro methods while in vivo hypotensive, antihypertensive and ocular hypotensive activity was evaluated in animals. METHODS Pharmacological activity prediction of Iloperidone was done using PASSOnline and SwissTargetPrediction softwares and molecular docking with Alpha 1A adrenoreceptor using AutoDock Vina. Hypotensive activity in normotensive and antihypertensive activity against DOCA-salt induced hypertension in rats were evaluated at doses 0.03 mg/Kg and 0.1 mg/Kg, i.p of Iloperidone. Blood pressure was measured by invasive blood pressure measurement technique using PowerLab 4/30 and intraocular pressure was measured using digital tonometer. RESULTS Iloperidone (0.1 mg/Kg) showed significant decrease in blood pressure (38.96 ± 1.1%) in normotensive rats, while in DOCA salt induced hypertensive rats, systolic blood pressure was found to be decreased by 29.04 ± 1.45% and 31.43 ± 1.21% in 0.03 mg/Kg and 0.1 mg/Kg treated rats respectively. Iloperidone prevented rise in systolic BP with adrenaline. Intraocular pressure was found to be decreased by 36.66 ± 3.15% in rabbits after 1 h of instillation of 0.1% Iloperidone. CONCLUSION Iloperidone exerted hypotensive and/or anti-hypertensive activity in rats and ocular hypotensive activity in rabbits.
Collapse
Affiliation(s)
- Shrikant V Joshi
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Bardoli-Mahuva Road, Tarsadi. Distt. Surat, Gujarat, 394 350 India.
| | - Ekta P Patel
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Bardoli-Mahuva Road, Tarsadi. Distt. Surat, Gujarat, 394 350 India
| | - Bhavin A Vyas
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Bardoli-Mahuva Road, Tarsadi. Distt. Surat, Gujarat, 394 350 India
| | - Sandesh R Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Bardoli-Mahuva Road, Tarsadi. Distt. Surat, Gujarat, 394 350 India
| | - Gajanan G Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Bardoli-Mahuva Road, Tarsadi. Distt. Surat, Gujarat, 394 350 India
| |
Collapse
|
6
|
Foute Nelong T, Manduca JD, Zonneveld PM, Perreault ML. Asenapine maleate normalizes low frequency oscillatory deficits in a neurodevelopmental model of schizophrenia. Neurosci Lett 2019; 711:134404. [PMID: 31356843 DOI: 10.1016/j.neulet.2019.134404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
Asenapine maleate (AM) is an atypical antipsychotic that, unlike many other antipsychotics, shows some efficacy in treating cognitive dysfunction in schizophrenia. Normal cognitive function has long since been associated with high frequency neuronal oscillations. However, recent research has highlighted the potential importance of low frequency oscillations. Here, the impact of AM on low frequency neural oscillatory activity was evaluated in the methylazoxymethanol acetate (MAM) rat model system used for the study schizophrenia, and the oscillatory signatures compared to those of haloperidol (HAL) and clozapine (CLZ). AM and CLZ normalized low frequency spectral power deficits in the prefrontal cortex, while HAL and AM reversed corticostriatal and corticocortical delta coherence deficits. However, only chronic AM administration normalized corticostriatal and corticocortical delta coherence deficits between 3-4 Hz. These findings support the idea that antipsychotic-induced amelioration of both delta coherence and power may be important for therapeutic efficacy in treating the cognitive deficits inherent in schizophrenia.
