1
|
D'Oliveira da Silva F, Zaveri NT, Moulédous L. Acute single non-sedative doses of NOP receptor agonists affect acquisition of object location memory but repeated high doses do not induce long-lasting deficits. Neurobiol Learn Mem 2023; 205:107841. [PMID: 37832816 DOI: 10.1016/j.nlm.2023.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The Nociceptin/Orphanin FQ (N/OFQ) system has been shown to modulate various aspects of long-term memory. It is therefore important to study the effects on memory impairment by nociceptin receptor (NOP) agonists under preclinical development. In the present study, we investigated the effect of systemic injection of two small molecule selective NOP agonists, AT-202 and AT-524, in the object location memory task in male and female mice. Since high doses of NOP agonists have been shown to induce sedation, we first determined the sedative doses for the two compounds and found them to be higher in female than in male mice. We then observed that sub-sedative doses of NOP agonists administered before learning, induced memory impairment during a test session performed 24 h later. Again, female mice were less sensitive to the amnesic effects than males. On the contrary, in male mice, NOP agonists did not produce amnesia when they were injected after learning, suggesting that they do not affect the consolidation of object location memory. Finally, repeated administration of high doses of NOP agonists over 7 days did not impair long-term spatial memory. Together, our data show for the first time that NOP receptor agonists impair the acquisition of object location memory with sex-dependent potency but do not affect memory consolidation, and that repeated stimulation of the receptor does not compromise long-term episodic-like spatial memory.
Collapse
Affiliation(s)
- Flora D'Oliveira da Silva
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | | | - Lionel Moulédous
- Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), University of Toulouse, CNRS UMR-5169, UPS, Toulouse, France.
| |
Collapse
|
2
|
Ding H, Kiguchi N, Dobbins M, Romero-Sandoval EA, Kishioka S, Ko MC. Nociceptin Receptor-Related Agonists as Safe and Non-addictive Analgesics. Drugs 2023; 83:771-793. [PMID: 37209211 PMCID: PMC10948013 DOI: 10.1007/s40265-023-01878-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/22/2023]
Abstract
As clinical use of currently available opioid analgesics is often impeded by dose-limiting adverse effects, such as abuse liability and respiratory depression, new approaches have been pursued to develop safe, effective, and non-addictive pain medications. After the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor more than 25 years ago, NOP receptor-related agonists have emerged as a promising target for developing novel and effective opioids that modulate the analgesic and addictive properties of mu-opioid peptide (MOP) receptor agonists. In this review, we highlight the effects of the NOP receptor-related agonists compared with those of MOP receptor agonists in experimental rodent and more translational non-human primate (NHP) models and the development status of key NOP receptor-related agonists as potential safe and non-addictive analgesics. Several lines of evidence demonstrated that peptidic and non-peptidic NOP receptor agonists produce potent analgesic effects by intrathecal delivery in NHPs. Moreover, mixed NOP/MOP receptor partial agonists (e.g., BU08028, BU10038, and AT-121) display potent analgesic effects when administered intrathecally or systemically, without eliciting adverse effects, such as respiratory depression, itch behavior, and signs of abuse liability. More importantly, cebranopadol, a mixed NOP/opioid receptor agonist with full efficacy at NOP and MOP receptors, produces robust analgesic efficacy with reduced adverse effects, conferring promising outcomes in clinical studies. A balanced coactivation of NOP and MOP receptors is a strategy that warrants further exploration and refinement for the development of novel analgesics with a safer and effective profile.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan
| | - MaryBeth Dobbins
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - E Alfonso Romero-Sandoval
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shiroh Kishioka
- Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, 640-8392, Japan
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
3
|
Li W, Ren Z, Tang Y, Fu Y, Sun S, Ding R, Hou J, Mai Y, Zhan B, Zhu Y, Zuo W, Ye JH, Fu R. Rostromedial tegmental nucleus nociceptin/orphanin FQ (N/OFQ) signaling regulates anxiety- and depression-like behaviors in alcohol withdrawn rats. Neuropsychopharmacology 2023; 48:908-919. [PMID: 36329156 PMCID: PMC10156713 DOI: 10.1038/s41386-022-01482-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Recent studies indicate that stimulation of the rostromedial tegmental nucleus (RMTg) can drive a negative affective state and that nociceptin/orphanin FQ (N/OFQ) may play a role in affective disorders and drug addiction. The N/OFQ precursor prepronociceptin encoding genes Pnoc are situated in RMTg neurons. To determine whether N/OFQ signaling contributes to the changes in both behavior phenotypes and RMTg activity of alcohol withdrawn (Post-EtOH) rats, we trained adult male Long-Evans rats, randomly assigned into the ethanol and Naïve groups to consume either 20% ethanol or water-only under an intermittent-access procedure. Using the fluorescence in situ hybridization technique combined with retrograde tracing, we show that the ventral tegmental area projecting RMTg neurons express Pnoc and nociceptin opioid peptide (NOP) receptors encoding gene Oprl1. Also, using the laser capture microdissection technique combined with RT-qPCR, we detected a substantial decrease in Pnoc but an increase in Oprl1 mRNA levels in the RMTg of Post-EtOH rats. Moreover, RMTg cFos expression is increased in Post-EtOH rats, which display anxiety- and depression-like behaviors. Intra-RMTg infusion of the endogenous NOP agonist nociceptin attenuates the aversive behaviors in Post-EtOH rats without causing any notable change in Naïve rats. Conversely, intra-RMTg infusion of the NOP selective antagonist [Nphe1]nociceptin(1-13)NH2 elicits anxiety- and depression-like behaviors in Naïve but not Post-EtOH rats. Furthermore, intra-RMTg infusion of nociceptin significantly reduces alcohol consumption. Thus, our results show that the deficiency of RMTg NOP signaling during alcohol withdrawal mediates anxiety- and depression-like behaviors. The intervention of NOP may help those individuals suffering from alcohol use disorders.
Collapse
Affiliation(s)
- Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yixin Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shizhu Sun
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
4
|
Moerke MJ, Negus SS, Banks ML. Lack of effect of the nociceptin opioid peptide agonist Ro 64-6198 on pain-depressed behavior and heroin choice in rats. Drug Alcohol Depend 2022; 231:109255. [PMID: 34998256 PMCID: PMC8810604 DOI: 10.1016/j.drugalcdep.2021.109255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 02/03/2023]
Abstract
RATIONALE AND OBJECTIVE One objective of the National Institutes of Health Helping to End Addiction Long-term (HEAL) initiative is to accelerate research on safer and more effective medications for both pain and opioid use disorder. Ligands that activate the nociceptin opioid peptide receptor (NOP) constitute one class of candidate drugs for both applications. The present preclinical study determined the effectiveness of the NOP agonist Ro 64-6198 to produce antinociception in a pain-depressed behavior procedure and attenuate opioid self-administration in a heroin-vs-food choice procedure. METHODS In Experiment 1, Adult Sprague-Dawley rats were equipped with microelectrodes and trained to respond for electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. The potency, time course, and receptor mechanism of effects produced by R0 64-6198 alone (0.32-3.2 mg/kg) on ICSS were examined, followed by evaluation of 0.32-1.0 mg/kg Ro 64-6198 effectiveness to block lactic acid-induced depression of ICSS. In Experiment 2, rats self-administered heroin under a heroin-vs-food choice procedure during a regimen of repeated, daily intraperitoneal administration of vehicle or Ro 64-6198 (1-3.2 mg/kg/day). RESULTS Ro 64-6198 produced dose- and time-dependent ICSS depression that was blocked by the selective NOP antagonist SB612111 but not by naltrexone. Ro 64-6198 failed to block acid-induced depression of ICSS. Repeated Ro 64-6198 pretreatment also failed to attenuate heroin-vs-food choice up to doses that significantly decreased operant behavior. CONCLUSIONS These results do not support the utility of Ro 64-6198 as a stand-alone medication for either acute pain or opioid use disorder.
Collapse
Affiliation(s)
- Megan Jo Moerke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Spotlight on Nociceptin/Orphanin FQ Receptor in the Treatment of Pain. Molecules 2022; 27:molecules27030595. [PMID: 35163856 PMCID: PMC8838650 DOI: 10.3390/molecules27030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/24/2023] Open
Abstract
In our society today, pain has become a main source of strain on most individuals. It is crucial to develop novel treatments against pain while focusing on decreasing their adverse effects. Throughout the extent of development for new pain therapies, the nociceptin/orphanin FQ receptor (NOP receptor) has appeared to be an encouraging focal point. Concentrating on NOP receptor to treat chronic pain with limited range of unwanted effects serves as a suitable alternative to prototypical opioid morphine that could potentially lead to life-threatening effects caused by respiratory depression in overdose, as well as generate abuse and addiction. In addition to these harmful effects, the uprising opioid epidemic is responsible for becoming one of the most disastrous public health issues in the US. In this article, the contributing molecular and cellular structure in controlling the cellular trafficking of NOP receptor and studies that support the role of NOP receptor and its ligands in pain management are reviewed.
Collapse
|
6
|
Ubaldi M, Cannella N, Borruto AM, Petrella M, Micioni Di Bonaventura MV, Soverchia L, Stopponi S, Weiss F, Cifani C, Ciccocioppo R. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders. Int J Mol Sci 2021; 22:12956. [PMID: 34884757 PMCID: PMC8657682 DOI: 10.3390/ijms222312956] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/14/2022] Open
Abstract
Nociceptin/orphanin FQ (N/OFQ) is a 17-residue neuropeptide that binds the nociceptin opioid-like receptor (NOP). N/OFQ exhibits nucleotidic and aminoacidics sequence homology with the precursors of other opioid neuropeptides but it does not activate either MOP, KOP or DOP receptors. Furthermore, opioid neuropeptides do not activate the NOP receptor. Generally, activation of N/OFQ system exerts anti-opioids effects, for instance toward opioid-induced reward and analgesia. The NOP receptor is widely expressed throughout the brain, whereas N/OFQ localization is confined to brain nuclei that are involved in stress response such as amygdala, BNST and hypothalamus. Decades of studies have delineated the biological role of this system demonstrating its involvement in significant physiological processes such as pain, learning and memory, anxiety, depression, feeding, drug and alcohol dependence. This review discusses the role of this peptidergic system in the modulation of stress and stress-associated psychiatric disorders in particular drug addiction, mood, anxiety and food-related associated-disorders. Emerging preclinical evidence suggests that both NOP agonists and antagonists may represent a effective therapeutic approaches for substances use disorder. Moreover, the current literature suggests that NOP antagonists can be useful to treat depression and feeding-related diseases, such as obesity and binge eating behavior, whereas the activation of NOP receptor by agonists could be a promising tool for anxiety.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Nazzareno Cannella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Anna Maria Borruto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Michele Petrella
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Maria Vittoria Micioni Di Bonaventura
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Laura Soverchia
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Serena Stopponi
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Friedbert Weiss
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| | - Roberto Ciccocioppo
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri 9, 62032 Camerino, Italy; (M.U.); (N.C.); (A.M.B.); (M.P.); (M.V.M.D.B.); (L.S.); (S.S.); (C.C.)
