1
|
Davis MP. Novel drug treatments for pain in advanced cancer and serious illness: a focus on neuropathic pain and chemotherapy-induced peripheral neuropathy. Palliat Care Soc Pract 2024; 18:26323524241266603. [PMID: 39086469 PMCID: PMC11289827 DOI: 10.1177/26323524241266603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Drugs that are commercially available but have novel mechanisms of action should be explored as analgesics. This review will discuss haloperidol, miragabalin, palmitoylethanolamide (PEA), and clonidine as adjuvant analgesics or analgesics. Haloperidol is a sigma-1 receptor antagonist. Under stress and neuropathic injury, sigma-1 receptors act as a chaperone protein, which downmodulates opioid receptor activities and opens several ion channels. Clinically, there is only low-grade evidence that haloperidol improves pain when combined with morphine, methadone, or tramadol in patients who have cancer, pain from fibrosis, radiation necrosis, or neuropathic pain. Miragabalin is a gabapentinoid approved for the treatment of neuropathic pain in Japan since 2019. In randomized trials, patients with diabetic neuropathy have responded to miragabalin. Its long binding half-life on the calcium channel subunit may provide an advantage over other gabapentinoids. PEA belongs to a group of endogenous bioactive lipids called ALIAmides (autocoid local injury antagonist amides), which have a sense role in modulating numerous biological processes in particular non-neuronal neuroinflammatory responses to neuropathic injury and systemic inflammation. Multiple randomized trials and meta-analyses have demonstrated PEA's effectiveness in reducing pain severity arising from diverse pain phenotypes. Clonidine is an alpha2 adrenoceptor agonist and an imidazoline2 receptor agonist, which is U.S. Federal Drug Administration approved for attention deficit hyperactivity disorder in children, Tourette's syndrome, adjunctive therapy for cancer-related pain, and hypertension. Clonidine activation at alpha2 adrenoceptors causes downstream activation of inhibitory G-proteins (Gi/Go), which inhibits cyclic Adenosine monophosphate (AMP) production and hyperpolarizes neuron membranes, thus reducing allodynia. Intravenous clonidine has been used in terminally ill patients with poorly controlled symptoms, in particular pain and agitation.
Collapse
Affiliation(s)
- Mellar P. Davis
- Geisinger Commonwealth School of Medicine, 100 North Academy Avenue, Danville, PA 17822, USA
| |
Collapse
|
2
|
Wegert A, Monnee M, de Graaf W, van Holst F, Bolcato G, Díaz JL, Dordal A, Portillo-Salido E, Reinoso RF, Yeste S, Torrens A, Almansa C. Towards Multitargeted Ligands as Pain Therapeutics: Dual Ligands of the Ca vα2δ-1 Subunit of Voltage-Gated Calcium Channel and the μ-Opioid Receptor. ChemMedChem 2024; 19:e202300473. [PMID: 38230842 DOI: 10.1002/cmdc.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Indexed: 01/18/2024]
Abstract
The synthesis and pharmacological activity of a new series of dual ligands combining activities towards the α2δ-1 subunit of voltage-gated calcium channels (Cavα2δ-1) and the μ-opioid receptor (MOR) as novel pain therapeutics are reported. A careful exploration of the pharmacophores related to both targets, which in principle had few common characteristics, led to the design of novel compounds exhibiting both activities. The construction of the dual ligands started from published Cavα2δ-1 ligands, onto which MOR ligand pharmacophoric elements were added. This exercise led to new amino-acidic substances with good affinities on both targets as well as good metabolic and physicochemical profiles and low potential for drug-drug interactions. A representative compound, (2S,4S)-4-(4-chloro-3-(((cis)-4-(dimethylamino)-4-phenylcyclohexyl)methyl)-5-fluorophenoxy)pyrrolidine-2-carboxylic acid, displayed promising analgesic activities in several in vivo pain models as well as a reduced side-effect profile in relation to morphine.
Collapse
Affiliation(s)
- Anita Wegert
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Menno Monnee
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Wouter de Graaf
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | - Frank van Holst
- Symeres, Kerkenbos 1013, 6546 BB, Nijmegen, The, Netherlands
| | | | - José Luis Díaz
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Albert Dordal
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | | | - Raquel F Reinoso
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Sandra Yeste
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Antoni Torrens
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Carmen Almansa
- WELAB, Parc Científic Barcelona, C/Baldiri Reixac 4-8, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Goswami N, Aleem M, Manda K. Intranasal (2R, 6R)-hydroxynorketamine for acute pain: Behavioural and neurophysiological safety analysis in mice. Clin Exp Pharmacol Physiol 2023; 50:169-177. [PMID: 36371631 DOI: 10.1111/1440-1681.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Ketamine is known for its antinociceptive effect and is also used for treatment-resistant depression. However, the efficacy and safety of (2R, 6R)-hydroxynorketamine (HNK), a ketamine metabolite has been sparingly investigated for acute pain management. The current study aims at investigating the antinociceptive effect of intranasal (2R, 6R)-HNK using pre-clinical models of acute pain. Additionally, the behavioural and neurophysiological safety analyses were carried out for the effective time window. Antinociceptive efficacy of (2R, 6R)-HNK was evaluated using the hot plate test and Hargreaves' plantar test. The formalin test was carried out in both the acute and tonic phases. The neurophysiological and behavioural safety analyses were carried out separately for the haemodynamic function, cortical electroencephalography (EEG), and spontaneous behavioural functions. Analgesic effect of (2R, 6R)-HNK was evident by a significant increase in paw-withdrawal latency in both Hargreaves' and hot plate tests. Additionally, the (2R, 6R)-HNK showed a significant ameliorative effect on pain-related behaviour in the second phase of the formalin test. (2R, 6R)-HNK exhibited an anxiolytic effect without causing any significant changes in locomotor activity and haemodynamic parameters. Power spectral density (PSD) analysis of electroencephalogram revealed no significant changes except a comparative increase in the gamma band range. Both the locomotor functions in the open field test and the PSD value of delta wave indicated no sedative effect at the given dose of (2R, 6R)-HNK. The results demonstrated the pain-alleviating effect of (2R, 6R)-HNK without compromising the neurophysiological and behavioural function. Therefore, intranasal (2R, 6R)-HNK is suggested as a safe candidate for further clinical study in the management of acute pain.
Collapse
Affiliation(s)
- Nidhi Goswami
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Mohd Aleem
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| | - Kailash Manda
- Division of Behavioral Neuroscience, Institute of Nuclear Medicine & Allied Sciences, Delhi, India
| |
Collapse
|
4
|
Lipiński PFJ, Matalińska J. Fentanyl Structure as a Scaffold for Opioid/Non-Opioid Multitarget Analgesics. Int J Mol Sci 2022; 23:ijms23052766. [PMID: 35269909 PMCID: PMC8910985 DOI: 10.3390/ijms23052766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the strategies in the search for safe and effective analgesic drugs is the design of multitarget analgesics. Such compounds are intended to have high affinity and activity at more than one molecular target involved in pain modulation. In the present contribution we summarize the attempts in which fentanyl or its substructures were used as a μ-opioid receptor pharmacophoric fragment and a scaffold to which fragments related to non-opioid receptors were attached. The non-opioid ‘second’ targets included proteins as diverse as imidazoline I2 binding sites, CB1 cannabinoid receptor, NK1 tachykinin receptor, D2 dopamine receptor, cyclooxygenases, fatty acid amide hydrolase and monoacylglycerol lipase and σ1 receptor. Reviewing the individual attempts, we outline the chemistry, the obtained pharmacological properties and structure-activity relationships. Finally, we discuss the possible directions for future work.
Collapse
|
5
|
Dichiara M, Artacho-Cordón A, Turnaturi R, Santos-Caballero M, González-Cano R, Pasquinucci L, Barbaraci C, Rodríguez-Gómez I, Gómez-Guzmán M, Marrazzo A, Cobos EJ, Amata E. Dual Sigma-1 receptor antagonists and hydrogen sulfide-releasing compounds for pain treatment: Design, synthesis, and pharmacological evaluation. Eur J Med Chem 2022; 230:114091. [PMID: 35016113 DOI: 10.1016/j.ejmech.2021.114091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/04/2022]
Abstract
The development of σ1 receptor antagonists hybridized with a H2S-donor is here reported. We aimed to obtain improved analgesic effects when compared to σ1 receptor antagonists or H2S-donors alone. In an in vivo model of sensory hypersensitivity, thioamide 1a induced analgesia which was synergistically enhanced when associated with the σ1 receptor antagonist BD-1063. The selective σ1 receptor agonist PRE-084 completely reversed this effect. Four thioamide H2S-σ1 receptor hybrids (5a-8a) and their amide derivatives (5b-8b) were synthesized. Compound 7a (AD164) robustly released H2S and showed selectivity for σ1 receptor over σ2 and opioid receptors. This compound induced marked analgesia that was reversed by PRE-084. The amide analogue 7b (AD163) showed only minimal analgesia. Further studies showed that 7a exhibited negligible acute toxicity, together with a favorable pharmacokinetic profile. To the best of our knowledge, compound 7a is the first dual-acting ligand with simultaneous H2S-release and σ1 antagonistic activities.
Collapse
Affiliation(s)
- Maria Dichiara
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Miriam Santos-Caballero
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Carla Barbaraci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Isabel Rodríguez-Gómez
- Department of Physiology, Faculty of Medicine, University of Granada, 18016, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, Faculty of Pharmacy and Biomedical Research Center, University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), University of Granada and Biosanitary Research Institute Ibs.Granada, 18016, Granada, Spain.
| | - Emanuele Amata
- Department of Drug and Health Sciences, Medicinal Chemistry Section, Università Degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
6
|
Hornung RS, Raut NGR, Cantu DJ, Lockhart LM, Averitt DL. Sigma-1 receptors and progesterone metabolizing enzymes in nociceptive sensory neurons of the female rat trigeminal ganglia: A neural substrate for the antinociceptive actions of progesterone. Mol Pain 2022; 18:17448069211069255. [PMID: 35040378 PMCID: PMC8777333 DOI: 10.1177/17448069211069255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Orofacial pain disorders are predominately experienced by women. Progesterone, a major ovarian hormone, is neuroprotective and antinociceptive. We recently reported that progesterone attenuates estrogen-exacerbated orofacial pain behaviors, yet it remains unclear what anatomical substrate underlies progesterone's activity in the trigeminal system. Progesterone has been reported to exert protective effects through actions at intracellular progesterone receptors (iPR), membrane-progesterone receptors (mPR), or sigma 1 receptors (Sig-1R). Of these, the iPR and Sig-1R have been reported to have a role in pain. Progesterone can also have antinociceptive effects through its metabolite, allopregnanolone. Two enzymes, 5α-reductase and 3α-hydroxysteroid dehydrogenase (3α-HSD), are required for the metabolism of progesterone to allopregnanolone. Both progesterone and allopregnanolone rapidly attenuate pain sensitivity, implicating action of either progesterone at Sig-1R and/or conversion to allopregnanolone which targets GABAA receptors. In the present study, we investigated whether Sig-1 Rs are expressed in nociceptors within the trigeminal ganglia of cycling female rats and whether the two enzymes required for progesterone metabolism to allopregnanolone, 5α-reductase and 3α-hydroxysteroid dehydrogenase, are also present. Adult female rats from each stage of the estrous cycle were rapidly decapitated and the trigeminal ganglia collected. Trigeminal ganglia were processed by either fluorescent immunochemistry or western blotting to for visualization and quantification of Sig-1R, 5α-reductase, and 3α-hydroxysteroid dehydrogenase. Here we report that Sig-1Rs and both enzymes involved in progesterone metabolism are highly expressed in a variety of nociceptive sensory neuron populations in the female rat trigeminal ganglia at similar levels across the four stages of the estrous cycle. These data indicate that trigeminal sensory neurons are an anatomical substrate for the reported antinociceptive activity of progesterone via Sig-1R and/or conversion to allopregnanolone.
