1
|
Wu SY, Hsu CK, Lim LY, Chen YC, Chang HH, Yang SSD. Ketamine Inhalation Alters Behavior and Lower Urinary Tract Function in Mice. Biomedicines 2022; 11:biomedicines11010075. [PMID: 36672583 PMCID: PMC9855675 DOI: 10.3390/biomedicines11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
We aimed to evaluate behavioral and lower urinary tract changes in mice using a novel ketamine inhalation model mimicking human ketamine abusers and compare the results to those obtained using a ketamine intraperitoneal injection model. C57BL/6N mice were placed in a transparent acrylic observation cage connected to an ultrasonic nebulizer producing ketamine (KI) or saline (SI) fog. The mice were given KI or SI fog twice a week for three months. In another experiment arm, the mice were given intraperitoneal ketamine injections (KP) or saline injections (SP) twice a week for three months. The presence of urine ketamine (>100 ng/mL) was determined using a quick test kit. Locomotor activity was recorded by video using the open field test. Lower urinary tract function was assessed using urine spots, cystometry and histology. KI and KP mice crossed the center more frequently and traveled farther than SI and SP mice. Only KI mice, however, demonstrated popcorn-like jumping, and frequent center crossing. Detrusor overactivity, reduced cystometric bladder capacity, and denuded mucosa were observed in both KI and KP mice. Ketamine inhalation induces behavioral and lower urinary tract changes in mice that are comparable to intraperitoneal ketamine injections.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Kai Hsu
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Li-Yi Lim
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Surgery, Hospital Canselor Tuanku Muhriz UKM, Kuala Lumpur 56000, Malaysia
| | - Yi-Chyan Chen
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Hsi-Hsien Chang
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Stephen Shei-Dei Yang
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-266289779
| |
Collapse
|
2
|
Rajagopal L, Huang M, He W, Ryan C, Elzokaky A, Banerjee P, Meltzer HY. Repeated administration of rapastinel produces exceptionally prolonged rescue of memory deficits in phencyclidine-treated mice. Behav Brain Res 2022; 432:113964. [PMID: 35718230 DOI: 10.1016/j.bbr.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Rapastinel, a positive N-methyl-D-aspartate receptor (NMDAR) modulator with rapid-acting antidepressant properties, rescues memory deficits in rodents. We have previously reported that a single intravenous dose of rapastinel, significantly, but only transiently, prevented and rescued deficits in the novel object recognition (NOR) test, a measure of episodic memory, produced by acute or subchronic administration of the NMDAR antagonists, phencyclidine (PCP) and ketamine. Here, we tested the ability of single and multiple subcutaneous doses per day of rapastinel to restore NOR and operant reversal learning (ORL) deficits in subchronic PCP-treated mice. Rapastinel, 1 or 3 mg/kg, administered subcutaneously, 30 min before NOR or ORL testing, respectively, transiently rescued both deficits in subchronic PCP mice. This effect of rapastinel on NOR and ORL was mammalian target of rapamycin (mTOR)-dependent. Most importantly, 1 mg/kg rapastinel given twice daily for 3 or 5 days, but not 1 day, restored NOR for at least 9 and 10 weeks, respectively, which is an indication of neuroplastic effects on learning and memory. Both rapastinel (3 mg/kg) and ketamine (30 mg/kg), moderately increased the efflux of dopamine, norepinephrine, and serotonin in medial prefrontal cortex; however, only ketamine increased cortical glutamate efflux. This observation was likely the basis for the contrasting effects of the two drugs on cognition.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Wenqi He
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | | | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Abstract
The discovery of the rapid antidepressant effects of the dissociative anaesthetic ketamine, an uncompetitive N-Methyl-D-Aspartate receptor antagonist, is arguably the most important breakthrough in depression research in the last 50 years. Ketamine remains an off-label treatment for treatment-resistant depression with factors that limit widespread use including its dissociative effects and abuse potential. Ketamine is a racemic mixture, composed of equal amounts of (S)-ketamine and (R)-ketamine. An (S)-ketamine nasal spray has been developed and approved for use in treatment-resistant depression in the United States and Europe; however, some concerns regarding efficacy and side effects remain. Although (R)-ketamine is a less potent N-Methyl-D-Aspartate receptor antagonist than (S)-ketamine, increasing preclinical evidence suggests (R)-ketamine may have more potent and longer lasting antidepressant effects than (S)-ketamine, alongside fewer side effects. Furthermore, a recent pilot trial of (R)-ketamine has demonstrated rapid-acting and sustained antidepressant effects in individuals with treatment-resistant depression. Research is ongoing to determine the specific cellular and molecular mechanisms underlying the antidepressant actions of ketamine and its component enantiomers in an effort to develop future rapid-acting antidepressants that lack undesirable effects. Here, we briefly review findings regarding the antidepressant effects of ketamine and its enantiomers before considering underlying mechanisms including N-Methyl-D-Aspartate receptor antagonism, γ-aminobutyric acid-ergic interneuron inhibition, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor activation, brain-derived neurotrophic factor and tropomyosin kinase B signalling, mammalian target of rapamycin complex 1 and extracellular signal-regulated kinase signalling, inhibition of glycogen synthase kinase-3 and inhibition of lateral habenula bursting, alongside potential roles of the monoaminergic and opioid receptor systems.
Collapse
Affiliation(s)
- Luke A Jelen
- Department of Psychological
Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, United Kingdom,South London and Maudsley NHS
Foundation Trust, London, United Kingdom,Luke A Jelen, Department of
Psychological Medicine, Institute of Psychiatry, Psychology and
Neuroscience, King’s College London, 16 De Crespigny Park, London SE5
8AF, United Kingdom.
| | - Allan H Young
- Department of Psychological
Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, United Kingdom,South London and Maudsley NHS
Foundation Trust, London, United Kingdom
| | - James M Stone
- Department of Psychological
Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s
College London, London, United Kingdom,South London and Maudsley NHS
Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Włodarczyk A, Cubała WJ, Gałuszko-Węgielnik M, Szarmach J. Central nervous system-related safety and tolerability of add-on ketamine to antidepressant medication in treatment-resistant depression: focus on the unique safety profile of bipolar depression. Ther Adv Psychopharmacol 2021; 11:20451253211011021. [PMID: 34046159 PMCID: PMC8138297 DOI: 10.1177/20451253211011021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is evidence supporting the use of ketamine in treatment-resistant depression (TRD). However, there are some safety and tolerability concerns associated with ketamine. This study aimed to investigate ketamine's safety and tolerability to the central nervous system and to assess the relationship between dissociative symptomology and psychometric outcomes during and after intravenous ketamine treatment concurrent with treatment by varying psychotropic medications in treatment-refractory inpatients with major depressive disorder (MDD) and bipolar disorder (BP). METHODS A total of 49 patients with MDD and BP were included in this study. The subjects were administered ketamine and were assessed for changes using an observational protocol. RESULTS No antidepressants were associated with psychomimetic symptomatology except for citalopram (p = 0.019). Patients treated with citalopram showed a higher intensity of psychomimetic symptomatology. The use of classic mood-stabilizers was significantly associated with an increase in psychomimetic symptomatology according to the Brief Psychiatric Rating Scale (BPRS; lamotrigine p = 0.009, valproate p = 0.048, lithium p = 0.012). No sequelae were observed. CONCLUSIONS Despite the limitations that this study may be underpowered due to the small sample size, the sample consisted of a heterogeneous TRD population in a single site, and there no blinding of who underwent only acute ketamine administration, our observations indicate ketamine use requires close safety and tolerability monitoring with regards to psychomimetic and dissociative symptoms in TRD-BP and careful management for MDD patients.ClinicalTrials.gov identifier: NCT04226963.