| |
Collapse
|
7
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
8
|
Oberrauch S, Sigrist H, Sautter E, Gerster S, Bach DR, Pryce CR. Establishing operant conflict tests for the translational study of anxiety in mice. Psychopharmacology (Berl) 2019; 236:2527-2541. [PMID: 31286156 DOI: 10.1007/s00213-019-05315-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/30/2019] [Indexed: 01/20/2023]
Abstract
RATIONALE In conflict-based anxiety tests, rodents decide between actions with simultaneous rewarding and aversive outcomes. In humans, computerised operant conflict tests have identified response choice, latency, and vigour as distinct behavioural components. Animal operant conflict tests for measurement of these components would facilitate translational study. OBJECTIVES In C57BL/6 mice, two operant conflict tests for measurement of response choice, latency, and vigour were established, and effects of chlordiazepoxide (CDZ) thereon investigated. METHODS Mice were moderately diet-restricted to increase sucrose reward salience. A 1-lever test required responding under medium-effort reward/threat conditions of variable ratio 2-10 resulting in sucrose at p = 0.7 and footshock at p = 0.3. A 2-lever test mandated a choice between low-effort reward/threat with a fixed-ratio (FR) 2 lever yielding sucrose at p = 0.7 and footshock at p = 0.3 versus high-effort reward/no threat with a FR 20 lever yielding sucrose at p = 1. RESULTS In the 1-lever test, CDZ (7.5 or 15 mg/kg i.p.) reduced post-trial pause (response latency) following either sucrose or footshock and reduced inter-response interval (increased response vigour) after footshock. In the 2-lever test, mice favoured the FR2 lever and particularly at post-reward trials. CDZ increased choice of FR2 and FR20 responding after footshock, reduced response latency overall, and increased response vigour at the FR2 lever and after footshock specifically. CONCLUSIONS Mouse operant conflict tests, especially 2-lever choice, allow for the translational study of distinct anxiety components. CDZ influences each component by ameliorating the impact of both previous punishment and potential future punishment.
Collapse
Affiliation(s)
- Sara Oberrauch
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, August Forel-Strasse 7, CH-8008, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, August Forel-Strasse 7, CH-8008, Zurich, Switzerland
| | - Eva Sautter
- TSE Systems GmbH, Siemensstrasse 21, D-61352, Bad Homburg, Germany
| | - Samuel Gerster
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, CH-8032, Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, August Forel-Strasse 7, CH-8008, Zurich, Switzerland.
| |
Collapse
|
9
|
Li LB, Kim YW, Wang YH, Bai L, Zhu XD, Zhao ZL, Lee CW, Jiao Y, Wu T, Cai ZZ, Kim SC, An WG, Yang CH, Cui GC, Zhao RJ. Methanol extract of semen Ziziphi Spinosae attenuates ethanol withdrawal anxiety by improving neuropeptide signaling in the central amygdala. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:147. [PMID: 31234859 PMCID: PMC6591875 DOI: 10.1186/s12906-019-2546-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ethanol withdrawal (EtOHW) anxiety is a crucial risk factor for alcoholic relapse. The neuropeptide nociceptin/orphanin FQ (N/OFQ) acts upon its receptor (NOP) to antagonize corticotropin-releasing factor (CRF) and elicit anxiolytic actions. Semen Ziziphi Spinosae (SZS), a prototypical hypnotic-sedative herb in Oriental medicine, exhibits anxiolytic effects during nicotine withdrawal by improving amygdaloid CRF/CRF1 receptor (CRFR1) signaling. Therefore, we evaluated the effects of SZS on EtOHW anxiety and the involvement of amygdaloid CRF/CRFR1 and N/OFQ/NOP pathways. METHODS Male Sprague Dawley rats received intraperitoneal injections of 2 g/kg EtOH (20% v/v) once daily for 28 d followed by a 3-d withdrawal. During EtOHW, the rats were given once-daily intragastric treatments of a methanol extract of SZS (MESZS, 60 or 180 mg/kg/d). Anxiety-like behaviors were measured with the open field (OF) and elevated plus maze (EPM) tests, and plasma corticosterone (CORT) levels were examined by an enzyme-linked immunosorbent assay. mRNA and protein expression levels of the neuropeptides and their receptors were determined by quantitative polymerase chain reaction and Western blot assays. RESULTS MESZS increased the distance traveled in the center zone of the OF and dose-dependently elongated the duration of staying in the center zone in EtOHW rats. MESZS increased both the number of entries into and the time spent in the open arms of the EPM by EtOHW rats. And, MESZS inhibited the over secretion of plasma CORT during EtOHW. EtOHW enhanced CRF and CRFR1 gene and protein expression in the central nucleus of the amygdala (CeA), which were inhibited by 180 mg/kg/d MESZS. EtOHW increased amygdaloid NOP mRNA and protein expression but spared N/OFQ mRNA expression, and 180 mg/kg/d MESZS further promoted these increases. Additionally, a post-MESZS intra-CeA infusion of either CRF or the selective NOP antagonist UFP-101 abolished the expected anxiolytic effect of 180 mg/kg/d MESZS. CONCLUSIONS These results suggest that MESZS ameliorates EtOHW anxiety by improving both CRF/CRFR1 and N/OFQ/NOP transmissions in the CeA.
Collapse
Affiliation(s)
- Li Bo Li
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China
| | - Young Woo Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Yu Hua Wang
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China
| | - Li Bai
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China
| | - Xiao Dong Zhu
- Department of Pharmacology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zheng Lin Zhao
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China
| | - Chul Won Lee
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, 626-870, Republic of Korea
| | - Yu Jiao
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China
| | - Tong Wu
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China
| | - Zhen Zhen Cai
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China
| | - Sang Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Won G An
- Department of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, 626-870, Republic of Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Guang Cheng Cui
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China.
| | - Rong Jie Zhao
- Department of Psychopharmacology, School of Mental Health, Qiqihar Medical University, 333 Bukuibei Street, Jianhua District, Qiqihar, 161006, China.
| |
Collapse
|
10
|
Abstract
The development of nonpeptide systemically active small-molecule NOP-targeted ligands has contributed tremendously to validating the NOP receptor as a promising target for therapeutics. Although a NOP-targeted compound is not yet approved for clinical use, a few NOP ligands are in clinical trials for various indications. Both successful and failed human clinical trials with NOP ligands provide opportunities for rational development of new and improved NOP-targeted compounds. A few years after the discovery of the NOP receptor in 1994, and its de-orphanization upon discovery of the endogenous peptide nociceptin/orphanin FQ (N/OFQ) in 1995, there was a significant effort in the pharmaceutical industry to discover nonpeptide NOP ligands from hits obtained from high-throughput screening campaigns of compound libraries. Depending on the therapeutic indication to be pursued, NOP agonists and antagonists were discovered, and some were optimized as clinical candidates. Advances such as G protein-coupled receptor (GPCR) structure elucidation, functional selectivity in ligand-driven GPCR activation, and multi-targeted ligands provide new scope for the rational design of novel NOP ligands fine-tuned for successful clinical translation. This article reviews the field of nonpeptide NOP ligand drug design in the context of these exciting developments and highlights new optimized nonpeptide NOP ligands possessing interesting functional profiles, which are particularly attractive for several unmet clinical applications involving NOP receptor pharmacomodulation.
Collapse
|
11
|
Abstract
Nociceptin/orphanin FQ (N/OFQ) is an endogenous neuropeptide of 17 amino acids, related to opioid peptides but with its own receptor, distinct from conventional opioid receptors, the ORL1 or NOP receptor. The NOP receptor is a G protein-coupled receptor which activates Gi/o proteins and thus induces an inhibition of neuronal activity. The peptide and its receptor are widely expressed in the central nervous system with a high density of receptors in regions involved in learning and memory. This review describes the consequences of the pharmacological manipulation of the N/OFQ system by NOP receptor ligands on learning processes and on the consolidation of various types of long-term memory. We also discuss the role of endogenous N/OFQ release in the modulation of learning and memory. Finally we propose several putative neuronal mechanisms taking place at the level of the hippocampus and amygdala and possibly underlying the behavioral amnestic or promnesic effects of NOP ligands.
Collapse
Affiliation(s)
- Lionel Moulédous
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, France.
| |
Collapse
|
12
|
Li H, Scuppa G, Shen Q, Masi A, Nasuti C, Cannella N, Ciccocioppo R. NOP Receptor Agonist Ro 64-6198 Decreases Escalation of Cocaine Self-Administration in Rats Genetically Selected for Alcohol Preference. Front Psychiatry 2019; 10:176. [PMID: 30984046 PMCID: PMC6450143 DOI: 10.3389/fpsyt.2019.00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cocaine dependence is a psychiatric condition for which effective medications are still lacking. Published data indicate that an increase in nociceptin/orphanin FQ (N/OFQ) transmission by NOP receptor activation attenuates cocaine-induced place conditioning and the locomotor sensitization effects of cocaine. This suggests that the activation of the N/OFQ receptor (NOP) may attenuate the motivation for psychostimulants. To further explore this possibility, we investigated the effect of the potent and selective NOP receptor agonist Ro 64-6198 on cocaine intake under 1 h short access (ShA) and 6 h long access (LgA) operant self-administration conditions in rats. We used Marchigian Sardinian alcohol-preferring (msP) rats and Wistar control rats. msP rats were used because we recently found that this rat line, originally selected for excessive alcohol drinking and preference, exhibits a greater propensity to escalate cocaine self-administration following LgA training. msP rats are also characterized by innate overexpression of the N/OFQ-NOP system compared with Wistar rats. Wistar and msP rats both exhibited an increase in cocaine self-administration under LgA conditions, with a higher trend toward escalation in msP rats. In Wistar rats, the intraperitoneal administration of Ro 64-6198 (0. 1 and 3 mg/kg) significantly decreased ShA cocaine self-administration. In Wistar rats that underwent LgA cocaine self-administration training, Ro 64-6198 induced no significant effect either during the first hour of self-administration or after the entire 6 h session. In msP rats, Ro 64-6198 significantly reduced cocaine self-administration both under ShA conditions and in the first hour of the LgA session. At the end of the 6 h session, the effect of Ro 64-6198 was no longer observed in msP rats. The highest dose of Ro 64-6198 (3 mg/kg) did not affect saccharin self-administration in msP rats but reduced saccharin self-administration in Wistar rats. Altogether, these data suggest that NOP receptor activation attenuates cocaine self-administration, and this effect tends to be more pronounced in a rat line with innately higher NOP receptor expression and that more robustly escalates cocaine intake.
