1
|
Esaki H, Izumi S, Nishikawa K, Nagayasu K, Kaneko S, Nishitani N, Deyama S, Kaneda K. Role of medial prefrontal cortex voltage-dependent potassium 4.3 channels in nicotine-induced enhancement of object recognition memory in male mice. Eur J Pharmacol 2024; 978:176790. [PMID: 38942263 DOI: 10.1016/j.ejphar.2024.176790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Nicotine has been shown to enhance object recognition memory in the novel object recognition (NOR) test by activating excitatory neurons in the medial prefrontal cortex (mPFC). However, the exact neuronal mechanisms underlying the nicotine-induced activation of mPFC neurons and the resultant memory enhancement remain poorly understood. To address this issue, we performed brain-slice electrophysiology and the NOR test in male C57BL/6J mice. Whole-cell patch-clamp recordings from layer V pyramidal neurons in the mPFC revealed that nicotine augments the summation of evoked excitatory postsynaptic potentials (eEPSPs) and that this effect was suppressed by N-[3,5-Bis(trifluoromethyl)phenyl]-N'-[2,4-dibromo-6-(2H-tetrazol-5-yl)phenyl]urea (NS5806), a voltage-dependent potassium (Kv) 4.3 channel activator. In line with these findings, intra-mPFC infusion of NS5806 suppressed systemically administered nicotine-induced memory enhancement in the NOR test. Additionally, miRNA-mediated knockdown of Kv4.3 channels in mPFC pyramidal neurons enhanced object recognition memory. Furthermore, inhibition of A-type Kv channels by intra-mPFC infusion of 4-aminopyridine was found to enhance object recognition memory, while this effect was abrogated by prior intra-mPFC NS5806 infusion. These results suggest that nicotine augments the summation of eEPSPs via the inhibition of Kv4.3 channels in mPFC layer V pyramidal neurons, resulting in the enhancement of object recognition memory.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Kumar M, Keady J, Aryal SP, Hessing M, Richards CI, Turner JR. The Role of Microglia in Sex- and Region-Specific Blood-Brain Barrier Integrity During Nicotine Withdrawal. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:182-193. [PMID: 38298802 PMCID: PMC10829673 DOI: 10.1016/j.bpsgos.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Background Smoking is the largest preventable cause of death and disease in the United States, with <5% of quit attempts being successful. Microglia activation and proinflammatory neuroimmune signaling in reward neurocircuitry are implicated in nicotine withdrawal symptomology. Microglia are integral regulators of blood-brain barrier (BBB) functionality as well; however, whether the effects of nicotine withdrawal on microglia function impact BBB integrity is unknown. Methods Mice were treated with chronic nicotine (12 mg/kg/day) and subjected to 48 hours nicotine withdrawal. Regional BBB permeability, together with messenger RNA and protein expression of tight junction proteins, were assessed. PLX5622 chow was used to deplete microglia to evaluate the role of microglia in regulating BBB integrity and nicotine withdrawal symptomology. Results Female mice had higher baseline BBB permeability in the prefrontal cortex and hippocampus than males. Nicotine withdrawal further exacerbated the BBB permeability selectively in the prefrontal cortex of females. These effects were concurrent with prefrontal cortex alterations in a subset of tight junction proteins with increased proinflammatory responses following nicotine withdrawal in females. Depletion of microglia via PLX5622 treatment prevented all these molecular effects and attenuated withdrawal-induced anxiety-like behavior in female mice. Conclusions These results are the first to show sex differences in regional BBB permeability during nicotine withdrawal. This represents a possible link to both the reduced smoking cessation success seen in women and women's increased risk for smoking-related neurovascular disorders. Furthermore, these findings open an avenue for sex-specific therapeutics that target microglia and BBB dysfunction during nicotine withdrawal in women.
Collapse
Affiliation(s)
- Mohit Kumar
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
- Food & Nutrition Biotechnology Division, Centre for Excellence in Functional Foods, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Jack Keady
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, Kentucky
| | - Marissa Hessing
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
| | | | - Jill R. Turner
- University of Kentucky, College of Pharmacy, Lexington, Kentucky
| |
Collapse
|
3
|
Kaneko S, Niki Y, Yamada K, Nasukawa D, Ujihara Y, Toda K. Systemic injection of nicotinic acetylcholine receptor antagonist mecamylamine affects licking, eyelid size, and locomotor and autonomic activities but not temporal prediction in male mice. Mol Brain 2022; 15:77. [PMID: 36068635 PMCID: PMC9450238 DOI: 10.1186/s13041-022-00959-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 12/26/2022] Open
Abstract
Nicotinic acetylcholine receptors are thought to be associated with a wide range of phenomena, such as movement, learning, memory, attention, and addiction. However, the causal relationship between nicotinic receptor activity and behavior remains unclear. Contrary to the studies that examined the functions of muscarinic acetylcholine receptors, the role of the nicotinic acetylcholine receptors on behavior has not been examined as extensively. Here, we examined the effects of intraperitoneal injection of mecamylamine, a nicotinic acetylcholine receptor antagonist, on the performance of male mice in a head-fixed temporal conditioning task and a free-moving open-field task. The head-fixed experimental setup allowed us to record and precisely quantify the licking response while the mice performed the behavioral task with no external cues. In addition, by combining the utility of the head-fixed experimental design with computer vision analysis based on deep learning algorithms, we succeeded in quantifying the eyelid size of awake mice. In the temporal conditioning task, we delivered a 10% sucrose solution every 10 s using a blunt-tipped needle placed within the licking distance of the mice. After the training, the mice showed increased anticipatory licking toward the timing of sucrose delivery, suggesting that the mice could predict the timing of the reward. Systemic injection of mecamylamine decreased licking behavior and caused eye closure but had no effect on learned conditioned predictive behavior in the head-fixed temporal conditioning task. In addition, the injection of mecamylamine decreased spontaneous locomotor activity in a dose-dependent manner in the free-moving open-field task. The results in the open-field experiments further revealed that the effect of mecamylamine on fecal output and urination, suggesting the effects on autonomic activities. Our achievement of successful eyelid size recording has potential as a useful approach in initial screening for drug discovery. Our study paves a way forward to understanding the role of nicotinic acetylcholine receptors on learning and behavior.
Collapse
Affiliation(s)
- Shohei Kaneko
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yasuyuki Niki
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Kota Yamada
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
- Japan Society for Promotion of Science, Tokyo, Japan
| | - Daiki Nasukawa
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, TN, Memphis, USA
| | - Koji Toda
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Sawagashira R, Tanaka M. Nicotine promotes the utility of short-term memory during visual search in macaque monkeys. Psychopharmacology (Berl) 2022; 239:3019-3029. [PMID: 35802143 DOI: 10.1007/s00213-022-06186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE The central cholinergic system is a major therapeutic target for restoring cognitive functions. Although manipulation of cholinergic signaling is known to alter working memory (WM), the underlying mechanism remains unclear. It is widely accepted that WM consists of multiple functional modules, one storing short-term memory and the other manipulating and utilizing it. A recently developed visual search task and a relevant model can be used to assess multiple components of WM during administration of acetylcholine receptor (AChR)-related substances. OBJECTIVES The effects of systemic administration of AChR-related agents on WM and eye movements were examined during the oculomotor foraging task. METHODS Three monkeys performing the task received an intramuscular injection of saline or the following AChR-related agents: nicotine (24 or 56 μg/kg), mecamylamine (nicotinic AChR antagonist, 1.0 mg/kg), oxotremorine (muscarinic AChR agonist, 3.0 µg/kg), and scopolamine (muscarinic AChR antagonist, 20 μg/kg). The task was to find a target among 15 identical objects by making eye movements within 6 s. The data were analyzed according to the foraging model that incorporated three parameters. RESULTS Nicotine and mecamylamine significantly increased the utility but not the capacity of short-term memory, while muscarinic AChR-related agents did not alter any WM parameters. Further regression analyses with a mixed-effect model showed that the beneficial effect of nicotine on memory utility remained after considering eye movement variability, but the beneficial effect of mecamylamine disappeared. CONCLUSIONS Nicotine improves visual search, mainly by increasing the utility of short-term memory, with minimal changes in oculomotor parameters.