Collapse
Affiliation(s)
- Adam Włodarczyk
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7 St. Build. 25, Gdańsk, pomorskie 80-952, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Pomorskie, Poland
| | - Maria Gałuszko-Węgielnik
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Pomorskie, Poland
| | - Joanna Szarmach
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Pomorskie, Poland
| |
Collapse
|
5
|
Arjmand S, Kohlmeier KA, Behzadi M, Ilaghi M, Mazhari S, Shabani M. Looking into a Deluded Brain through a Neuroimaging Lens. Neuroscientist 2020; 27:73-87. [PMID: 32648532 DOI: 10.1177/1073858420936172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delusions are irrational, tenacious, and incorrigible false beliefs that are the most common symptom of a range of brain disorders including schizophrenia, Alzheimer's, and Parkinson's disease. In the case of schizophrenia and other primary delusional disorders, their appearance is often how the disorder is first detected and can be sufficient for diagnosis. At this time, not much is known about the brain dysfunctions leading to delusions, and hindering our understanding is that the complexity of the nature of delusions, and their very unique relevance to the human experience has hampered elucidation of their underlying neurobiology using either patients or animal models. Advances in neuroimaging along with improved psychiatric and cognitive modeling offers us a new opportunity to look with more investigative power into the deluded brain. In this article, based on data obtained from neuroimaging studies, we have attempted to draw a picture of the neural networks involved when delusion is present and evaluate whether different manifestations of delusions engage different regions of the brain.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mina Behzadi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrzad Mazhari
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Psychiatry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Saad Z, Hibar D, Fedgchin M, Popova V, Furey ML, Singh JB, Kolb H, Drevets WC, Chen G. Effects of Mu-Opiate Receptor Gene Polymorphism rs1799971 (A118G) on the Antidepressant and Dissociation Responses in Esketamine Nasal Spray Clinical Trials. Int J Neuropsychopharmacol 2020; 23:549-558. [PMID: 32367114 PMCID: PMC7710914 DOI: 10.1093/ijnp/pyaa030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background At ketamine and esketamine doses at which antidepressant doses are achieved, these agents are relatively selective, noncompetitive, N-methyl-D-aspartate receptor antagonists. However, at substantially higher doses, ketamine has shown mu-opioid receptor (MOR–gene symbol: OPRM1) agonist effects. Preliminary clinical studies showed conflicting results on whether naltrexone, a MOR antagonist, blocks the antidepressant action of ketamine. We examined drug-induced or endogenous MOR involvement in the antidepressant and dissociative responses to esketamine by assessing the effects of a functional single nucleotide polymorphism rs1799971 (A118G) of OPRM1, which is known to alter MOR agonist-mediated responses. Methods Participants with treatment-resistant depression from 2 phase III, double-blind, controlled trials of esketamine (or placebo) nasal spray plus an oral antidepressant were genotyped for rs1799971. Participants received the experimental agents twice weekly for 4 weeks. Antidepressant responses were rated using the change in Montgomery–Åsberg Depression Rating Scale (MADRS) score on days 2 and 28 post-dose initiation, and dissociative side effects were assessed using the Clinician-Administered Dissociative-States Scale at 40 minutes post-dose on days 1 and 25. Results In the esketamine + antidepressant arm, no significant genotype effect of single nucleotide polymorphism rs1799971 (A118G) on MADRS score reductions was detected on either day 2 or 28. By contrast, in the antidepressant + placebo arm, there was a significant genotype effect on MADRS score reductions on day 2 and a nonsignificant trend on day 28 towards an improvement in depression symptoms in G-allele carriers. No significant genotype effects on dissociative responses were detected. Conclusions Variation in rs1799971 (A118G) did not affect the antidepressant response to esketamine + antidepressant. Antidepressant response to antidepressant + placebo was increased in G-allele carriers, compatible with previous reports that release of endorphins/enkephalins may play a role in mediating placebo effect. Trial Registration NCT02417064 and NCT02418585; www.clinicaltrials.gov
Collapse
Affiliation(s)
- Ziad Saad
- Janssen Research & Development, San Diego, California
| | | | | | | | - Maura L Furey
- Janssen Research & Development, San Diego, California
| | | | - Hartmuth Kolb
- Janssen Research & Development, San Diego, California
| | | | - Guang Chen
- Janssen Research & Development, San Diego, California
| |
Collapse
|
7
|
Ketamine modulates aggressive behavior in adult zebrafish. Neurosci Lett 2018; 684:164-168. [DOI: 10.1016/j.neulet.2018.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023]
|
8
|
Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry 2018; 23:59-69. [PMID: 28972576 PMCID: PMC5754467 DOI: 10.1038/mp.2017.190] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
Abstract
Ketamine is a non-competitive antagonist at the N-methyl-d-aspartate receptor. It has recently been found to have antidepressant effects and is a drug of abuse, suggesting it may have dopaminergic effects. To examine the effect of ketamine on the dopamine systems, we carried out a systematic review and meta-analysis of dopamine measures in the rodent, human and primate brain following acute and chronic ketamine administration relative to a drug-free baseline or control condition. Systematic search of PubMed and PsychInfo electronic databases yielded 40 original peer-reviewed studies. There were sufficient rodent studies of the acute effects of ketamine at sub-anaesthetic doses for meta-analysis. Acute ketamine administration in rodents is associated with significantly increased dopamine levels in the cortex (Hedge's g= 1.33, P<0.01), striatum (Hedge's g=0.57, P<0.05) and the nucleus accumbens (Hedge's g=1.30, P<0.05) compared to control conditions, and 62-180% increases in dopamine neuron population activity. Sub-analysis indicated elevations were more marked in in vivo (g=1.93) than ex vivo (g=0.50) studies. There were not enough studies for meta-analysis in other brain regions studied (hippocampus, ventral pallidum and cerebellum), or of the effects of chronic ketamine administration, although consistent increases in cortical dopamine levels (from 88 to 180%) were reported in the latter studies. In contrast, no study showed an effect of anaesthetic doses (>100 mg kg-1) of ketamine on dopamine levels ex vivo, although this remains to be tested in vivo. Findings in non-human primates and in human studies using positron emission tomography were not consistent. The studies reviewed here provide evidence that acute ketamine administration leads to dopamine release in the rodent brain. We discuss the inter-species variation in the ketamine induced dopamine release as well as the implications for understanding psychiatric disorders, in particular substance abuse, schizophrenia, and the potential antidepressant properties of ketamine, and comparisons with stimulants and other NMDA antagonists. Finally we identify future research needs.
Collapse
Affiliation(s)
- M Kokkinou
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - A H Ashok
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - O D Howes
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK,Psychiatric Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 0NN, UK. E-mail:
| |
Collapse
|
9
|
Distinct retrosplenial cortex cell populations and their spike dynamics during ketamine-induced unconscious state. PLoS One 2017; 12:e0187198. [PMID: 29073221 PMCID: PMC5658186 DOI: 10.1371/journal.pone.0187198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 10/16/2017] [Indexed: 01/11/2023] Open
Abstract
Ketamine is known to induce psychotic-like symptoms, including delirium and visual hallucinations. It also causes neuronal damage and cell death in the retrosplenial cortex (RSC), an area that is thought to be a part of high visual cortical pathways and at least partially responsible for ketamine's psychotomimetic activities. However, the basic physiological properties of RSC cells as well as their response to ketamine in vivo remained largely unexplored. Here, we combine a computational method, the Inter-Spike Interval Classification Analysis (ISICA), and in vivo recordings to uncover and profile excitatory cell subtypes within layers 2&3 and 5&6 of the RSC in mice within both conscious, sleep, and ketamine-induced unconscious states. We demonstrate two distinct excitatory principal cell sub-populations, namely, high-bursting excitatory principal cells and low-bursting excitatory principal cells, within layers 2&3, and show that this classification is robust over the conscious states, namely quiet awake, and natural unconscious sleep periods. Similarly, we provide evidence of high-bursting and low-bursting excitatory principal cell sub-populations within layers 5&6 that remained distinct during quiet awake and sleep states. We further examined how these subtypes are dynamically altered by ketamine. During ketamine-induced unconscious state, these distinct excitatory principal cell subtypes in both layer 2&3 and layer 5&6 exhibited distinct dynamics. We also uncovered different dynamics of local field potential under various brain states in layer 2&3 and layer 5&6. Interestingly, ketamine administration induced high gamma oscillations in layer 2&3 of the RSC, but not layer 5&6. Our results show that excitatory principal cells within RSC layers 2&3 and 5&6 contain multiple physiologically distinct sub-populations, and they are differentially affected by ketamine.
Collapse
|
10
|
Liu XB, Zhang Y, Wang XY, Hao W. The synergistic effect of dual use of amphetamine-type stimulants and ketamine on drug-induced psychotic symptoms in Chinese synthetic drug users. Oncotarget 2017; 8:66569-66575. [PMID: 29029537 PMCID: PMC5630437 DOI: 10.18632/oncotarget.16474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/11/2017] [Indexed: 11/25/2022] Open
Abstract
The use of amphetamine-type stimulants (ATS) and ketamine is of particular clinical concern because of its associated psychotic symptoms. In Chinese clinical practice, ATS and ketamine are commonly used simultaneously, but very few studies have reported the symptom profile of users who use both drugs. This study determined whether the combined use of ATS and ketamine is associated with more psychotic symptoms than either ATS or ketamine alone. According to drug use characteristics, 375 Chinese synthetic drug users were categorized into 2 pairs of comparison groups: ATS-only (n=125) vs. ATS-mainly (ATS most of the time and ketamine sometimes, n=150) and ketamine-only (n=38) vs. ketamine-mainly (ketamine most of the time and ATS sometimes, n=62). We used the Chinese Brief Psychiatric Rating Scale (BPRS) to assess these patients’ psychotic symptoms. ATS-mainly group had more anxiety/depression and anergia symptoms than ATS-only group (p<0.001), and ketamine-mainly group had more thinking-disorder, activity and hostility-suspicion symptoms than ketamine-only group (p≤0.001). These findings indicate that ATS may exacerbate the thinking-disorders, activity and hostility-suspicion symptoms of ketamine users, and ketamine may exacerbate anxiety/depression and anergia symptoms of ATS users.
Collapse
Affiliation(s)
- Xue-Bing Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China.,Affiliated Wuhan Mental Health Center, The Ninth Clinical School, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, Hubei, China
| | - Yao Zhang
- Wuhan Wudong Hospital, Wuhan Second Mental Hospital, Wuhan, Hubei, China
| | - Xu-Yi Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| | - Wei Hao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
11
|
Gökhan N, Neuwirth LS, Meehan EF. The effects of low dose MK-801 administration on NMDAR dependent executive functions in pigeons. Physiol Behav 2017; 173:243-251. [DOI: 10.1016/j.physbeh.2017.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 01/23/2023]
|
12
|
Hama R, Bennett CL. The mechanisms of sudden-onset type adverse reactions to oseltamivir. Acta Neurol Scand 2017; 135:148-160. [PMID: 27364959 PMCID: PMC5201449 DOI: 10.1111/ane.12629] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 01/13/2023]
Abstract
Oseltamivir is contraindicated for people aged 10-19 in principle in Japan, due to concern about abnormal behaviours. Sudden death is another concern. This review examines growing evidence of their association and discusses underlying mechanisms of these sudden-onset type reactions to oseltamivir. First, the importance of animal models and the concept of human equivalent dose (HED) is summarized. Second, the specific condition for oseltamivir use, influenza infection, is reviewed. Third, findings from toxicity studies conducted prior to and after the marketing of oseltamivir are reported on to provide context on the observation of a possible causal association. Fourth, similarity and consistency of toxicity in humans with that in other animals is described. Finally, coherence of toxicokinetic and molecular level of evidence (channels, receptors and enzymes), including differences from the toxicity of other neuraminidase inhibitors, is reviewed. It is concluded that unchanged oseltamivir has various effects on the central nervous system (CNS) that may be related to clinical findings including hypothermia, abnormal behaviours including with fatal outcome, and sudden death. Among receptors and enzymes related to CNS action, it is known that oseltamivir inhibits nicotinic acetylcholine receptors, which are closely related to hypothermia, as well as human monoamine oxidase-A (MAO-A), which is closely related to abnormal or excitatory behaviours. Receptors such as GABAA , GABAB and NMDA and their related receptors/channels including Na+ and Ca2+ channels are thought to be other candidates for investigation related to respiratory suppression followed by sudden death and psychotic reactions (both acute and chronic), respectively.