Collapse
Affiliation(s)
| | | | - Daisy J Cantu
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Lauren M Lockhart
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman’s
University, Denton, TX, USA
| |
Collapse
|
7
|
Xiong J, Zhuang T, Ma Y, Xu J, Ye J, Ma R, Zhang S, Liu X, Liu BF, Hao C, Zhang G, Chen Y. Optimization of bifunctional piperidinamide derivatives as σ 1R Antagonists/MOR agonists for treating neuropathic pain. Eur J Med Chem 2021; 226:113879. [PMID: 34628236 DOI: 10.1016/j.ejmech.2021.113879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/11/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Here, we describe the optimization, synthesis, and associated pharmacological analgesic activities of a new series of bifunctional piperidinamide derivatives as sigma-1 receptor (σ1R) antagonists and mu opioid receptor (MOR) agonists. The new compounds were evaluated in vitro in σ1R and MOR binding assays. The most promising compound 114 (also called HKC-126), showed superior affinities for σ1R and MOR and good selectivity to additional receptors related to pain. Compound 114 showed powerful dose-dependent analgesic effects in the acetic acid writhing test, formalin test, hot plate test, and chronic constriction injury (CCI) neuropathic pain model. In contrast to an equianalgesic dose of fentanyl, compound 114 produced fewer opioid-like side effects, such as reward liability, respiratory depression, physical dependence, and sedation. Lastly, the pharmacokinetic properties of this drug were also acceptable, and these results suggest that compound 114, as a mixed σ1R/MOR ligand, has potential for treating neuropathic pain.
Collapse
MESH Headings
- Acetic Acid
- Amides/chemical synthesis
- Amides/chemistry
- Amides/pharmacology
- Animals
- Behavior, Animal/drug effects
- Dose-Response Relationship, Drug
- Formaldehyde
- Guinea Pigs
- Mice
- Mice, Inbred ICR
- Molecular Dynamics Simulation
- Molecular Structure
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Pain Measurement
- Piperidines/chemical synthesis
- Piperidines/chemistry
- Piperidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Structure-Activity Relationship
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Jiaying Xiong
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Zhuang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yurong Ma
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Junyi Xu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiaqi Ye
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ru Ma
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shuang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Hao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yin Chen
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Alon A, Lyu J, Braz JM, Tummino TA, Craik V, O'Meara MJ, Webb CM, Radchenko DS, Moroz YS, Huang XP, Liu Y, Roth BL, Irwin JJ, Basbaum AI, Shoichet BK, Kruse AC. Structures of the σ 2 receptor enable docking for bioactive ligand discovery. Nature 2021; 600:759-764. [PMID: 34880501 PMCID: PMC8867396 DOI: 10.1038/s41586-021-04175-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022]
Abstract
The σ2 receptor has attracted intense interest in cancer imaging1, psychiatric disease2, neuropathic pain3-5 and other areas of biology6,7. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone2 and the tool compound PB288. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 μM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ1 receptor. Crystal structures of two ligands bound to the σ2 receptor confirmed the docked poses. To investigate the contribution of the σ2 receptor in pain, two potent σ2-selective ligands and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model9, suggesting that the σ2 receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.
Collapse
Affiliation(s)
- Assaf Alon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiankun Lyu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
| | - Veronica Craik
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chase M Webb
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, CA, USA
| | - Dmytro S Radchenko
- Enamine, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Romeo G, Bonanno F, Wilson LL, Arena E, Modica MN, Pittalà V, Salerno L, Prezzavento O, McLaughlin JP, Intagliata S. Development of New Benzylpiperazine Derivatives as σ 1 Receptor Ligands with in Vivo Antinociceptive and Anti-Allodynic Effects. ACS Chem Neurosci 2021; 12:2003-2012. [PMID: 34019387 PMCID: PMC8291485 DOI: 10.1021/acschemneuro.1c00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
σ-1 receptors (σ1R) modulate nociceptive signaling, driving the search for selective antagonists to take advantage of this promising target to treat pain. In this study, a new series of benzylpiperazinyl derivatives has been designed, synthesized, and characterized for their affinities toward σ1R and selectivity over the σ-2 receptor (σ2R). Notably, 3-cyclohexyl-1-{4-[(4-methoxyphenyl)methyl]piperazin-1-yl}propan-1-one (15) showed the highest σ1R receptor affinity (Ki σ1 = 1.6 nM) among the series with a significant improvement of the σ1R selectivity (Ki σ2/Ki σ1= 886) compared to the lead compound 8 (Ki σ2/Ki σ1= 432). Compound 15 was further tested in a mouse formalin assay of inflammatory pain and chronic nerve constriction injury (CCI) of neuropathic pain, where it produced dose-dependent (3-60 mg/kg, i.p.) antinociception and anti-allodynic effects. Moreover, compound 15 demonstrated no significant effects in a rotarod assay, suggesting that this σ1R antagonist did not produce sedation or impair locomotor responses. Overall, these results encourage the further development of our benzylpiperazine-based σ1R antagonists as potential therapeutics for chronic pain.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Federica Bonanno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Lisa L. Wilson
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Emanuela Arena
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Maria N. Modica
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences, University
of Catania, viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
10
|
Shahsavari D, Reznick-Lipina K, Malik Z, Weiner M, Jehangir A, Repanshek ZD, Parkman HP. Haloperidol Use in the Emergency Department for Gastrointestinal Symptoms: Nausea, Vomiting, and Abdominal Pain. Clin Transl Gastroenterol 2021; 12:e00362. [PMID: 34060494 PMCID: PMC8162512 DOI: 10.14309/ctg.0000000000000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Haloperidol (HL) has successfully been used for nausea and abdominal pain in emergency departments (EDs). This study examines outcomes and predictive factors for clinical improvement of patients presenting to an ED with gastrointestinal (GI) symptoms (nausea, vomiting, and abdominal pain) who received HL. METHODS Review of patients' records who presented to our ED between August 2016 and March 2019 with GI symptoms and received HL. International Classification of Diseases, Tenth Revision codes were used to identify patients. RESULTS In all, 281 patients (410 encounters) presented to the ED with GI symptoms and received HL for their symptoms: 66% were women, 32% had diabetes, 68% used marijuana, and 27% used chronic opioids. Patients received HL 1.1 ± 0.3 times with dose 2.5 ± 3.0 mg, mostly intravenously (84.6%). Total ED length of stay was 7.5 ± 3.9 hours (3.2 ± 2.1 hours before HL and 4.4 ± 3.4 hours after). Approximately 4.4% of patients developed side effects to HL, including 2 patients with dystonia which improved with medication before discharge. Most patients (56.6%) were discharged home while 43.2% were admitted to hospital mostly because of refractory nausea or vomiting (70.1%). Receiving HL as the only medication in the ED led to lower hospital admission (odds ratio = 0.25, P < 0.05). Diabetes, cannabinoid use, anxiety, male sex, and longer ED stay were associated with increased hospital admissions. DISCUSSION Most patients treated in our ED with HL for GI symptoms, particularly nausea, vomiting, and/or abdominal pain, were successfully treated and discharged home. HL use seemed relatively safe and, when used as the only medication, led to less frequent hospital admissions.
Collapse
Affiliation(s)
- Dariush Shahsavari
- Department of Gastroenterology, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Zubair Malik
- Department of Gastroenterology, Temple University, Philadelphia, Pennsylvania, USA
| | - Mark Weiner
- Weill Cornell Medical College, New York, New York, USA
| | - Asad Jehangir
- Department of Gastroenterology, Augusta University, Augusta, Georgia, USA
| | - Zachary D. Repanshek
- Department of Emergency Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Henry P. Parkman
- Department of Gastroenterology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Xiong J, Jin J, Gao L, Hao C, Liu X, Liu BF, Chen Y, Zhang G. Piperidine propionamide as a scaffold for potent sigma-1 receptor antagonists and mu opioid receptor agonists for treating neuropathic pain. Eur J Med Chem 2020; 191:112144. [PMID: 32087465 DOI: 10.1016/j.ejmech.2020.112144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/24/2022]
Abstract
We designed and synthesized a novel series of piperidine propionamide derivatives as potent sigma-1 (σ1) receptor antagonists and mu (μ) opioid receptor agonists, and measured their affinity for σ1 and μ receptors in vitro through binding assays. The basic scaffold of the new compounds contained a 4-substituted piperidine ring and N-aryl propionamide. Compound 44, N-(2-(4-(4-fluorobenzyl) piperidin-1-yl) ethyl)-N-(4-methoxy-phenyl) propionamide, showed the highest affinity for σ1 receptor (Ki σ1 = 1.86 nM) and μ receptor (Ki μ = 2.1 nM). It exhibited potent analgesic activity in the formalin test (ED50 = 15.1 ± 1.67 mg/kg) and had equivalent analgesic effects to S1RA (σ1 antagonist) in a CCI model. Therefore, Compound 44, which has mixed σ1/μ receptor profiles, may be a potential candidate for treating neuropathic pain.