Collapse
Affiliation(s)
- Ryo Sawagashira
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan. .,Department of Psychiatry, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan.
| |
Collapse
|
5
|
Esaki H, Izumi S, Fukao A, Nishitani N, Deyama S, Kaneda K. Nicotine enhances object recognition memory through inhibition of voltage-dependent potassium 7 channels in the medial prefrontal cortex of mice. J Pharmacol Sci 2021; 147:58-61. [PMID: 34294373 DOI: 10.1016/j.jphs.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 11/19/2022] Open
Abstract
Nicotine administration enhances object recognition memory. However, target brain regions and cellular mechanisms underlying the nicotine effects remain unclear. In mice, the novel object recognition test revealed that systemic nicotine administration before training enhanced object recognition memory. Moreover, this effect was inhibited by infusion of retigabine, a selective voltage-dependent potassium 7 (Kv7) channel opener, into the medial prefrontal cortex (mPFC) before nicotine administration. Additionally, infusion of XE-991, a selective Kv7 channel blocker, into the mPFC before training enhanced object recognition memory. Therefore, Kv7 channels in the mPFC may be at least partly involved in nicotine-induced enhancement of object recognition memory.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Akari Fukao
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
6
|
Upright NA, Baxter MG. Effects of nicotinic antagonists on working memory performance in young rhesus monkeys. Neurobiol Learn Mem 2021; 184:107505. [PMID: 34425219 DOI: 10.1016/j.nlm.2021.107505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Acetylcholine plays a pivotal neuromodulatory role in the brain, influencing neuronal activity and cognitive function. Nicotinic receptors, particularly α7 and α4β2 receptors, modulate firing of dorsolateral prefrontal (dlPFC) excitatory networks that underlie successful working memory function. Minimal work however has been done examining working memory following systemic blockade of nicotinic receptor systems in nonhuman primates, limiting the ability to explore interactions of other neuromodulatory influences with working memory impairment caused by nicotinic antagonism. In this study, we investigated working memory performance after administering three nicotinic antagonists, mecamylamine, methyllycaconitine, and dihydro-β-erythroidine, in rhesus macaques tested in a spatial delayed response task. Surprisingly, we found that no nicotinic antagonist significantly impaired delayed response performance compared to vehicle. In contrast, the muscarinic antagonist scopolamine reliably impaired delayed response performance in all monkeys tested. These findings suggest there are some limitations on using systemic nicotinic antagonists to probe the involvement of nicotinic receptors in aspects of dlPFC-dependent working memory function, necessitating alternative strategies to understand the role of this system in cognitive deficits seen in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Nicholas A Upright
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Palmer D, Dumont JR, Dexter TD, Prado MAM, Finger E, Bussey TJ, Saksida LM. Touchscreen cognitive testing: Cross-species translation and co-clinical trials in neurodegenerative and neuropsychiatric disease. Neurobiol Learn Mem 2021; 182:107443. [PMID: 33895351 DOI: 10.1016/j.nlm.2021.107443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 01/06/2023]
Abstract
Translating results from pre-clinical animal studies to successful human clinical trials in neurodegenerative and neuropsychiatric disease presents a significant challenge. While this issue is clearly multifaceted, the lack of reproducibility and poor translational validity of many paradigms used to assess cognition in animal models are central contributors to this challenge. Computer-automated cognitive test batteries have the potential to substantially improve translation between pre-clinical studies and clinical trials by increasing both reproducibility and translational validity. Given the structured nature of data output, computer-automated tests also lend themselves to increased data sharing and other open science good practices. Over the past two decades, computer automated, touchscreen-based cognitive testing methods have been developed for non-human primate and rodent models. These automated methods lend themselves to increased standardization, hence reproducibility, and have become increasingly important for the elucidation of the neurobiological basis of cognition in animal models. More recently, there have been increased efforts to use these methods to enhance translational validity by developing task batteries that are nearly identical across different species via forward (i.e., translating animal tasks to humans) and reverse (i.e., translating human tasks to animals) translation. An additional benefit of the touchscreen approach is that a cross-species cognitive test battery makes it possible to implement co-clinical trials-an approach developed initially in cancer research-for novel treatments for neurodegenerative disorders. Co-clinical trials bring together pre-clinical and early clinical studies, which facilitates testing of novel treatments in mouse models with underlying genetic or other changes, and can help to stratify patients on the basis of genetic, molecular, or cognitive criteria. This approach can help to determine which patients should be enrolled in specific clinical trials and can facilitate repositioning and/or repurposing of previously approved drugs. This has the potential to mitigate the resources required to study treatment responses in large numbers of human patients.
Collapse
Affiliation(s)
- Daniel Palmer
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada.
| | - Julie R Dumont
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; BrainsCAN, The University of Western Ontario, Ontario, Canada
| | - Tyler D Dexter
- Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Graduate Program in Neuroscience, The University of Western Ontario, Ontario, Canada; Department of Anatomy and Cell Biology, The University of Western Ontario, Ontario, Canada
| | - Elizabeth Finger
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Clinical Neurological Sciences, The University of Western Ontario, Ontario, Canada; Lawson Health Research Institute, Ontario, Canada; Parkwood Institute, St. Josephs Health Care, Ontario, Canada
| | - Timothy J Bussey
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, The University of Western Ontario, Ontario, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, Ontario, Canada; Brain and Mind Institute, The University of Western Ontario, Ontario, Canada
| |
Collapse
|
8
|
GIPSON CD, BIMONTE-NELSON HA. Interactions between reproductive transitions during aging and addiction: promoting translational crosstalk between different fields of research. Behav Pharmacol 2021; 32:112-122. [PMID: 32960852 PMCID: PMC7965232 DOI: 10.1097/fbp.0000000000000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Discovery of neural mechanisms underlying neuropsychiatric disorders within the aging and addiction fields has been a main focus of the National Institutes of Health. However, there is a dearth of knowledge regarding the biological interactions of aging and addiction, which may have important influences on progression of disease and treatment outcomes in aging individuals with a history of chronic drug use. Thus, there is a large gap in these fields of research, which has slowed progress in understanding and treating substance use disorders (SUDs) as well as age-related diseases, specifically in women who experience precipitous reproductive cycle transitions during aging. The goal of this review is to highlight overlap of SUDs and age-related processes with a specific focus on menopause and smoking, and identify critical gaps. We have narrowed the focus of the review to smoking, as the majority of findings on hormonal and aging influences on drug use have come from this area of research. Further, we highlight female-specific issues such as transitional menopause and exogenous estrogen use. These issues may impact drug use cessation as well as outcomes with aging and age-related neurodegenerative diseases in women. We first review clinical studies for smoking, normal aging, and pathological aging, and discuss the few aging-related studies taking smoking history into account. Conversely, we highlight the dearth of clinical smoking studies taking age as a biological variable into account. Preclinical and clinical literature show that aging, age-related pathological brain disease, and addiction engage overlapping neural mechanisms. We hypothesize that these putative drivers interact in meaningful ways that may exacerbate disease and hinder successful treatment outcomes in such comorbid populations. We highlight areas where preclinical studies are needed to uncover neural mechanisms in aging and addiction processes. Collectively, this review highlights the need for crosstalk between different fields of research to address medical complexities of older adults, and specifically women, who smoke.