Collapse
Affiliation(s)
- R. Hama
- Non‐Profit Organization “Japan Institute of Pharmacovigilance”Tennoji‐kuOsakaJapan
| | - C. L. Bennett
- Center for Medication Safety and EfficacyUniversity of South CarolinaCollege of Pharmacy MemberHollings National Cancer InstituteCenter for Medication Safety and EfficacyUniversity of South CarolinaHollings National Cancer InstituteMedical University of South CarolinaColumbia and CharlestonSCUSA
| |
Collapse
|
13
|
van de Loo AJAE, Bervoets AC, Mooren L, Bouwmeester NH, Garssen J, Zuiker R, van Amerongen G, van Gerven J, Singh J, der Ark PV, Fedgchin M, Morrison R, Wajs E, Verster JC. The effects of intranasal esketamine (84 mg) and oral mirtazapine (30 mg) on on-road driving performance: a double-blind, placebo-controlled study. Psychopharmacology (Berl) 2017; 234:3175-3183. [PMID: 28755104 PMCID: PMC5660834 DOI: 10.1007/s00213-017-4706-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022]
Abstract
RATIONALE The purpose of this study is to evaluate the single dose effect of intranasal esketamine (84 mg) compared to placebo on on-road driving performance. Mirtazapine (oral, 30 mg) was used as a positive control, as this antidepressant drug is known to negatively affect driving performance. METHODS Twenty-six healthy volunteers aged 21 to 60 years were enrolled in this study. In the evening, 8 h after treatment administration, participants conducted the standardized 100-km on-road driving test. Primary outcome measure was the standard deviation of lateral position (SDLP), i.e., the weaving of the car. Mean lateral position, mean speed, and standard deviation of speed were secondary outcome measures. For SDLP, non-inferiority analyses were conducted, using +2.4 cm (relative to placebo) as a predefined non-inferiority margin for clinical relevant impairment. RESULTS Twenty-four participants completed the study. No significant SDLP difference was found between esketamine and placebo (p = 0.7638), whereas the SDLP after mirtazapine was significantly higher when compared to placebo (p = 0.0001). The upper limit of the two-sided 95% confidence interval (CI) of the mean difference between esketamine and placebo was +0.86 cm, i.e., <+2.4 cm, thus demonstrating that esketamine was non-inferior to placebo. Non-inferiority could not be concluded for mirtazapine (+3.15 cm SDLP relative to placebo). No significant differences in mean speed, standard deviation of speed, and mean lateral position were observed between the active treatments and placebo. CONCLUSIONS No significant difference in driving performance was observed 8 h after administering intranasal esketamine (84 mg) or placebo. In contrast, oral mirtazapine (30 mg) significantly impaired on road driving performance.
Collapse
Affiliation(s)
- Aurora J. A. E. van de Loo
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, the Netherlands ,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Adriana C. Bervoets
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, the Netherlands
| | - Loes Mooren
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, the Netherlands
| | - Noor H. Bouwmeester
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, the Netherlands
| | - Johan Garssen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, the Netherlands ,Nutricia Research, Utrecht, the Netherlands
| | - Rob Zuiker
- Centre for Human Drug Research (CHDR), Leiden, the Netherlands
| | | | - Joop van Gerven
- Centre for Human Drug Research (CHDR), Leiden, the Netherlands
| | | | - Peter Van der Ark
- Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium
| | | | | | - Ewa Wajs
- Janssen Research & Development, Janssen Pharmaceutica N.V, Beerse, Belgium
| | - Joris C. Verster
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, the Netherlands ,Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands ,Centre for Human Psychopharmacology, Swinburne University, Melbourne, Australia
| |
Collapse
|
14
|
MK-801 reduces sensitivity to Müller-Lyer's illusion in capuchin monkeys. Behav Brain Res 2016; 316:54-58. [PMID: 27575949 DOI: 10.1016/j.bbr.2016.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
The Müller-Lyer's illusion (MLI) is a visual illusion in which the presence of contextual cues (i.e., the orientation of arrowheads) changes the perception of the length of straight lines. An altered sensitivity to the MLI has been proposed as a marker for the progression of perceptual deficits in schizophrenia. Since dizocilpine (MK-801), a noncompetitive antagonist of the NMDA glutamate receptor, induces schizophrenic-like sensory impairments, it may have potential value for investigating the neurochemical basis of the perceptual changes in schizophrenia. Here we tested the effects of MK-801 on the perception of the MLI in a nonhuman primate. Five capuchin monkeys Sapajus spp. were trained on a MLI task using a touch screen monitor. After training, the Point of Subjective Equality (PSE; i.e., the minimum difference in length between two lines which the subject can distinguish) was determined for each subject. Then, during 12 consecutive days, we evaluated changes in PSE in response to vehicle, MK-801 (5.6μg/kg, i.m.) and a no-treatment protocol (post- test). Each of these was given as a single daily treatment, on four consecutive days. Results showed that MK-801 increased the monkeys' performance in the MLI task, suggesting that NMDA receptor modulation reduces sensitivity to this illusion, similar to prodromal stage in schizophrenia patients. The MLI protocol may thus be used in nonhuman primates to screen potential antipsychotic drugs for early stages of this disease.
Collapse
|
15
|
Fan N, Xu K, Ning Y, Rosenheck R, Wang D, Ke X, Ding Y, Sun B, Zhou C, Deng X, Tang W, He H. Profiling the psychotic, depressive and anxiety symptoms in chronic ketamine users. Psychiatry Res 2016; 237:311-5. [PMID: 26805565 PMCID: PMC4906312 DOI: 10.1016/j.psychres.2016.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Although concern about chronic ketamine abuse has grown, the characteristic symptomatology of chronic ketamine users has yet to be examined. This study aims to measure the psychotic, depressive and anxiety symptoms in chronic ketamine users. METHODS A group of chronic ketamine users in Guangzhou, China were evaluated. The socio-demographic and drug use characteristics of subjects were documented. Symptoms of psychosis, depression, anxiety were evaluated by the Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). The severity of the symptoms was identified by standard severity cutoffs. RESULTS The PANSS total score, positive symptom, negative symptom, general psychopathology subscale score were 45.3±8.4, 8.0±1.7, 13.2± 3.9 and 24.2± 4.9 respectively. BDI and BAI score was 13.1±6.5 and 15.7±9.6 respectively. 77.5% and 46.0% of the subjects showed moderate to severe depressive symptoms and anxiety symptoms respectively. The BDI score was positively correlated with ketamine use frequency. The BAI score was positively correlated with ketamine use frequency. CONCLUSIONS Depressive symptoms were commonly presented in chronic ketamine users. The higher ketamine use frequency and dosage were associated with more severe depressive symptoms.
Collapse
Affiliation(s)
- Ni Fan
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Yuping Ning
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Robert Rosenheck
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Daping Wang
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xiaoyin Ke
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yi Ding
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Bin Sun
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Chao Zhou
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xuefeng Deng
- Guangzhou Baiyun Mental Hospital, 586 North of Baiyun Road, Baiyun District, Guangzhou, Guangdong 510440, China
| | - Waikwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| | - Hongbo He
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
16
|
Robinson BL, Dumas M, Cuevas E, Gu Q, Paule MG, Ali SF, Kanungo J. Distinct effects of ketamine and acetyl L-carnitine on the dopamine system in zebrafish. Neurotoxicol Teratol 2016; 54:52-60. [PMID: 26898327 DOI: 10.1016/j.ntt.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
Ketamine, a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist is commonly used as a pediatric anesthetic. We have previously shown that acetyl L-carnitine (ALCAR) prevents ketamine toxicity in zebrafish embryos. In mammals, ketamine is known to modulate the dopaminergic system. NMDA receptor antagonists are considered as promising anti-depressants, but the exact mechanism of their function is unclear. Here, we measured the levels of dopamine (DA) and its metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the zebrafish embryos exposed to ketamine in the presence and absence of 0.5 mM ALCAR. Ketamine, at lower doses (0.1-0.3 mM), did not produce significant changes in DA, DOPAC or HVA levels in 52 h post-fertilization embryos treated for 24 h. In these embryos, tyrosine hydroxylase (TH) mRNA expression remained unchanged. However, 2 mM ketamine (internal embryo exposure levels equivalent to human anesthetic plasma concentration) significantly reduced DA level and TH mRNA indicating that DA synthesis was adversely affected. In the presence or absence of 2 mM ketamine, ALCAR showed similar effects on DA level and TH mRNA, but increased DOPAC level compared to control. ALCAR reversed 2 mM ketamine-induced reduction in HVA levels. With ALCAR alone, the expression of genes encoding the DA metabolizing enzymes, MAO (monoamine oxidase) and catechol-O-methyltransferase (COMT), was not affected. However, ketamine altered MAO mRNA expression, except at the 0.1 mM dose. COMT transcripts were reduced in the 2 mM ketamine-treated group. These distinct effects of ketamine and ALCAR on the DA system may shed some light on the mechanism on how ketamine can work as an anti-depressant, especially at sub-anesthetic doses that do not affect DA metabolism and suppress MAO gene expression.