Collapse
Affiliation(s)
- Hongwu Li
- College of Chemical Engineering, Changchun University of Technology, Changchun, China.,Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giulia Scuppa
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Qianwei Shen
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessio Masi
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Cinzia Nasuti
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
13
|
Green DB, Shackleton TM, Grimsley JMS, Zobay O, Palmer AR, Wallace MN. Communication calls produced by electrical stimulation of four structures in the guinea pig brain. PLoS One 2018; 13:e0194091. [PMID: 29584746 PMCID: PMC5870961 DOI: 10.1371/journal.pone.0194091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/25/2018] [Indexed: 02/03/2023] Open
Abstract
One of the main central processes affecting the cortical representation of conspecific vocalizations is the collateral output from the extended motor system for call generation. Before starting to study this interaction we sought to compare the characteristics of calls produced by stimulating four different parts of the brain in guinea pigs (Cavia porcellus). By using anaesthetised animals we were able to reposition electrodes without distressing the animals. Trains of 100 electrical pulses were used to stimulate the midbrain periaqueductal grey (PAG), hypothalamus, amygdala, and anterior cingulate cortex (ACC). Each structure produced a similar range of calls, but in significantly different proportions. Two of the spontaneous calls (chirrup and purr) were never produced by electrical stimulation and although we identified versions of chutter, durr and tooth chatter, they differed significantly from our natural call templates. However, we were routinely able to elicit seven other identifiable calls. All seven calls were produced both during the 1.6 s period of stimulation and subsequently in a period which could last for more than a minute. A single stimulation site could produce four or five different calls, but the amygdala was much less likely to produce a scream, whistle or rising whistle than any of the other structures. These three high-frequency calls were more likely to be produced by females than males. There were also differences in the timing of the call production with the amygdala primarily producing calls during the electrical stimulation and the hypothalamus mainly producing calls after the electrical stimulation. For all four structures a significantly higher stimulation current was required in males than females. We conclude that all four structures can be stimulated to produce fictive vocalizations that should be useful in studying the relationship between the vocal motor system and cortical sensory representation.
Collapse
Affiliation(s)
- David B. Green
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Trevor M. Shackleton
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Jasmine M. S. Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Oliver Zobay
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Alan R. Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Mark N. Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Pucci M, Micioni Di Bonaventura MV, Giusepponi ME, Romano A, Filaferro M, Maccarrone M, Ciccocioppo R, Cifani C, D'Addario C. Epigenetic regulation of nociceptin/orphanin FQ and corticotropin-releasing factor system genes in frustration stress-induced binge-like palatable food consumption. Addict Biol 2016; 21:1168-1185. [PMID: 26387568 DOI: 10.1111/adb.12303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 08/03/2015] [Accepted: 08/11/2015] [Indexed: 01/17/2023]
Abstract
Evidence suggests that binge eating may be caused by a unique interaction between dieting and stress. We developed a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after a 15-minute exposure to the sight of the palatable food (frustration stress). The aim of the present study was to investigate the regulation of the stress neurohormone corticotropin-releasing factor (CRF) system and of the nociceptin/orphanin FQ (N/OFQ) system genes in selective rat brain regions, using our animal model. Food restriction by itself seems to be responsible in the hypothalamus for the downregulation on messenger RNA levels of CRF-1 receptor, N/OFQ and its receptor (NOP). For the latter, this alteration might be due to selective histone modification changes. Instead, CRF gene appears to be upregulated in the hypothalamus as well as in the ventral tegmental area only when rats are food restricted and exposed to frustration stress, and, of relevance, these changes appear to be due to a reduction in DNA methylation at gene promoters. Moreover, also CRF-1 receptor gene resulted to be differentially regulated in these two brain regions. Epigenetic changes may be viewed as adaptive mechanisms to environmental perturbations concurring to facilitate food consumption in adverse conditions, that is, in this study, under food restriction and stressful conditions. Our data on N/OFQ and CRF signaling provide insight on the use of this binge-eating model for the study of epigenetic modifications in controlled genetic and environmental backgrounds.
Collapse
Affiliation(s)
- Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | | | | | - Adele Romano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | - Monica Filaferro
- Department of Biomedical, Metabolic Sciences and Neurosciences, University of Modena and Reggio Emilia, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico University of Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Italy
| | | | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy.
- Intramural Research Program, NIDA/NIH, Baltimore,, MD, USA.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Sweden.
| |
Collapse
|
15
|
Toll L, Bruchas MR, Calo' G, Cox BM, Zaveri NT. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems. Pharmacol Rev 2016; 68:419-57. [PMID: 26956246 PMCID: PMC4813427 DOI: 10.1124/pr.114.009209] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor.
Collapse
Affiliation(s)
- Lawrence Toll
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Michael R Bruchas
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Girolamo Calo'
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Brian M Cox
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| | - Nurulain T Zaveri
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida (L.T.); Departments of Anesthesiology, and Neuroscience, Washington University School of Medicine, St. Louis, Missouri (M.R.B.); Section of Pharmacology, Department of Medical Science, and National Institute of Neurosciences, University of Ferrara, Ferrara, Italy (G.C.); Professor of Pharmacology & Neuroscience, Uniformed Services University, Bethesda, Maryland (B.M.C.); and Astraea Therapeutics, LLC, Mountain View, California (N.T.Z.)
| |
Collapse
|
16
|
Zaveri NT. Nociceptin Opioid Receptor (NOP) as a Therapeutic Target: Progress in Translation from Preclinical Research to Clinical Utility. J Med Chem 2016; 59:7011-28. [PMID: 26878436 DOI: 10.1021/acs.jmedchem.5b01499] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the two decades since the discovery of the nociceptin opioid receptor (NOP) and its ligand, nociceptin/orphaninFQ (N/OFQ), steady progress has been achieved in understanding the pharmacology of this fourth opioid receptor/peptide system, aided by genetic and pharmacologic approaches. This research spawned an explosion of small-molecule NOP receptor ligands from discovery programs in major pharmaceutical companies. NOP agonists have been investigated for their efficacy in preclinical models of anxiety, cough, substance abuse, pain (spinal and peripheral), and urinary incontinence, whereas NOP antagonists have been investigated for treatment of pain, depression, and motor symptoms in Parkinson's disease. Translation of preclinical findings into the clinic is guided by PET and receptor occupancy studies, particularly for NOP antagonists. Recent progress in preclinical NOP research suggests that NOP agonists may have clinical utility for pain treatment and substance abuse pharmacotherapy. This review discusses the progress toward validating the NOP-N/OFQ system as a therapeutic target.
Collapse
Affiliation(s)
- Nurulain T Zaveri
- Astraea Therapeutics , 320 Logue Avenue, Suite 142, Mountain View, California 94043, United States
| |
Collapse
|
17
|
Saccone PA, Zelenock KA, Lindsey AM, Sulima A, Rice KC, Prinssen EP, Wichmann J, Woods JH. Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys. J Pharmacol Exp Ther 2016; 357:17-23. [PMID: 26801398 DOI: 10.1124/jpet.115.231134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/19/2016] [Indexed: 01/11/2023] Open
Abstract
Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects.
Collapse
Affiliation(s)
- Phillip A Saccone
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Kathy A Zelenock
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Angela M Lindsey
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Agnieszka Sulima
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Kenner C Rice
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Eric P Prinssen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Jürgen Wichmann
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - James H Woods
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| |
Collapse
|
18
|
Chang SD, Brieaddy LE, Harvey JD, Lewin AH, Mascarella SW, Seltzman HH, Reddy PA, Decker AM, McElhinny CJ, Zhong D, Peterson EE, Navarro HA, Bruchas MR, Carroll FI. Novel Synthesis and Pharmacological Characterization of NOP Receptor Agonist 8-[(1S,3aS)-2,3,3a,4,5,6-Hexahydro-1H-phenalen-1-yl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (Ro 64-6198). ACS Chem Neurosci 2015; 6:1956-64. [PMID: 26367173 DOI: 10.1021/acschemneuro.5b00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The nociceptin/orphanin FQ opioid peptide (NOP) receptor is a widely expressed GPCR involved in the modulation of pain, anxiety, and motor behaviors. Dissecting the functional properties of this receptor is limited by the lack of systemically active ligands that are brain permeant. The small molecule NOP receptor-selective, full agonist 8-[(1S,3aS)-2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl]-1-phenyl-1,3,8-triazaspiro[4.5]decan-4-one (Ro 64-6198) hydrochloride is an active, brain penetrant ligand, but its difficult and cost-prohibitive synthesis limits its widespread use and availability for animal studies. Here, we detail a more efficient and convenient method of synthesis, and use both in vitro and in vivo pharmacological assays to fully characterize this ligand. Specifically, we characterize the pharmacodynamics of Ro 64-6198 in cAMP and G-protein coupling in vitro and examine, for the first time, the effects of nociceptin/orphanin FQ and Ro 64-6198 in arrestin recruitment assays. Further, we examine the effects of Ro 64-6198 on analgesia, anxiety, and locomotor responses in vivo. This new synthesis and pharmacological characterization provide additional insights into the useful, systemically active, NOP receptor agonist Ro 64-6198.
Collapse
Affiliation(s)
- Steven D. Chang
- Department
of Anesthesiology, Basic Research Division, and Department of Anatomy
and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lawrence E. Brieaddy
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Joseph D. Harvey
- Department
of Anesthesiology, Basic Research Division, and Department of Anatomy
and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Anita H. Lewin
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - S. Wayne Mascarella
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Herbert H. Seltzman
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - P. Anantha Reddy
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Ann M. Decker
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Charles J. McElhinny
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Desong Zhong
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Elisha E. Peterson
- Department
of Anesthesiology, Basic Research Division, and Department of Anatomy
and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Hernán A. Navarro
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| | - Michael R. Bruchas
- Department
of Anesthesiology, Basic Research Division, and Department of Anatomy
and Neurobiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - F. Ivy Carroll
- Research Triangle Institute, P.O. Box 12194, Research Triangle Park, North Carolina 27709-2194, United States
| |
Collapse
|
19
|
Vang D, Paul JA, Nguyen J, Tran H, Vincent L, Yasuda D, Zaveri NT, Gupta K. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice. Haematologica 2015; 100:1517-25. [PMID: 26294734 DOI: 10.3324/haematol.2015.128736] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/17/2015] [Indexed: 01/04/2023] Open
Abstract
Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia.
Collapse
Affiliation(s)
- Derek Vang
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jinny A Paul
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Julia Nguyen
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Huy Tran
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lucile Vincent
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Kalpna Gupta
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Schröder W, Lambert DG, Ko MC, Koch T. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists. Br J Pharmacol 2015; 171:3777-800. [PMID: 24762001 DOI: 10.1111/bph.12744] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/07/2014] [Accepted: 04/15/2014] [Indexed: 12/12/2022] Open
Abstract
Despite high sequence similarity between NOP (nociceptin/orphanin FQ opioid peptide) and opioid receptors, marked differences in endogenous ligand selectivity, signal transduction, phosphorylation, desensitization, internalization and trafficking have been identified; underscoring the evolutionary difference between NOP and opioid receptors. Activation of NOP receptors affects nociceptive transmission in a site-specific manner, with antinociceptive effects prevailing after peripheral and spinal activation, and pronociceptive effects after supraspinal activation in rodents. The net effect of systemically administered NOP receptor agonists on nociception is proposed to depend on the relative contribution of peripheral, spinal and supraspinal activation, and this may depend on experimental conditions. Functional expression and regulation of NOP receptors at peripheral and central sites of the nociceptive pathway exhibits a high degree of plasticity under conditions of neuropathic and inflammatory pain. In rodents, systemically administered NOP receptor agonists exerted antihypersensitive effects in models of neuropathic and inflammatory pain. However, they were largely ineffective in acute pain while concomitantly evoking severe motor side effects. In contrast, systemic administration of NOP receptor agonists to non-human primates (NHPs) exerted potent and efficacious antinociception in the absence of motor and sedative side effects. The reason for this species difference with respect to antinociceptive efficacy and tolerability is not clear. Moreover, co-activation of NOP and μ-opioid peptide (MOP) receptors synergistically produced antinociception in NHPs. Hence, both selective NOP receptor as well as NOP/MOP receptor agonists may hold potential for clinical use as analgesics effective in conditions of acute and chronic pain.