Collapse
Affiliation(s)
- Cassandra D. GIPSON
- Department of Family and Community Medicine, University of Kentucky, Lexington, KY
- Arizona Alzheimer’s Consortium
| | | |
Collapse
|
9
|
Esaki H, Izumi S, Fukao A, Ito S, Nishitani N, Deyama S, Kaneda K. Nicotine Enhances Object Recognition Memory via Stimulating α4β2 and α7 Nicotinic Acetylcholine Receptors in the Medial Prefrontal Cortex of Mice. Biol Pharm Bull 2021; 44:1007-1013. [PMID: 34193682 DOI: 10.1248/bpb.b21-00314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nicotine has been known to enhance recognition memory in various species. However, the brain region where nicotine acts and exerts its effect remains unclear. Since the medial prefrontal cortex (mPFC) is associated with memory, we examined the role of the mPFC in nicotine-induced enhancement of recognition memory using the novel object recognition test in male C57BL/6J mice. Systemic nicotine administration 10 min before training session significantly enhanced object recognition memory in test session that was performed 24 h after the training. Intra-mPFC infusion of mecamylamine, a non-selective nicotinic acetylcholine receptor (nAChR) antagonist, 5 min before nicotine administration blocked the effect of nicotine. Additionally, intra-mPFC infusion of dihydro-β-erythroidine, a selective α4β2 nAChR antagonist, or methyllycaconitine, a selective α7 nAChR antagonist, significantly suppressed the nicotine-induced object recognition memory enhancement. Finally, intra-mPFC infusion of nicotine 1 min before the training session augmented object recognition memory in a dose-dependent manner. These findings suggest that mPFC α4β2 and α7 nAChRs mediate the nicotine-induced object recognition memory enhancement.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Akari Fukao
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shiho Ito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
10
|
Mahmood HM, Aldhalaan HM, Alshammari TK, Alqasem MA, Alshammari MA, Albekairi NA, AlSharari SD. The Role of Nicotinic Receptors in the Attenuation of Autism-Related Behaviors in a Murine BTBR T + tf/J Autistic Model. Autism Res 2020; 13:1311-1334. [PMID: 32691528 DOI: 10.1002/aur.2342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/28/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic receptors are distributed throughout the central and peripheral nervous system. Postmortem studies have reported that some nicotinic receptor subtypes are altered in the brains of autistic people. Recent studies have demonstrated the importance of nicotinic acetylcholine receptors (nAChRs) in the autistic behavior of BTBR T + tf/J mouse model of autism. This study was undertaken to examine the behavioral effects of targeted nAChRs using pharmacological ligands, including nicotine and mecamylamine in BTBR T + tf/J and C57BL/6J mice in a panel of behavioral tests relating to autism. These behavioral tests included the three-chamber social interaction, self-grooming, marble burying, locomotor activity, and rotarod test. We examined the effect of various oral doses of nicotine (50, 100, and 400 mcg/mL; po) over a period of 2 weeks in BTBR T + tf/J mouse model. The results indicated that the chronic administration of nicotine modulated sociability and repetitive behavior in BTBR T + tf/J mice while no effects observed in C57BL/6J mice. Furthermore, the nonselective nAChR antagonist, mecamylamine, reversed nicotine effects on sociability and increased repetitive behaviors in BTBR T + tf/J mice. Overall, the findings indicate that the pharmacological modulation of nicotinic receptors is involved in modulating core behavioral phenotypes in the BTBR T + tf/J mouse model. LAY SUMMARY: The involvement of brain nicotinic neurotransmission system plays a crucial role in regulating autism-related behavioral features. In addition, the brain of the autistic-like mouse model has a low acetylcholine level. Here, we report that nicotine, at certain doses, improved sociability and reduced repetitive behaviors in a mouse model of autism, implicating the potential therapeutic values of a pharmacological intervention targeting nicotinic receptors for autism therapy. Autism Res 2020, 13: 1311-1334. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Aldhalaan
- Department of Neuroscience, Center for Autism Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tahani K Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mashael A Alqasem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
11
|
Adeluyi A, Guerin L, Fisher ML, Galloway A, Cole RD, Chan SSL, Wyatt MD, Davis SW, Freeman LR, Ortinski PI, Turner JR. Microglia morphology and proinflammatory signaling in the nucleus accumbens during nicotine withdrawal. SCIENCE ADVANCES 2019; 5:eaax7031. [PMID: 31633029 PMCID: PMC6785260 DOI: 10.1126/sciadv.aax7031] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/14/2019] [Indexed: 05/07/2023]
Abstract
Smoking is the largest preventable cause of death and disease in the United States. However, <5% of quit attempts are successful, underscoring the urgent need for novel therapeutics. Microglia are one untapped therapeutic target. While previous studies have shown that microglia mediate both inflammatory responses in the brain and brain plasticity, little is known regarding their role in nicotine dependence and withdrawal phenotypes. Here, we examined microglial changes in the striatum-a mesolimbic region implicated in the rewarding effects of drugs and the affective disruptions occurring during withdrawal. We show that both nicotine and withdrawal induce microglial morphological changes; however, proinflammatory effects and anxiogenic behaviors were observed only during nicotine withdrawal. Pharmacological microglial depletion during withdrawal prevented these effects. These results define differential effects of nicotine and withdrawal on inflammatory signaling in the brain, laying the groundwork for development of future smoking cessation therapeutics.
Collapse
Affiliation(s)
- Adewale Adeluyi
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Lindsey Guerin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Miranda L. Fisher
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| | - Ashley Galloway
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Robert D. Cole
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Neuroscience, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Sherine S. L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Neuroene Therapeutics, Mt Pleasant, SC, USA
| | - Michael D. Wyatt
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Linnea R. Freeman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Pavel I. Ortinski
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Neuroscience, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Jill R. Turner
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, USA
| |
Collapse
|
12
|
Cunningham CS, Moerke MJ, McMahon LR. Discriminative stimulus effects of mecamylamine and nicotine in rhesus monkeys: Central and peripheral mechanisms. Pharmacol Biochem Behav 2019; 179:27-33. [PMID: 30738085 PMCID: PMC6788799 DOI: 10.1016/j.pbb.2019.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Mecamylamine is a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist that has been prescribed for hypertension and as an off-label smoking cessation aid. Here, we examined pharmacological mechanisms underlying the interoceptive effects (i.e., discriminative stimulus effects) of mecamylamine (5.6 mg/kg s.c.) and compared the effects of nAChR antagonists in this discrimination assay to their capacity to block a nicotine discriminative stimulus (1.78 mg/kg s.c.) in rhesus monkeys. Central (pempidine) and peripherally restricted nAChR antagonists (pentolinium and chlorisondamine) dose-dependently substituted for the mecamylamine discriminative stimulus in the following rank order potency (pentolinium > pempidine > chlorisondamine > mecamylamine). In contrast, at equi-effective doses based on substitution for mecamylamine, only mecamylamine antagonized the discriminative stimulus effects of nicotine, i.e., pentolinium, chlorisondamine, and pempidine did not. NMDA receptor antagonists produced dose-dependent substitution for mecamylamine with the following rank order potency (MK-801 > phencyclidine > ketamine). In contrast, behaviorally active doses of smoking cessation aids including nAChR agonists (nicotine, varenicline, and cytisine), the smoking cessation aid and antidepressant bupropion, and the benzodiazepine midazolam did not substitute for the discriminative stimulus effects of mecamylamine. These data suggest that peripheral nAChRs and NMDA receptors may contribute to the interoceptive stimulus effects produced by mecamylamine. Based on the current results, the therapeutic use of mecamylamine (i.e., for smoking or to alleviate green tobacco sickness) should be weighed against the potential for mecamylamine to produce interoceptive effects that overlap with another class of abused drugs (i.e., NMDA receptor agonists).
Collapse
Affiliation(s)
- Colin S Cunningham
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL, USA
| | - Megan J Moerke
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Dutta RR, Taffe MA, Mandyam CD. Chronic administration of amphetamines disturbs development of neural progenitor cells in young adult nonhuman primates. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:46-53. [PMID: 29601895 PMCID: PMC5962428 DOI: 10.1016/j.pnpbp.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023]
Abstract
The detrimental effects of amphetamines on developmental stages of NPCs are limited to rodent brain and it is not known if these effects occur in nonhuman primates which are the focus of the current investigation. Young adult rhesus macaques either experienced MDMA only, a combination of amphetamines (MDMA, MDA and methamphetamine) or no amphetamines (controls) and hippocampal tissue was processed for immunohistochemical analysis.Quantitative stereological analysis showed that intermittent exposure to MDMA or the three amphetamines over 9.6 months causes >80% decrease in the number of Ki-67 cells (actively dividing NPCs) and >50% decrease in the number of NeuroD1 cells (NPCs that have attained a neuronal phenotype). Co-labeling analysis revealed distinct, actively dividing hippocampal NPCs in the subgranular zone of the dentate gyrus that were in transition from stem-like radial glia-like cells (type-1) to immature transiently amplifying neuroblasts (type-2a, type-2b, and type-3).MDMA-alone and the combination reduced the number of dividing type-1 and type-3 NPCs and cells that were not NPCs. These data indicate that amphetamines interfere with the division and migration of NPCs. Notably, the reduction in the number of NPCs and immature neurons were not associated with changes in cell death (via apoptosis) or granule cell neuron numbers, indicating that amphetamines selectively affected the generation and maturation of newly born granule cell neurons. In sum, our findings suggest that alterations in the cellular composition in the dentate gyrus during chronic exposure to amphetamines can effect neuroplasticity in the hippocampus and influence functional properties of hippocampal neurons.