Collapse
Affiliation(s)
- Jiaying Xiong
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lanchang Gao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Hao
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China; Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
12
|
Li Q, Zhang B, Cao H, Liu W, Guo F, Shen F, Ye B, Liu H, Li Y, Liu Z. Oxytocin Exerts Antidepressant-like effect by potentiating dopaminergic synaptic transmission in the mPFC. Neuropharmacology 2019; 162:107836. [PMID: 31682854 DOI: 10.1016/j.neuropharm.2019.107836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022]
Abstract
Oxytocin (OT) and dopamine (DA) are two important elements that are closely related to mental and reward processes in the brain. OT controlled DA functional regulation contributes to various behaviours such as social reward, social cognition and emotion-related behaviours. Previous studies indicated that diminished dopaminergic transmission in the medial prefrontal cortex (mPFC) is correlated with the pathophysiology of depression. However, the interaction of OT and DA and their roles in antidepressant effects still require further exploration. Here, we investigated the antidepressant effect of OT through local mPFC administration, and further explored the underlying mechanisms that indicated that OT could strengthen dopaminergic synaptic transmission with OT receptor (OTR) activation dependent in the mPFC. Our results showed that local administration of OT in the mPFC exerts antidepressant (-like) effects in both naïve and social defeat stress (SDS) depressive animal model. Mechanism study suggested that OT enhances DA level with OTR activation dependent, and elevated mPFC DA levels might further enhance excitatory synaptic transmission by activating the D1/PKA/DARPP32 intracellular signalling pathway in the mPFC. Hence, our study revealed that the activation of OTR strengthens excitatory synaptic transmission via the potentiation of dopaminergic synaptic transmission, especially via D1R activation dependent, in the mPFC, which may be the underlying mechanism of antidepressant (-like) effects mediated by OT. With specifically activation of the D1/PKA/DAPRR32 signalling pathway, our results may augment the important role of OT in reward circuits in the central nervous system.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Bing Zhang
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Hang Cao
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Wei Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Fei Guo
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fuyi Shen
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Binglu Ye
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Huan Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China; Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, 200082, China.
| |
Collapse
|
13
|
Dopamine D1 and D3 receptor modulators restore morphine analgesia and prevent opioid preference in a model of neuropathic pain. Neuroscience 2019; 406:376-388. [DOI: 10.1016/j.neuroscience.2019.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/14/2019] [Indexed: 12/25/2022]
|
14
|
Lax NC, Chen R, Leep SR, Uhrich K, Yu L, Kolber B. PolyMorphine provides extended analgesic-like effects in mice with spared nerve injury. Mol Pain 2018; 13:1744806917743479. [PMID: 29108465 PMCID: PMC5692132 DOI: 10.1177/1744806917743479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Morphine is a well-characterized and effective analgesic commonly used to provide pain
relief to patients suffering from both acute and chronic pain conditions. Despite its
widespread use and effectiveness, one of the major drawbacks of morphine is its relatively
short half-life of approximately 4 h. This short half-life often necessitates multiple
administrations of the drug each day, which may contribute to both dependence and
tolerance to morphine. Here, we tested the analgesic properties of a new polymer form of
morphine known as PolyMorphine. This polymer has monomeric units of morphine incorporated
into a poly(anhydride-ester) backbone that has been shown to hydrolyze into free morphine
in vitro. Using an animal model of chronic pain, the spared nerve injury surgery, we
showed that PolyMorphine is able to block spared nerve injury-induced hypersensitivity in
mice for up to 24-h post-administration. Free morphine was shown to only block spared
nerve injury-induced hypersensitivity for up to 2-h post-injection. PolyMorphine was also
shown to act through the mu opioid receptor due to the ability of naloxone (a mu opioid
receptor antagonist) to block PolyMorphine-induced analgesia in spared nerve injury
animals pretreated with PolyMorphine. Additionally, we observed that PolyMorphine causes
similar locomotor and constipation side effects as free morphine. Finally, we investigated
if PolyMorphine had any effects in a non-evoked pain assay, conditioned place preference.
Pretreatment of spared nerve injury mice with PolyMorphine blocked the development of
conditioned place preference for 2-methyl-6-(phenylethynyl)pyridine (MPEP), a
short-lasting mGluR5 antagonist with analgesic-like properties. Free morphine does not
block the development of preference for MPEP, suggesting that PolyMorphine has longer
lasting analgesic effects compared to free morphine. Together, these data show that
PolyMorphine has the potential to provide analgesia for significantly longer than free
morphine while likely working through the same receptor.
Collapse
Affiliation(s)
- Neil C Lax
- Department of Biological Sciences andChronic Pain Research Consortium, Duquesne University, Pittsburgh, PA
| | - Renxun Chen
- Department of Chemistry and Chemical Biology
| | - Sarah R Leep
- Department of Biological Sciences andChronic Pain Research Consortium, Duquesne University, Pittsburgh, PA
| | | | - Lei Yu
- Department of Genetics and Center of Alcohol Studies, Rutgers University, Piscataway, NJ
| | | |
Collapse
|
15
|
Arena E, Dichiara M, Floresta G, Parenti C, Marrazzo A, Pittalà V, Amata E, Prezzavento O. Novel Sigma-1 receptor antagonists: from opioids to small molecules: what is new? Future Med Chem 2018; 10:231-256. [PMID: 29185346 DOI: 10.4155/fmc-2017-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Sigma-1 (σ1) receptor has been identified as a chaperone protein that interacts with other proteins, such as N-methyl-D-aspartate (NMDA) and opioid receptors, modulating their activity. σ1 receptor antagonists have been developed to obtain useful compounds for the treatment of psychoses, pain, drug abuse and cancer. Some interesting compounds such as E-5842 (5) and MS-377 (24), haloperidol and piperazine derivatives, respectively, were endowed with high affinity for σ1 receptors (Ki σ1 = 4 and 73 nM; Ki σ2 = 220 and 6900, respectively). They were developed for the treatment of psychotic disorders and 5 also underwent Phase II clinical trials suggesting interesting potential therapeutic applications. Here, σ1 receptor antagonists have been grouped based on chemical structure and reviewed according to structure-activity relationship and potential therapeutic role.
Collapse
Affiliation(s)
- Emanuela Arena
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
16
|
Central and peripheral anti-hyperalgesic effects of diosmin in a neuropathic pain model in rats. Biomed Pharmacother 2018; 97:310-320. [DOI: 10.1016/j.biopha.2017.10.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/21/2023] Open
|
17
|
Espinosa-Juárez JV, Jaramillo-Morales OA, López-Muñoz FJ. Haloperidol Decreases Hyperalgesia and Allodynia Induced by Chronic Constriction Injury. Basic Clin Pharmacol Toxicol 2017; 121:471-479. [PMID: 28654186 DOI: 10.1111/bcpt.12839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/21/2017] [Indexed: 01/12/2023]
Abstract
Neuropathic pain has proven to be a difficult condition to treat, so investigational therapy has been sought that may prove useful, such as the use of sigma-1 antagonists. Haloperidol (HAL) is a compound that shows a high affinity with these receptors, acting as an antagonist. Therefore, the objective of this study was to demonstrate its effect in an experimental model of neuropathic pain and corroborate its antagonistic action of the sigma-1 receptors under these conditions. BD-1063 was used as a sigma-1 antagonist control, and gabapentin (Gbp) was used as a positive control. The antihyperalgesic and anti-allodynic effects of the drugs were determined after single-dose trials. In every case, the effects increased in a dose-dependent manner. HAL had the same efficacy as both BD-1063 and Gbp. In the analysis of pharmacological potency, in which the ED50 were compared, HAL was the most potent drug of all. The effect of HAL on chronic constriction injury (CCI) rats was reversed by the sigma-1 agonist (PRE-084). HAL reversed the hyperalgesic and allodynic effects of PRE-084 in naïve rats. The dopamine antagonist, (-)-sulpiride, showed no effect in CCl rats. These results suggest that HAL presents an antinociceptive effect via sigma-1 receptor antagonism at the spinal level in the CCl model.
Collapse
|
18
|
Roldan CJ, Chambers KA, Paniagua L, Patel S, Cardenas-Turanzas M, Chathampally Y. Randomized Controlled Double-blind Trial Comparing Haloperidol Combined With Conventional Therapy to Conventional Therapy Alone in Patients With Symptomatic Gastroparesis. Acad Emerg Med 2017. [PMID: 28646590 DOI: 10.1111/acem.13245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gastroparesis is a debilitating condition that causes nausea, vomiting, and abdominal pain. Management includes analgesics and antiemetics, but symptoms are often refractory. Haloperidol has been utilized in the palliative care setting for similar symptoms. The study objective was to determine whether haloperidol as an adjunct to conventional therapy would improve symptoms in gastroparesis patients presenting to the emergency department (ED). STUDY DESIGN AND METHODS This was a randomized, double-blind, placebo-controlled trial of adult ED patients with acute exacerbation of previously diagnosed gastroparesis. The treatment group received 5 mg of haloperidol plus conventional therapy (determined by the treating physician). The control group received a placebo plus conventional therapy. The severity of each subject's abdominal pain and nausea were assessed before intervention and every 15 minutes thereafter for 1 hour using a 10-point scale for pain and a 5-point scale for nausea. Primary outcomes were decreased pain and nausea 1 hour after treatment. RESULTS Of the 33 study patients, 15 were randomized to receive haloperidol. Before treatment, the mean intensity of pain was 8.5 in the haloperidol group and 8.28 in the placebo group; mean pretreatment nausea scores were 4.53 and 4.11, respectively. One hour after therapy, the mean pain and nausea scores in the haloperidol group were 3.13 and 1.83 compared to 7.17 and 3.39 in the placebo group. The reduction in mean pain intensity therapy was 5.37 in the haloperidol group (p ≤ 0.001) compared to 1.11 in the placebo group (p = 0.11). The reduction in mean nausea score was 2.70 in the haloperidol group (p ≤ 0.001) and 0.72 in the placebo group (p = 0.05). Therefore, the reductions in symptom scores were statistically significant in the haloperidol group but not in the placebo group. No adverse events were reported. CONCLUSIONS Haloperidol as an adjunctive therapy is superior to placebo for acute gastroparesis symptoms.