Collapse
Affiliation(s)
- W Schröder
- Department of Translational Science, Global Innovation, Grünenthal GmbH, Aachen, Germany
| | | | | | | |
Collapse
|
21
|
Fulford AJ. Endogenous nociceptin system involvement in stress responses and anxiety behavior. VITAMINS AND HORMONES 2015; 97:267-93. [PMID: 25677776 DOI: 10.1016/bs.vh.2014.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mechanisms underpinning stress-related behavior and dysfunctional events leading to the expression of neuropsychiatric disorders remain incompletely understood. Novel candidates involved in the neuromodulation of stress, mediated both peripherally and centrally, provide opportunities for improved understanding of the neurobiological basis of stress disorders and may represent targets for novel therapeutic development. This chapter provides an overview of the mechanisms by which the opioid-related peptide, nociceptin, regulates the neuroendocrine stress response and stress-related behavior. In our research, we have employed nociceptin receptor antagonists to investigate endogenous nociceptin function in tonic control over stress-induced activity of the hypothalamo-pituitary-adrenal axis. Nociceptin demonstrates a wide range of functions, including modulation of psychological and inflammatory stress responses, modulation of neurotransmitter release, immune homeostasis, in addition to anxiety and cognitive behaviors. Greater appreciation of the complexity of limbic-hypothalamic neuronal networks, together with attention toward gender differences and the roles of steroid hormones, provides an opportunity for deeper understanding of the importance of the nociceptin system in the context of the neurobiology of stress and behavior.
Collapse
Affiliation(s)
- Allison Jane Fulford
- Centre for Comparative and Clinical Anatomy, University of Bristol, Bristol, BS2 8EJ, United Kingdom.
| |
Collapse
|
22
|
Pharmacological and methodological aspects of the separation-induced vocalization test in guinea pig pups; a systematic review and meta-analysis. Eur J Pharmacol 2014; 753:191-208. [PMID: 25460027 DOI: 10.1016/j.ejphar.2014.10.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/16/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022]
Abstract
The separation-induced vocalization test in guinea pig pups is one of many that has been used to screen for anxiolytic-like properties of drugs. The test is based on the cross-species phenomenon that infants emit distress calls when placed in social isolation. Here we report a systematic review and meta-analysis of pharmacological intervention in the separation-induced vocalization test in guinea pig pups. Electronic databases were searched for original research articles, yielding 32 studies that met inclusion criteria. We extracted data on pharmacological intervention, animal and methodological characteristics, and study quality indicators. Meta-analysis showed that the different drug classes in clinical use for the treatment of anxiety disorders, have comparable effects on vocalization behaviour, irrespective of their mechanism of action. Of the experimental drugs, nociception (NOP) receptor agonists proved very effective in this test. Analysis further indicated that the commonly used read-outs total number and total duration of vocalizations are equally valid. With regard to methodological characteristics, repeated testing of pups as well as selecting pups with moderate or high levels of vocalization were associated with larger treatment effects. Finally, reporting of study methodology, randomization and blinding was poor and Egger's test for small study effects showed that publication bias likely occurred. This review illustrates the value of systematic reviews and meta-analyses in improving translational value and methodological aspects of animal models. It further shows the urgent need to implement existing publication guidelines to maximize the output and impact of experimental animal studies.
Collapse
|
23
|
Fichna J, Sobczak M, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Cenac N, Sałaga M, Timmermans JP, Vergnolle N, Małecka-Panas E, Krajewska WM, Storr M. Activation of the endogenous nociceptin system by selective nociceptin receptor agonist SCH 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrhea-predominant IBS. Neurogastroenterol Motil 2014; 26:1539-50. [PMID: 25041572 DOI: 10.1111/nmo.12390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, defined by the presence of loose stools and abdominal pain. In search for a novel anti-IBS-D therapy, here we investigated the nociceptin receptor (NOP)-dependent effects in the GI tract. METHODS A novel potent and selective NOP agonist SCH 221510 was used in the study. The effect of NOP activation on mouse intestinal motility was characterized in vitro and in vivo, in physiological conditions and in animal models of hypermotility and diarrhea. Well-established mouse models of visceral pain were used to characterize the antinociceptive effect of the NOP activation. To provide additional evidence that the endogenous nociceptin system is a relevant target for IBS, NOP expression and nociceptin levels were quantified in serum and colonic biopsies from IBS-D patients. KEY RESULTS SCH 221510 produced a potent NOP-mediated inhibitory effect on mouse intestinal motility in vitro and in vivo in physiological conditions. The NOP agonist displayed an antidiarrheal and analgesic action after oral administration in animal models mimicking the symptoms of IBS-D. Studies on human samples revealed a strong decrease in endogenous nociceptin system expression in IBS-D patients compared with healthy controls. CONCLUSIONS & INFERENCES Collectively, mouse and human data suggest that the endogenous nociceptin system is involved in IBS-D and may become a target for anti-IBS-D treatments using potent and selective synthetic NOP agonists.
Collapse
Affiliation(s)
- J Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sukhtankar DD, Lagorio CH, Ko MC. Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats. Eur J Pharmacol 2014; 745:182-9. [PMID: 25446568 DOI: 10.1016/j.ejphar.2014.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Nociceptin/orphanin FQ peptide (NOP) receptor agonists attenuate morphine-induced conditioned place preference in rodents. However, it is not known whether NOP agonists have reinforcing properties or can inhibit mu opioid receptor (MOP)-mediated reinforcement as measured by drug self-administration in rodents. Further understanding the behavioral effects of NOP agonists could suggest them as having potential in attenuating reinforcing effects of opioids. In the first part of the study, reinforcing properties of selective NOP agonist SCH221510 were determined and compared with the full MOP agonist remifentanil under fixed-ratio 5 (FR5) and progressive-ratio (PR) schedules of drug self-administration. In the second part, effects of systemic and intracisternal pretreatment of SCH221510 were determined and compared with MOP antagonist naltrexone in attenuating reinforcing effects of remifentanil and a non-drug reinforcer (sucrose pellets). Remifentanil self-administration (0.3-10 µg/kg/infusion) generated a biphasic dose-response curve, characteristic of drugs with reinforcing properties. SCH221510 (3-300 µg/kg/infusion) self-administration resulted in flat dose-response curves and early break-points under the PR, indicative of drugs lacking reinforcing value. Intracisternally, but not systemically, administered SCH221510 (0.3-3 µg) attenuated remifentanil self-administration, comparable with systemic naltrexone (0.03-0.3 mg/kg). SCH221510 (1-3 µg), unlike naltrexone (0.03-1 mg/kg), attenuated responding for sucrose pellets. Both effects of SCH221510 were reversed by the NOP antagonist J-113397 (0.3-3 µg). These results suggest that SCH221510 does not function as a reinforcer in rats, and that it can attenuate the reinforcing value of MOP agonists; therefore, the potential utility of NOP agonists for the treatment of drug addiction warrants further evaluation.
Collapse
Affiliation(s)
- Devki D Sukhtankar
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Carla H Lagorio
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI 54702, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Center for Comparative Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
25
|
Filaferro M, Ruggieri V, Novi C, Calò G, Cifani C, Micioni Di Bonaventura MV, Sandrini M, Vitale G. Functional antagonism between nociceptin/orphanin FQ and corticotropin-releasing factor in rat anxiety-related behaviors: involvement of the serotonergic system. Neuropeptides 2014; 48:189-97. [PMID: 24894718 DOI: 10.1016/j.npep.2014.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 01/30/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) acts as an anxiolytic-like agent in the rat and behaves as a functional antagonist of corticotropin-releasing factor (CRF) due to its ability to oppose CRF biological actions. In response to stress, CRF triggers changes in neurotransmitter systems including serotonin (5-HT). The role of 5-HT1A receptor in anxiety has been supported by preclinical and clinical studies. The present study investigated the possible functional antagonism between N/OFQ (1nmol/rat) and CRF (0.2nmol/rat) in anxiety-related conditions in rats, using elevated plus maze and defensive burying tests, in order to confirm previous literature results. Moreover, possible changes in the serotonergic system were studied in areas rich of serotonergic neurons: frontal cortex and pons. In both tests N/OFQ showed anxiolytic-like effects while CRF displayed anxiogenic-like effects. N/OFQ before CRF treatment counteracted the anxiogenic-like effects evoked by CRF. In frontal cortex, N/OFQ significantly decreased 5-HT levels but did not modify the hydroxyindoleacetic acid (5-HIAA) ones; CRF modified neither 5-HT nor 5-HIAA content but counteracted changes induced by N/OFQ alone. In pons, N/OFQ induced no change in serotonergic activity while CRF significantly decreased 5-HT levels and increased 5-HIAA content. The two peptides' combination reinstated serotonergic parameters to controls. In frontal cortex, N/OFQ increased the 5HT1A receptor density but reduced its affinity, while CRF alone did not induce any change. In pons, CRF decreased 5HT1ABmax and KD whereas N/OFQ was ineffective. All biochemical modifications were reverted by N/OFQ plus CRF treatment. The present study confirms that N/OFQ counteracts CRF anxiogenic-like effects in the behavioral tests evaluated. These effects may involve central serotonergic mechanisms since N/OFQ plus CRF induces a reversion of serotonergic changes provoked by single peptide. Our data support the hypothesis that N/OFQ may behave as functional CRF antagonist, this action being of interest for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- M Filaferro
- Department of Biomedical, Metabolic Sciences and Neurosciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - V Ruggieri
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - C Novi
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - G Calò
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Via Fossato di Mortara 19, 44121 Ferrara, Italy
| | - C Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Macerata, Italy
| | - M V Micioni Di Bonaventura
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Macerata, Italy
| | - M Sandrini
- Department of Biomedical, Metabolic Sciences and Neurosciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - G Vitale
- Department of Life Sciences, Section of Pharmacology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy.
| |
Collapse
|
26
|
Hodgson RA, Mullins D, Lu SX, Guzzi M, Zhang X, Bleickardt CJ, Scott JD, Miller MW, Stamford AW, Parker EM, Varty GB. Characterization of a novel vasopressin V1b receptor antagonist, V1B-30N, in animal models of anxiety-like and depression-like behavior. Eur J Pharmacol 2014; 730:157-63. [PMID: 24602808 DOI: 10.1016/j.ejphar.2014.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
Overactivity of the hypothalamic-pituitary-adrenal (HPA) axis has been linked to affective disorders such as anxiety and depression. Dampening HPA activity has, therefore, been considered as a possible means of treating affective disorders. Given the important role of vasopressin in modulating the HPA axis, one strategy has focused on inhibiting activity of the vasopressin 1b (V1b) receptor. In animals, V1b receptor antagonists reduce plasma stress hormone levels and have been shown to have an anxiolytic-like effect. Recently, V1B-30N was identified as a highly potent V1b receptor antagonist with selectivity over other vasopressin receptors, which is evaluated here in rodent models of anxiety-like and depression-like behaviors. V1B-30N (1-30mg/kg, IP) dose-dependently reduced separation-induced vocalizations in rat pups without producing any sedative effects in the animals. Similarly, V1B-30N (3-30mg/kg, IP) dose-dependently reduced separation-induced vocalizations in guinea pig pups. In a conflict assay, conditioned lick suppression, V1B-30N (3-30mg/kg, IP) increased punished licking. To assess antidepressive-like properties, V1B-30N (1-30mg/kg) was tested in the mouse and rat forced-swim tests but was found to be inactive. These results are consistent with previous findings with other V1b antagonists, which suggest that acute pharmacological antagonism of the V1b receptor has anxiolytic-like but not antidepressant-like properties.