Collapse
Affiliation(s)
- Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Chitra D Mandyam
- Department of Neuroscience, The Scripps Research Institute,USA; VA San Diego Healthcare System, USA; Department of Anesthesiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
14
|
Waguespack HF, Málková L, Forcelli PA, Turchi J. Effects of systemic cholinergic antagonism on reinforcer devaluation in macaques. Neurosci Lett 2018; 678:62-67. [PMID: 29729357 DOI: 10.1016/j.neulet.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 11/16/2022]
Abstract
The capacity to adjust actions based on new information is a vital cognitive function. An animal's ability to adapt behavioral responses according to changes in reward value can be measured using a reinforcer devaluation task, wherein the desirability of a given object is reduced by decreasing the value of the associated food reinforcement. Elements of the neural circuits serving this ability have been studied in both rodents and nonhuman primates. Specifically, the basolateral amygdala, orbitofrontal cortex, nucleus accumbens, and mediodorsal thalamus have each been shown to play a critical role in the process of value updating, required for adaptive goal selection. As these regions receive dense cholinergic input, we investigated whether systemic injections of non-selective nicotinic or muscarinic acetylcholine receptor antagonists, mecamylamine and scopolamine, respectively, would impair performance on a reinforcer devaluation task. Here we demonstrate that in the presence of either a nicotinic or muscarinic antagonist, animals are able to shift their behavioral responses in an appropriate manner, suggesting that disruption of cholinergic neuromodulation is not sufficient to disrupt value updating, and subsequent goal selection, in rhesus macaques.
Collapse
Affiliation(s)
- Hannah F Waguespack
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., 3970 Reservoir Rd. NW, Washington, DC 20007, USA.
| | - Ludise Málková
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., 3970 Reservoir Rd. NW, Washington, DC 20007, USA.
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, New Research Bldg., 3970 Reservoir Rd. NW, Washington, DC 20007, USA.
| | - Janita Turchi
- Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Al-Onaizi MA, Parfitt GM, Kolisnyk B, Law CSH, Guzman MS, Barros DM, Leung LS, Prado MAM, Prado VF. Regulation of Cognitive Processing by Hippocampal Cholinergic Tone. Cereb Cortex 2018; 27:1615-1628. [PMID: 26803167 DOI: 10.1093/cercor/bhv349] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cholinergic dysfunction has been associated with cognitive abnormalities in a variety of neurodegenerative and neuropsychiatric diseases. Here we tested how information processing is regulated by cholinergic tone in genetically modified mice targeting the vesicular acetylcholine transporter (VAChT), a protein required for acetylcholine release. We measured long-term potentiation of Schaffer collateral-CA1 synapses in vivo and assessed information processing by using a mouse touchscreen version of paired associates learning task (PAL). Acquisition of information in the mouse PAL task correlated to levels of hippocampal VAChT, suggesting a critical role for cholinergic tone. Accordingly, synaptic plasticity in the hippocampus in vivo was disturbed, but not completely abolished, by decreased hippocampal cholinergic signaling. Disrupted forebrain cholinergic signaling also affected working memory, a result reproduced by selectively decreasing VAChT in the hippocampus. In contrast, spatial memory was relatively preserved, whereas reversal spatial memory was sensitive to decreased hippocampal cholinergic signaling. This work provides a refined roadmap of how synaptically secreted acetylcholine influences distinct behaviors and suggests that distinct forms of cognitive processing may be regulated in different ways by cholinergic activity.
Collapse
Affiliation(s)
| | - Gustavo M Parfitt
- Robarts Research Institute.,Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências (FURG), Brazil
| | | | - Clayton S H Law
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, CanadaN6A5K8
| | - Monica S Guzman
- Robarts Research Institute.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| | - Daniela Martí Barros
- Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências (FURG), Brazil
| | - L Stan Leung
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, CanadaN6A5K8
| | - Marco A M Prado
- Robarts Research Institute.,Department of Anatomy and Cell Biology.,Graduate Program in Neuroscience and.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| | - Vania F Prado
- Robarts Research Institute.,Department of Anatomy and Cell Biology.,Graduate Program in Neuroscience and.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A5K8
| |
Collapse
|
16
|
Fizet J, Cassel JC, Kelche C, Meunier H. A review of the 5-Choice Serial Reaction Time (5-CSRT) task in different vertebrate models. Neurosci Biobehav Rev 2016; 71:135-153. [DOI: 10.1016/j.neubiorev.2016.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 01/25/2023]
|
17
|
Parikh V, Cole RD, Patel PJ, Poole RL, Gould TJ. Cognitive control deficits during mecamylamine-precipitated withdrawal in mice: Possible links to frontostriatal BDNF imbalance. Neurobiol Learn Mem 2016; 128:110-6. [PMID: 26775017 DOI: 10.1016/j.nlm.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 02/06/2023]
Abstract
Nicotine is a major psychoactive and addictive component of tobacco. Although cessation of tobacco use produces various somatic and affective symptoms, withdrawal-related cognitive deficits are considered to be a critical symptom that predict relapse. Therefore, delineating the cognitive mechanisms of nicotine withdrawal may likely provide gainful insights into the neurobiology of nicotine addiction. The present study was designed to examine the effects of nicotine withdrawal induced by mecamylamine, a non-specific nicotinic receptor (nAChR) antagonist, on cognitive control processes in mice using an operant strategy switching task. Brain-derived neurotrophic factor (BDNF) modulates synaptic transmission in frontostriatal circuits, and these circuits are critical for executive functions. Thus, we examined the effects of mecamylamine-precipitated nicotine withdrawal on prefrontal and striatal BDNF protein expression. Mice undergoing precipitated nicotine withdrawal required more trials to attain strategy switching criterion as compared to the controls. Error analysis indicated that impaired performance in these animals was mostly related to their inability to execute the new strategy. The striatal/prefrontal BDNF ratios robustly increased following precipitated nicotine withdrawal. Moreover, higher BDNF ratios were associated with longer task acquisition. Collectively, our findings illustrate that mecamylamine-induced nicotine withdrawal disrupts cognitive control processes and that these changes are possibly linked to perturbations in frontostriatal BDNF signaling.
Collapse
Affiliation(s)
- Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| | - Robert D Cole
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Purav J Patel
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Rachel L Poole
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| |
Collapse
|
18
|
Barnett JH, Blackwell AD, Sahakian BJ, Robbins TW. The Paired Associates Learning (PAL) Test: 30 Years of CANTAB Translational Neuroscience from Laboratory to Bedside in Dementia Research. Curr Top Behav Neurosci 2016; 28:449-74. [PMID: 27646012 DOI: 10.1007/7854_2015_5001] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The origins and rationale of the Cambridge Neuropsychological Test Automated Battery (CANTAB) as a cross-species translational instrument suitable for use in human neuropsychopharmacological studies are reviewed. We focus on its use for the early assessment and detection of Alzheimer's disease, in particular the Paired Associates Learning (PAL) test. We consider its psychometric properties, neural validation, and utility, including studies on large samples of healthy volunteers, patients with mild cognitive impairment (MCI), and Alzheimer's disease. We demonstrate how it can be applied in cross-species studies using experimental animals to bridge the cross-species translational 'gap'. We also show how the CANTAB PAL has bridged a second translational 'gap' through its application to the early detection of memory problems in primary care clinics, using iPad technology.