Collapse
Affiliation(s)
- Bonnie L Robinson
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Melanie Dumas
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
17
|
Fan N, Xu K, Ning Y, Wang D, Ke X, Ding Y, Sun B, Zhou C, Deng X, Rosenheck R, He H. Development of a checklist of short-term and long-term psychological symptoms associated with ketamine use. SHANGHAI ARCHIVES OF PSYCHIATRY 2015; 27:186-94. [PMID: 26300602 PMCID: PMC4526833 DOI: 10.11919/j.issn.1002-0829.214158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/13/2015] [Indexed: 11/11/2022]
Abstract
Background Ketamine is an increasingly popular drug of abuse in China but there is currently no method for classifying the psychological effects of ketamine in individuals with ketamine dependence. Aim Develop a scale that characterizes the acute and long-term psychological effects of ketamine use among persons with ketamine dependence. Methods We developed a preliminary symptom checklist with 35 dichotomous (‘yes’ or ‘no’) items about subjective feelings immediately after ketamine use and about perceived long-term effects of ketamine use that was administered to 187 inpatients with ketamine dependence recruited from two large hospitals in Guangzhou, China. Exploratory factor analysis (EFA) was conducted on a randomly selected half of thesample to reduce the items and to identify underlying constructs. Confirmatory factor analysis (CFA) was conducted on the second half of the sample to assess the robustness of the identified factor structure. Results Among the 35 symptoms, the most-reported acute effects were ‘floating or circling’ (94%), ‘euphoric when listening to rousing music’ (86%), and ‘feeling excited, talkative, and full of energy’ (67%). The mostreported long-term symptoms were ‘memory impairment’ (93%), ‘personality changes’ (86%), and ‘slowed reactions’ (81%). EFA resulted in a final 22-item scale best modelled by a four-factor model: two factors representing chronic symptoms (social withdrawal and sleep disturbances), one about acute psychoticlike symptoms, and one that combined acute drug-related euphoria and longer-term decreased libido. CFA showed that these 4 factors accounted for 50% of the total variance of the final 22-item scale and that the model fit was fair (Goodness of Fit Index, GIF=83.3%; Root Mean Square Error of Approximation, RMSEA=0.072). Conclusion A four-factor model including social withdrawal, sleep disturbance, psychotic-like symptoms, and euphoria at the time of drug use provides a fair description of the short-term and long-term psychological symptoms associated with ketamine use. Future work on the 22-item version of the scale with larger samples is needed to confirm the validity of this 4-factor structure, to assess the scale’s test-retest reliability, and to determine whether or not it can be useful in the differential diagnosis and monitoring of treatment of individuals with ketamine dependence.
Collapse
Affiliation(s)
- Ni Fan
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yuping Ning
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Daping Wang
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyin Ke
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yi Ding
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bin Sun
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Chao Zhou
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xuefeng Deng
- Guangzhou Baiyun Voluntary Drug Rehabilitation Hospital, Guangzhou, Guangdong, China
| | - Robert Rosenheck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Hongbo He
- Guangzhou Brain Hospital (Guangzhou Hui Ai Hospital), Guangzhou Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Fan N, Zhang M, Xu K, Ke X, Ding Y, Wang D, Liu Y, Ning Y, Deng X, He H. Serum level of vascular endothelial growth factor decreased in chronic ketamine abusers. Drug Alcohol Depend 2015; 152:57-61. [PMID: 26003336 PMCID: PMC4888963 DOI: 10.1016/j.drugalcdep.2015.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
AIMS To evaluate the serum level of vascular endothelial growth factor (VEGF) in a group of chronic ketamine abusers in comparison to healthy controls. METHODS Eighty-one ketamine abusers who were hospitalized for the treatment of ketamine dependence and 39 healthy controls were recruited. Serum VEGF level was measured by enzyme linked immunosorbent assay (ELISA). Psychopathological symptoms were assessed using Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). RESULTS Serum level of VEGF was significantly lower in chronic ketamine abusers compared to healthy controls (64.6±42.1 vs. 92.4±59.4pg/ml, F=7.243, p=0.008). CONCLUSIONS Serum level of VEGF decreased in chronic ketamine abusers compared to healthy controls.
Collapse
Affiliation(s)
- Ni Fan
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Minling Zhang
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Xiaoyin Ke
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China,Shenzhen Mental Health Center, 1080 Cuizhu Rd., Luohu District, Shenzhen, Guangdong 518020, China
| | - Yi Ding
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Daping Wang
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yuping Liu
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yuping Ning
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xuefeng Deng
- Guangzhou Baiyun Voluntary Drug Rehabilitation Hospital, 586 North of Baiyun Road, Baiyun District, Guangzhou, Guangdong 510440, China
| | - Hongbo He
- Guangzhou Huiai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
19
|
Effects of ketamine on psychomotor, sensory and cognitive functions relevant for driving ability. Forensic Sci Int 2015; 252:127-42. [DOI: 10.1016/j.forsciint.2015.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 11/17/2022]
|
20
|
Kleinloog D, Uit den Boogaard A, Dahan A, Mooren R, Klaassen E, Stevens J, Freijer J, van Gerven J. Optimizing the glutamatergic challenge model for psychosis, using S+ -ketamine to induce psychomimetic symptoms in healthy volunteers. J Psychopharmacol 2015; 29:401-13. [PMID: 25693889 DOI: 10.1177/0269881115570082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The psychomimetic effects that occur after acute administration of ketamine can constitute a model of psychosis and antipsychotic drug action. However, the optimal dose/concentration has not been established and there is a large variety in outcome measures. In this study, 36 healthy volunteers (21 males and 15 females) received infusions of S(+)-ketamine or placebo to achieve pseudo-steady state concentrations of 180 and 360 ng/mL during two hours. The target of 360 ng/mL induced increasingly more intensive effects than expected, and the targets were subsequently reduced to 120 and 240 ng/mL, which were considered tolerable. There was a clear, concentration-dependent psychomimetic effect as shown on all subscales of the positive and negative syndrome scale (e.g. positive subscale +43.7%, 95%CI 34.4-53.7%, p < 0.0001 for 120 ng/mL and +70.5%, 95%CI 59.0-82.8%, p < 0.0001 for 240 ng/mL) and different visual analogue scales. The startle reflex was inhibited (prepulse inhibition) by both main target concentrations to a similar extent, suggesting a maximum effect. Ketamine was found to constitute a robust model for induction of psychomimetic symptoms and the optimal concentration range for a drug interaction study would be between 100 and 200 ng/mL.
Collapse
Affiliation(s)
| | | | - Albert Dahan
- Leiden University Medical Centre, Leiden, The Netherlands
| | - René Mooren
- Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | - Jan Freijer
- Centre for Human Drug Research, Leiden, The Netherlands
| | - Joop van Gerven
- Centre for Human Drug Research, Leiden, The Netherlands Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
21
|
Abstract
The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an update on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on in vivo neuroimaging studies in patients and clinical high-risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally, the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed.
Collapse
Affiliation(s)
- Oliver Howes
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| | - Rob McCutcheon
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| | - James Stone
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
22
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Disruption of medial prefrontal synchrony in the subchronic phencyclidine model of schizophrenia in rats. Neuroscience 2014; 287:157-63. [PMID: 25542422 PMCID: PMC4317768 DOI: 10.1016/j.neuroscience.2014.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
Subchronic PCP pretreatment reduced theta oscillations in medial prefrontal cortex. Subchronic PCP pretreatment produced abnormal cortical synchronization in putative cortical pyramidal cells. Subchronic PCP pretreatment produced abnormal locking of cortical spikes to lower oscillation frequencies.
Subchronic treatment with the N-methyl-d-aspartate (NMDA) antagonist phencyclidine (PCP) produces behavioral abnormalities in rodents which are considered a reliable pharmacological model of neurocognitive deficits in schizophrenia. Alterations in prefrontal neuronal firing after acute PCP administration have been observed, however enduring changes in prefrontal activity after subchronic PCP treatment have not been studied. To address this we have recorded cortical oscillations and unit responses in putative cortical pyramidal cells in subchronic PCP-treated rats (2 mg/kg twice daily for 7 days) under urethane anesthesia. We found that this regimen reduced theta oscillations in the medial prefrontal cortex. It further produced abnormal cortical synchronization in putative cortical pyramidal cells. These alterations in prefrontal cortex functioning may contribute to cognitive deficits seen in subchronic NMDA antagonist pre-treated animals in prefrontal-dependent tasks.
Collapse
|
24
|
Thoresen C, Endestad T, Sigvartsen NPB, Server A, Bolstad I, Johansson M, Andreassen OA, Jensen J. Frontotemporal hypoactivity during a reality monitoring paradigm is associated with delusions in patients with schizophrenia spectrum disorders. Cogn Neuropsychiatry 2014; 19:97-115. [PMID: 23756081 DOI: 10.1080/13546805.2013.776495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Impaired monitoring of internally generated information has been proposed to be one component in the development and maintenance of delusions. The present study investigated the neural correlates underlying the monitoring processes and whether they were associated with delusions. METHODS Twenty healthy controls and 19 patients with schizophrenia spectrum disorders were administrated a reality monitoring paradigm during functional magnetic resonance imaging. During encoding participants were instructed to associate a statement with either a presented (viewed condition) or an imagined picture (imagined condition). During the monitoring session in the scanner, participants were presented with old and new statements and their task was to identify whether a given statement was associated with the viewed condition, imagined condition, or if it was new. RESULTS Patients showed significantly reduced accuracy in the imagined condition with performance negatively associated with degree of delusions. This was accompanied with reduced activity in the left dorsolateral prefrontal cortex and left hippocampus in the patient group. The severity of delusions was negatively correlated with the blood-oxygenation-level dependent response in the left hippocampus. CONCLUSIONS The results suggest that weakened monitoring is associated with delusions in patients with schizophrenia spectrum disorder, and that this may be mediated by a frontotemporal dysfunction.
Collapse
Affiliation(s)
- Christian Thoresen
- a Division of Mental Health and Addiction , Oslo University Hospital , Oslo , Norway
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The use of functional brain imaging techniques, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), has allowed for monitoring neuronal and neurochemical activities in the living human brain and identifying abnormal changes in various neurological and psychiatric diseases. Combining these methods with techniques such as deep brain stimulation (DBS) and transcranial magnetic stimulation (TMS) has greatly advanced our understanding of the effects of such treatment on brain activity at targeted regions as well as specific disease-related networks. Indeed, recent network-level analysis focusing on inter-regional covarying activities in data interpretation has unveiled several key mechanisms underlying the therapeutic effects of brain stimulation. However, non-negligible discrepancies have been reported in the literature, attributable in part to the heterogeneity of both imaging and brain stimulation techniques. This chapter summarizes recent studies that combine brain imaging and brain stimulation, and includes discussion of future direction in these lines of research.