Collapse
Affiliation(s)
- Tapia Foute Nelong
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| | - Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| | - Paula M Zonneveld
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| |
Collapse
|
7
|
Kucinski A, Kim Y, Sarter M. Basal forebrain chemogenetic inhibition disrupts the superior complex movement control of goal-tracking rats. Behav Neurosci 2019; 133:121-134. [PMID: 30688488 DOI: 10.1037/bne0000290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sign- and goal-tracking behavior signifies the influence of opposed cognitive-motivational styles, with the former being characterized by a tendency for approaching and contacting reward cues, including a readiness for attending, bottom-up, to salient cues, and a relatively greater vulnerability for developing and maintaining addiction-like behaviors. We previously demonstrated that these styles also impact the cognitive-motor interactions that are taxed during traversal of dynamic surfaces, with goal-trackers (GTs) making less movement errors and falling less frequently than sign-trackers (STs). The present experiment tested the hypothesis that complex movement control in GTs, but not STs, depends on activation of the basal forebrain projection system to telencephalic regions. Chemogenetic inhibition of the basal forebrain increased movement errors and falls in GTs during traversal of a rotating zigzag rod but had no significant effect on the relatively lower performance of STs. Neurochemical evidence confirmed the efficacy of the inhibitory designer receptor exclusively activated by designer drug (DREADD). Administration of clozapine-N-oxide (CNO) had no significant effect in GTs not expressing the DREADD. These results indicate that GTs, but not STs, activate the basal forebrain projection system to mediate their relatively superior ability for complex movement control. STs may also serve as an animal model in research on the role of basal forebrain systems in aging- and Parkinson's disease-associated falls. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Youngsoo Kim
- Department of Psychology and Neuroscience Program
| | | |
Collapse
|
8
|
Olivito L, De Risi M, Russo F, De Leonibus E. Effects of pharmacological inhibition of dopamine receptors on memory load capacity. Behav Brain Res 2018; 359:197-205. [PMID: 30391393 DOI: 10.1016/j.bbr.2018.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/26/2022]
Abstract
Memory capacity (MC) refers to the limited capacity of working memory and is defined as the number of elements that an individual can remember for a short retention interval. MC is impaired in many human pathologies, such as schizophrenia and ageing. Fronto-striatal dopamine regulates working memory, through its action on dopamine D1- and D2-like receptors. Human and rodent studies have suggested that MC is improved by D2 dopamine receptor agonists. Although D1 receptors have been crucially involved in the maintenance of working memory during delay, their role in regulating the capacity of WM remains poorly explored. In this study, we tested the effects of systemic injection of the D1-like and D2-like receptor antagonists, SCH 23390 and Haloperidol respectively, on MC in mice. For this, we used a modified version of the object recognition task, the Different/Identical Objects Task (DOT/IOT), which allows the evaluation of MC in rodents. The results showed a negative interaction between the dose of both drugs and the number of objects that could be remembered. The doses of SCH 23390 and Haloperidol that impaired novel object discrimination in the highest memory load condition were about 4 and 3 time lower, respectively, of those impairing performance in the lowest memory load condition. However, while SCH 23390 specifically impaired memory load capacity, the effects of Haloperidol were associated to impairment in exploratory behaviors. These findings may help to predict the cognitive side effects induced by Haloperidol in healthy subjects.
Collapse
Affiliation(s)
- Laura Olivito
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy
| | - Maria De Risi
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy; PhD Program in Behavioral Neuroscience, Sapienza University of Rome, Italy
| | - Fabio Russo
- Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy
| | - Elvira De Leonibus
- Institute of Genetics and Biophysics (IGB), Naples and Institute of Cellular Biology and Neurobiology (IBCN), National Research Council, Monterotondo (Rome), Italy; Telethon Institute of Genetics and Medicine, Telethon Foundation, Pozzuoli (Naples), Italy.