Collapse
Affiliation(s)
- Carlos J. Roldan
- Department of Pain Medicine; The University of Texas MD Anderson Cancer Center; Houston TX
- Department of Emergency Medicine; McGovern Medical School; The University of Texas Health Science Center at Houston; Houston TX
- Memorial Hermann-Texas Medical Center; Houston TX
- Lyndon B. Johnson General Hospital; Houston TX
| | - Kimberly A. Chambers
- Department of Emergency Medicine; McGovern Medical School; The University of Texas Health Science Center at Houston; Houston TX
- Memorial Hermann-Texas Medical Center; Houston TX
- Lyndon B. Johnson General Hospital; Houston TX
| | - Linda Paniagua
- Department of Emergency Medicine; Valley Baptist Medical Center; Brownsville TX
| | - Sonali Patel
- Department of Emergency Medicine Methodist Hospital; Houston TX
- Conroe Regional Medical Center; Conroe TX
| | - Marylou Cardenas-Turanzas
- Department of Emergency Medicine; McGovern Medical School; The University of Texas Health Science Center at Houston; Houston TX
| | - Yashwant Chathampally
- Department of Emergency Medicine; McGovern Medical School; The University of Texas Health Science Center at Houston; Houston TX
- Memorial Hermann-Texas Medical Center; Houston TX
- Lyndon B. Johnson General Hospital; Houston TX
| |
Collapse
|
19
|
Synthesis and evaluation of haloperidol metabolite II prodrugs as anticancer agents. Future Med Chem 2017; 9:1749-1764. [DOI: 10.4155/fmc-2017-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The use of haloperidol metabolite II (HP-metabolite II) prodrugs is an emerging strategy in the treatment of cancer. HP-metabolite II exhibits antiproliferative properties at micromolar concentrations inducing apoptosis in different types of cancer. Thus, the application of the prodrug approach appears as a useful method leading to much more desirable pharmacokinetic and pharmacodynamic properties. Some studies have shown that the esterification of the hydroxyl group of HP-metabolite II with 4-phenylbutiric acid (4-PBA) or valproic acid enhances the anticancer therapeutic potency. The current progresses in the design, synthesis and evaluation of anticancer activity of HP metabolite II prodrugs will be discussed in this review.
Collapse
|
20
|
Tejada MA, Montilla-García A, Cronin SJ, Cikes D, Sánchez-Fernández C, González-Cano R, Ruiz-Cantero MC, Penninger JM, Vela JM, Baeyens JM, Cobos EJ. Sigma-1 receptors control immune-driven peripheral opioid analgesia during inflammation in mice. Proc Natl Acad Sci U S A 2017; 114:8396-8401. [PMID: 28716934 PMCID: PMC5547590 DOI: 10.1073/pnas.1620068114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sigma-1 antagonism potentiates the antinociceptive effects of opioid drugs, so sigma-1 receptors constitute a biological brake to opioid drug-induced analgesia. The pathophysiological role of this process is unknown. We aimed to investigate whether sigma-1 antagonism reduces inflammatory pain through the disinhibition of the endogenous opioidergic system in mice. The selective sigma-1 antagonists BD-1063 and S1RA abolished mechanical and thermal hyperalgesia in mice with carrageenan-induced acute (3 h) inflammation. Sigma-1-mediated antihyperalgesia was reversed by the opioid antagonists naloxone and naloxone methiodide (a peripherally restricted naloxone analog) and by local administration at the inflamed site of monoclonal antibody 3-E7, which recognizes the pan-opioid sequence Tyr-Gly-Gly-Phe at the N terminus of most endogenous opioid peptides (EOPs). Neutrophils expressed pro-opiomelanocortin, the precursor of β-endorphin (a known EOP), and constituted the majority of the acute immune infiltrate. β-endorphin levels increased in the inflamed paw, and this increase and the antihyperalgesic effects of sigma-1 antagonism were abolished by reducing the neutrophil load with in vivo administration of an anti-Ly6G antibody. The opioid-dependent sigma-1 antihyperalgesic effects were preserved 5 d after carrageenan administration, where macrophages/monocytes were found to express pro-opiomelanocortin and to now constitute the majority of the immune infiltrate. These results suggest that immune cells harboring EOPs are needed for the antihyperalgesic effects of sigma-1 antagonism during inflammation. In conclusion, sigma-1 receptors curtail immune-driven peripheral opioid analgesia, and sigma-1 antagonism produces local opioid analgesia by enhancing the action of EOPs of immune origin, maximizing the analgesic potential of immune cells that naturally accumulate in painful inflamed areas.
Collapse
Affiliation(s)
- Miguel A Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
| | - Angeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
| | - Shane J Cronin
- Institute of Molecular Biotechnology, 1030 Vienna, Austria
| | - Domagoj Cikes
- Institute of Molecular Biotechnology, 1030 Vienna, Austria
| | - Cristina Sánchez-Fernández
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
| | | | - José M Vela
- Drug Discovery and Preclinical Development, Esteve, 08041 Barcelona, Spain
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Institute of Neuroscience, Biomedical Research Center, University of Granada, 18100 Armilla, Granada, Spain
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain
- Teófilo Hernando Institute for Drug Discovery, 28029 Madrid, Spain
| |
Collapse
|
21
|
González-Cano R, Tejada MÁ, Artacho-Cordón A, Nieto FR, Entrena JM, Wood JN, Cendán CM. Effects of Tetrodotoxin in Mouse Models of Visceral Pain. Mar Drugs 2017; 15:E188. [PMID: 28635651 PMCID: PMC5484138 DOI: 10.3390/md15060188] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/07/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor‑specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - Miguel Ángel Tejada
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - Antonia Artacho-Cordón
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - Francisco Rafael Nieto
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| | - José Manuel Entrena
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Armilla, 18100 Granada, Spain.
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.
| | - Cruz Miguel Cendán
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, Faculty of Medicine, University of Granada, 18016 Granada, Spain.
- Biosanitary Research Institute, University Hospital Complex of Granada, 18012 Granada, Spain.
| |
Collapse
|
22
|
Merlos M, Burgueño J, Portillo-Salido E, Plata-Salamán CR, Vela JM. Pharmacological Modulation of the Sigma 1 Receptor and the Treatment of Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:85-107. [PMID: 28315267 DOI: 10.1007/978-3-319-50174-1_8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy with respect to existing therapies and reduce their unwanted effects. Current preclinical evidence supports the modulatory role of sigma-1 receptors (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pains of different etiologies. σ1R is highly expressed in different pain areas of the CNS and the periphery (particularly dorsal root ganglia), and interacts and modulates the functionality of different receptors and ion channels . The antagonism of σ1R leads to decreased amplification of pain signaling within the spinal cord (central sensitization), but recent data also support a role at the periphery. σ1R antagonists have consistently demonstrated efficacy in neuropathic pain , but also in other types of pain including inflammatory, orofacial, visceral, and post-operative pain. Apart from acting alone, when combined with opioids, σ1R antagonists enhance opioid analgesia but not opioid-induced unwanted effects. Interestingly, unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitive effects in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. Accordingly, σ1R antagonists are not strictly analgesics; they are antiallodynic and antihyperalgesic drugs acting when the system is sensitized following prolonged noxious stimulation or persistent abnormal afferent input (e.g., secondary to nerve injury). These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain .
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Javier Burgueño
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Enrique Portillo-Salido
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - Carlos Ramón Plata-Salamán
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE. Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
23
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
24
|
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy respect to existing therapies and/or reduce their unwanted effects. Current preclinical evidence supports the modulatory role of the sigma-1 receptor (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pain of different etiology, very consistently in neuropathic pain, but also in nociceptive, inflammatory, and visceral pain. σ1R is highly expressed in different pain areas of the CNS and the periphery, particularly dorsal root ganglia (DRG), and interacts and modulates the functionality of different receptors and ion channels. Accordingly, antinociceptive effects of σ1R antagonists both acting alone and in combination with other analgesics have been reported at both central and peripheral sites. At the central level, behavioral, electrophysiological, neurochemical, and molecular findings support a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Moreover, the involvement of σ1R in mechanisms regulating pain at the periphery has been recently confirmed. Unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitivity effects (antihyperalgesic and antiallodynic) in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain.
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Luz Romero
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain.
- Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
25
|
Sánchez-Fernández C, Entrena JM, Baeyens JM, Cobos EJ. Sigma-1 Receptor Antagonists: A New Class of Neuromodulatory Analgesics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:109-132. [PMID: 28315268 DOI: 10.1007/978-3-319-50174-1_9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The sigma-1 receptor is a unique ligand-operated chaperone present in key areas for pain control, in both the peripheral and central nervous system. Sigma-1 receptors interact with a variety of protein targets to modify their function. These targets include several G-protein-coupled receptors such as the μ-opioid receptor, and ion channels such as the N-methyl-D-aspartate receptor (NMDAR). Sigma-1 antagonists modify the chaperoning activity of sigma-1 receptor by increasing opioid signaling and decreasing NMDAR responses, consequently enhancing opioid antinociception and decreasing the sensory hypersensitivity that characterizes pathological pain conditions. However, the participation in pain relief of other protein partners of sigma-1 receptors in addition to opioid receptors and NMDARs cannot be ruled out. The enhanced opioid antinociception by sigma-1 antagonism is not accompanied by an increase in opioid side effects , including tolerance, dependence or constipation, so the use of sigma-1 antagonists may increase the therapeutic index of opioids. Furthermore, sigma-1 antagonists (in the absence of opioids) have been shown to exert antinociceptive effects in preclinical models of neuropathic pain induced by nerve trauma or chemical injury (the antineoplastic paclitaxel), and more recently in inflammatory and ischemic pain. Although most studies attributed the analgesic properties of sigma-1 antagonists to their central actions, it is now known that peripheral sigma-1 receptors also participate in their effects. Overwhelming preclinical evidence of the role of sigma-1 receptors in pain has led to the development of the first selective sigma-1 antagonist with an intended indication for pain treatment, which is currently in Phase II clinical trials.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - José Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
- Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - José Manuel Baeyens
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain
| | - Enrique José Cobos
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, 18100, Armilla, Granada, Spain.
- Teófilo Hernando Institute for Drug Discovery, 28029, Madrid, Spain.
| |
Collapse
|
26
|
Sun H, Shi M, Zhang W, Zheng YM, Xu YZ, Shi JJ, Liu T, Gunosewoyo H, Pang T, Gao ZB, Yang F, Tang J, Yu LF. Development of Novel Alkoxyisoxazoles as Sigma-1 Receptor Antagonists with Antinociceptive Efficacy. J Med Chem 2016; 59:6329-43. [PMID: 27309376 DOI: 10.1021/acs.jmedchem.6b00571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A novel series of sigma (σ) receptor ligands based on an alkoxyisoxazole scaffold has been designed and synthesized. Preliminary receptor binding assays identified highly potent (Ki < 1 nM) and selective σ1 ligands devoid of binding interactions with the monoamine transporters DAT, NET, and SERT. In particular, compound 53 was shown to possess significant antinociceptive activity in the mouse formalin-induced inflammation pain model when administered intraperitoneally at 40 and 80 mg/kg. Initial pharmacokinetics evaluation indicated an excellent brain exposure following oral dosing in mice, suggesting that further investigation into the use of alkoxyisoxazoles as σ1 ligands for antinociception is warranted. This study supports the notion that selective σ1 antagonism could be a useful strategy in the development of novel antipain therapy.