Collapse
Affiliation(s)
- Jennifer H Barnett
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Cambridge Cognition, Cambridge, UK.
| | - Andrew D Blackwell
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge Cognition, Cambridge, UK
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| | - Trevor W Robbins
- Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Lange HS, Cannon CE, Drott JT, Kuduk SD, Uslaner JM. The M1 Muscarinic Positive Allosteric Modulator PQCA Improves Performance on Translatable Tests of Memory and Attention in Rhesus Monkeys. J Pharmacol Exp Ther 2015; 355:442-50. [DOI: 10.1124/jpet.115.226712] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/06/2015] [Indexed: 12/28/2022] Open
|
20
|
Roh S, Hoeppner SS, Schoenfeld D, Fullerton CA, Stoeckel LE, Evins AE. Acute effects of mecamylamine and varenicline on cognitive performance in non-smokers with and without schizophrenia. Psychopharmacology (Berl) 2014; 231:765-75. [PMID: 24114425 PMCID: PMC4060791 DOI: 10.1007/s00213-013-3286-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 09/12/2013] [Indexed: 01/10/2023]
Abstract
RATIONALE Nicotinic acetylcholine receptors (nAChRs) have been implicated in the pathophysiology of cognitive deficits in the domains of attention and memory in schizophrenia. While nicotinic agonists and antagonists have been proposed as smoking cessation aids, few comparisons have been made of these agents on cognitive performance in individuals with schizophrenia. OBJECTIVES This study investigated the acute effects of a nAChR antagonist, mecamylamine, and partial agonist, varenicline, on cognitive function in non-smokers with and without schizophrenia. METHODS Single oral doses of mecamylamine 10 mg, varenicline 1 mg, and placebo were administered 1 week apart in random order to adults with schizophrenia (n = 30) and to healthy volunteers (n = 41) in a double-blind, crossover design. The primary outcome of interest was sustained attention as assessed with hit reaction time variability (HRT-SD) on the identical pairs continuous performance test (CPT-IP). RESULTS Mecamylamine worsened performance on CPT-IP HRT-SD, a measure of attention, compared to varenicline in both groups. Performance on mecamylamine was worse than performance on both placebo and varenicline on several additional measures of attention, including CPT-IP hit reaction time (HRT) and random errors at various levels of task difficulty. There was a treatment by diagnosis interaction, such that mecamylamine worsened performance on CPT-IP 2-digit HRT, 3-digit random errors, and 4-digit hit rate compared to placebo and varenicline in participants with schizophrenia; effects not observed in controls. CONCLUSIONS These findings support a role for nAChRs in attention and suggest that those with schizophrenia may be particularly sensitive to nAChR blockade.
Collapse
Affiliation(s)
- Sungwon Roh
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, 60 Staniford Street, Boston, MA, 02114, USA
| | | | | | | | | | | |
Collapse
|
21
|
Soto PL, Dallery J, Ator NA, Katz BR. A critical examination of best dose analysis for determining cognitive-enhancing potential of drugs: studies with rhesus monkeys and computer simulations. Psychopharmacology (Berl) 2013; 228:611-22. [PMID: 23529381 PMCID: PMC3729620 DOI: 10.1007/s00213-013-3070-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/04/2013] [Indexed: 02/08/2023]
Abstract
RATIONALE Best dose analysis involves identifying the dose associated with the greatest improvement in performance for each subject and comparing performances associated with these individually determined best doses to control performances. OBJECTIVES The current experiments were conducted to examine whether significant best dose effects might result from the selective analysis of data rather than an actual drug effect. METHODS Experiment 1 examined the effects of nicotine and methylphenidate on delayed matching-to-sample (DMTS) and self-ordered spatial search (SOSS) performances in rhesus monkeys (DMTS: n = 7; SOSS: n = 6) to determine the validity and reliability of best dose effects. Experiment 2 used Monte Carlo computer simulations to estimate the likelihood of obtaining a significant outcome when the best dose method was applied to randomly generated data sets for which no difference existed. RESULTS Significant effects were obtained when the best dose analysis was applied to performances from nondrug sessions, and best dose performances were not significantly different from the best nondrug performances. The doses identified as best doses from two nicotine dose-response curve determinations were unrelated, and the improvement associated with the best dose observed during the first dose-response curve determination was not reliable when the dose was administered repeatedly. Finally, there was a high likelihood of obtaining a statistically significant difference when no real difference existed. CONCLUSIONS Best dose analysis for the identification of potential therapeutic agents should be replaced by single-subject designs.
Collapse
Affiliation(s)
- Paul L. Soto
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences Johns Hopkins School of Medicine
| | | | - Nancy A. Ator
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences Johns Hopkins School of Medicine
| | - Brian R. Katz
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences Johns Hopkins School of Medicine
| |
Collapse
|
22
|
Nickell JR, Grinevich VP, Siripurapu KB, Smith AM, Dwoskin LP. Potential therapeutic uses of mecamylamine and its stereoisomers. Pharmacol Biochem Behav 2013; 108:28-43. [PMID: 23603417 PMCID: PMC3690754 DOI: 10.1016/j.pbb.2013.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 12/17/2022]
Abstract
Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side effects at therapeutically relevant doses. As such, mecamylamine's use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(-)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Justin R Nickell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
23
|
Stewart AM, Kalueff AV. The developing utility of zebrafish models for cognitive enhancers research. Curr Neuropharmacol 2013; 10:263-71. [PMID: 23449968 PMCID: PMC3468880 DOI: 10.2174/157015912803217323] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 06/22/2012] [Accepted: 07/09/2012] [Indexed: 01/23/2023] Open
Abstract
Whereas cognitive impairment is a common symptom in multiple brain disorders, predictive and high-throughput animal models of cognition and behavior are becoming increasingly important in the field of translational neuroscience research. In particular, reliable models of the cognitive deficits characteristic of numerous neurobehavioral disorders such as Alzheimer’s disease and schizophrenia have become a significant focus of investigation. While rodents have traditionally been used to study cognitive phenotypes, zebrafish (Danio rerio) are gaining popularity as an excellent model to complement current translational neuroscience research. Here we discuss recent advances in pharmacological and genetic approaches using zebrafish models to study cognitive impairments and to discover novel cognitive enhancers and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Adam Michael Stewart
- Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor Ave., Chicago, IL 60612, USA
| | | |
Collapse
|
24
|
Wright MJ, Vandewater SA, Angrish D, Dickerson TJ, Taffe MA. Mephedrone (4-methylmethcathinone) and d-methamphetamine improve visuospatial associative memory, but not spatial working memory, in rhesus macaques. Br J Pharmacol 2012; 167:1342-52. [PMID: 22748013 PMCID: PMC3504998 DOI: 10.1111/j.1476-5381.2012.02091.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/03/2012] [Accepted: 06/11/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The novel cathinone derivative 4-methylmethcathinone (4-MMC; mephedrone) is increasingly popular with recreational users. Little scientific information is available but users report both entactogen-like and classic stimulant-like subjective properties. A recent study in humans reported psychomotor speed improvement after intranasal 4-MMC suggesting classic stimulant properties. Limitations of the user group (which was impaired on some tasks) prompt controlled laboratory investigation. EXPERIMENTAL APPROACH Adult male rhesus monkeys were trained to perform tasks from the non-human primate Cambridge Neuropsychological Test Automated Battery, which assess spatial working memory, visuospatial associative memory, learning and motivation for food reward. Test of bimanual motor coordination and manual tracking were also included. The subjects were challenged with 0.178-0.56 mg·kg(-1) 4-MMC and 0.056-0.56 mg·kg(-1) d-methamphetamine (MA), i.m., in randomized order for behavioural evaluation. KEY RESULTS A pronounced improvement in visuospatial memory and learning was observed after the 0.32 mg·kg(-1) dose of each compound, this effect was confirmed with subsequent repetition of these conditions. Spatial working memory was not improved by either drug, and the progressive ratio, bimanual motor and rotating turntable tasks were all disrupted in a dose-dependent manner. CONCLUSIONS AND IMPLICATIONS These studies show that 4-MMC produces behavioural effects, including improvements in complex spatial memory and learning that are in large part similar to those of MA in non-human primates. Thus, the data suggest that the effects of 4-MMC in monkeys can be classified with classical psychomotor stimulants.
Collapse
Affiliation(s)
- M J Wright
- Committee on the Neurobiology of Addictive Disorders Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
25
|
Young JW, Jentsch JD, Bussey TJ, Wallace TL, Hutcheson DM. Consideration of species differences in developing novel molecules as cognition enhancers. Neurosci Biobehav Rev 2012; 37:2181-93. [PMID: 23064177 DOI: 10.1016/j.neubiorev.2012.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 01/15/2023]
Abstract
The NIH-funded CNTRICS initiative has coordinated efforts to promote the vertical translation of novel procognitive molecules from testing in mice, rats and non-human primates, to clinical efficacy in patients with schizophrenia. CNTRICS highlighted improving construct validation of tasks across species to increase the likelihood that the translation of a candidate molecule to humans will be successful. Other aspects of cross-species behaviors remain important however. This review describes cognitive tasks utilized across species, providing examples of differences and similarities of innate behavior between species, as well as convergent construct and predictive validity. Tests of attention, olfactory discrimination, reversal learning, and paired associate learning are discussed. Moreover, information on the practical implication of species differences in drug development research is also provided. The issues covered here will aid in task development and utilization across species as well as reinforcing the positive role preclinical research can have in developing procognitive treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA.