| |
Collapse
|
9
|
Dudchenko PA, Talpos J, Young J, Baxter MG. Animal models of working memory: A review of tasks that might be used in screening drug treatments for the memory impairments found in schizophrenia. Neurosci Biobehav Rev 2013; 37:2111-24. [PMID: 22464948 DOI: 10.1016/j.neubiorev.2012.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/17/2012] [Accepted: 03/05/2012] [Indexed: 12/18/2022]
|
10
|
Barak S, Weiner I. Putative cognitive enhancers in preclinical models related to schizophrenia: The search for an elusive target. Pharmacol Biochem Behav 2011; 99:164-89. [DOI: 10.1016/j.pbb.2011.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/27/2011] [Accepted: 03/12/2011] [Indexed: 12/12/2022]
|
11
|
Caccia S, Pasina L, Nobili A. New atypical antipsychotics for schizophrenia: iloperidone. DRUG DESIGN DEVELOPMENT AND THERAPY 2010; 4:33-48. [PMID: 20368905 PMCID: PMC2846148 DOI: 10.2147/dddt.s6443] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The optimal treatment of schizophrenia poses a challenge to develop more effective treatments and safer drugs, to overcome poor compliance, discontinuation and frequent switching with available antipsychotics. Iloperidone is a new dopamine type 2/serotonin type 2A (D(2)/5-HT(2A)) antagonist structurally related to risperidone, expected to give better efficacy with less extrapyramidal symptoms than D(2) receptor antagonist antipsychotics. In double-blind phase III trials iloperidone reduced the symptoms of schizophrenia at oral doses from 12 to 24 mg. It was more effective than placebo in reducing positive and negative syndrome total score and Brief Psychiatric Rating scale scores; it was as effective as haloperidol and risperidone in post-hoc analysis. Its long-term efficacy was equivalent to that of haloperidol. The most common adverse events were dizziness, dry mouth, dyspepsia and somnolence, with few extrapyramidal symptoms and metabolic changes in short- and long-term studies in adults. Akathisia was rare, but prolongation of the corrected QT (QTc) interval was comparable to haloperidol and ziprasidone, which is of particular concern. Further comparative studies are needed to clarify the benefit/risk profile of iloperidone and its role in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Silvio Caccia
- Laboratory of Drug Metabolism, Mario Negri Institute for Pharmacological Research, 20156, Milan, Italy.
| | | | | |
Collapse
|
12
|
Hoffman AN, Cheng JP, Zafonte RD, Kline AE. Administration of haloperidol and risperidone after neurobehavioral testing hinders the recovery of traumatic brain injury-induced deficits. Life Sci 2008; 83:602-7. [PMID: 18801378 DOI: 10.1016/j.lfs.2008.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 11/29/2022]
Abstract
AIMS Agitation and aggression are common behavioral sequelae of traumatic brain injury (TBI). The management of these symptoms is critical for effective patient care and therefore antipsychotics are routinely administered even though the benefits vs. risks of this approach on functional outcome after TBI are unclear. A recent study from our group revealed that both haloperidol and risperidone impaired recovery when administered prior to testing. However, the results may have been confounded by drug-induced sedation. Hence, the current study reevaluated the behavioral effects of haloperidol and risperidone when provided after daily testing, thus circumventing the potential sedative effect. MAIN METHODS Fifty-four isoflurane-anesthetized male rats received a cortical impact or sham injury and then were randomly assigned to three TBI and three sham groups that received haloperidol (0.5 mg/kg), risperidone (0.45 mg/kg), or vehicle (1.0 mL/kg). Treatments began 24 h after surgery and were administered (i.p.) every day thereafter for 19 days. Motor and cognitive function was assessed on post-operative days 1-5 and 14-19, respectively. Hippocampal CA(1)/CA(3) neurons and cortical lesion volume were quantified at 3 weeks. KEY FINDINGS Only risperidone delayed motor recovery, but both antipsychotics impaired spatial learning relative to vehicle (p<0.05). Neither swim speed nor histological outcomes were affected. No differences were observed between the haloperidol and risperidone groups in any task. SIGNIFICANCE These data support our previous finding that chronic haloperidol and risperidone hinder the recovery of TBI-induced deficits, and augment those data by demonstrating that the effects are not mediated by drug-induced sedation.