Collapse
Affiliation(s)
- Robert A Hodgson
- Departments of In Vivo Pharmacology, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA.
| | - Deborra Mullins
- Departments of Neuroscience, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sherry X Lu
- Departments of Neuroscience, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Mario Guzzi
- Departments of Neuroscience, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Xiaoping Zhang
- Departments of Neuroscience, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Carina J Bleickardt
- Departments of In Vivo Pharmacology, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Jack D Scott
- Departments of Medicinal Chemistry, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Michael W Miller
- Departments of Medicinal Chemistry, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Andrew W Stamford
- Departments of Medicinal Chemistry, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Eric M Parker
- Departments of Neuroscience, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Geoffrey B Varty
- Departments of In Vivo Pharmacology, Merck and Co. Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| |
Collapse
|
27
|
Witkin JM, Statnick MA, Rorick-Kehn LM, Pintar JE, Ansonoff M, Chen Y, Tucker RC, Ciccocioppo R. The biology of Nociceptin/Orphanin FQ (N/OFQ) related to obesity, stress, anxiety, mood, and drug dependence. Pharmacol Ther 2014; 141:283-99. [PMID: 24189487 PMCID: PMC5098338 DOI: 10.1016/j.pharmthera.2013.10.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) is a 17 amino acid peptide that was deorphanized in 1995. The generation of specific agonists, antagonists and receptor deficient mice and rats has enabled progress in elucidating the biological functions of N/OFQ. Additionally, radio-imaging technologies have been advanced for investigation of this system in animals and humans. Together with traditional neurobehavioral techniques, these tools have been utilized to identify the biological significance of the N/OFQ system and its interacting partners. The present review focuses on the role of N/OFQ in the regulation of feeding, body weight homeostasis, stress, the stress-related psychiatric disorders of depression and anxiety, and in drug and alcohol dependence. Critical evaluation of the current scientific preclinical literature suggests that small molecule modulators of nociceptin opioid peptide receptors (NOP) might be useful in the treatment of diseases related to these biological functions. In particular, the literature data suggest that antagonism of NOP receptors will produce anti-obesity and antidepressant activities in humans. However, there are also contradictory data discussed. The current literature on the role of N/OFQ in anxiety and addiction, on the other hand points primarily to a role of agonist modulation being potentially therapeutic. Some drug-like molecules that function either as agonists or antagonists of NOP receptors have been optimized for human clinical study to test some of these hypotheses. The discovery of PET ligands for NOP receptors, combined with the pharmacological tools and burgeoning preclinical data set discussed here bodes well for a rapid advancement of clinical understanding and potential therapeutic benefit.
Collapse
Key Words
- (1S,3aS)-8- (2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one, a NOP receptor agonist
- (±)trans-1-[1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one, a NOP receptor antagonist
- 2-{3-[1-((1R)-acenaphthen-1-yl)piperidin-4-yl]-2,3-dihydro-2-oxo-benzimidazol-1-yl}-N-methylacetamide, a NOP receptor agonist
- 5-HT
- 5-hydroxytryptamine or serotonin
- 8-[bis(2-methylphenyl)-methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol
- ACTH
- Alcohol-preferring rats
- Anxiety
- BED
- BNST
- CGRP
- CPP
- CRF
- CTA
- Calcitonin gene related peptide
- CeA
- DA
- Depression
- Drug dependence
- EPSC
- FST
- G-protein activated, inwardly rectifying K(+) channel
- G-protein-coupled receptor
- GIRK
- GPCR
- HPA
- J-113397
- JTC-801
- KO
- MDD
- Marchigian Sardinian Alcohol-Preferring
- N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide hydrochloride, a NOP receptor antagonist
- N/OFQ
- NAcc
- NE
- NOP
- NPY
- Nociceptin opioid peptide or Nociceptin opioid peptide receptor
- Nociceptin/Orphanin FQ
- Nociceptin/Orphanin FQ (F: phenylalanine, Q: glutamine, the amino acids that begin and end the peptide sequence)
- ORL
- Obesity
- P rats
- POMC
- Pro-opiomelanocortin
- Ro 64-6198
- SB-612111
- SCH 221510
- SCH 655842
- Stress
- TST
- UFP-101
- VTA
- W212393
- [(–)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol, a NOP receptor antagonist
- [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2), a NOP receptor antagonist
- adrenocorticotropic hormone
- bed nucleus of stria terminalis
- binge eating disorder
- central nucleus of the amygdala
- conditioned place preference
- conditioned taste aversion
- corticotrophin-releasing factor
- dopamine
- endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxamide, a NOP receptor agonist
- excitatory post-synaptic current
- forced-swim test
- hypothalamic–pituitary axis
- knockout
- mPFC
- major depressive disorder
- medial prefrontal cortex
- msP
- neuropeptide Y
- norepinephrine
- nucleus accumbens
- opioid-receptor-like
- tail-suspension test
- ventral tegmental area
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | | | | | - John E Pintar
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Michael Ansonoff
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yanyun Chen
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - R Craig Tucker
- Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | | |
Collapse
|
28
|
Mallimo EM, Kusnecov AW. The role of orphanin FQ/nociceptin in neuroplasticity: relationship to stress, anxiety and neuroinflammation. Front Cell Neurosci 2013; 7:173. [PMID: 24155687 PMCID: PMC3792366 DOI: 10.3389/fncel.2013.00173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 09/14/2013] [Indexed: 01/23/2023] Open
Abstract
The neuropeptide, orphanin FQ/nociceptin (OFQ/N or simply, nociceptin), is expressed in both neuronal and non-neuronal tissue, including the immune system. In the brain, OFQ/N has been investigated in relation to stress, anxiety, learning and memory, and addiction. More recently, it has also been found that OFQ/N influences glial cell functions, including oligodendrocytes, astrocytes, and microglial cells. However, this latter research is relatively small, but potentially important, when observations regarding the relationship of OFQ/N to stress and emotional functions is taken into consideration and integrated with the growing evidence for its involvement in cells that mediate inflammatory events. This review will first provide an overview and understanding of how OFQ/N has been implicated in the HPA axis response to stress, followed by an understanding of its influence on natural and learned anxiety-like behavior. What emerges from an examination of the literature is a neuropeptide that appears to counteract anxiogenic influences, but paradoxically, without attenuating HPA axis responses generated in response to stress. Studies utilized both central administration of OFQ/N, which was shown to activate the HPA axis, as well as antagonism of NOP-R, the OFQ/N receptor. In contrast, antagonist or transgenic OFQ/N or NOP-R knockout studies, showed augmentation of HPA axis responses to stress, suggesting that OFQ/N may be needed to control the magnitude of the HPA axis response to stress. Investigations of behavior in standard exploratory tests of anxiogenic behavior (eg., elevated plus maze) or learned fear responses have suggested that OFQ/N is needed to attenuate fear or anxiety-like behavior. However, some discrepant observations, in particular, those that involve appetitive behaviors, suggest a failure of NOP-R deletion to increase anxiety. However, it is also suggested that OFQ/N may operate in an anxiolytic manner when initial anxiogenic triggers (eg., the neuropeptide CRH) are initiated. Finally, the regulatory functions of OFQ/N in relation to emotion-related behaviors may serve to counteract potential neuroinflammatory events in the brain. This appears to be evident within the glial cell environment of the brain, since OFQ/N has been shown to reduce the production of proinflammatory cellular and cytokine events. Given that both OFQ/N and glial cells are activated in response to stress, it is possible that there is a possible convergence of these two systems that has important repercussions for behavior and neuroplasticity.
Collapse
Affiliation(s)
- Elyse M Mallimo
- Behavioral and Systems Neuroscience Program, Department of Psychology, Rutgers University New Brunswick, NJ, USA
| | | |
Collapse
|
29
|
Gavioli EC, Calo' G. Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs. Pharmacol Ther 2013; 140:10-25. [PMID: 23711793 DOI: 10.1016/j.pharmthera.2013.05.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/21/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) were identified in the mid 90s as a novel peptidergic system structurally related to opioids. A growing body of preclinical evidence suggests that blockade of NOP receptors evokes antidepressant-like actions. These have been explored using a range of compounds (peptide and non peptide antagonists), across different species (rat and mouse) and assays (behavioral despair and chronic mild stress) suggesting a robust and consistent antidepressant-like effect. Moreover, rats and mice knockout for the NOP receptor gene display an antidepressant-like phenotype in behavioral despair assays. Electrophysiological, immunohistochemical and neurochemical studies point to an important role played by monoaminergic systems, particularly 5-HTergic, in mediating the antidepressant-like properties of NOP antagonists. However other putative mechanisms of action, including modulation of the CRF system, circadian rhythm and a possible neuroendocrine-immune control might be involved. A close relationship between the N/OFQ-NOP receptor system and stress responses is well described in the literature. Stressful situations also alter endocrine, behavioral and neurochemical parameters in rats and chronic administration of a NOP antagonist restored these alterations. Interestingly, clinical findings showed that plasma N/OFQ levels were significantly altered in major and post-partum depression, and bipolar disease patients. Collectively, data in the literature support the notion that blockade of NOP receptor signaling could be a novel and interesting strategy for the development of innovative antidepressants.
Collapse
Affiliation(s)
- Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, 59078-970 Natal-RN, Brazil.
| | | |
Collapse
|
30
|
Micioni Di Bonaventura MV, Ubaldi M, Liberati S, Ciccocioppo R, Massi M, Cifani C. Caloric restriction increases the sensitivity to the hyperphagic effect of nociceptin/orphanin FQ limiting its ability to reduce binge eating in female rats. Psychopharmacology (Berl) 2013; 228:53-63. [PMID: 23455592 DOI: 10.1007/s00213-013-3013-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 01/26/2013] [Indexed: 01/20/2023]
Abstract
RATIONALE Nociceptin/orphanin FQ (N/OFQ) is a functional antagonist of corticotrophin-releasing factor, the main mediator of the stress response. Stress represents a key determinant of binge eating (BE) for highly palatable food (HPF). OBJECTIVES In relation to the antistress properties of N/OFQ, we evaluated its effect on BE. After the observation that episodes of food restriction increase the sensitivity to its hyperphagic effects, the function of NOP receptor and N/OFQ was investigated after cycles of food restrictions. MATERIALS AND METHODS In BE experiments, four groups were used: rats fed normally and not stressed or stressed, rats exposed to cycles of restriction/refeeding and then stressed, or not stressed. In the other experiments, two groups were used: rats exposed or not to food restriction. RESULTS Only restricted and stressed rats exhibited BE for HPF (containing chocolate cream). Intracerebroventricular injections of N/OFQ of 0.5 nmol/rat significantly reduced BE. N/OFQ 1 nmol/rat did not reduce BE but significantly increased HPF intake following food restrictions. Cycles of food restriction increased animals' sensitivity to the hyperphagic effect of N/OFQ for HPF. In situ hybridization studies following food restrictions showed decreased ppN/OFQ mRNA expression in the bed nucleus of the stria terminalis and increased expression of ppN/OFQ and NOP receptor mRNA in the ventral tegmental area and in the ventromedial hypothalamus, respectively. CONCLUSIONS These findings indicate that N/OFQ slightly reduces BE at low doses, while higher doses increase HPF intake, due to increased sensitivity to its hyperphagic effect following a history of caloric restrictions.