Collapse
|
26
|
Luckenbaugh DA, Niciu MJ, Ionescu DF, Nolan NM, Richards EM, Brutsche NE, Guevara S, Zarate CA. Do the dissociative side effects of ketamine mediate its antidepressant effects? J Affect Disord 2014; 159:56-61. [PMID: 24679390 PMCID: PMC4065787 DOI: 10.1016/j.jad.2014.02.017] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND The N-methyl-d-aspartate receptor antagonist ketamine has rapid antidepressant effects in major depression. Psychotomimetic symptoms, dissociation and hemodynamic changes are known side effects of ketamine, but it is unclear if these side effects relate to its antidepressant efficacy. METHODS Data from 108 treatment-resistant inpatients meeting criteria for major depressive disorder and bipolar disorder who received a single subanesthetic ketamine infusion were analyzed. Pearson correlations were performed to examine potential associations between rapid changes in dissociation and psychotomimesis with the Clinician-Administered Dissociative States Scale (CADSS) and Brief Psychiatric Rating Scale (BPRS), respectively, manic symptoms with Young Mania Rating Scale (YMRS), and vital sign changes, with percent change in the 17-item Hamilton Depression Rating scale (HDRS) at 40 and 230min and Days 1 and 7. RESULTS Pearson correlations showed significant association between increased CADSS score at 40min and percent improvement with ketamine in HDRS at 230min (r=-0.35, p=0.007) and Day 7 (r=-0.41, p=0.01). Changes in YMRS or BPRS Positive Symptom score at 40min were not significantly correlated with percent HDRS improvement at any time point with ketamine. Changes in systolic blood pressure, diastolic blood pressure, and pulse were also not significantly related to HDRS change. LIMITATIONS Secondary data analysis, combined diagnostic groups, potential unblinding. CONCLUSIONS Among the examined mediators of ketamine׳s antidepressant response, only dissociative side effects predicted a more robust and sustained antidepressant. Prospective, mechanistic investigations are critically needed to understand why intra-infusion dissociation correlates with a more robust antidepressant efficacy of ketamine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlos A. Zarate
- Correspondence to: Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Building 10, CRC Room 7-534210 Center Drive, Bethesda, MD 20892, USA. Tel.: +1 301 451 0861; fax: +1 301 480 8792. (C.A. Zarate)
| |
Collapse
|
27
|
Abstract
The observation that antagonists of the N-methyl-D-aspartate receptor (NMDAR), such as phencyclidine (PCP) and ketamine, transiently induce symptoms of acute schizophrenia had led to a paradigm shift from dopaminergic to glutamatergic dysfunction in pharmacological models of schizophrenia. The glutamate hypothesis can explain negative and cognitive symptoms of schizophrenia better than the dopamine hypothesis, and has the potential to explain dopamine dysfunction itself. The pharmacological and psychomimetic effects of ketamine, which is safer for human subjects than phencyclidine, are herein reviewed. Ketamine binds to a variety of receptors, but principally acts at the NMDAR, and convergent genetic and molecular evidence point to NMDAR hypofunction in schizophrenia. Furthermore, NMDAR hypofunction can explain connectional and oscillatory abnormalities in schizophrenia in terms of both weakened excitation of inhibitory γ-aminobutyric acidergic (GABAergic) interneurons that synchronize cortical networks and disinhibition of principal cells. Individuals with prenatal NMDAR aberrations might experience the onset of schizophrenia towards the completion of synaptic pruning in adolescence, when network connectivity drops below a critical value. We conclude that ketamine challenge is useful for studying the positive, negative, and cognitive symptoms, dopaminergic and GABAergic dysfunction, age of onset, functional dysconnectivity, and abnormal cortical oscillations observed in acute schizophrenia.
Collapse
Affiliation(s)
- Joel Frohlich
- Neuroscience Research Program, 1506D Gonda Center, University of California, Los Angeles Box 951761, Los Angeles, CA 90095-1761
| | - John Darrell Van Horn
- The Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, 2001 North Soto Street – SSB1-102, Los Angeles, CA 90032, Phone: (323) 442-7246
| |
Collapse
|
28
|
Poels EMP, Kegeles LS, Kantrowitz JT, Slifstein M, Javitt DC, Lieberman JA, Abi-Dargham A, Girgis RR. Imaging glutamate in schizophrenia: review of findings and implications for drug discovery. Mol Psychiatry 2014; 19:20-9. [PMID: 24166406 DOI: 10.1038/mp.2013.136] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 08/25/2013] [Accepted: 09/09/2013] [Indexed: 12/11/2022]
Abstract
Currently, all treatments for schizophrenia (SCZ) function primarily by blocking D(2)-type dopamine receptors. Given the limitations of these medications, substantial efforts have been made to identify alternative neurochemical targets for treatment development in SCZ. One such target is brain glutamate. The objective of this article is to review and synthesize the proton magnetic resonance spectroscopy ((1)H MRS) and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) investigations that have examined glutamatergic indices in SCZ, including those of modulatory compounds such as glutathione (GSH) and glycine, as well as data from ketamine challenge studies. The reviewed (1)H MRS and PET/SPECT studies support the theory of hypofunction of the N-methyl-D-aspartate receptor (NMDAR) in SCZ, as well as the convergence between the dopamine and glutamate models of SCZ. We also review several advances in MRS and PET technologies that have opened the door for new opportunities to investigate the glutamate system in SCZ and discuss some ways in which these imaging tools can be used to facilitate a greater understanding of the glutamate system in SCZ and the successful and efficient development of new glutamate-based treatments for SCZ.
Collapse
Affiliation(s)
- E M P Poels
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - L S Kegeles
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J T Kantrowitz
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - M Slifstein
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - D C Javitt
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - J A Lieberman
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| | - A Abi-Dargham
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA [3] Department of Radiology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - R R Girgis
- 1] Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA [2] New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
29
|
de la Fuente-Sandoval C, León-Ortiz P, Azcárraga M, Stephano S, Favila R, Díaz-Galvis L, Alvarado-Alanis P, Ramírez-Bermúdez J, Graff-Guerrero A. Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiatry 2013; 70:1057-66. [PMID: 23966023 PMCID: PMC3790718 DOI: 10.1001/jamapsychiatry.2013.289] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
IMPORTANCE Increased glutamate levels in the right associative striatum have been described in patients during a first episode of psychosis. Whether this increase would persist after effective antipsychotic treatment is unknown. OBJECTIVES To compare the glutamate levels in antipsychotic-naive patients with first-episode psychosis in the right associative striatum and right cerebellar cortex using proton magnetic resonance spectroscopy before and 4 weeks after antipsychotic treatment and to compare these results with normative data from sex-matched healthy control subjects. DESIGN, SETTING, AND PARTICIPANTS Before-after trial in an inpatient psychiatric research unit among 24 antipsychotic-naive patients with first-episode psychosis and 18 healthy controls matched for age, sex, handedness, and cigarette smoking. INTERVENTIONS Participants underwent 2 proton magnetic resonance spectroscopy studies: patients were imaged at baseline and after 4 weeks of antipsychotic treatment, while controls were imaged at baseline and at 4 weeks after the baseline measurement. Patients were treated with oral risperidone (open label) for 4 weeks with dosages that were titrated on the basis of clinical judgment. MAIN OUTCOMES AND MEASURES Glutamate levels were estimated using LCModel (version 6.2-1T) and were corrected for the cerebrospinal fluid proportion within the voxel. RESULTS Patients with first-episode psychosis had higher levels of glutamate in the associative striatum and the cerebellum during the antipsychotic-naive condition compared with controls. After clinically effective antipsychotic treatment, glutamate levels significantly decreased in the associative striatum, with no significant change in the cerebellum. No differences in glutamate levels were observed between groups at 4 weeks. CONCLUSIONS AND RELEVANCE Increased glutamate levels observed at baseline in patients with first-episode psychosis normalized after 4 weeks of clinically effective antipsychotic treatment. These results provide support for the hypothesis that improvement in clinical symptoms might be related to a decrease in glutamate levels.
Collapse
Affiliation(s)
- Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico2Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pauli A, Prata DP, Mechelli A, Picchioni M, Fu CHY, Chaddock CA, Kane F, Kalidindi S, McDonald C, Kravariti E, Toulopoulou T, Bramon E, Walshe M, Ehlert N, Georgiades A, Murray R, Collier DA, McGuire P. Interaction between effects of genes coding for dopamine and glutamate transmission on striatal and parahippocampal function. Hum Brain Mapp 2013; 34:2244-58. [PMID: 22438288 PMCID: PMC6869864 DOI: 10.1002/hbm.22061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 01/08/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022] Open
Abstract
The genes for the dopamine transporter (DAT) and the D-Amino acid oxidase activator (DAOA or G72) have been independently implicated in the risk for schizophrenia and in bipolar disorder and/or their related intermediate phenotypes. DAT and G72 respectively modulate central dopamine and glutamate transmission, the two systems most robustly implicated in these disorders. Contemporary studies have demonstrated that elevated dopamine function is associated with glutamatergic dysfunction in psychotic disorders. Using functional magnetic resonance imaging we examined whether there was an interaction between the effects of genes that influence dopamine and glutamate transmission (DAT and G72) on regional brain activation during verbal fluency, which is known to be abnormal in psychosis, in 80 healthy volunteers. Significant interactions between the effects of G72 and DAT polymorphisms on activation were evident in the striatum, parahippocampal gyrus, and supramarginal/angular gyri bilaterally, the right insula, in the right pre-/postcentral and the left posterior cingulate/retrosplenial gyri (P < 0.05, FDR-corrected across the whole brain). This provides evidence that interactions between the dopamine and the glutamate system, thought to be altered in psychosis, have an impact in executive processing which can be modulated by common genetic variation.