Collapse
Affiliation(s)
- Ann N Hoffman
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | | | | | | |
Collapse
|
13
|
Abstract
Antipsychotic drugs have become the mainstay treatment of schizophrenia. However, patients who receive antipsychotic treatment differ with respect to treatment response and adverse events. The problem of antipsychotic response variability has stimulated further search for agents with improved effectiveness and tolerability. Equally intense is the search for novel ways of using DNA information to personalize treatment with antipsychotic drugs. Iloperidone is an investigational, atypical antipsychotic drug of the serotonin/dopamine type. The US FDA is currently reviewing the new drug application for an oral formulation of iloperidone for the treatment of schizophrenia. Data from 35 clinical trials and approximately 3000 patients treated with iloperidone were included in the new drug application submission, as well as data from pharmacogenetic studies of iloperidone. Given the emerging role of pharmacogenetics, knowledge of genetic biomarkers of iloperidone response could lead to personalized medicine.
Collapse
Affiliation(s)
- Charles U Nnadi
- Zucker Hillside Hospital, Psychiatry Research, 75–59 263rd Street, Glen Oaks, NY 11004, USA
| | - Anil K Malhotra
- Zucker Hillside Hospital, Psychiatry Research, 75–59 263rd Street, Glen Oaks, NY 11004, USA
| |
Collapse
|
14
|
Nordquist RE, Delenclos M, Ballard TM, Savignac H, Pauly-Evers M, Ozmen L, Spooren W. Cognitive performance in neurokinin 3 receptor knockout mice. Psychopharmacology (Berl) 2008; 198:211-20. [PMID: 18351324 DOI: 10.1007/s00213-008-1119-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 02/17/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE The neurokinin 3 (NK(3)) receptor is a novel target under investigation for improvement of the symptoms of schizophrenia due to its ability to modulate dopaminergic signaling. However, research on effects of NK(3) antagonism with animal models has been hindered because of species differences in the receptor between humans, rats, and mice. OBJECTIVES The aim of the present study is to further knowledge on the role of NK(3) in cognitive functioning by testing the effect of knockout of the NK(3) receptor on tests of working memory, spatial memory, and operant responding. MATERIALS AND METHODS NK(3) knockout mice generated on a C57Bl/6 background were tested in delayed matching to position (DMTP), spontaneous alternation, Morris water maze, and active avoidance tasks. RESULTS NK(3) knockout mice showed better performance in the DMTP task, though not delay dependently, which points to an effect on operant performance but not on working memory. No differences were seen between the groups in spontaneous alternation, another indication that working memory is not affected in NK(3) knockouts. There was no impairment in knockout mice in Morris water maze training, and the mice also showed faster response latency in the active avoidance task during training. CONCLUSIONS Collectively, these results support a role for the NK(3) receptor in performance of operant tasks and in spatial learning but not in working memory.
Collapse
Affiliation(s)
- R E Nordquist
- Psychiatry Disease Area, PRBD-N, F. Hoffmann-La Roche, Building 72-148, 4070 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Albers LJ, Musenga A, Raggi MA. Iloperidone: a new benzisoxazole atypical antipsychotic drug. Is it novel enough to impact the crowded atypical antipsychotic market? Expert Opin Investig Drugs 2008; 17:61-75. [PMID: 18095919 DOI: 10.1517/13543784.17.1.61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Iloperidone is a new-generation atypical antipsychotic agent, acting as a serotonin/dopamine (5-HT(2A)/D(2)) antagonist, under development by Vanda Pharmaceuticals for the treatment of schizophrenia, bipolar disorder and other psychiatric conditions. Chemically, iloperidone is a benzisoxazole, like risperidone, and shows a multiple receptor binding profile, sharing this feature with the other atypical antipsychotic agents. Administered orally, the drug is highly bound to plasma proteins and extensively metabolised. Several clinical trials have been carried out, to check efficacy, safety and side effects. In order to introduce iloperidone as an agent for the treatment of schizophrenia, a short overview of the disease and of the most important antipsychotic drugs available or under development will be reported. Iloperidone pharmacokinetics and pharmacodynamics are presented herein, together with an evaluation of clinical safety and efficacy results.