Collapse
|
31
|
Ubaldi M, Bifone A, Ciccocioppo R. Translational approach to develop novel medications on alcohol addiction: focus on neuropeptides. Curr Opin Neurobiol 2013; 23:684-91. [PMID: 23648086 DOI: 10.1016/j.conb.2013.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 11/28/2022]
Abstract
Research on alcohol and drug dependence has shown that the development of addiction depends on a complex interplay of psychological factors, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption. A greater understanding of the mechanisms leading to alcohol abuse will allow researchers to identify genetic variation that corresponds to a specific biological vulnerability to addiction, thus defining robust endophenotypes that might help deconstruct these complex syndromes into more tractable components. To this end, it is critical to develop a translational framework that links alterations at the molecular level, to changes in neuronal function, and ultimately to changes at the behavioral and clinical levels. Translational phenotypes can be identified by the combination of animal and human studies designed to elucidate the neurofunctional, anatomical and pharmacological mechanisms underlying the etiology of alcohol addiction. The present article offers an overview of medication development in alcoholism with a focus on the critical aspect of translational research. Moreover, significant examples of promising targets from neuropeptidergic systems, namely nociceptin/orphanin FQ and neuropeptide S are given.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, 62032, Camerino, Italy
| | | | | |
Collapse
|
32
|
Schank JR, Ryabinin AE, Giardino WJ, Ciccocioppo R, Heilig M. Stress-related neuropeptides and addictive behaviors: beyond the usual suspects. Neuron 2012; 76:192-208. [PMID: 23040815 PMCID: PMC3495179 DOI: 10.1016/j.neuron.2012.09.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators. While corticotrophin releasing factor is the prototypic member of this class, recent work has identified several additional stress-related neuropeptides that play an important role in regulation of drug intake and relapse, including the urocortins, nociceptin, substance P, and neuropeptide S. Here, we review this emerging literature, discussing to what extent the properties of these neuromodulators are shared or distinct and considering their potential as drug targets.
Collapse
Affiliation(s)
- Jesse R. Schank
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Andrey E. Ryabinin
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - William J. Giardino
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - Roberto Ciccocioppo
- Dept. of Experimental Medicine and Public Health, Camerino University, Italy
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
33
|
Goeldner C, Spooren W, Wichmann J, Prinssen EP. Further characterization of the prototypical nociceptin/orphanin FQ peptide receptor agonist Ro 64-6198 in rodent models of conflict anxiety and despair. Psychopharmacology (Berl) 2012; 222:203-14. [PMID: 22249359 DOI: 10.1007/s00213-012-2636-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/30/2011] [Indexed: 12/18/2022]
Abstract
RATIONALE Ro 64-6198, the prototypical non-peptide nociceptin/orphanin FQ peptide (NOP) receptor agonist, has potent anxiolytic-like effects in several preclinical models and species. However the effects of Ro 64-6198 on distinctive anxiety-provoking conditions related to unconditioned conflict behavior as well as its role in despair-like behavior remain to be addressed. OBJECTIVE Here we examined the effects of Ro 64-6198 on unconditioned conflict anxiety using stimuli with different salience and on regulation of autonomic reactivity and compared these to the effects of benzodiazepine receptor agonists. We also addressed the potential effects of Ro 64-6198 on despair-like behavior. MATERIALS AND METHODS Ro 64-6198 (0.1 to 10 mg/kg i.p.) and either diazepam or chlordiazepoxide were tested in the Vogel conflict punished drinking test (VCT) in Sprague Dawley rats, in the social approach-avoidance (SAA) test in Lewis rats, in the novelty-induced hypophagia (NIH) in C57BL/6J mice, and in stress-induced hyperthermia in NMRI mice, as well as in the forced swim test (FST) in Sprague Dawley rats and the tail suspension test (TST) in C57BL/6J mice. RESULTS Ro 64-6198 (0.3 to 3 mg/kg) dose-dependently produced anxiolytic-like effects in the VCT, SAA, NIH, and SIH, similar to benzodiazepine receptor agonists. Ro 64-6198 did not alter immobility time in the FST and TST. CONCLUSIONS Ro 64-6198 produced marked anxiolytic-like effects in response to a variety of mild to strong anxiogenic stimuli, whereas it did not facilitate depression-related behaviors. This data extend previous literature suggesting that NOP receptors are a viable target for the treatment of anxiety disorders.
Collapse
Affiliation(s)
- Celia Goeldner
- CNS Research, CNS Discovery, pRED, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | | | | | |
Collapse
|
34
|
Lohith TG, Zoghbi SS, Morse CL, Araneta MF, Barth VN, Goebl NA, Tauscher JT, Pike VW, Innis RB, Fujita M. Brain and whole-body imaging of nociceptin/orphanin FQ peptide receptor in humans using the PET ligand 11C-NOP-1A. J Nucl Med 2012; 53:385-92. [PMID: 22312136 PMCID: PMC3835399 DOI: 10.2967/jnumed.111.097162] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Nociceptin/orphanin FQ peptide (NOP) receptor is a new class of opioid receptor that may play a pathophysiologic role in anxiety and drug abuse and is a potential therapeutic target in these disorders. We previously developed a high-affinity PET ligand, (11)C-NOP-1A, which yielded promising results in monkey brain. Here, we assessed the ability of (11)C-NOP-1A to quantify NOP receptors in human brain and estimated its radiation safety profile. METHODS After intravenous injection of (11)C-NOP-1A, 7 healthy subjects underwent brain PET for 2 h and serial sampling of radial arterial blood to measure parent radioligand concentrations. Distribution volume (V(T); a measure of receptor density) was determined by compartmental (1- and 2-tissue) and noncompartmental (Logan analysis and Ichise's bilinear analysis [MA1]) methods. A separate group of 9 healthy subjects underwent whole-body PET to estimate whole-body radiation exposure (effective dose). RESULTS After (11)C-NOP-1A injection, the peak concentration of radioactivity in brain was high (∼5-7 standardized uptake values), occurred early (∼10 min), and then washed out quickly. The unconstrained 2-tissue-compartment model gave excellent V(T) identifiability (∼1.1% SE) and fitted the data better than a 1-tissue-compartment model. Regional V(T) values (mL·cm(-3)) ranged from 10.1 in temporal cortex to 5.6 in cerebellum. V(T) was well identified in the initial 70 min of imaging and remained stable for the remaining 50 min, suggesting that brain radioactivity was most likely parent radioligand, as supported by the fact that all plasma radiometabolites of (11)C-NOP-1A were less lipophilic than the parent radioligand. Voxel-based MA1 V(T) values correlated well with results from the 2-tissue-compartment model, showing that parametric methods can be used to compare populations. Whole-body scans showed radioactivity in brain and in peripheral organs expressing NOP receptors, such as heart, pancreas, and spleen. (11)C-NOP-1A was significantly metabolized and excreted via the hepatobiliary route. Gallbladder had the highest radiation exposure (21 μSv/MBq), and the effective dose was 4.3 μSv/MBq. CONCLUSION (11)C-NOP-1A is a promising radioligand that reliably quantifies NOP receptors in human brain. The effective dose in humans is low and similar to that of other (11)C-labeled radioligands, allowing multiple scans in 1 subject.
Collapse
Affiliation(s)
- Talakad G. Lohith
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Cheryl L. Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Maria F. Araneta
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Duzzioni M, Duarte FS, Leme LR, Gavioli EC, De Lima TC. Anxiolytic-like effect of central administration of NOP receptor antagonist UFP-101 in rats submitted to the elevated T-maze. Behav Brain Res 2011; 222:206-11. [DOI: 10.1016/j.bbr.2011.03.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/20/2011] [Accepted: 03/24/2011] [Indexed: 11/30/2022]
|
36
|
Lu SX, Higgins GA, Hodgson RA, Hyde LA, Del Vecchio RA, Guthrie DH, Kazdoba T, McCool MF, Morgan CA, Bercovici A, Ho GD, Tulshian D, Parker EM, Hunter JC, Varty GB. The anxiolytic-like profile of the nociceptin receptor agonist, endo-8-[bis(2-chlorophenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octane-3-carboxamide (SCH 655842): comparison of efficacy and side effects across rodent species. Eur J Pharmacol 2011; 661:63-71. [PMID: 21545797 DOI: 10.1016/j.ejphar.2011.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/28/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
The endogenous opioid-like peptide, nociceptin, produces anxiolytic-like effects that are mediated via the nociceptin (NOP) receptor. Similarly, synthetic, non-peptide NOP agonists produce robust anxiolytic-like effects although these effects are limited by marked side effects. In the present studies, the effects of a novel NOP receptor agonist, SCH 655842, were examined in rodent models sensitive to anxiolytic drugs and tests measuring potential adverse affects. Oral administration of SCH 655842 produced robust, anxiolytic-like effects in three species, i.e., rat, guinea pig, and mouse. Specifically, SCH 655842 was effective in rat conditioned lick suppression (3-10 mg/kg) and fear-potentiated startle (3-10 mg/kg) tests, a guinea pig pup vocalization test (1-3 mg/kg), as well as in mouse Geller-Seifter (30 mg/kg) and marble burying (30 mg/kg) tests. The anxiolytic-like effect of SCH 655842 in the conditioned lick suppression test was attenuated by the NOP antagonist, J-113397. In mice, SCH 655842 reduced locomotor activity and body temperature at doses similar to the anxiolytic-like dose and these effects were absent in NOP receptor knockout mice. In rats, SCH 655842 did not produce adverse behavioral effects up to doses of 70-100 mg/kg. Pharmacokinetic studies in the rat confirmed dose-related increases in plasma and brain levels of SCH 655842 across a wide oral dose range. Taken together, SCH 655842 may represent a NOP receptor agonist with improved tolerability compared to other members of this class although further studies are necessary to establish whether this extends to higher species.