| | | | | | | | | |
Collapse
|
26
|
Taffe MA. Δ⁹Tetrahydrocannabinol impairs visuo-spatial associative learning and spatial working memory in rhesus macaques. J Psychopharmacol 2012; 26:1299-306. [PMID: 22526684 PMCID: PMC3560534 DOI: 10.1177/0269881112443743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cannabis remains the most commonly abused illicit drug and is rapidly expanding in quasi-licit use in some jurisdictions under medical marijuana laws. Effects of the psychoactive constituent Δ⁹tetrahydrocannabinol (Δ⁹THC) on cognitive function remain of pressing concern. Prior studies in monkeys have not shown consistent evidence of memory-specific effects of Δ⁹THC on recognition tasks, and it remains unclear to what extent Δ⁹THC causes sedative versus specific cognitive effects. In this study, adult male rhesus monkeys were trained on tasks which assess spatial working memory, visuo-spatial associative memory and learning as well as motivation for food reward. Subjects were subsequently challenged with 0.1-0.3 mg/kg Δ⁹THC, i.m., in randomized order and evaluated on the behavioral measures. The performance of both vsPAL and SOSS tasks was impaired by Δ⁹THC in a dose and task-difficulty dependent manner. It is concluded that Δ⁹THC disrupts cognition in a way that is consistent with a direct effect on memory. There was evidence for interference with spatial working memory, visuo-spatial associative memory and incremental learning in the latter task. These results and the lack of specific effect of Δ⁹THC in prior visual recognition studies imply a sensitivity of spatial memory processing and/or working memory to endocannabinoid perturbation.
Collapse
Affiliation(s)
- Michael A Taffe
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
27
|
Kangas BD, Branch MN. Relations among acute and chronic nicotine administration, short-term memory, and tactics of data analysis. J Exp Anal Behav 2012; 98:155-67. [PMID: 23008520 DOI: 10.1901/jeab.2012.98-155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/28/2012] [Indexed: 10/27/2022]
Abstract
Emerging evidence suggests that nicotine may enhance short-term memory. Some of this evidence comes from nonhuman primate research using a procedure called delayed matching-to-sample, wherein the monkey is trained to select a comparison stimulus that matches some physical property of a previously presented sample stimulus. Delays between sample stimulus offset and comparison stimuli onset are manipulated and accuracy is measured. The present research attempted to systematically replicate these enhancement effects with pigeons. In addition, the effects of nicotine were assessed under another, more dynamic, memory task called titrating-delay matching-to-sample. In this procedure, the delay between sample offset and comparison onset adjusts as a function of the subject's performance. Correct matches increase the delay, mismatches decrease the delay, and titrated delay values serve as the primary dependent measure. Both studies examined nicotine's effects under acute and chronic administration. Neither provided clear or compelling evidence of memory enhancement following nicotine administration despite reliable and systematic dose-related changes in response latency measures. A modest dose-related effect on accuracy was found, but the magnitude of the effect appears to be directly related to tactics of data analysis involving best-dose analyses of a very circumscribed subset of trial types.
Collapse
Affiliation(s)
- Brian D Kangas
- McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|
28
|
Gould RW, Garg PK, Garg S, Nader MA. Effects of nicotinic acetylcholine receptor agonists on cognition in rhesus monkeys with a chronic cocaine self-administration history. Neuropharmacology 2012; 64:479-88. [PMID: 22921923 DOI: 10.1016/j.neuropharm.2012.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/09/2012] [Accepted: 08/09/2012] [Indexed: 01/08/2023]
Abstract
Cocaine use is associated with impaired cognitive function, which may negatively impact treatment outcomes. One pharmacological strategy to improve cognition involves nicotinic acetylcholine receptor (nAChR) stimulation. However, the effects of chronic cocaine exposure on nAChR distribution and function have not been characterized. Thus, one goal of this study was to examine nAChR availability in rhesus monkeys with an extensive cocaine self-administration history (n = 4; ~6 years, mean intake, 1463 mg/kg) compared to age-matched cocaine-naive control monkeys (n = 5). Using [¹¹C]-nicotine and positron emission tomography (PET) imaging, cocaine-experienced monkeys showed significantly higher receptor availability in the hippocampus compared to cocaine-naive monkeys. A second goal was to examine the effects of nAChR agonists on multiple domains of cognitive performance in these same monkeys. For these studies, working memory was assessed using a delayed match-to-sample (DMS) task, associative learning and behavioral flexibility using stimulus discrimination and reversal learning tasks. When administered acutely, the nonselective high-efficacy agonist nicotine, the low-efficacy α4β2* subtype-selective agonist varenicline and the high-efficacy α7 subtype-selective agonist, PNU-282987 significantly improved DMS performance in both cocaine-naive and cocaine-experienced monkeys. Individual doses of nicotine and varenicline that engendered maximum cognitive enhancing effects on working memory did not affect discrimination or reversal learning, while PNU-282987 disrupted reversal learning in the cocaine-naive monkeys. These findings indicate that a cocaine self-administration history influenced nAChR distribution and the effects of nAChR agonists on cognitive performance, including a reduced sensitivity to the disrupting effects on reversal learning. The cognitive enhancing effects of nAChR agonists may be beneficial in combination with behavioral treatments for cocaine addiction. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
29
|
Low-dose nicotine facilitates spatial memory in ApoE-knockout mice in the radial arm maze. Neurol Sci 2012; 34:891-7. [PMID: 22773025 DOI: 10.1007/s10072-012-1149-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
Here, we investigated the effects of nicotine on spatial memory in ApoE-knockout (ApoE-KO) and wild-type (WT) mice in a radial arm maze. Training occurred on three consecutive days and the test was performed on day 4, with one trial per day. Then on day 4, animals were administered nicotine (0.1, 0.25, 0.5, and 1.0 mg/kg) or the antagonist of nicotinic receptors (nAChRs) mecamylamine (MEC 2 mg/kg) alone or together with 0.1 mg/kg nicotine. The number of errors in the first eight choices was recorded. The results were that 0.1 mg/kg nicotine decreased errors in ApoE-KO mice, while 0.1 and 0.25 mg/kg nicotine reduced errors in WT mice, indicating that lower doses of nicotine elicit a memory improvement. In contrast, 1.0 mg/kg nicotine increased errors in WT mice, but not in ApoE-KO mice. MEC alone had no noticeable effect on errors in either strain of mice. However, co-administration of 0.1 mg/kg nicotine and MEC increased errors and reduced the effects of nicotine in WT mice, but not in ApoE-KO mice. Our study found a biphasic effect of nicotine in WT mice: it improves spatial memory at lower doses and impairs it at a higher dose. In ApoE-KO mice, nicotine improves memory at a low dose and has no effect at a higher dose, suggesting that the ApoE deficiency may influence the efficacy of nicotine. Moreover, a reversal of nicotinic effects with MEC was seen in WT mice, indicating the likelihood of the involvement of nAChRs in the spatial-memory response to nicotine.
Collapse
|
30
|
Gould RW, Czoty PW, Nader SH, Nader MA. Effects of varenicline on the reinforcing and discriminative stimulus effects of cocaine in rhesus monkeys. J Pharmacol Exp Ther 2011; 339:678-86. [PMID: 21856860 DOI: 10.1124/jpet.111.185538] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Varenicline is a low-efficacy, α4β2* subtype-selective nicotinic acetylcholine receptor (nAChR) agonist that has shown success in smoking cessation and promise in preclinical assessments relating to other drugs of abuse. The primary goal of the present study was to examine the effects of varenicline on cocaine self-administration and cocaine discrimination and compare these effects with those of the nAChR agonist nicotine and antagonist mecamylamine. One limitation of agonist treatments is the potential for abuse. Thus, a second goal was to examine the abuse potential of varenicline in rhesus monkeys. In the first experiment, rhesus monkeys (n = 3) were trained to self-administer cocaine (saline, 0.01-0.56 mg/kg) under a progressive-ratio schedule of reinforcement; monkeys also earned all of their food by responding on another lever under a fixed-ratio 50 schedule of reinforcement. Chronic administration of varenicline (0.01-0.56 mg/kg p.o., salt) potentiated the reinforcing effects of cocaine, whereas mecamylamine (0.3-1.7 mg/kg p.o, i.m., i.v., salt) had no significant effects on cocaine self-administration up to doses that disrupted food-maintained responding. Neither varenicline (0.01-0.17 mg/kg, salt) nor nicotine (0.01-0.1 mg/kg, base) functioned as reinforcers when substituted for cocaine. Finally, in monkeys trained to discriminate self-administered 0.3 mg/kg cocaine, varenicline (0.1-0.3 mg/kg i.v.) did not substitute for cocaine but, along with mecamylamine (0.3-1.7 mg/kg i.v.) and nicotine (0.03-0.1 mg/kg i.v.), potentiated the discriminative stimulus effects of cocaine. These results suggest that varenicline has low abuse liability in monkey models of cocaine abuse, but would not be an effective medication for cocaine addiction.