Collapse
Affiliation(s)
- Hao Sun
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Min Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wei Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yue-Ming Zheng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Hai Ke Road, Shanghai 201203, China
| | - Ya-Zhou Xu
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China
| | - Jun-Jie Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ting Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Hendra Gunosewoyo
- School of Pharmacy, Faculty of Health Sciences, Curtin University , Bentley, Perth, Western Australia 6102, Australia
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, China
| | - Zhao-Bing Gao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 501 Hai Ke Road, Shanghai 201203, China
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| | - Li-Fang Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University , 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
27
|
Gris G, Portillo-Salido E, Aubel B, Darbaky Y, Deseure K, Vela JM, Merlos M, Zamanillo D. The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats. Sci Rep 2016; 6:24591. [PMID: 27087602 PMCID: PMC4834548 DOI: 10.1038/srep24591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/23/2016] [Indexed: 12/31/2022] Open
Abstract
E-52862 is a selective σ1R antagonist currently undergoing phase II clinical trials for neuropathic pain and represents a potential first-in-class analgesic. Here, we investigated the effect of single and repeated administration of E-52862 on different pain-related behaviours in several neuropathic pain models in rats: mechanical allodynia in cephalic (trigeminal) neuropathic pain following chronic constriction injury of the infraorbital nerve (IoN), mechanical hyperalgesia in streptozotocin (STZ)-induced diabetic polyneuropathy, and cold allodynia in oxaliplatin (OX)-induced polyneuropathy. Mechanical hypersensitivity induced after IoN surgery or STZ administration was reduced by acute treatment with E-52862 and morphine, but not by pregabalin. In the OX model, single administration of E-52862 reversed the hypersensitivity to cold stimuli similarly to 100 mg/kg of gabapentin. Interestingly, repeated E-52862 administration twice daily over 7 days did not induce pharmacodynamic tolerance but an increased antinociceptive effect in all three models. Additionally, as shown in the STZ and OX models, repeated daily treatment with E-52862 attenuated baseline pain behaviours, which supports a sustained modifying effect on underlying pain-generating mechanisms. These preclinical findings support a role for σ1R in neuropathic pain and extend the potential for the use of selective σ1R antagonists (e.g., E-52862) to the chronic treatment of cephalic and extra-cephalic neuropathic pain.
Collapse
Affiliation(s)
- Georgia Gris
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Enrique Portillo-Salido
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Bertrand Aubel
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - Kristof Deseure
- Laboratory of Anesthesiology, University of Antwerp, Antwerp, Belgium
| | - José Miguel Vela
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| |
Collapse
|
28
|
Lan Y, Songyang Y, Zhang L, Peng Y, Song J. Synthesis and biological evaluation of novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine and 5,6,7,8-tetrahydroquinazoline derivatives as sigma-1 (σ1) receptor antagonists for the treatment of pain. Bioorg Med Chem Lett 2016; 26:2051-6. [PMID: 26947609 DOI: 10.1016/j.bmcl.2016.02.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 11/28/2022]
Abstract
The synthesis and biological evaluation of new series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine and 5,6,7,8-tetrahydroquinazoline derivatives as selective sigma-1 receptor (σ1R) antagonists are reported. The receptor affinities of new compounds were evaluated in vitro in σ1 and σ2 receptor binding assays. The structure-active relationship study leads us to the most promising compound: 2-(4-chlorophenyl)-4-(3-(4-methylpiperidin-1-yl)propoxy)-5,6,7,8-tetra-hydroquinazoline (33). Compound 33 has exerted nanomolar affinity for σ1R (Kiσ1=15.6 nM) and high σ1/σ2 selectivity (Kiσ2 >2000 nM), and identified to be a σ1R antagonist. In animal model, compound 33 exhibited dose dependent anti-nociceptive effects in the formalin test. These results suggest that compound 33 could be a potent analgesic for pain treatment.
Collapse
Affiliation(s)
- Yu Lan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyan Songyang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingli Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yan Peng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinchun Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
29
|
Kwon SG, Roh DH, Yoon SY, Choi SR, Choi HS, Moon JY, Kang SY, Kim HW, Han HJ, Beitz AJ, Oh SB, Lee JH. Role of peripheral sigma-1 receptors in ischaemic pain: Potential interactions with ASIC and P2X receptors. Eur J Pain 2016; 20:594-606. [PMID: 26358747 DOI: 10.1002/ejp.774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. METHODS We used a rodent model of hindlimb thrombus-induced ischaemic pain (TIIP) to investigate their role. Western blot was performed to observe changes in Sig-1R expression in peripheral nervous tissues. MA was measured after intraplantar (i.pl.) injections of antagonists for the Sig-1, ASIC and P2X receptors in TIIP rats or agonists of each receptor in naïve rats. RESULTS Sig-1R expression significantly increased in skin, sciatic nerve and dorsal root ganglia at 3 days post-TIIP surgery. I.pl. injections of the Sig-1R antagonist, BD-1047 on post-operative days 0-3 significantly attenuated the development of MA during the induction phase, but had no effect on MA when given during the maintenance phase (days 3-6 post-surgery). BD-1047 synergistically increased amiloride (an ASICs blocker)- and TNP-ATP (a P2X antagonist)-induced analgesic effects in TIIP rats. In naïve rats, i.pl. injection of Sig-1R agonist PRE-084 alone did not produce MA; but it did induce MA when co-administered with either an acidic pH solution or a sub-effective dose of αβmeATP. CONCLUSION Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain.
Collapse
Affiliation(s)
- S G Kwon
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - D H Roh
- Department of Maxillofacial Tissue Regeneration, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - S Y Yoon
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Korea
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Korea
| | - S R Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - H S Choi
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - J Y Moon
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - S Y Kang
- KM Fundamental Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - H W Kim
- Department of Physiology, Institute of Brain Research, Chungnam National University Medical School, Daejeon, Korea
| | - H J Han
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| | - A J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, USA
| | - S B Oh
- Pain Cognitive Function Research Center, Department of Brain and Cognitive Sciences College of Natural Sciences, Seoul National University, Korea
- Dental Research Institute and Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Korea
| | - J H Lee
- Department of Veterinary Physiology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Korea
| |
Collapse
|
30
|
Cao X, Chen Y, Zhang Y, Lan Y, Zhang J, Xu X, Qiu Y, Zhao S, Liu X, Liu BF, Zhang G. Synthesis and Biological Evaluation of Novel σ1 Receptor Ligands for Treating Neuropathic Pain: 6-Hydroxypyridazinones. J Med Chem 2016; 59:2942-61. [DOI: 10.1021/acs.jmedchem.5b01416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xudong Cao
- Systems
Biology Theme, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Chen
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Yifang Zhang
- Systems
Biology Theme, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Lan
- Systems
Biology Theme, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Juecheng Zhang
- Systems
Biology Theme, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Song Zhao
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Xin Liu
- Systems
Biology Theme, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Systems
Biology Theme, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guisen Zhang
- Systems
Biology Theme, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Jiangsu Nhwa Pharmaceutical Co., Ltd., 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
31
|
Abstract
Opioid analgesics continue to be the mainstay of pharmacologic treatment of moderate to severe pain. Many patients, particularly those suffering from chronic pain, require chronic high-dose analgesic therapy. Achieving clinical efficacy and tolerability of such treatment regimens is hampered by the appearance of opioid-induced side effects such as tolerance, hyperalgesia and withdrawal syndrome. Among the therapeutic options to improve the opioid effectiveness, this current review focuses on strategies combining opioids to other drugs that can modulate opioid-mediated effects. We will discuss about experimental evidences reported for several potential opioid adjuvants, including N-methyl-d-aspartate receptor antagonists, 5-HT7 agonists, sigma-1 antagonists, I2-R ligands, cholecystokinin antagonists, neuropeptide FF-R antagonists and toll-like receptor 4 antagonists.
Collapse
|
32
|
Romero L, Merlos M, Vela JM. Antinociception by Sigma-1 Receptor Antagonists: Central and Peripheral Effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:179-215. [PMID: 26920013 DOI: 10.1016/bs.apha.2015.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is plenty of evidence supporting the modulatory role of sigma-1 receptors (σ1Rs) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists, particularly in nonacute sensitizing conditions involving sustained afferent drive, activity-dependent plasticity/sensitization, and ultimately pain hypersensitivity, as it is the case in chronic pains of different etiology. Antinociceptive effects of σ1R antagonists both when acting alone and in combination with opioids (to enhance opioid analgesia) have been reported at both central and peripheral sites. At the central level, findings at the behavioral (animal pain models), electrophysiological (spinal wind-up recordings), neurochemical (spinal release of neurotransmitters) and molecular (NMDAR function) level supports a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Attenuation of activity-induced plastic changes (central sensitization) following tissue injury/inflammation or nerve damage could thus underlie the central inhibitory effect of σ1R antagonists. Moreover, recent pieces of information confirm the involvement of σ1R in mechanisms regulating pain at the periphery, where σ1Rs are highly expressed, particularly in dorsal root ganglia. Indeed, local peripheral administration of σ1R antagonists reduces inflammatory hyperalgesia. Potentiation of opioid analgesia is also supported, particularly at supraspinal sites and at the periphery, where locally administered σ1R antagonists unmask opioid analgesia. Altogether, whereas σ1R activation is coupled to pain facilitation and inhibition of opioid antinociception, σ1R antagonism inhibits pain hypersensitivity and "releases the brake" enabling opioids to exert enhanced antinociceptive effects, both at the central nervous system and at the periphery.
Collapse
Affiliation(s)
- Luz Romero
- Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain
| | - Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain
| | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE, Parc Científic de Barcelona, Baldiri Reixac 4-8, Barcelona, Spain.
| |
Collapse
|
33
|
García-Martínez BA, Jaramillo-Morales OA, Espinosa-Juárez JV, Navarrete-Vázquez G, Melo-Hernández LA, Medina-López JR, Domínguez-Ramírez AM, Schepmann D, Wünsch B, López-Muñoz FJ. Antinociceptive effects of a new sigma-1 receptor antagonist (N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy)acetamide) in two types of nociception. Eur J Pharmacol 2016; 771:10-7. [PMID: 26683636 DOI: 10.1016/j.ejphar.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/18/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Pain has become an active clinical challenge due its etiological heterogeneity, symptoms and mechanisms of action. In the search for new pharmacological therapeutic alternatives, sigma receptors have been proposed as drug targets. This family consists of sigma-1 and sigma-2 receptors. The sigma-1 system is involved in nociception through its chaperone activity. Additionally, it has been shown that agonist to these receptors promote related sensitisation and pain hypersensitisation, suggesting the possible use of antagonists for sigma-1 receptors as an alternative therapy. The aim of this study was to evaluate the antinociceptive effect of a new sigma-1 receptor antagonist N-(2-morpholin-4-yl-ethyl)-2-(1-naphthyloxy)acetamida (NMIN) in two types of pain (arthritic and neuropathic) and to compare its efficacy and potency with reference drugs. The antinociceptive effects of NMIN were quantitatively evaluated using the pain-induced functional impairment model in the rat and the acetone test in a rat model of neuropathic pain. NMIN (sigma-1 receptor affinity of 324nM) did not show any antinociceptive activity in the arthritic pain model but showed a dose-dependent anti-allodynic effect in neuropathic pain. NMIN showed a similar efficacy compared to the effects obtained with morphine and the sigma-1 antagonist BD-1063. However, these reference drugs showed increased potency compared with NMIN. Our results suggest that sigma-1 receptors may play an important direct role in neuropathic pain but not in arthritic pain, supporting the hypothesis that NMIN may be useful for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Betzabeth Anali García-Martínez
- Maestría en Cs. Farmacéuticas, Div. de CBS, Universidad Autónoma Metropolitana, Unidad Xochimilco, C.P. 04960 Delegación Coyoacán, México D.F., Mexico.
| | | | | | | | | | - José Raúl Medina-López
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, México, D.F. 04960, Mexico.
| | | | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Germany.