Collapse
Affiliation(s)
- Sherry X Lu
- Department of Neurobiology, Merck & Co. Inc., Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rizzi A, Molinari S, Marti M, Marzola G, Calo' G. Nociceptin/orphanin FQ receptor knockout rats: in vitro and in vivo studies. Neuropharmacology 2011; 60:572-9. [PMID: 21184763 DOI: 10.1016/j.neuropharm.2010.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 11/15/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) regulates several biological functions via selective activation of the N/OFQ peptide (NOP) receptor. Recently knockout rats for the NOP receptor gene (NOP(-/-)) have been generated; these animals were used in the present study to investigate their emotional (open field, elevated plus maze, and forced swimming test), locomotor (drag and rotarod test), and nociceptive (plantar and formalin test) phenotypes in comparison with their NOP(+/+) littermates. In addition, N/OFQ sensitivity has been assessed in electrically stimulated vas deferens tissues taken from NOP(+/+) and NOP(-/-) rats. In the elevated plus maze and forced swimming tests NOP(-/-) rats showed anxiety- and anti-depressant-like phenotype, respectively. No differences were found in the open field test. NOP(-/-) rats outperformed their NOP(+/+) littermates in two motor behaviour assays. Genetic ablation of the NOP receptor gene produced a statistically significant increase in nociceptive behaviour of the mutant rats in the formalin test. Finally, in the electrically stimulated rat vas deferens taken from NOP(+/+) tissues, N/OFQ inhibited in a concentration-dependent manner the electrically induced twitches while the peptide was inactive in tissues taken from NOP(-/-) animals. These results, in line with previous findings obtained with selective NOP receptor antagonists in mice and rats and with mouse knockout studies, clearly indicate that endogenous N/OFQ-NOP receptor signalling plays an important role in controlling anxiety- and mood-related behaviours, exercise-driven locomotor activity and nociception. These observations are relevant for defining the therapeutic indications (and contraindications) of NOP receptor antagonists.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
38
|
Parsons MP, Hirasawa M. GIRK channel-mediated inhibition of melanin-concentrating hormone neurons by nociceptin/orphanin FQ. J Neurophysiol 2011; 105:1179-84. [PMID: 21191090 DOI: 10.1152/jn.00791.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Targeting the melanin-concentrating hormone (MCH) system has been suggested as a potential treatment for obesity, anxiety disorders, as well as addiction. Despite the therapeutic potential of MCH agonists and antagonists, the endogenous factors regulating MCH activity, in particular those implicated in anxiety and reward, are ill-defined. The present study investigated the cellular effects of nociceptin/orphanin FQ (N/OFQ), an endogenous opioid with anxiolytic and antireward properties, on MCH neurons. We found that N/OFQ induced a concentration-dependent reversible outward current in MCH neurons (EC(50) = 50.7 nM), an effect that was blocked by the competitive antagonist of the nociceptin opioid peptide (NOP) receptor UFP-101. N/OFQ-induced outward currents persisted in TTX, reversed near the potassium equilibrium potential, and displayed inward rectification, suggesting direct postsynaptic potassium channel activation. Tertiapin-Q completely abolished the N/OFQ effect, whereas glibenclamide did not, implicating protein G-dependent inwardly rectifying potassium (GIRK) and not ATP-sensitive potassium (K(ATP)) channels as the effector ion channel. The N/OFQ-induced outward current desensitized during repeated applications and occluded the inhibitory effect of dynorphin, suggesting that dynorphin and N/OFQ activate the same pathway. N/OFQ also reversibly inhibited voltage-gated calcium currents in MCH neurons. In conclusion, our study indicates N/OFQ as a robust endogenous regulator of MCH neurons, which may play a role in anxiety and drug addiction.
Collapse
Affiliation(s)
- Matthew P Parsons
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, 300 Prince Philip Dr., St. John's, NL, Canada
| | | |
Collapse
|
39
|
Podlesnik CA, Ko MC, Winger G, Wichmann J, Prinssen EP, Woods JH. The effects of nociceptin/orphanin FQ receptor agonist Ro 64-6198 and diazepam on antinociception and remifentanil self-administration in rhesus monkeys. Psychopharmacology (Berl) 2011; 213:53-60. [PMID: 20852848 PMCID: PMC3108861 DOI: 10.1007/s00213-010-2012-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/24/2010] [Indexed: 11/26/2022]
Abstract
RATIONALE The synthetic nonpeptide NOP (nociceptin/orphanin FQ peptide) receptor agonist Ro 64-6198 produces antinociception in rhesus monkeys. In rodents, it has much more variable effects on pain responses, but has response rate-increasing effects on punished operant behavior and decreases drug reward. OBJECTIVES The aim of this study was to compare Ro 64-6198 with the benzodiazepine diazepam in tests of analgesia, drug self-administration, and response-increasing effects in rhesus monkeys. RESULTS Ro 64-6198 (0.001-0.01 mg/kg, i.v.) produced antinociception against an acute noxious stimulus (50°C water) in the absence of sedation, whereas diazepam (0.32-3.2 mg/kg, i.v.) did not have analgesic effects without sedation. Diazepam (1.0-5.6 mg/kg, i.v.) and the largest dose of Ro 64-6198 (0.32 mg/kg, i.v.) decreased lever pressing maintained by intravenous self-administration of the mu-opioid agonist, remifentanil, but neither effect could be distinguished from sedative effects. Although neither drug consistently increased responding during nonreinforcement, such effects were observed more frequently following diazepam administration. The effects of Ro 64-6198 on lever pressing were blocked by the NOP-receptor antagonist, J-113397, but not by the benzodiazepine antagonist, flumazenil. CONCLUSIONS These findings suggest that the effects of Ro 64-6198 on operant lever pressing are mediated by NOP receptors and that larger doses are required to impact operant behavior when compared directly with those that produce antinociception. Therefore, the present findings support previous literature suggesting NOP receptors are a viable target for pain management.
Collapse
Affiliation(s)
- Christopher A Podlesnik
- Department of Pharmacology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109-5632, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Zaveri NT. The nociceptin/orphanin FQ receptor (NOP) as a target for drug abuse medications. Curr Top Med Chem 2011; 11:1151-6. [PMID: 21050175 PMCID: PMC3899399 DOI: 10.2174/156802611795371341] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 08/20/2010] [Indexed: 11/22/2022]
Abstract
Several studies show that the nociceptin receptor NOP plays a role in the regulation of reward and motivation pathways related to substance abuse. Administration of the NOP's natural peptide ligand, Nociceptin/Orphanin FQ (N/OFQ) or synthetic agonist Ro 64-6198 has been shown to block rewarding effects of cocaine, morphine, amphetamines and alcohol, in various behavioral models of drug reward and reinforcement, such as conditioned place preference and drug self-administration. Administration of N/OFQ has been shown to reduce drug-stimulated levels of dopamine in mesolimbic pathways. The NOP-N/OFQ system has been particularly well examined in the development of alcohol abuse in animal models. Furthermore, the efficacy of the mixed-action opioid buprenorphine, in attenuating alcohol consumption in human addicts and in alcohol-preferring animal models, at higher doses, has been attributed to its partial agonist activity at the NOP receptor. These studies suggest that NOP receptor agonists may have potential as drug abuse medications. However, the pathophysiology of addiction is complex and drug addiction pharmacotherapy needs to address the various phases of substance addiction (craving, withdrawal, relapse). Further studies are needed to clearly establish how NOP agonists may attenuate the drug addiction process and provide therapeutic benefit. Addiction to multiple abused drugs (polydrug addiction) is now commonplace and presents a treatment challenge, given the limited pharmacotherapies currently approved. Polydrug addiction may not be adequately treated by a single agent with a single mechanism of action. As with the case of buprenorphine, a mixed-action profile of NOP/opioid activity may provide a more effective drug to treat addiction to various abused substances and/or polydrug addiction.
Collapse
|
41
|
Liu M, He L, Hu X, Liu P, Luo HB. 3D-QSAR, homology modeling, and molecular docking studies on spiropiperidines analogues as agonists of nociceptin/orphanin FQ receptor. Bioorg Med Chem Lett 2010; 20:7004-10. [DOI: 10.1016/j.bmcl.2010.09.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 11/30/2022]
|
42
|
Klein S, Nicolas LB, Lopez-Lopez C, Jacobson LH, McArthur SG, Grundschober C, Prinssen EP. Examining face and construct validity of a noninvasive model of panic disorder in Lister-hooded rats. Psychopharmacology (Berl) 2010; 211:197-208. [PMID: 20514481 DOI: 10.1007/s00213-010-1882-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Increasing evidence suggests that defensive escape behavior in Lister-hooded (LH) rats induced by ultrasound application may be an animal model of panic disorder. OBJECTIVE The objectives of this study were to further explore the face and construct validity of ultrasound-induced escape behavior by characterizing the autonomic and neuroendocrine response to ultrasound, and to examine the underlying neuronal structures by comparing the effects of the anxiolytic with panicolytic properties, diazepam, with a preclinical anxiolytic without panicolytic-like activity, the NOP agonist Ro 64-6198. MATERIALS AND METHODS LH rats were implanted with telemetry transmitters to monitor heart rate and core body temperature before, during, and after ultrasound application. Blood samples were taken after ultrasound application for corticosterone analysis. Ultrasound-induced c-Fos expression was measured in different periaqueductal gray (PAG) and amygdala subregions after treatment with diazepam or Ro 64-6198. RESULTS Ultrasound application increased heart rate and body temperature, but did not alter plasma corticosterone levels. Ultrasound application increased c-Fos expression in the dorsal and dorsolateral PAG (dPAG, dlPAG) and amygdaloid subregions. Diazepam, but not Ro 64-6198, reduced c-Fos expression in the dPAG/dlPAG, while Ro 64-6198, but not diazepam, reduced c-Fos expression in the central amygdala. CONCLUSIONS Similar to human panic attacks, ultrasound application to LH rats activated the autonomic, but not the neuroendocrine, stress system. Also, like in humans, the current data confirm and extend that the dPAG/dlPAG plays a key role in ultrasound-induced escape behavior. These observations suggest that ultrasound-induced escape behaviors in LH rats have face and construct validity for panic disorders.
Collapse
Affiliation(s)
- Steffen Klein
- Brain Research Institute, University of Bremen, Cognium-Raum 2140, Hochschulring 18, 28359, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Largent-Milnes TM, Vanderah TW. Recently patented and promising ORL-1 ligands: where have we been and where are we going? Expert Opin Ther Pat 2010; 20:291-305. [PMID: 20180617 DOI: 10.1517/13543771003602004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The interactions of nociceptin/orphanin FQ (N/OFQ) and the opioid receptor-like receptor 1 (nociceptin opioid peptide--NOP) have been implicated in a variety of systems including cardiovascular, respiratory, immune, and the central and peripheral nervous systems. AREAS COVERED IN THIS REVIEW To elucidate the endogenous role of the N/OFQ-NOP system through the use of knockout and knockdown animal preparations, though most advances have been made using a host of synthetic agonists and antagonists. This review gives a brief history of the receptor-ligand discovery, the development of these agonists and antagonists within the last 10 years as published, and the therapeutic indications thereof focusing on pain. WHAT THE READER WILL GAIN The use of NOP ligands in pain has been controversial at best; however, there are indications that both agonists and antagonists have a place in the clinical setting for acute and chronic pain. NOP ligands have potential as novel therapeutics, interestingly, when incorporated into a rationally-designed multi-target agent. TAKE HOME MESSAGE The discovery of N/OFQ and NOP opened a new option for the treatment of pain with the potential for a decreased side effect profile. Numerous compounds have been designed to target this system, the most promising of which have mixed profiles.