Collapse
Affiliation(s)
- Robert W Gould
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, 546 NRC, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA
| | | | | | | |
Collapse
|
31
|
Taffe MA, Taffe WJ. Rhesus monkeys employ a procedural strategy to reduce working memory load in a self-ordered spatial search task. Brain Res 2011; 1413:43-50. [PMID: 21840507 DOI: 10.1016/j.brainres.2011.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
Several nonhuman primate species have been reported to employ a distance-minimizing, traveling salesman-like, strategy during foraging as well as in experimental spatial search tasks involving lesser amounts of locomotion. Spatial sequencing may optimize performance by reducing reference or episodic memory loads, locomotor costs, competition or other demands. A computerized self-ordered spatial search (SOSS) memory task has been adapted from a human neuropsychological testing battery (CANTAB, Cambridge Cognition, Ltd) for use in monkeys. Accurate completion of a trial requires sequential responses to colored boxes in two or more spatial locations without repetition of a previous location. Marmosets have been reported to employ a circling pattern of search, suggesting spontaneous adoption of a strategy to reduce working memory load. In this study the SOSS performance of rhesus monkeys was assessed to determine if the use of a distance-minimizing search path enhances accuracy. A novel strategy score, independent of the trial difficulty and arrangement of boxes, has been devised. Analysis of the performance of 21 monkeys trained on SOSS over 2 years shows that a distance-minimizing search strategy is associated with improved accuracy. This effect is observed within individuals as they improve over many cumulative sessions of training on the task and across individuals at any given level of training. Erroneous trials were associated with a failure to deploy the strategy. It is concluded that the effect of utilizing the strategy on this locomotion-free, laboratory task is to enhance accuracy by reducing demands on spatial working memory resources.
Collapse
Affiliation(s)
- Michael A Taffe
- Committee on the Neurobiology of Addictive Disorders; The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
32
|
Rodriguez JS, Zürcher NR, Bartlett TQ, Nathanielsz PW, Nijland MJ. CANTAB delayed matching to sample task performance in juvenile baboons. J Neurosci Methods 2011; 196:258-63. [PMID: 21276821 DOI: 10.1016/j.jneumeth.2011.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
This study reports the administration of the Cambridge Neuropsychological Test Automated Battery system's delayed matching to sample (DMTS) task to juvenile baboons. Nine subjects (female=5, male=4) were trained with delay intervals ranging from 0 to 80s. Trial unique stimuli were utilized in combination with matching to sample, in contrast to non-matching to sample, to more accurately assess components of medial temporal lobe (hippocampal formation) mediated working memory. These parameters force subjects to rely on recognition for matching stimuli and overcome their innate tendency to choose novel stimuli (non-matching), thus increasing task difficulty. Testing with delays intervals of 0-2, 4, 8, and 16s revealed decreased percent correct responding as delay intervals increased. An effect of 1 vs. 3 distractor stimuli on accuracy was also noted. Increasing the number of distractors resulted in decreased observing response latencies. The increase in choice response latency seen with increasing delay interval was independent of number of distractor stimuli presented. There were no sex differences in task performance. Our laboratory is focused on understanding the functional consequences of suboptimal conditions during pregnancy and early postnatal life in offspring. The ability of juvenile baboons to perform the DMTS task demonstrates the utility of this non-human primate model in examining pre- and post-natal conditions that impact the development of working memory. Evaluation of causes and consequences of impaired working memory in a variety of human diseases will be assisted by the use of this task in nonhuman primate models of human health and disease.
Collapse
Affiliation(s)
- Jesse S Rodriguez
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 79229,USA.
| | | | | | | | | |
Collapse
|
33
|
Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 2011; 36:227-50. [PMID: 20844477 PMCID: PMC3055518 DOI: 10.1038/npp.2010.158] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders.
Collapse
Affiliation(s)
- Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - James D Jentsch
- Departments of Psychology and Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Ribeiro-Carvalho A, Lima C, Medeiros A, Siqueira N, Filgueiras C, Manhães A, Abreu-Villaça Y. Combined exposure to nicotine and ethanol in adolescent mice: effects on the central cholinergic systems during short and long term withdrawal. Neuroscience 2009; 162:1174-86. [DOI: 10.1016/j.neuroscience.2009.05.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/05/2009] [Accepted: 05/16/2009] [Indexed: 11/29/2022]
|
35
|
A novel touchscreen-automated paired-associate learning (PAL) task sensitive to pharmacological manipulation of the hippocampus: a translational rodent model of cognitive impairments in neurodegenerative disease. Psychopharmacology (Berl) 2009; 205:157-68. [PMID: 19357840 DOI: 10.1007/s00213-009-1526-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/21/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE Paired-associate learning (PAL), as part of the Cambridge Neuropsychological Test Automated Battery, is able to predict who from an at-risk population will develop Alzheimer's disease. Schizophrenic patients are also impaired on this same task. An automated rodent model of PAL would be extremely beneficial in further research into Alzheimer's disease and schizophrenia. OBJECTIVE The objective of this study was to develop a PAL task using touchscreen-equipped operant boxes and test its sensitivity to manipulations of the hippocampus, a brain region of interest in both Alzheimer's disease and schizophrenia. MATERIALS AND METHODS Previous work has shown that spatial and non-spatial memory can be tested in touchscreen-equipped operant boxes. Using this same apparatus, rats were trained on two variants of a PAL task differing only in the nature of the S- (the unrewarded stimuli, a combination of image and location upon the screen). Rats underwent cannulation of the dorsal hippocampus, and after recovery were tested under the influence of intra-hippocampally administered glutamatergic and cholinergic antagonists while performing the PAL task. RESULTS Impairments were seen after the administration of glutamatergic antagonists, but not cholinergic antagonists, in one of the two versions of PAL. CONCLUSIONS De-activation of the hippocampus caused impairments in a PAL task. The selective nature of this effect (only one of the two tasks was impaired), suggests the effect is specific to cognition and cannot be attributed to gross impairments (changes in visual learning). The pattern of results suggests that rodent PAL may be suitable as a translational model of PAL in humans.
Collapse
|
36
|
Manhães AC, Guthierrez MC, Filgueiras CC, Abreu-Villaça Y. Anxiety-like behavior during nicotine withdrawal predict subsequent nicotine consumption in adolescent C57BL/6 mice. Behav Brain Res 2008; 193:216-24. [DOI: 10.1016/j.bbr.2008.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/28/2008] [Indexed: 11/16/2022]
|
37
|
Crean RD, Davis SA, Taffe MA. Oral administration of (+/-)3,4-methylenedioxymethamphetamine and (+)methamphetamine alters temperature and activity in rhesus macaques. Pharmacol Biochem Behav 2007; 87:11-9. [PMID: 17475314 PMCID: PMC1975960 DOI: 10.1016/j.pbb.2007.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/16/2007] [Accepted: 03/23/2007] [Indexed: 11/30/2022]
Abstract
RATIONALE Emergency Department visits and fatalities in which (+/-)3,4-methylenedioxymethamphetamine (MDMA) or (+)methamphetamine (METH) are involved frequently feature unregulated hyperthermia. MDMA and METH significantly elevate body temperature in multiple laboratory species and, most importantly, can also produce unregulated and threatening hyperthermia in nonhuman primates. A majority of prior animal studies have administered drugs by injection whereas human consumption of "Ecstasy" is typically oral, an important difference in route of administration which may complicate the translation of animal data to the human condition. OBJECTIVE To determine if MDMA and METH produce hyperthermia in monkeys following oral administration as they do when administered intramuscularly. METHODS Adult male rhesus monkeys were challenged intramuscularly (i.m.) and per os (p.o.) with 1.78 or 5 mg/kg (+/-)MDMA and with 0.1 or 0.32 mg/kg (+)METH. Temperature and activity were monitored with a radiotelemetry system. RESULTS Oral administration of either MDMA or METH produced significant increases in body temperature. Locomotor activity was suppressed by MDMA and increased by METH following either route of administration. CONCLUSIONS The data show that the oral route of administration is not likely to qualitatively reduce the temperature increase associated with MDMA or METH although oral administration did slow the rate of temperature increase. It is further established that MDMA reduces activity in monkeys even after relatively high doses and oral administration.