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Germany.
| | | |
Collapse
|
34
|
Tomohisa M, Junpei O, Aki M, Masato H, Mika F, Kazumi Y, Teruo H, Tsutomu S. Possible involvement of the Sigma-1 receptor chaperone in chemotherapeutic-induced neuropathic pain. Synapse 2015; 69:526-32. [PMID: 26234785 DOI: 10.1002/syn.21844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/22/2015] [Accepted: 06/24/2015] [Indexed: 12/28/2022]
Abstract
Previous studies have shown that ligands of the sigma-1 receptor chaperone (Sig-1R) regulate pain-related behaviors. Clinical use of chemotherapeutics is often compromised due to their adverse side effects, particularly those related to neuropathy. Previous studies have shown that repeated administration of oxaliplatin and paclitaxel produces neuropathy in rodents. Therefore, the aim of the present study was to clarify the involvement of the Sig-1R in chemotherapeutic-induced neuropathy by examining the effects of oxaliplatin and paclitaxel on the Sig-1R levels in the spinal cord, and by examining the effects of Sig-1R agonist and antagonist on oxaliplatin- and paclitaxel-induced neuropathy in rats. Chemotherapeutic-induced neuropathic pain was accompanied by a significant reduction of the Sig-1R level in the spinal cord. Furthermore, the administration of paclitaxel to CHO cells that stably overexpressed Sig-1Rs induced the clustering of Sig-1Rs. We also found that the Sig-1R agonist SA4503 potently inhibited the neuropathy induced by oxaliplatin- and paclitaxel, whereas this action was abolished by the Sig-1R antagonist NE-100. These results suggest that the reduction of Sig-1R activity is involved in chemotherapeutic-induced neuropathy, and the Sig-1R agonist SA4503 could serve as a potential candidate for the treatment of chemotherapeutic-induced neuropathy.
Collapse
Affiliation(s)
- Mori Tomohisa
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Ohya Junpei
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Masumoto Aki
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Harumiya Masato
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Fukase Mika
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Yoshizawa Kazumi
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | - Suzuki Tsutomu
- Department of Toxicology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
35
|
Abstract
INTRODUCTION Neuropathic pain is difficult to relieve with standard analgesics and tends to be resistant to opioid therapy. Sigma-1 receptors activated during neuropathic injury may sustain pain. Neuropathic injury activates sigma-1 receptors, which results in activation of various kinases, modulates the activity of multiple ion channels, ligand activated ion channels and voltage-gated ion channels; alters monoamine neurotransmission and dampens opioid receptors G-protein activation. Activation of sigma-1 receptors tonically inhibits opioid receptor G-protein activation and thus dampens analgesic responses. Therefore, sigma-1 receptor antagonists are potential analgesics for neuropathic and adjuvants to opioid therapy. AREAS COVERED This article reviews the importance of sigma-1 receptors as pain generators in multiple animal models in order to illustrate both the importance of these unique receptors in pathologic pain and the potential benefits to sigma-1 receptor antagonists as analgesics. EXPERT OPINION Sigma-1 receptor antagonists have a great potential as analgesics for acute neuropathic injury (herpes zoster, acute postoperative pain and chemotherapy induced neuropathy) and may, as an additional benefit, prevent the development of chronic neuropathic pain. Antagonists are potentially effective as adjuvants to opioid therapy when used early to prevent analgesic tolerance. Drug development is complicated by the complexity of sigma-1 receptor pharmacodynamics and its multiple targets, the lack of a specific sigma-1 receptor antagonist, and potential side effects due to on-target toxicities (cognitive impairment, depression).
Collapse
Affiliation(s)
- Mellar P Davis
- Case Western Reserve University, Taussig Cancer Institute, Cleveland Clinic Lerner School of Medicine, Palliative Medicine and Supportive Oncology Services, Division of Solid Tumor, The Cleveland Clinic , 9500 Euclid Ave, Cleveland, OH 44195 , USA
| |
Collapse
|
36
|
Vela JM, Merlos M, Almansa C. Investigational sigma-1 receptor antagonists for the treatment of pain. Expert Opin Investig Drugs 2015; 24:883-96. [PMID: 26037209 DOI: 10.1517/13543784.2015.1048334] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The sigma-1 receptor (σ1R) is a ligand-regulated molecular chaperone that interacts with other proteins, including NMDA and opioid receptors, to modulate their activity. Convergent evidence indicates that σ1R antagonists exert inhibitory effects (and agonists stimulatory effects) on pain by stepping down the intracellular signaling cascades involved in transduction of noxious stimuli and plastic changes (i.e., sensitization phenomena) associated with chronic pain states. AREAS COVERED This review addresses three primary domains. The first focuses on mechanisms underlying the antinociceptive effects of σ1R antagonists. The second addresses evidence gained using pharmacological tools and experimental drugs in the discovery phase and clinical development. Finally, the article outlines the potential benefits of σ1R antagonists, alone or in combination, in the context of available pain therapeutics. EXPERT OPINION There is a critical need for new analgesics based on new mechanisms of action. Target identification requires convincing evidence relating targets to function. In turn, target validation requires confirmation of therapeutic benefits, ideally in humans. Current preclinical evidence provides strong rationale for σ1R antagonists in pain. The outcome of clinical studies with the most advanced investigational σ1R antagonist, S1RA (E-52862), will be of great interest to ascertain the potential of this new therapeutic approach to pain management.
Collapse
Affiliation(s)
- José Miguel Vela
- ESTEVE, Drug Discovery and Preclinical Development, Carrer Baldiri Reixac , 4-8. Parc Científic de Barcelona, 08028 Barcelona , Spain +34 93 4466244 ; +34 93 4466432 ;
| | | | | |
Collapse
|
37
|
Díaz JL, Christmann U, Fernández A, Torrens A, Port A, Pascual R, Álvarez I, Burgueño J, Monroy X, Montero A, Balada A, Vela JM, Almansa C. Synthesis and structure-activity relationship study of a new series of selective σ(1) receptor ligands for the treatment of pain: 4-aminotriazoles. J Med Chem 2015; 58:2441-51. [PMID: 25658964 DOI: 10.1021/jm501920g] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and pharmacological activity of a new series of 4-aminotriazoles as potent σ1 receptor (σ1R) ligands are reported. The compounds were prepared using a 4-5-step process, involving as a key step a click chemistry reaction between ynamides and azides. The most active compounds exhibited nanomolar potency for the σ1R, and the selectivity over the σ2R was improved on decreasing the central amine basicity. It was concluded that in order to achieve good σ1R potency a minimum lipophilicity was required, while limiting to a defined range of cLogP avoided human ether-a-go-go-related gene channel inhibition. This made the most interesting derivatives to be concentrated in a narrow margin of lipophilicity. Among them, compound 13g exhibited the most potent in vivo antinociceptive properties, which are indicative of its antagonist character.
Collapse
Affiliation(s)
- José Luis Díaz
- Drug Discovery and Preclinical Development, Esteve , Baldiri Reixach, 4-8, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Salpeter SR, Buckley JS, Buckley NS, Bruera E. The Use of Very-Low-Dose Methadone and Haloperidol for Pain Control in the Hospital Setting: A Preliminary Report. J Palliat Med 2015; 18:114-9. [DOI: 10.1089/jpm.2014.0266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | | | - Eduardo Bruera
- University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Lan Y, Chen Y, Cao X, Zhang J, Wang J, Xu X, Qiu Y, Zhang T, Liu X, Liu BF, Zhang G. Synthesis and biological evaluation of novel sigma-1 receptor antagonists based on pyrimidine scaffold as agents for treating neuropathic pain. J Med Chem 2014; 57:10404-23. [PMID: 25420090 DOI: 10.1021/jm501207r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The discovery and synthesis of a new series of pyrimidines as potent sigma-1 receptor (σ1R) antagonists, associated with pharmacological antineuropathic pain activity, are the focus of this article. The new compounds were evaluated in vitro in σ-1 and σ-2 receptor binding assays. The nature of the pyrimidine scaffold was crucial for activity, and a basic amine was shown to be necessary according to the known pharmacophoric model. The most promising derivative was 5-chloro-2-(4-chlorophenyl)-4-methyl-6-(3-(piperidin-1-yl)propoxy)pyrimidine (137), which exhibited a high binding affinity to σ1R receptor (Ki σ1 = 1.06 nM) and good σ-1/2 selectivity (1344-fold). In in vivo tests, compound 137 exerted dose-dependent antinociceptive effects in mice formalin model and rats CCI models of neuropathic pain. In addition, no motor impairments were found in rotarod tests; acceptable pharmacokinetic properties were also noted. These data suggest compound 137 may constitute a novel class of drugs for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yu Lan
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology , Wuhan 430074, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tejada MA, Montilla-García A, Sánchez-Fernández C, Entrena JM, Perazzoli G, Baeyens JM, Cobos EJ. Sigma-1 receptor inhibition reverses acute inflammatory hyperalgesia in mice: role of peripheral sigma-1 receptors. Psychopharmacology (Berl) 2014; 231:3855-69. [PMID: 24639046 DOI: 10.1007/s00213-014-3524-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 02/26/2014] [Indexed: 11/29/2022]
Abstract
RATIONALE Sigma-1 (σ1) receptor inhibition ameliorates neuropathic pain by inhibiting central sensitization. However, it is unknown whether σ1 receptor inhibition also decreases inflammatory hyperalgesia, or whether peripheral σ1 receptors are involved in this process. OBJECTIVE The purpose of this study was to determine the role of σ1 receptors in carrageenan-induced inflammatory hyperalgesia, particularly at the inflammation site. RESULTS The subcutaneous (s.c.) administration of the selective σ1 antagonists BD-1063 and S1RA to wild-type mice dose-dependently and fully reversed inflammatory mechanical (paw pressure) and thermal (radiant heat) hyperalgesia. These antihyperalgesic effects were abolished by the s.c. administration of the σ1 agonist PRE-084 and also by the intraplantar (i.pl.) administration of this compound in the inflamed paw, suggesting that blockade of peripheral σ1 receptors in the inflamed site is involved in the antihyperalgesic effects induced by σ1 antagonists. In fact, the i.pl. administration of σ1 antagonists in the inflamed paw (but not in the contralateral paw) was sufficient to completely reverse inflammatory hyperalgesia. σ1 knockout (σ1-KO) mice did not develop mechanical hyperalgesia but developed thermal hypersensitivity; however, the s.c. administration of BD-1063 or S1RA had no effect on thermal hyperalgesia in σ1-KO mice, supporting on-target mechanisms for the effects of both drugs. The antiedematous effects of σ1 inhibition do not account for the decreased hyperalgesia, since carrageenan-induced edema was unaffected by σ1 knockout or systemic σ1 pharmacological antagonism. CONCLUSIONS σ1 receptors play a major role in inflammatory hyperalgesia. Targeting σ1 receptors in the inflamed tissue may be useful for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- M A Tejada
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Avenida de Madrid 11, 18012, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Lan Y, Chen Y, Xu X, Qiu Y, Liu S, Liu X, Liu BF, Zhang G. Synthesis and biological evaluation of a novel sigma-1 receptor antagonist based on 3,4-dihydro-2(1H)-quinolinone scaffold as a potential analgesic. Eur J Med Chem 2014; 79:216-30. [PMID: 24735647 DOI: 10.1016/j.ejmech.2014.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/25/2014] [Accepted: 04/05/2014] [Indexed: 11/20/2022]
Abstract
The synthesis and sigma-1 receptor (σ1R) antagonist activity of a new series of 3,4-dihydro-2(1H)-quinolinone derivatives are reported. The new compounds were evaluated in vitro in sigma-1 and sigma-2 receptor-binding assays in guinea pig brain membranes. The structure-activity relationship led us to the promising derivative 7-(3-(piperidin-1-yl)propoxy)-1-(4-fluorobenzyl)-3,4-dihydro-2(1H)-quinolinone (35). The compounds with highest affinity and greatest selectivity were further profiled, and compound 35 had a high binding constant for sigma-1 receptor (Kiσ1 = 1.22 nM) and high sigma-1/2 selectivity (1066-fold). Thus, compound 35, which proved to be an antagonist of sigma-1 receptor, emerged as the most interesting candidate. In addition, compound 35 exerted dose-dependent anti-nociceptive effects in the formalin test. These characteristics suggested that the potent and selective compound 35 could be a potent candidate for pain treatment.