Collapse
Affiliation(s)
- Andreina Pauli
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans. PLoS One 2013; 8:e60312. [PMID: 23573246 PMCID: PMC3616113 DOI: 10.1371/journal.pone.0060312] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022] Open
Abstract
Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC)--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc), dorsomedial thalamus (DMT), and periaqueductal grey (PAG). It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.
Collapse
|
32
|
Balla A, Schneider S, Sershen H, Javitt DC. Effects of novel, high affinity glycine transport inhibitors on frontostriatal dopamine release in a rodent model of schizophrenia. Eur Neuropsychopharmacol 2012; 22:902-10. [PMID: 22561005 PMCID: PMC3882073 DOI: 10.1016/j.euroneuro.2012.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/11/2012] [Accepted: 03/13/2012] [Indexed: 12/26/2022]
Abstract
Dopaminergic hyperactivity within frontostriatal brain systems is a key feature of schizophrenia, and an objective neural correlate of positive schizophrenia symptoms. N-methyl-d-aspartate (NMDA) receptors are known to play a prominent role in regulation of frontostriatal dopamine release. Furthermore, disturbances in glutamatergic function are increasingly being linked to pathophysiology of both positive and negative symptoms of schizophrenia. Prior studies have demonstrated that subchronic continuous administration of the NMDA antagonist phencyclidine (PCP) induces schizophrenia-like hyper-reactivity of frontostriatal dopamine release to amphetamine (AMPH) in rodents, and that effects were reversed by glycine and the prototypic glycine transport inhibitor (GTI) NFPS. The present study investigates effectiveness of the novel, high affinity and well tolerated GTIs, R231857, R231860 and Org29335, to reverse schizophrenia-like enhancement of AMPH-induced DA release, along with effects of the partial glycine-site agonist d-cycloserine. As previously, PCP had no significant effect on basal DA levels, but significantly enhanced AMPH-induced DA release in prefrontal cortex. All GTIs tested, as well as d-cycloserine, significantly reduced PCP-induced enhancement of DA release in prefrontal cortex. Neither PCP nor GTIs significantly affected striatal DA release. Overall, these findings suggest that treatments which target the glycine modulatory site of the NMDA receptor may significantly reverse NMDA receptor antagonist-induced dysregulation of frontal DA systems, consistent with potential beneficial effects on positive-, in addition to negative-, symptoms of schizophrenia.
Collapse
Affiliation(s)
- Andrea Balla
- Translational Schizophrenia Research Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | | | | | | |
Collapse
|
33
|
Javitt DC, Zukin SR, Heresco-Levy U, Umbricht D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr Bull 2012; 38:958-66. [PMID: 22987851 PMCID: PMC3446214 DOI: 10.1093/schbul/sbs069] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last 20 years, glutamatergic models of schizophrenia have become increasingly accepted as etiopathological models of schizophrenia, based on the observation that phencyclidine (PCP) induces a schizophrenia-like psychosis by blocking neurotransmission at N-methyl-D-aspartate (NMDA)-type glutamate receptors. This article reviews developments in two key predictions of the model: first, that neurocognitive deficits in schizophrenia should follow the pattern of deficit predicted based on underlying NMDAR dysfunction and, second, that agents that stimulate NMDAR function should be therapeutically beneficial. As opposed to dopamine receptors, NMDAR are widely distributed throughout the brain, including subcortical as well as cortical brain regions, and sensory as well as association cortex. Studies over the past 20 years have documented severe sensory dysfunction in schizophrenia using behavioral, neurophysiological, and functional brain imaging approaches, including impaired generation of key sensory-related potentials such as mismatch negativity and visual P1 potentials. Similar deficits are observed in humans following administration of NMDAR antagonists such as ketamine in either humans or animal models. Sensory dysfunction, in turn, predicts impairments in higher order cognitive functions such as auditory or visual emotion recognition. Treatment studies have been performed with compounds acting directly at the NMDAR glycine site, such as glycine, D-serine, or D-cycloserine, and, more recently, with high-affinity glycine transport inhibitors such as RG1678 (Roche). More limited studies have been performed with compounds targeting the redox site. Overall, these compounds have been found to induce significant beneficial effects on persistent symptoms, suggesting novel approaches for treatment and prevention of schizophrenia.
Collapse
Affiliation(s)
- Daniel C. Javitt
- Departments of Psychiatry and Neuroscience, Nathan Kline Institute for Psychiatric Research/Columbia University College of Physicians and Surgeons, Orangeburg, NY 10962, To whom correspondence should be addressed; 140 Old Orangeburg Rd, Orangeburg, NY 10962; tel: 845-398-6534 (personal)/6546 (admin), fax: 845-398-6545, e-mail:
| | - Stephen R. Zukin
- Departments of Psychiatry and Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, and Senior Director, Forest Research Institute, Jersey City, NJ 07311
| | - Uriel Heresco-Levy
- Department of Psychiatry, Herzog Memorial Hospital/Hadassah Medical School, Jerusalem, Israel
| | - Daniel Umbricht
- Translational Medicine Leader in Neurosciences, F. Hoffman-La Roche, Ltd, Switzerland
| |
Collapse
|
34
|
Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord 2012; 14:478-87. [PMID: 22834460 DOI: 10.1111/j.1399-5618.2012.01033.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is a common and highly disabling disease characterized by substantial cognitive and functional impairment. The exact neurobiological mechanisms underlying the expression of symptoms in this condition remain unknown but there is growing evidence that glutamate might play an important role. Using proton magnetic resonance spectroscopy (¹H-MRS), a number of studies have examined brain glutamate/glutamine levels in patients with bipolar disorder, but they have produced conflicting results. The objective of this paper was to conduct a systematic review and meta-analysis of the literature on brain glutamate/glutamine in BD as measured by ¹H-MRS. METHODS A Medline search for the period January 1980-April 2010 was conducted to identify published studies that used ¹H-MRS to measure glutamate + glutamine (Glx), the Glx/creatine (Cr) ratio, glutamate (Glu), or the Glu/Cr ratio in any brain region in adult or child/adolescent patients with BD and healthy subjects. A meta-analysis of the pooled data was conducted. RESULTS BD patients were found to have increased Glx compared to healthy subjects when all brain areas were combined. This finding remained true in medicated and non-medicated patients, and in frontal brain areas in adults. There was a non-significant trend (p = 0.09) for an increase in whole-brain Glx/Cr and Glu in patients compared with healthy subjects. No significant difference was found in Glu/Cr. CONCLUSIONS The results of this meta-analysis suggest that brain Glx levels are elevated in BD patients and support the idea that glutamate might play an important role in the pathophysiology of BD.
Collapse
|
35
|
Iasevoli F, Latte G, Avvisati L, Sarappa C, Aloj L, de Bartolomeis A. The expression of genes involved in glucose metabolism is affected by N-methyl-D-aspartate receptor antagonism: A putative link between metabolism and an animal model of psychosis. J Neurosci Res 2012; 90:1756-67. [DOI: 10.1002/jnr.23071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/16/2012] [Accepted: 03/22/2012] [Indexed: 01/07/2023]
|
36
|
Fitzgerald PJ. The NMDA receptor may participate in widespread suppression of circuit level neural activity, in addition to a similarly prominent role in circuit level activation. Behav Brain Res 2012; 230:291-8. [DOI: 10.1016/j.bbr.2012.01.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
|
37
|
Chen J, Calhoun VD, Pearlson GD, Ehrlich S, Turner JA, Ho BC, Wassink TH, Michael AM, Liu J. Multifaceted genomic risk for brain function in schizophrenia. Neuroimage 2012; 61:866-75. [PMID: 22440650 DOI: 10.1016/j.neuroimage.2012.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 03/01/2012] [Accepted: 03/03/2012] [Indexed: 11/19/2022] Open
Abstract
Recently, deriving candidate endophenotypes from brain imaging data has become a valuable approach to study genetic influences on schizophrenia (SZ), whose pathophysiology remains unclear. In this work we utilized a multivariate approach, parallel independent component analysis, to identify genomic risk components associated with brain function abnormalities in SZ. 5157 candidate single nucleotide polymorphisms (SNPs) were derived from genome-wide array based on their possible connections with SZ and further investigated for their associations with brain activations captured with functional magnetic resonance imaging (fMRI) during a sensorimotor task. Using data from 92 SZ patients and 116 healthy controls, we detected a significant correlation (r=0.29; p=2.41 × 10(-5)) between one fMRI component and one SNP component, both of which significantly differentiated patients from controls. The fMRI component mainly consisted of precentral and postcentral gyri, the major activated regions in the motor task. On average, higher activation in these regions was observed in participants with higher loadings of the linked SNP component, predominantly contributed to by 253 SNPs. 138 identified SNPs were from known coding regions of 100 unique genes. 31 identified SNPs did not differ between groups, but moderately correlated with some other group-discriminating SNPs, indicating interactions among alleles contributing toward elevated SZ susceptibility. The genes associated with the identified SNPs participated in four neurotransmitter pathways: GABA receptor signaling, dopamine receptor signaling, neuregulin signaling and glutamate receptor signaling. In summary, our work provides further evidence for the complexity of genomic risk to the functional brain abnormality in SZ and suggests a pathological role of interactions between SNPs, genes and multiple neurotransmitter pathways.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
White A, Brown TM. First report of quetiapine use in the management of ketamine-benzodiazepine coma therapy side-effects. PSYCHOSOMATICS 2012; 53:92-95. [PMID: 22221726 DOI: 10.1016/j.psym.2011.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Angelica White
- Dept. of Psychiatry, Audie L. Murphy Memorial VAMC, San Antonio, TX 78229, USA.