Collapse
Affiliation(s)
- Tally M Largent-Milnes
- University of Arizona, Department of Pharmacology, 1501 N. Campbell Avenue, Tucson, Arizona 85724-5050, USA
| | | |
Collapse
|
44
|
Green MK, Devine DP. Nociceptin/orphanin FQ and NOP receptor gene regulation after acute or repeated social defeat stress. Neuropeptides 2009; 43:507-14. [PMID: 19720395 PMCID: PMC3983563 DOI: 10.1016/j.npep.2009.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/30/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
Antagonists of the NOP receptor have antidepressant effects in rodent models, suggesting that the N/OFQ-NOP system may play an important role in affective disorders. Furthermore, multiple lines of experimental evidence link N/OFQ neurotransmission with physiological and behavioral responses to stress. One possibility is that disregulated expression of the N/OFQ peptide neurotransmitter and/or the NOP receptor may participate in the etiology of stress-induced psychopathology. In the present set of experiments, we compared gene expression for prepro-N/OFQ and NOP receptor in groups of rats that were exposed to differing regimens of social defeat stress. Male Long-Evans rats were exposed to no social defeat, a single, acute social defeat or to repeated social defeats with or without an acute defeat on the final day. In situ hybridization was conducted with (35)S-labelled riboprobes aimed at prepro-N/OFQ mRNA or NOP receptor mRNA. Expression was analyzed by quantification of optical density in limbic and extra-limbic forebrain regions. There were no statistically significant changes in prepro-N/OFQ mRNA expression after stress exposure in any of the brain regions analyzed. However, the rats that were exposed to acute social defeat displayed elevations in NOP receptor mRNA expression in the central and basomedial nuclei of the amygdala and in the paraventricular nucleus of the hypothalamus. Additionally, the rats that were acutely stressed after a history of repeated social defeat also displayed elevated levels of NOP receptor mRNA expression in the paraventricular nucleus of the hypothalamus. These results suggest that the N/OFQ-NOP receptor system is affected by acute stress exposure, particularly in limbic regions. This stress-induced upregulation of NOP receptor gene expression further supports the possibility that disregulation of the N/OFQ-NOP system may contribute to behavioral and hormonal disregulation following stress.
Collapse
Affiliation(s)
- Megan K Green
- University of Florida, Department of Psychology, Behavioral Neuroscience Program, P.O. Box 112250, Gainesville, FL 32611-2250, USA
| | | |
Collapse
|
45
|
Hayashi S, Hirao A, Nakamura H, Yamamura K, Mizuno K, Yamashita H. Discovery of 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: integrated drug-design and structure-activity relationships for orally potent, metabolically stable and potential-risk reduced novel non-peptide nociceptin/orphanin FQ receptor agonist as antianxiety drug. Chem Biol Drug Des 2009; 74:369-81. [PMID: 19691471 DOI: 10.1111/j.1747-0285.2009.00872.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anxiety disorders, caused by continuous or acute stress or fear, have been highly prevailing psychiatric disorders. For the acute treatment of the disorders, benzodiazepines have been widely used despite having liabilities that limit their utility. Alternatively, endogenous nociceptin/orphanin FQ and nociceptin/orphanin FQ peptide receptor (or opioid-receptor-like-1 receptor) have important roles in the integration of emotional components, e.g. anxiolytic activity is the key behavioral action of nociceptin/orphanin FQ in brain. In our preceding study, various structurally novel 1,2-disubstituted benzimidazole derivatives were designed and synthesized as highly potent nociceptin/orphanin FQ peptide receptor selective full agonists in vitro with high or moderate nociceptin/orphanin FQ peptide receptor occupancy in the mice brain per os based on appropriate physicochemical properties for the oral brain activity [Hayashi et al. (2009) J Med Chem;52:610-625]. In the present study, drug design and structure-activity relationships for Vogel anticonflict activities in mice per os, metabolic stabilities in human liver microsome, CYP2D6 inhibitions, serum protein bindings, and human ether-a-go-go related gene binding affinities of novel nociceptin/orphanin FQ peptide receptor agonists were investigated. Through the series of coherent drug discovery studies, the strongest nociceptin/orphanin FQ peptide receptor agonist, 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole was designed and identified as a new-class orally potent anxiolytic with little side-effects, as significant findings.
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development Nagoya Laboratories, Pfizer Japan Inc, 5-2 Taketoyo, Aichi 470-2393, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Hayashi S, Hirao A, Imai A, Nakamura H, Murata Y, Ohashi K, Nakata E. Novel non-peptide nociceptin/orphanin FQ receptor agonist, 1-[1-(1-Methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole: design, synthesis, and structure-activity relationship of oral receptor occupancy in the brain for orally potent antianxiety drug. J Med Chem 2009; 52:610-25. [PMID: 19125610 DOI: 10.1021/jm7012979] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An endogenous heptadecapeptide, nociceptin/orphanin FQ (N/OFQ), and a G-protein-coupled receptor, N/OFQ peptide (NOP) receptor [or opioid-receptor-like-1 (ORL1) receptor], have been described in terms of its structure, distribution, and pharmacology. Thus, the N/OFQ and NOP receptor are located in the central nervous systems in humans, primates, and rodents, and are involved in the integration of the emotional components in the brain; e.g., N/OFQ displays anxiolytic activity in the brain. For identifying orally potent anxiolytic, drug-design studies were performed with a series of 1,2-disubstituted benzimidazole derivatives, which resulted in the identification of various chemotypes of highly potent NOP selective full agonists in vitro with high or moderate NOP receptor occupancy in the mice brain per os such as 1-[1-(1-methylcyclooctyl)-4-piperidinyl]-2-[(3R)-3-piperidinyl]-1H-benzimidazole 1 (MCOPPB), the most potent novel non-peptide NOP full agonist in vitro and an orally potent anxiolytic in the mice.
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development Nagoya Laboratories, Pfizer Japan Inc., 5-2 Taketoyo, Aichi 470-2393, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Marti M, Viaro R, Guerrini R, Franchi G, Morari M. Nociceptin/orphanin FQ modulates motor behavior and primary motor cortex output through receptors located in substantia nigra reticulata. Neuropsychopharmacology 2009; 34:341-55. [PMID: 18418358 DOI: 10.1038/npp.2008.56] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was set to investigate whether motor effects of nociceptin/orphanin FQ (N/OFQ) can be related to changes in primary motor cortex output. N/OFQ injected i.c.v. biphasically modulated motor performance, low doses being facilitating and higher ones inhibitory. These effects were counteracted by the N/OFQ receptor antagonist [Nphe(1) Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-101) confirming the specificity of N/OFQ action. However, UFP-101 alone facilitated motor performance, suggesting that endogenous N/OFQ inhibits motor function. N/OFQ and UFP-101 injected into the substantia nigra reticulata but not motor cortex replicated these effects, suggesting motor responses were mediated by subcortical circuits involving the basal ganglia. Intracortical microstimulation technique showed that i.c.v. N/OFQ also biphasically modulated motor cortex excitability and movement representation. Low N/OFQ doses caused a leftward shift of threshold distribution curve in the forelimb area without affecting the number of effective sites. Conversely, high N/OFQ doses increased unresponsive and reduced excitable (movement) sites in vibrissa but not forelimb area. However, increased threshold currents and rightward shift of threshold distribution curve were observed in both areas, suggesting an overall inhibitory effect on cortical motor output. UFP-101 alone evoked effects similar to low N/OFQ doses, suggesting tonic inhibitory control over forelimb movement by endogenous N/OFQ. As shown in behavioral experiments, these effects were replicated by intranigral, but not intracortical, N/OFQ or UFP-101 injections. We conclude that N/OFQ receptors located in the substantia nigra reticulata mediate N/OFQ biphasic control over motor behavior, possibly through changes of primary motor cortex output.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Experimental and Clinical Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
48
|
The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 2008; 7:694-710. [DOI: 10.1038/nrd2572] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Gavioli EC, Duarte FS, Guerrini R, Calo G, Rae GA, M De Lima TC. GABA(A) signalling is involved in N/OFQ anxiolytic-like effects but not in nocistatin anxiogenic-like action as evaluated in the mouse elevated plus maze. Peptides 2008; 29:1404-12. [PMID: 18499303 DOI: 10.1016/j.peptides.2008.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 11/15/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) and nocistatin are two neuropeptides originated from the same precursor prepronociceptin/orphanin FQ (ppN/OFQ). N/OFQ is the endogenous ligand of the NOP receptor, while the target of action of nocistatin is still unknown. N/OFQ modulates various biological functions, including anxiety. Conversely, nocistatin either behaves as a functional N/OFQ antagonist or evokes per se effects opposite to those of N/OFQ. Here we investigated the interaction between the anxiolytic-like effects of N/OFQ and the anxiogenic-like action of nocistatin with those evoked by GABA(A) receptor ligands in the mouse elevated plus maze. The anxiogenic-like effects of the GABA(A) receptor antagonist pentylenetetrazol (20mg/kg; intraperitoneal, i.p.) were abolished by the co-treatment with N/OFQ (10pmol; intracerebroventricular, i.c.v.) while potentiated by the administration of nocistatin (0.01pmol; i.c.v.). The anxiolytic-like effects of the benzodiazepine receptor agonist diazepam (0.75mg/kg, i.p.) were reversed by nocistatin (0.1pmol; i.c.v.), whereas signs of sedation were observed when mice were co-treated with diazepam and N/OFQ (3pmol). Interesting enough, the i.p. treatment with flumazenil (1mg/kg) blocked the anxiolytic-like effects of N/OFQ (10pmol; i.c.v.), but not the anxiogenic effect elicited by nocistatin. Collectively, our findings suggest that the effects on anxiety elicited by pentylenetetrazol and diazepam can be counteracted or potentiated in the presence of N/OFQ and nocistatin. In addition, the effects on anxiety of N/OFQ, but not nocistatin, appear to be dependent on the benzodiazepine site of the GABA(A) receptor.
Collapse
Affiliation(s)
- Elaine C Gavioli
- Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Wang YQ, Guo J, Wang SB, Fang Q, He F, Wang R. Neuropeptide FF receptors antagonist, RF9, attenuates opioid-evoked hypothermia in mice. Peptides 2008; 29:1183-90. [PMID: 18406009 DOI: 10.1016/j.peptides.2008.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 11/28/2022]
Abstract
The present study used the endpoint of hypothermia to investigate opioid and neuropeptide FF (NPFF) interactions in conscious animals. Both opioid and NPFF systems played important roles in thermoregulation, which suggested a link between opioid receptors and NPFF receptors in the production of hypothermia. Therefore, we designed a study to investigate the relationship between opioid and NPFF in control of thermoregulation in mice. The selective NPFF receptors antagonist RF9 (30nmol) injected into the third ventricle failed to induce significant effect, but it completely antagonized the hypothermia of NPFF (45 nmol) after cerebral administration in mice. In addition, RF9 (30 nmol) co-injected i.c.v. in the third ventricle reduced the hypothermia induced by morphine (5nmol,) or nociceptin/orphanin FQ (N/OFQ) (2 nmol). Neither the classical opioid receptors antagonist naloxone (10 nmol) nor NOP receptor antagonist [Nphe(1)]NC(1-13)NH(2) (7.5 nmol) reduced the hypothermia induced by the central injection of NPFF at dose of 45 nmol. Co-injected with a low dose of NPFF (5 nmol), the hypothermia of morphine (5 nmol) or N/OFQ (2 nmol) was not modified. These results suggest that NPFF receptors activation is required for opioid to produce hypothermia. In contrast, NPFF-induced hypothermia is mainly mediated by its own receptors, independent of opioid receptors in the mouse brain. This interaction, quantitated in the present study, is the first evidence that NPFF receptors mediate opioid-induced hypothermia in conscious animals.
Collapse
Affiliation(s)
- Yi-Qing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|