Collapse
Affiliation(s)
- Yu Lan
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Chen
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Xiangqing Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Yinli Qiu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Shicheng Liu
- Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China
| | - Xin Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guisen Zhang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Jiangsu Nhwa Pharmaceutical Co., Ltd. 69 Democratic South Road, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
42
|
Vidal-Torres A, Fernández-Pastor B, Carceller A, Vela JM, Merlos M, Zamanillo D. Effects of the selective sigma-1 receptor antagonist S1RA on formalin-induced pain behavior and neurotransmitter release in the spinal cord in rats. J Neurochem 2014; 129:484-94. [PMID: 24384038 DOI: 10.1111/jnc.12648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/03/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022]
Abstract
We have previously shown that the selective sigma-1 receptor (σ1 R) antagonist S1RA (E-52862) inhibits neuropathic pain and activity-induced spinal sensitization in various pre-clinical pain models. In this study we characterized both the behavioral and the spinal neurochemical effects of S1RA in the rat formalin test. Systemic administration of S1RA produced a dose-related attenuation of flinching and lifting/licking behaviors in the formalin test. Neurochemical studies using concentric microdialysis in the ipsilateral dorsal horn of awake, freely moving rats revealed that the systemic S1RA-induced antinociceptive effect occurs concomitantly with an enhancement of noradrenaline levels and an attenuation of formalin-evoked glutamate release in the spinal dorsal horn. Intrathecal pre-treatment with idazoxan prevented the systemic S1RA antinociceptive effect, suggesting that the S1RA antinociception depends on the activation of spinal α2 -adrenoceptors which, in turn, could induce an inhibition of formalin-evoked glutamate release. When administered locally, intrathecal S1RA inhibited only the flinching behavior, whereas intracerebroventricularly or intraplantarly injected also attenuated the lifting/licking behavior. These results suggest that S1RA supraspinally activates the descending noradrenergic pain inhibitory system, which may explain part of its antinociceptive properties in the formalin test; however, effects at other central and peripheral sites also account for the overall effect. Formalin-induced nociceptive effect occurs concomitantly with an enhancement of glutamate (Glu) level in the dorsal horn spinal cord. The selective σ1 receptor antagonist S1RA results in inhibition of formalin-evoked Glu release, no modification of GABA levels, and enhancement of noradrenaline (NA) levels. This increased spinal NA activates spinal α2-adrenoceptors producing the attenuation of the formalin-induced pain behaviour.
Collapse
Affiliation(s)
- Alba Vidal-Torres
- Drug Discovery and Preclinical Development, Laboratorios Esteve. Parc Científic Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Parenti C, Marrazzo A, Aricò G, Parenti R, Pasquinucci L, Ronsisvalle S, Ronsisvalle G, Scoto GM. The antagonistic effect of the sigma 1 receptor ligand (+)-MR200 on persistent pain induced by inflammation. Inflamm Res 2014; 63:231-7. [PMID: 24316864 DOI: 10.1007/s00011-013-0692-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/17/2013] [Accepted: 11/24/2013] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE AND DESIGN The sigma 1 (σ1) receptor, which is widely distributed in the CNS in areas that are known to be important for pain control, may play a role in persistent pain characterized by the hypersensitivity of nociceptive transmission. Here, we investigated the effect of σ1 blockade in an inflammatory pain model. TREATMENT AND METHODS An intraplantar injection of carrageenan (2 %) was used to induce paw inflammation. The effects of the σ1 antagonist (+)-MR200, given subcutaneously at a dose of 0.1, 0.25, 0.5,1, 1.5, and 2 mg/kg prior to injection of carrageenan, on inflammatory pain and inflammation were assessed. Mechanical allodynia with von Frey filaments, thermal hyperalgesia with the plantar test and edema evaluation with a plethysmometer were measured. Intergroup comparisons were assessed by one- or two-way analysis of variance when appropriate, followed by post-hoc tests (Dunnett's test for one-way or Bonferroni for two-way ANOVA). RESULTS (+)-MR200 dose-dependently prevented allodynia and hyperalgesia induced by carrageenan. Furthermore, it reduced paw edema with a significant inhibition percentage of 37.82 % at 3 h after carrageenan treatment. CONCLUSIONS The blockade of the σ1 receptor with the selective antagonist (+)-MR200 may contribute to the suppression of the typical symptoms of inflammatory pain.
Collapse
Affiliation(s)
- Carmela Parenti
- Pharmacology and Toxicology Section, Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nieto FR, Cendán CM, Cañizares FJ, Cubero MA, Vela JM, Fernández-Segura E, Baeyens JM. Genetic inactivation and pharmacological blockade of sigma-1 receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in mice. Mol Pain 2014; 10:11. [PMID: 24517272 PMCID: PMC3924235 DOI: 10.1186/1744-8069-10-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 02/07/2014] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Paclitaxel, a widely-used antineoplastic drug, produces a painful peripheral neuropathy that in rodents is associated with peripheral-nerve mitochondrial alterations. The sigma-1 receptor (σ1R) is a ligand-regulated molecular chaperone involved in mitochondrial calcium homeostasis and pain hypersensitivity. This receptor plays a key role in paclitaxel-induced neuropathic pain, but it is not known whether it also modulates mitochondrial abnormalities.In this study, we used a mouse model of paclitaxel-induced neuropathic pain to test the involvement of the σ1R in the mitochondrial abnormalities associated with paclitaxel, by using genetic (σ1R knockout mice) and pharmacological (σ1R antagonist) approaches. RESULTS Paclitaxel administration to wild-type (WT) mice produced cold- and mechanical-allodynia, and an increase in the frequency of swollen and vacuolated mitochondria in myelinated A-fibers, but not in C-fibers, of the saphenous nerve. Behavioral and mitochondrial alterations were marked at 10 days after paclitaxel-administration and had resolved at day 28. In contrast, paclitaxel treatment did not induce allodynia or mitochondrial abnormalities in σ1R knockout mice. Moreover, the prophylactic treatment of WT mice with BD-1063 also prevented the neuropathic pain and mitochondrial abnormalities induced by paclitaxel. CONCLUSIONS These results suggest that activation of the σ1R is necessary for development of the sensory nerve mitochondrial damage and neuropathic pain produced by paclitaxel. Therefore, σ1R antagonists might have therapeutic value for the prevention of paclitaxel-induced neuropathy.
Collapse
Affiliation(s)
- Francisco R Nieto
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
- Current address: Wolfson Centre for Age-Related Diseases, King’s College London, Wolfson Wing, Hodgkin Building, SE1 1UL London, UK
| | - Cruz M Cendán
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - Francisco J Cañizares
- Department of Histology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - María A Cubero
- Department of Histology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - José M Vela
- Esteve, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Carrer Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| | - Eduardo Fernández-Segura
- Department of Histology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| | - José M Baeyens
- Department of Pharmacology, Biomedical Research Centre and Institute of Neuroscience, University of Granada, 18012 Granada, Spain
| |
Collapse
|
45
|
Sánchez-Fernández C, Montilla-García Á, González-Cano R, Nieto FR, Romero L, Artacho-Cordón A, Montes R, Fernández-Pastor B, Merlos M, Baeyens JM, Entrena JM, Cobos EJ. Modulation of peripheral μ-opioid analgesia by σ1 receptors. J Pharmacol Exp Ther 2014; 348:32-45. [PMID: 24155346 DOI: 10.1124/jpet.113.208272] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effects of σ1-receptor inhibition on μ-opioid-induced mechanical antinociception and constipation. σ1-Knockout mice exhibited marked mechanical antinociception in response to several μ-opioid analgesics (fentanyl, oxycodone, morphine, buprenorphine, and tramadol) at systemic (subcutaneous) doses that were inactive in wild-type mice and even unmasked the antinociceptive effects of the peripheral μ-opioid agonist loperamide. Likewise, systemic (subcutaneous) or local (intraplantar) treatment of wild-type mice with the selective σ1 antagonists BD-1063 [1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride] or S1RA [4-[2-[[5-methyl-1-(2-naphthalenyl)1H-pyrazol-3-yl]oxy]ethyl] morpholine hydrochloride] potentiated μ-opioid antinociception; these effects were fully reversed by the σ1 agonist PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate) hydrochloride], showing the selectivity of the pharmacological approach. The μ-opioid antinociception potentiated by σ1 inhibition (by σ1-receptor knockout or σ1-pharmacological antagonism) was more sensitive to the peripherally restricted opioid antagonist naloxone methiodide than opioid antinociception under normal conditions, indicating a key role for peripheral opioid receptors in the enhanced antinociception. Direct interaction between the opioid drugs and σ1 receptor cannot account for our results, since the former lacked affinity for σ1 receptors (labeled with [(3)H](+)-pentazocine). A peripheral role for σ1 receptors was also supported by their higher density (Western blot results) in peripheral nervous tissue (dorsal root ganglia) than in several central areas involved in opioid antinociception (dorsal spinal cord, basolateral amygdala, periaqueductal gray, and rostroventral medulla). In contrast to its effects on nociception, σ1-receptor inhibition did not alter fentanyl- or loperamide-induced constipation, a peripherally mediated nonanalgesic opioid effect. Therefore, σ1-receptor inhibition may be used as a systemic or local adjuvant to enhance peripheral μ-opioid analgesia without affecting opioid-induced constipation.