Collapse
Affiliation(s)
- Lawrence James Albers
- University of California at Irvine, Department of Psychiatry, Long Beach VA Healthcare System, 5901 East Seventh Street, Long Beach, CA 90822, USA
| | | | | |
Collapse
|
16
|
Risperidone and ritanserin but not haloperidol block effect of dizocilpine on the active allothetic place avoidance task. Proc Natl Acad Sci U S A 2008; 105:1061-6. [PMID: 18195350 DOI: 10.1073/pnas.0711273105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial working memory or short-term place memory is impaired in schizophrenia. The efficiency of antipsychotic drugs, particularly of typical antipsychotics, on cognitive deficit in schizophrenia remains disputable. Inhibition of serotonin (5-HT) 2A/2C receptors is important for cognitive improvement in schizophrenic patients treated with antipsychotics. The aim of the present work was to establish the effect of the 5-HT2A/2C receptor antagonist ritanserin (2.5 or 5 mg/kg), the dopamine D2 antagonist haloperidol (0.1 or 1 mg/kg), and the atypical antipsychotic risperidone (0.1 mg/kg or 1 mg/kg), which is an antagonist of both 5-HT2A/2C and D2 receptors, on cognitive deficit induced by subchronic administration of dizocilpine (MK-801, 0.1 mg/kg). We used the active allothetic place avoidance (AAPA) task, requiring the rat to differentiate between relevant and irrelevant stimuli, in a way similar to disruption of information processing disturbed in schizophrenic patients. Our results show that treatment with 5-HT2A/2C receptor antagonists, regardless of their effect on D2 receptors, blocked the cognitive impairment produced by MK-801. Haloperidol did not sufficiently reduce the deficit in AAPA induced by MK-801. Interestingly, administration of risperidone and haloperidol alone, but not ritanserin, impaired the AAPA performance in intact rats. Ritanserin and risperidone actually improve cognition independently of their effect on locomotor activity in an animal model of schizophrenia-like behavior. This finding is in accordance with the assumption that some antipsychotics are primarily effective against cognitive dysfunction in schizophrenia.
Collapse
|
17
|
Stone WS, Seidman LJ. Toward a model of memory enhancement in schizophrenia: glucose administration and hippocampal function. Schizophr Bull 2008; 34:93-108. [PMID: 17504777 PMCID: PMC2632374 DOI: 10.1093/schbul/sbm041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recognition of the need to treat cognitive deficits in schizophrenia is compelling and well established, with empirical findings and conceptual arguments related to cognitive enhancement appearing regularly in the literature. Cognitive enhancement itself, however, remains at an early stage. Biological approaches have centered on the development of antipsychotic medications that also improve cognition, but the results have so far remained modest. As a way to facilitate the development of cognitive enhancers in schizophrenia, this article focuses on adjunctive pharmacological approaches to antipsychotic medications and highlights the need for systematic explorations of relevant brain mechanisms. While numerous conceptual criteria might be employed to guide the search, we will focus on 4 points that are especially likely to be useful and which have not yet been considered together. First, the discussion will focus on deficits in a particular cognitive domain, verbal declarative memory. Second, we will review the current status of preclinical and clinical efforts to improve declarative memory using antipsychotic medications, which is the main, existing mode of treatment. Third, we will examine an example of an adjunctive intervention-glucose administration-that improves memory in animals and humans, modulates function in brain regions related to verbal declarative memory, and is highly amenable to translational research. Finally, a heuristic model will be outlined to explore how the intervention maps on to the underlying neurobiology of schizophrenia. More generally, the discussion underlines the promise of cognitive improvement in schizophrenia and the need to approach the issue in a programmatic manner.