Collapse
Affiliation(s)
| | | | - Michael A. Taffe
- Address Correspondence to: Dr. Michael A. Taffe, Committee on the Neurobiology of Addictive Disorders, SP30–2400; 10550 North Torrey Pines Road; The Scripps Research Institute, La Jolla, CA 92037; USA; Phone: +1.858.784.7228; Fax: +1.858.784.7405;
| |
Collapse
|
38
|
Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology (Berl) 2007; 190:269-319. [PMID: 16896961 DOI: 10.1007/s00213-006-0441-0] [Citation(s) in RCA: 622] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 05/09/2006] [Indexed: 01/16/2023]
Abstract
RATIONALE This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. OBJECTIVES This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. RESULTS Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. CONCLUSIONS The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
Collapse
Affiliation(s)
- Shannon G Matta
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 874 Union Avenue, Crowe 115, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Von Huben SN, Davis SA, Lay CC, Katner SN, Crean RD, Taffe MA. Differential contributions of dopaminergic D1- and D2-like receptors to cognitive function in rhesus monkeys. Psychopharmacology (Berl) 2006; 188:586-96. [PMID: 16538469 PMCID: PMC2099258 DOI: 10.1007/s00213-006-0347-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 02/01/2006] [Indexed: 11/28/2022]
Abstract
RATIONALE Dopaminergic neurotransmission is critically involved in many aspects of complex behavior and cognition beyond reward/reinforcement and motor function. Mental and behavioral disorders associated with major disruptions of dopamine neurotransmission, including schizophrenia, attention deficit/hyperactivity disorder, Parkinson's disease, Huntington's disease, and substance abuse produce constellations of neuropsychological deficits in learning, memory, and attention in addition to other defining symptoms. OBJECTIVE To delineate the role dopaminergic D1- and D2-like receptor subtypes play in complex brain functions. MATERIALS AND METHODS Monkeys (N = 6) were trained on cognitive tests adapted from a human neuropsychological assessment battery (CAmbridge Neuropsychological Test Automated Battery). The battery included tests of spatial working memory (self-ordered spatial search task), visuo-spatial associative memory and learning (visuo-spatial paired associates learning task, vsPAL) and motivation (progressive ratio task, PR). Tests of motor function (bimanual motor skill task, BMS; rotating turntable task, RTT) were also included. The effects of the dopamine D2-like antagonist raclopride (10-56 microg/kg, i.m.) and the D1-like antagonist SCH23390 (SCH, 3.2-56 microg/kg, i.m.) on cognitive performance were then determined. RESULTS Deficits on PR, RTT, and BMS performance were observed after both raclopride and SCH23390. Spatial working memory accuracy was reduced to a greater extent by raclopride than by SCH, which was unexpected, given prior reports on the involvement of D1 signaling for spatial working memory in monkeys. Deficits were observed on vsPAL performance after raclopride, but not after SCH23390. CONCLUSIONS The intriguing results suggest a greater contribution of D2- over D1-like receptors to both spatial working memory and object-location associative memory.
Collapse
Affiliation(s)
- Stefani N Von Huben
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
40
|
Decamp E, Schneider JS. Effects of nicotinic therapies on attention and executive functions in chronic low-dose MPTP-treated monkeys. Eur J Neurosci 2006; 24:2098-104. [PMID: 17067307 DOI: 10.1111/j.1460-9568.2006.05077.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chronic administration of low doses of the neurotoxin MPTP to nonhuman primates induces cognitive deficits similar to those seen in early Parkinson's disease (PD) patients, without the confounding effect of significant motor impairment. The present study assessed the extent to which specific attentional and central executive deficits in chronic low dose (CLD) MPTP-treated monkeys could be modified by nicotinic therapies. Four adult male rhesus monkeys were trained to perform attention and executive function tasks and were then administered low doses of MPTP (dose range: 0.025-0.1 mg/kg, i.v.) over 98-158 days until stable cognitive deficits appeared. Results showed that both nicotine and the alpha4beta4 subtype-selective nAChR agonist SIB-1553A could improve certain aspects of attentional and central executive functioning in this model of early Parkinsonism. Nicotine failed to improve performance of CLD-MPTP-treated animals on an attention set-shifting task while SIB-1553A significantly improved at least some aspects of performance, suggesting that the compound increased the animals' ability to maintain a previously formed response set and restored cognitive flexibility. Both nicotine and SIB-1553A caused a dose-dependent enhancement of performance on the focused attention (cued reaction time) task, decreasing reaction times on both cued and noncued trials. Nicotine caused a significant reduction in reaction times but did not alter the error profile on an impulse (motor readiness) task. SIB-1553A reduced reaction times but caused an increase in bar release (i.e. impulsivity) errors. These data suggest that nicotinic drugs may have therapeutic potential for treating cognitive dysfunction in PD.
Collapse
Affiliation(s)
- E Decamp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, 521 JAH, Philadelphia, PA 19107, USA
| | | |
Collapse
|
41
|
Spinelli S, Ballard T, Feldon J, Higgins GA, Pryce CR. Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys. Neuropharmacology 2006; 51:238-50. [PMID: 16678864 DOI: 10.1016/j.neuropharm.2006.03.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 03/10/2006] [Accepted: 03/13/2006] [Indexed: 11/26/2022]
Abstract
With the CAmbridge Neuropsychological Test Automated Battery (CANTAB), computerized neuropsychological tasks can be presented on a touch-sensitive computer screen, and this system has been used to assess cognitive processes in neuropsychiatric patients, healthy volunteers, and species of non-human primate, primarily the rhesus macaque and common marmoset. Recently, we reported that the common marmoset, a small-bodied primate, can be trained to a high and stable level of performance on the CANTAB five-choice serial reaction time (5-CSRT) task of attention, and a novel task of working memory, the concurrent delayed match-to-position (CDMP) task. Here, in order to increase understanding of the specific cognitive demands of these tasks and the importance of acetylcholine to their performance, the effects of systemic delivery of the muscarinic receptor antagonist scopolamine and the nicotinic receptor agonist nicotine were studied. In the 5-CSRT task, nicotine enhanced performance in terms of increased sustained attention, whilst scopolamine led to increased omissions despite a high level of orientation to the correct stimulus location. In the CDMP task, scopolamine impaired performance at two stages of the task that differ moderately in terms of memory retention load but both of which are likely to require working memory, including interference-coping, abilities. Nicotine tended to enhance performance at the long-delay stage specifically but only against a background of relatively low baseline performance. These data are consistent with a dissociation of the roles of muscarinic and nicotinic cholinergic receptors in the regulation of both sustained attention and working memory in primates.
Collapse
Affiliation(s)
- Simona Spinelli
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Mansvelder HD, van Aerde KI, Couey JJ, Brussaard AB. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology (Berl) 2006; 184:292-305. [PMID: 16001117 DOI: 10.1007/s00213-005-0070-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 05/09/2005] [Indexed: 02/02/2023]
Abstract
RATIONALE Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and functional magnetic resonance imaging studies. OBJECTIVES In this review, we will address aspects of nAChR functioning as well as synaptic and cellular modulation important for nicotinic impact on neuronal networks that ultimately underlie its effects on cognition. Although we will focus on general mechanisms, an emphasis will be put on attention behavior and nicotinic modulation of prefrontal cortex. In addition, we will discuss how nicotinic effects at the neuronal level could be related to its effects on the cognitive level through the study of electrical oscillations as observed in EEGs and brain slices. RESULTS/CONCLUSIONS Very little is known about mechanisms of how nAChR activation leads to a modification of electrical oscillation frequencies in EEGs. The results of studies using pharmacological interventions and transgenic animals implicate some nAChR types in aspects of cognition, but neuronal mechanisms are only poorly understood. We are only beginning to understand how nAChR distribution in neuronal networks impacts network functioning. Unveiling receptor and neuronal mechanisms important for nicotinic modulation of cognition will be instrumental for treatments of human disorders in which cholinergic signaling have been implicated, such as schizophrenia, attention deficit/hyperactivity disorder, and addiction.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Department of Experimental Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|