Collapse
MESH Headings
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/pharmacology
- Animals
- Constipation/chemically induced
- Constipation/genetics
- Constipation/metabolism
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiology
- Mice
- Mice, Knockout
- Pain Measurement/methods
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/physiology
- Receptors, sigma/deficiency
- Receptors, sigma/genetics
- Receptors, sigma/physiology
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Departments of Pharmacology (C.S.-F., A.M.-G., R.G.-C., F.R.N., L.R., A.A.-C., J.M.B., E.J.C.) and Physiology (R.M.), School of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain (C.S.-F., R.G.-C., F.R.N., R.M., J.M.B., J.M.E., E.J.C.); Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Granada, Spain (J.M.E.); and Drug Discovery and Preclinical Development, Barcelona, Spain (B.F.-P., M.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ebneshahidi A, Akbari M, Mohseni M. Intraoperative haloperidol does not improve quality of recovery and postoperative analgesia. Adv Biomed Res 2013; 2:85. [PMID: 24524031 PMCID: PMC3908693 DOI: 10.4103/2277-9175.122501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/03/2013] [Indexed: 11/30/2022] Open
Abstract
Introduction: Haloperidol has an established role in nausea and vomiting prophylaxis and possible effects on multiple aspects of postoperative recovery including pain and sedation. The purpose of this study was to evaluate the effects of low-dose intraoperative intravenous haloperidol on quality of recovery (QoR) and pain control after general anesthesia and surgery. Methods: Ninety eight American Society of Anesthesiologists (ASA) physical status I-II patients undergoing elective general, gynecologic or orthopedic surgery under general anesthesia were enrolled. Participants were randomly allocated to receive either haloperidol 2 mg or sterile water intravenously after induction of anesthesia. All patients were given elastometric morphine patient-controlled analgesia (PCA) pump for pain control after the surgery. Post-operative QoR was evaluated within 20 min in the recovery room and 6 h post-operatively. Pain intensity and demand for additional analgesic was measured in the 6th post-operative hour. Results: The QoR score in two measurements was not statistically different between the two groups. Haloperidol significantly reduced the nausea in the recovery. The visual analog scale pain score showed that the severity of pain in the haloperidol group was more than the placebo group (4.7 ± 2.4 vs. 3.8 ± 2.5, P = 0.05). Conclusion: Intraoperative small-dose IV haloperidol is effective against post-operative nausea and vomiting with no significant effect on overall QoR. It may also attenuate the analgesic effects of morphine PCA.
Collapse
Affiliation(s)
- Amin Ebneshahidi
- Department of Anesthesiology, Persia Research Center, Isfahan, Iran
| | - Mojtaba Akbari
- Department of Epidemiology, Persia Research Center, Isfahan, Iran
| | - Masood Mohseni
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol 2013; 716:78-93. [PMID: 23500210 DOI: 10.1016/j.ejphar.2013.01.068] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/15/2012] [Accepted: 01/09/2013] [Indexed: 01/05/2023]
Abstract
Sigma 1 receptor (σ₁ receptor) is a unique ligand-regulated molecular chaperone located mainly in the endoplasmic reticulum and the plasma membrane. σ₁ receptor is activated under stress or pathological conditions and interacts with several neurotransmitter receptors and ion channels to modulate their function. The effects reported preclinically with σ₁ receptor ligands are consistent with a role for σ₁ receptor in central sensitization and pain hypersensitivity and suggest a potential therapeutic use of σ₁ receptor antagonists for the management of neuropathic pain as monotherapy. Moreover, data support their use in opioid adjuvant therapy: combination of σ₁ receptor antagonists and opioids results in potentiation of opioid analgesia, without significant increases in opioid-related unwanted effects. Results from clinical trials using selective σ₁ receptor antagonists in several pain conditions are eagerly awaited to ascertain the potential of σ₁ receptor modulation in pain therapy.
Collapse
Affiliation(s)
- Daniel Zamanillo
- Esteve, Drug Discovery and Preclinical Development. Parc Científic de Barcelona. Carrer Baldiri Reixac, 4-8. 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
48
|
Sánchez-Fernández C, Nieto FR, González-Cano R, Artacho-Cordón A, Romero L, Montilla-García Á, Zamanillo D, Baeyens JM, Entrena JM, Cobos EJ. Potentiation of morphine-induced mechanical antinociception by σ₁ receptor inhibition: role of peripheral σ₁ receptors. Neuropharmacology 2013; 70:348-58. [PMID: 23524304 DOI: 10.1016/j.neuropharm.2013.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/25/2013] [Accepted: 03/04/2013] [Indexed: 11/21/2022]
Abstract
We studied the modulation of morphine-induced mechanical antinociception and side effects by σ₁ receptor inhibition. Both wild-type (WT) and σ₁ receptor knockout (σ₁-KO) mice showed similar responses to paw pressure (100-600 g). The systemic (subcutaneous) or local (intraplantar) administration of σ₁ antagonists (BD-1063, BD-1047, NE-100 and S1RA) was devoid of antinociceptive effects in WT mice. However, σ₁-KO mice exhibited an enhanced mechanical antinociception in response to systemic morphine (1-16 mg/kg). Similarly, systemic treatment of WT mice with σ₁ antagonists markedly potentiated morphine-induced antinociception, and its effects were reversed by the selective σ₁ agonist PRE-084. Although the local administration of morphine (50-200 μg) was devoid of antinociceptive effects in WT mice, it induced dose-dependent antinociception in σ₁-KO mice. This effect was limited to the injected paw. Enhancement of peripheral morphine antinociception was replicated in WT mice locally co-administered with σ₁ antagonists and the opioid. None of the σ₁ antagonists tested enhanced morphine-antinociception in σ₁-KO mice, confirming a σ₁-mediated action. Morphine-induced side-effects (hyperlocomotion and inhibition of gastrointestinal transit) were unaltered in σ₁-KO mice. These results cannot be explained by a direct interaction of σ₁ ligands with μ-opioid receptors or adaptive changes of μ-receptors in σ₁-KO mice, given that [(3)H]DAMGO binding in forebrain, spinal cord, and hind-paw skin membranes was unaltered in mutant mice, and none of the σ₁ drugs tested bound to μ-opioid receptors. These results show that σ₁ receptor inhibition potentiates morphine-induced mechanical analgesia but not its acute side effects, and that this enhanced analgesia can be induced at peripheral level.
Collapse
Affiliation(s)
- Cristina Sánchez-Fernández
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Salpeter SR, Buckley JS, Bruera E. The use of very-low-dose methadone for palliative pain control and the prevention of opioid hyperalgesia. J Palliat Med 2013; 16:616-22. [PMID: 23556990 PMCID: PMC3696916 DOI: 10.1089/jpm.2012.0612] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2013] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Opioid dose escalation may cause hyperalgesia, mediated by the N-methyl-D-aspartate (NMDA) pathway. Methadone is an atypical opioid that inhibits hyperalgesia through NMDA-blockade, especially at low doses. OBJECTIVE To evaluate the efficacy of using very-low-dose methadone as the sole long-acting opioid agent in a hospice practice. DESIGN A retrospective, observational study of the use of methadone, ≤15 mg daily, with as-needed short-acting opiates. Adjuvant nonopioid medications included haloperidol, which may have NMDA-blocking effects. SETTING/SUBJECTS We reviewed the records of 240 patients admitted to a community-based hospice from July 1, 2011 to April 1, 2012, with data collected until hospice discharge or until April 30, 2012. MEASUREMENTS Descriptive statistics were used to summarize patient demographics, medication regimens, and reported pain scores measured on a numeric rating scale from 0 to 10. RESULTS All patients received short-acting opiates, in a morphine-equivalent dose of 5 mg every 4 hours as needed, while 40% also received methadone at a median daily dose of 5 mg. Of those on methadone, almost half received scheduled haloperidol. The population had a median reported pain score of 0 and a peak score of 3, with similar results seen for cancer and noncancer groups. Two-thirds of patients never reported a pain score greater than 3. CONCLUSION The use of very-low-dose methadone in conjunction with adjuvant haloperidol resulted in excellent pain control without dose escalation or opioid-induced hyperalgesia, for both cancer and noncancer diseases. We conclude that low-dose methadone should be part of first-line treatment in palliative pain management.
Collapse
Affiliation(s)
- Shelley R Salpeter
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
| | | | | |
Collapse
|
50
|
Nieto FR, Cobos EJ, Entrena JM, Parra A, García-Granados A, Baeyens JM. Antiallodynic and analgesic effects of maslinic acid, a pentacyclic triterpenoid from Olea europaea. JOURNAL OF NATURAL PRODUCTS 2013; 76:737-40. [PMID: 23540838 DOI: 10.1021/np300783a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effects of maslinic acid (1), a pentacyclic triterpenoid obtained from Olea europaea, were studied in several tests for nociception in mice. Systemic administration of 1 reduced acetic acid-induced writhing, the inflammatory phase of formalin-induced pain, and capsaicin-induced mechanical allodynia. However, it did not induce motor incoordination in the rotarod test. The topical administration of 1 also reduced the inflammatory phase of the formalin test, indicating that at least some of its effects are mediated peripherally. The present results demonstrate for the first time that maslinic acid induces antinociceptive and antiallodynic effects.
Collapse
Affiliation(s)
- Francisco R Nieto
- Department of Pharmacology, School of Medicine, University of Granada, Avenida de Madrid 11, 18012 Granada, Spain
| | | | | | | | | | | |
Collapse
|