| | | |
Collapse
|
39
|
McNally JM, McCarley RW, McKenna JT, Yanagawa Y, Brown RE. Complex receptor mediation of acute ketamine application on in vitro gamma oscillations in mouse prefrontal cortex: modeling gamma band oscillation abnormalities in schizophrenia. Neuroscience 2011; 199:51-63. [PMID: 22027237 DOI: 10.1016/j.neuroscience.2011.10.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/22/2011] [Accepted: 10/11/2011] [Indexed: 02/04/2023]
Abstract
Schizophrenia (Sz), along with other neuropsychiatric disorders, is associated clinically with abnormalities in neocortical gamma frequency (30-80 Hz) oscillations. In Sz patients, these abnormalities include both increased and decreased gamma activity, and show a strong association with Sz symptoms. For several decades, administration of sub-anesthetic levels of ketamine has provided the most comprehensive experimental model of Sz-symptoms. While acute application of ketamine precipitates a psychotic-like state in a number of animal models, as well as humans, the underlying mechanisms behind this effect, including alteration of neuronal network properties, are incompletely understood, making an in vitro level analysis particularly important. Previous in vitro studies have had difficulty inducing gamma oscillations in neocortical slices maintained in submerged-type recording chambers necessary for visually guided whole-cell recordings from identified neurons. Consequently, here, we validated a modified method to evoke gamma oscillations using brief, focal application of the glutamate receptor agonist kainate (KA), in slices prepared from mice expressing green fluorescent protein in GABAergic interneurons (GAD67-GFP knock-in mice). Using this method, gamma oscillations dependent on activation of AMPA and GABA(A) receptors were reliably elicited in slices containing mouse prelimbic cortex, the rodent analogue of the human dorsolateral prefrontal cortex. Examining the effects of ketamine on this model, we found that bath application of ketamine significantly potentiated KA-elicited gamma power, an effect mimicked by selective NMDAR antagonists including a selective antagonist of NMDARs containing the NR2B subunit. Importantly, ketamine, unlike more specific NMDAR antagonists, also reduced the peak frequency of KA-elicited oscillatory activity. Our findings indicate that this effect is mediated not through NMDAR, but through slowing the decay kinetics of GABA(A) receptor-mediated inhibitory postsynaptic currents in identified GABAergic interneurons. These in vitro findings may help explain the complexities of gamma findings in clinical studies of Sz and prove useful in developing new therapeutic strategies.
Collapse
Affiliation(s)
- J M McNally
- Laboratory of Neuroscience, VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, 940 Belmont Street, Research 151C, Brockton, MA 02301, USA
| | | | | | | | | |
Collapse
|
40
|
Fuente-Sandoval CDL, León-Ortiz P, Favila R, Stephano S, Mamo D, Ramírez-Bermúdez J, Graff-Guerrero A. Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology 2011; 36:1781-91. [PMID: 21508933 PMCID: PMC3154101 DOI: 10.1038/npp.2011.65] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy ((1)H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a (1)H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Camilo de la Fuente-Sandoval
- Experimental Psychiatry Laboratory, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico,Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Pablo León-Ortiz
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Rafael Favila
- MR Advanced Applications, GE Healthcare, Mexico City, Mexico
| | - Sylvana Stephano
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - David Mamo
- Multimodal Neuroimaging Schizophrenia Group, PET Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jesús Ramírez-Bermúdez
- Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, PET Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Multimodal Neuroimaging Schizophrenia Group, PET Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8. Tel: +1 416 535 8501 Ext 7376, Fax: +1 416 979 3855, E-mail:
| |
Collapse
|
41
|
Ko JH, Strafella AP. Dopaminergic neurotransmission in the human brain: new lessons from perturbation and imaging. Neuroscientist 2011; 18:149-68. [PMID: 21536838 DOI: 10.1177/1073858411401413] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine plays an important role in several brain functions and is involved in the pathogenesis of several psychiatric and neurological disorders. Neuroimaging techniques such as positron emission tomography allow us to quantify dopaminergic activity in the living human brain. Combining these with brain stimulation techniques offers us the unique opportunity to tackle questions regarding region-specific neurochemical activity. Such studies may aid clinicians and scientists to disentangle neural circuitries within the human brain and thereby help them to understand the underlying mechanisms of a given function in relation to brain diseases. Furthermore, it may also aid the development of alternative treatment approaches for various neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Ji Hyun Ko
- PET Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Kamiyama H, Matsumoto M, Otani S, Kimura SI, Shimamura KI, Ishikawa S, Yanagawa Y, Togashi H. Mechanisms underlying ketamine-induced synaptic depression in rat hippocampus-medial prefrontal cortex pathway. Neuroscience 2010; 177:159-69. [PMID: 21163337 DOI: 10.1016/j.neuroscience.2010.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 02/02/2023]
Abstract
The non-competitive N-methyl-D-aspartate NMDA receptor antagonist ketamine, a dissociative anesthetic capable of inducing analgesia, is known to have psychotomimetic actions, but the detailed mechanisms remain unclear because of its complex properties. The present study elucidated neural mechanisms of the effect of ketamine, at doses that exert psychotomimetic effects without anesthetic and analgesic effects, by evaluating cortical synaptic responses in vivo. Systemic administration (i.p.) of low (1 and 5 mg/kg), subanesthetic (25 mg/kg) and anesthetic (100 mg/kg) doses of ketamine dose-dependently decreased hippocampal stimulation-evoked potential in the medial prefrontal cortex (mPFC) in freely moving rats. The behavioral analysis assessed by prepulse inhibition (PPI) of acoustic startle response showed that ketamine (5 and 25 mg/kg, i.p.) produced PPI deficit. Thus, the psychotomimetic effects observed in ketamine-treated groups (5 and 25 mg/kg, i.p.) are associated with the induction of synaptic depression in the hippocampus-mPFC neural pathway. Based on these results, we further examined the underlying mechanisms of the ketamine-induced synaptic depression under anesthesia. Ketamine (5 and 25 mg/kg, i.p.) caused increases in dialysate dopamine in the mPFC in anesthetized rats. Moreover, the ketamine-induced decreases in the evoked potential, at the dose 5 mg/kg which has no anesthetic and analgesic effects, were indeed absent in dopamine-lesioned rats pretreated with 6-hydroxydopamine (6-OHDA; 150 μg/rat, i.c.v.). Ketamine (5 mg/kg, i.p.)-induced synaptic depression was blocked by pretreatment with dopamine D1 receptor antagonist SCH 23390 (10 μg/rat, i.c.v.) but not dopamine D2 receptor antagonist haloperidol (1.5 mg/kg, i.p.), suggesting that dopaminergic modulation mediated via D1 receptors are involved in the synaptic effects of ketamine. Furthermore, ketamine (5 mg/kg, i.p.)-induced synaptic depression was prevented also by GABAA receptor antagonist bicuculline (0.2 or 2 μg/rat, i.c.v.). These findings suggest that ketamine at the dose that exerts psychotomimetic symptoms depresses hippocampus-mPFC synaptic transmission through mechanisms involving dopaminergic modulation mediated via D1 receptors, which may lead to a net augmentation of synaptic inhibition mediated via GABAA receptors.
Collapse
Affiliation(s)
- H Kamiyama
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Roberts BM, Seymour PA, Schmidt CJ, Williams GV, Castner SA. Amelioration of ketamine-induced working memory deficits by dopamine D1 receptor agonists. Psychopharmacology (Berl) 2010; 210:407-18. [PMID: 20401749 DOI: 10.1007/s00213-010-1840-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/14/2010] [Indexed: 10/19/2022]
Abstract
RATIONALE Ketamine has been used in humans to model cardinal symptoms of schizophrenia, including working memory impairments and behavioral disorganization. Translational studies with ketamine in nonhuman primates promise to extend the neurobiological understanding of this model. OBJECTIVES By establishing the dose-dependent effects of ketamine on spatial working memory and behavior, we sought to test and compare the capacity of antipsychotic and procognitive agents to reverse these symptoms. METHODS Behavioral observations were taken following administration of placebo/ketamine (0.1-1.7 mg/kg, intramuscularly) and animals were tested on the spatial delayed response task 15 min post-injection. Pretreatments with risperidone as well as full and partial D1 receptor agonists were tested for their ability to reverse ketamine-induced impairments. RESULTS Ketamine (median 1.0 mg/kg) produced a profound cognitive impairment and behavioral sequelae reminiscent of positive and negative symptoms. Risperidone within the therapeutic dose range failed to antagonize behavioral or cognitive consequences of acute ketamine but A77636 (0.1 and 1 microg/kg) and SKF38393 (0.1 microg/kg-100 microg/kg) ameliorated the spatial working memory deficit. This effect of A77636 was blocked by the D1 receptor antagonist, SCH39166 (1 and 10 microg/kg). CONCLUSIONS These findings establish a valuable ketamine platform relevant to the treatment of cognitive dysfunction in schizophrenia. The reversal of ketamine-induced working memory deficits by a D1 receptor agonist, but not a commonly prescribed atypical antipsychotic, provides behavioral evidence for significant D1/N-methyl-D: -aspartate receptor interactions in prefrontal dysfunction and concurs with suggestions that D1 agonists may be useful in the treatment of cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Brooke M Roberts
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | | | | | | | | |
Collapse
|
44
|
Leh SE, Petrides M, Strafella AP. The neural circuitry of executive functions in healthy subjects and Parkinson's disease. Neuropsychopharmacology 2010; 35:70-85. [PMID: 19657332 PMCID: PMC3055448 DOI: 10.1038/npp.2009.88] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In our constantly changing environment, we are frequently faced with altered circumstances requiring generation and monitoring of appropriate strategies, when novel plans of action must be formulated and conducted. The abilities that we call upon to respond accurately to novel situations are referred to as 'executive functions', and are frequently engaged to deal with conditions in which routine activation of behavior would not be sufficient for optimal performance. Here, we summarize important findings that may help us understand executive functions and their underlying neuronal correlates. We focus particularly on observations from imaging technology, such as functional magnetic resonance imaging, position emission tomography, diffusion tensor imaging, and transcranial magnetic stimulation, which in the past few years have provided the bulk of information on the neurobiological underpinnings of the executive functions. Further, emphasis will be placed on recent insights from Parkinson's disease (PD), in which the underlying dopaminergic abnormalities have provided new exciting information into basic molecular mechanisms of executive dysfunction, and which may help to disentangle the cortical/subcortical networks involved in executive processes.