Collapse
Affiliation(s)
- William S Stone
- Department of Psychiatry, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
18
|
Lim EP, Verma V, Nagarajah R, Dawe GS. Propranolol blocks chronic risperidone treatment-induced enhancement of spatial working memory performance of rats in a delayed matching-to-place water maze task. Psychopharmacology (Berl) 2007; 191:297-310. [PMID: 17225165 DOI: 10.1007/s00213-006-0664-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
RATIONALE Atypical antipsychotics improve cognitive function, including working memory, in schizophrenia. Some atypical antipsychotics have been reported to activate the locus coeruleus and induce beta-adrenoceptor antagonist sensitive c-Fos-like immunoreactivity in the prefrontal cortex. MATERIALS AND METHODS The present study investigated the effects of chronic treatment of rats with risperidone (1 mg kg(-1) day(-1) s.c.), clozapine (10 mg kg(-1) day(-1) s.c.), or acidified saline vehicle control for 2, 4, or 8 weeks on spatial working memory performance in a delayed matching-to-place water maze task with a 60-s inter-trial retention interval with and without acute challenge with propranolol (10 mg/kg i.p.). RESULTS Treatment with risperidone for 8 weeks, but not 2 or 4 weeks, significantly improved working memory performance. In contrast, treatment with clozapine for up to 8 weeks did not improve working memory. Acute challenge with propranolol blocked the improvement in working memory produced by chronic treatment with risperidone, but had no significant effect on performance in saline- or clozapine-treated animals. CONCLUSIONS The delayed matching-to-place water maze task may prove valuable in the investigation of the behavioural pharmacology of the cognitive effects of antipsychotic drugs. These data suggest that beta adrenoceptors may contribute to the cognitive effects of chronic treatment with atypical antipsychotics.
Collapse
Affiliation(s)
- Ee Peng Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Building MD2, 18 Medical Drive, Singapore, 117597, Singapore.
| | | | | | | |
Collapse
|
19
|
Wang JH, Yang JZ, Wilson FAW, Ma YY. Differently lasting effects of prenatal and postnatal chronic clozapine/haloperidol on activity and memory in mouse offspring. Pharmacol Biochem Behav 2006; 84:468-78. [PMID: 16887176 DOI: 10.1016/j.pbb.2006.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 06/02/2006] [Accepted: 06/15/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED We evaluated the behavioral effects of chronic haloperidol (HAL) and clozapine (CLO) during gestation and CNS development, compared with transient treatments that stopped 1-3 weeks before the test. RESULTS 1) Chronic HAL (6 mg/l in drinking water) but not HAL-withdrawal caused hypo-activity in open-field test on postnatal days (PNDs) 35, 42 and 56. However, hyper-activity was found in both CLO (90 mg/l) and CLO-withdrawal pups. 2) In the step-through test, retention performance was significantly higher in HAL-treated mice than in the controls on PND 42, as well as in withdrawal mice on PNDs 35 and 42. However, both chronic CLO (90 mg/l) exposure and CLO-withdrawal tended to improve the acquisition of memory. Furthermore, chronic CLO (180 mg/l) ameliorated scopolamine (3 mg/kg)-induced impairment of memory on PND 56. 3) In the water-maze test, both chronic HAL and HAL-withdrawal treatments significantly impaired performance on the 4th training day at PND 35, but not PNDs 42 and 56. Neither chronic CLO exposure nor CLO-withdrawal affected spatial memory. 4) Body weight following HAL/CLO administration decreased when compared with the controls during PND 21-35, but approached control levels at PND 40. CONCLUSION HAL doesn't elicit permanent behavioral changes in offspring. By contrast, CLO had longer-lasting effects than HAL. The pups at age before PND 35 seem more sensitive to HAL/CLO than elder pups.
Collapse
Affiliation(s)
- Jian Hong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms and Section of Cognitive Brain Research, Kunming Institute of Zoology, Chinese Academy of Sciences, #32 Jiao Chang Dong Lu, Kunming, Yunnan, 650223, PR China
| | | | | | | |
Collapse
|
20
|
Barr AM, Powell SB, Markou A, Geyer MA. Iloperidone reduces sensorimotor gating deficits in pharmacological models, but not a developmental model, of disrupted prepulse inhibition in rats. Neuropharmacology 2006; 51:457-65. [PMID: 16762376 DOI: 10.1016/j.neuropharm.2006.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 03/31/2006] [Accepted: 04/06/2006] [Indexed: 11/20/2022]
Abstract
Iloperidone is a novel atypical antipsychotic which acts as a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist. To compare iloperidone behaviorally to other known antipsychotics, we evaluated the drug in three pharmacological models and one developmental model of disrupted prepulse inhibition (PPI) in rats. Firstly, 0.5 mg/kg apomorphine induced PPI deficits that were prevented by pretreatment with iloperidone (1 and 3 mg/kg). Secondly, treatment with the N-methyl-D-aspartate (NMDA)-receptor antagonist phencyclidine (PCP) produced robust deficits in PPI. Both doses of iloperidone (1 and 3 mg/kg) prevented the PPI-disruptive effects of treatment with 1 mg/kg PCP. Thirdly, treatment with the alpha1-adrenoceptor agonist cirazoline (0.6 mg/kg) disrupted PPI, and produced a concurrent large increase in startle magnitude. A relatively low dose of iloperidone (0.3 mg/kg) prevented cirazoline-induced PPI deficits, independent of its effects on startle magnitude. Finally, iloperidone (1 mg/kg) did not reverse PPI deficits in the isolation-rearing model of schizophrenia. These results indicate that iloperidone exerts behavioral effects in pharmacological models of disrupted sensorimotor gating consistent with "atypical" antipsychotics, mediated by antagonism of dopaminergic and noradrenergic receptors. The absence of effect in isolation-reared rats may be due to the relatively small effect size of isolation rearing on PPI or dose of iloperidone.
Collapse
Affiliation(s)
- Alasdair M Barr
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | |
Collapse
|
21
|
Ortega-Alvaro A, Gibert-Rahola J, Micó JA. Influence of chronic treatment with olanzapine, clozapine and scopolamine on performance of a learned 8-arm radial maze task in rats. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:104-11. [PMID: 16226364 DOI: 10.1016/j.pnpbp.2005.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Cognitive deficit is a significant symptom in schizophrenic patients. Use of atypical antipsychotics has been demonstrated to improve some cognitive functions in schizophrenics, as well as in patients with dementia. However, side effects like sedation and muscarinic antagonism induced by these drugs have detracted from this improvement. We are interested in determining the behavioural effect of acute and chronic treatments with olanzapine and clozapine, two atypical antipsychotics, in a paradigm of working memory, and the influence on behavioural response of possible motor effects during test performance. Unspecific muscarinic antagonist scopolamine has been used for comparison. Male Wistar rats were trained on the 8-arm radial maze up to an accuracy level in choice of 80%. Distance travelled in the maze was also measured during test performance. Acute olanzapine, clozapine and scopolamine caused significant impairment of correct performance. Rats treated with olanzapine and clozapine presented a decrease in motor activity level at the same time. After the test at acute dosage, rats were chronically treated for 14 days with olanzapine, clozapine or scopolamine and 24 h after the last dose were again tested in the 8-arm radial maze. Under this procedure, chronic treatment with olanzapine, clozapine and scopolamine did not impair correct task performance and did not modify distance travelled. We concluded that the sedative effect masked a possible effect on working memory after acute administration of olanzapine and clozapine, whereas chronic treatment with olanzapine, clozapine and scopolamine did not adversely affect working memory performance. In the case of scopolamine, it suggests that chronic muscarinic antagonism does not induce memory impairment and for atypical antipsychotics, it suggests that chronic treatment induced a tolerance to acute motor effects of these drugs.
Collapse
Affiliation(s)
- Antonio Ortega-Alvaro
- Pharmacology and Neuroscience Research Group, Department of Neuroscience (Pharmacology and Psychiatry), Faculty of Medicine, University of Cadiz, Plaza Fragela 9, 11003 Cadiz, Spain
| | | | | |
Collapse
|