Collapse
Affiliation(s)
- Sandra E Leh
- Division of Brain Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute (TWRI), UHN, University of Toronto, Toronto, ON, Canada
| | - Michael Petrides
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Antonio P Strafella
- Division of Brain Imaging and Behaviour—Systems Neuroscience, Toronto Western Research Institute (TWRI), UHN, University of Toronto, Toronto, ON, Canada,Division of Neurology, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada,PET Imaging Centre, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, ON, Canada,Division of Neurology, CAMH-PET imaging center, Toronto Western Hospital/Research Institute, University of Toronto, Toronto, ON, Canada M5T2S8. Tel: +416 603 5706, Fax: +416 603 5004, E-mail: or
| |
Collapse
|
45
|
Singer HS, Morris C, Grados M. Glutamatergic modulatory therapy for Tourette syndrome. Med Hypotheses 2009; 74:862-7. [PMID: 20022434 DOI: 10.1016/j.mehy.2009.11.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/22/2009] [Indexed: 01/11/2023]
Abstract
Tourette syndrome (TS) is a neuropsychiatric disorder characterized by the presence of chronic, fluctuating motor and vocal (phonic) tics. The disorder is commonly associated with a variety of comorbidities including obsessive-compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), school problems, anxiety, and depression. Therapeutically, if tics are causing psychosocial or physical problems, symptomatic medications are often prescribed, typically alpha-adrenergic agonists or dopamine antagonists. Recognizing that therapy is often ineffective and frequently associated with unacceptable side-effects, there is an ongoing effort to identify new tic-suppressing therapies. Several lines of evidence are presented that support the use of glutamate modulators in TS including glutamate's major role in cortico-striatal-thalamo-cortical circuits (CSTC), the recognized extensive interaction between glutamate and dopamine systems, results of familial genetic studies, and data from neurochemical analyses of postmortem brain samples. Since insufficient data is available to determine whether TS is definitively associated with a hyper- or hypo-glutamatergic state, potential treatment options using either glutamate antagonists or agonists are reviewed. Data from studies using these agents in the treatment of OCD are presented. If validated, modulation of the glutamate system could provide a valuable new pharmacological approach in the treatment of tics associated with Tourette syndrome.
Collapse
Affiliation(s)
- Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
46
|
Thompson JL, Urban N, Abi-Dargham A. How have developments in molecular imaging techniques furthered schizophrenia research? ACTA ACUST UNITED AC 2009; 1:135-153. [PMID: 21243081 DOI: 10.2217/iim.09.22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular imaging techniques have led to significant advances in understanding the pathophysiology of schizophrenia and contributed to knowledge regarding potential mechanisms of action of the drugs used to treat this illness. The aim of this article is to provide a review of the major findings related to the application of molecular imaging techniques that have furthered schizophrenia research. This article focuses specifically on neuroreceptor imaging studies with PET and SPECT. After providing a brief overview of neuroreceptor imaging methodology, we consider relevant findings from studies of receptor availability, and dopamine synthesis and release. Results are discussed in the context of current hypotheses regarding neurochemical alterations in the illness. We then selectively review pharmacological occupancy studies and the role of neuroreceptor imaging in drug development for schizophrenia.
Collapse
Affiliation(s)
- Judy L Thompson
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, 1051 Riverside Drive, Unit 31, New York, NY 10032, USA
| | | | | |
Collapse
|
47
|
Vilkman H, Kajander J, Aalto S, Vahlberg T, Någren K, Allonen T, Syvälahti E, Hietala J. The effects of lorazepam on extrastriatal dopamine D(2/3)-receptors-A double-blind randomized placebo-controlled PET study. Psychiatry Res 2009; 174:130-7. [PMID: 19846281 DOI: 10.1016/j.pscychresns.2009.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 04/19/2009] [Accepted: 04/19/2009] [Indexed: 11/28/2022]
Abstract
Lorazepam is a widely used anxiolytic drug of the benzodiazepine class. The clinical actions of benzodiazepines are thought to be mediated via specific allosteric benzodiazepine binding sites and enhancement of GABAergic neurotransmission in the brain. However, the indirect effects of benzodiazepines on other neurotransmitter systems have not been extensively studied. Previous experimental evidence suggests that benzodiazepines inhibit striatal dopamine release by enhancing the GABAergic inhibitory effect on dopamine neurons whereas very little is known about cortical or thalamic gamma-amino-butyric (GABA)-dopamine interactions during benzodiazepine administration. We explored the effects of lorazepam (a single 2.5 mg dose) on cortical and thalamic D(2/3) receptor binding using Positron-Emission Tomography (PET) and the high-affinity D(2/3)-receptor ligand [(11)C]FLB 457 in 12 healthy male volunteers. We used a randomized, double-blind and placebo-controlled study design. Dopamine D(2)/D(3) receptor binding potential was measured with the reference tissue method in several extrastriatal D(2)-receptor areas including frontal, parietal, temporal cortices and thalamus. The main subjective effect of lorazepam was sedation. Lorazepam induced a statistically significant decrease of D(2)/D(3) receptor BP(ND) in medial temporal and dorsolateral prefrontal cortex (DLPFC) that was also confirmed by a voxel-level analysis. The sedative effect of lorazepam was associated with a decrease in D(2)/D(3) receptor BP(ND) in the DLPFC. In conclusion, lorazepam decreased [(11)C]FLB 457 binding in frontal and temporal cortex, suggesting that cortical GABA-dopamine interaction may be involved in the central actions of lorazepam in healthy volunteers. The correlation between lorazepam-induced sedation and D(2)/D(3) receptor binding potential (BP) change further supports this hypothesis.
Collapse
Affiliation(s)
- Harry Vilkman
- Turku PET Centre, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cho SS, Strafella AP. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One 2009; 4:e6725. [PMID: 19696930 PMCID: PMC2725302 DOI: 10.1371/journal.pone.0006725] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/21/2009] [Indexed: 11/27/2022] Open
Abstract
Background Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Sang Soo Cho
- Toronto Western Research Institute and Hospital, UHN, University of Toronto, Toronto, Canada
- PET Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Antonio P. Strafella
- Toronto Western Research Institute and Hospital, UHN, University of Toronto, Toronto, Canada
- PET Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
49
|
van der Kam EL, De Vry J, Tzschentke TM. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) supports intravenous self-administration and induces conditioned place preference in the rat. Eur J Pharmacol 2009; 607:114-20. [PMID: 19326478 DOI: 10.1016/j.ejphar.2009.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We recently reported that the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) reduces intravenous self-administration of ketamine and, to a lesser extent, heroin in rats. We also found that MPEP potentiates conditioned place preference induced by these drugs, suggesting that the reduction of self-administration results from an MPEP-induced potentiation of the rewarding effect of the self-administered drug. The aim of the present study was to examine whether MPEP has intrinsic positive reinforcing and rewarding effects. In experiment 1, rats were trained to self-administer either ketamine [0.5 mg/kg/infusion, 2 h sessions, fixed-ratio (FR) 3] or heroin (0.05 mg/kg/infusion, 1 h sessions, FR 10), followed by a number of substitution sessions with MPEP (1 mg/kg/infusion) or saline. In experiment 2, drug-naïve rats were allowed to acquire intravenous self-administration of MPEP (1 mg/kg/infusion, 2 h sessions, FR 3) or saline. In experiment 3, rats were subjected to a single-trial unbiased conditioned place preference protocol with MPEP (0.3-10 mg/kg i.v., 20 min conditioning). It was found that (1) substitution with MPEP in rats which had learned to self-administer ketamine or heroin resulted in stable self-administration behavior, whereas substitution with saline resulted in a typical extinction profile, (2) drug-naïve rats learned to self-administer MPEP, but not saline, and self-administration remained stable for at least 7 sessions, and (3) MPEP induced dose-dependent place preference with a minimal effective dose of 3 mg/kg. These data clearly demonstrate that MPEP has (weak) positive reinforcing and rewarding effects when administered i.v.
Collapse
Affiliation(s)
- Elizabeth L van der Kam
- Solvay Pharmaceuticals, Clinical Candidate Selection, CJ van Houtenlaan 36, Building WWA-D003, 1381 CP Weesp, The Netherlands.
| | | | | |
Collapse
|
50
|
Tost H, Alam T, Meyer-Lindenberg A. Dopamine and psychosis: theory, pathomechanisms and intermediate phenotypes. Neurosci Biobehav Rev 2009; 34:689-700. [PMID: 19559045 DOI: 10.1016/j.neubiorev.2009.06.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 04/03/2009] [Accepted: 06/16/2009] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a chronic, severe, and disabling brain disorder arising from the adverse interaction of predisposing risk genes and environmental factors. The psychopathology is characterized by a wide array of disturbing cognitive, emotional, and behavioral symptoms that interfere with the individual's capacity to function in society. Contemporary pathophysiological models assume that psychotic symptoms are triggered by a dysregulation of dopaminergic activity in the brain, a theory that is tightly linked to the serendipitous discovery of the first effective antipsychotic agents in the early 1950s. In recent years, the availability of modern neuroimaging techniques has significantly expanded our understanding of the key mediator circuits that bridge the gap between genetic susceptibility and clinical phenotype. This paper discusses the pathophysiological concepts, molecular mechanisms and neuroimaging evidence that link psychosis to disturbances in dopamine neurotransmission.
Collapse
Affiliation(s)
- Heike Tost
- Unit for Systems Neuroscience in Psychiatry, National Institute of Mental Health, NIH, DHHS, 9000 Rockville Pike, Bethesda, MD 20892-1365, USA
| | | | | |
Collapse
|