1
|
Sanson A, Demarchi L, Rocaboy E, Bosch OJ. Increased CRF-R1 transmission in the nucleus accumbens shell facilitates maternal neglect in lactating rats and mediates anxiety-like behaviour in a sex-specific manner. Neuropharmacology 2025; 265:110256. [PMID: 39647775 DOI: 10.1016/j.neuropharm.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
During the transition to motherhood, complex brain adaptations occur to ensure adequate maternal responses to offspring' needs accompanied by reduced anxiety. Among others, the corticotropin-releasing factor (CRF) and oxytocin (OXT) systems have emerged as crucial regulators of these essential postpartum adaptations. Here, we investigated their roles within the nucleus accumbens shell (NAcSh), a central region of the reward and maternal circuits, in maternal neglect of lactating rats. Furthermore, we assessed the contribution of the local CRF system to anxiety-like behaviour, comparing lactating female, virgin female and male rats to evaluate potential sex-differences. Increasing CRF receptor (CRF-R) 1 transmission via local CRF infusion in the NAcSh led to maternal neglect, reducing nursing and increasing self-directed behaviours. In turn, local CRF-R1 inhibition impaired maternal motivation. Intra-NAcSh Urocortin3 infusion did not promote maternal neglect but increased anxiety-like behaviour in lactating and virgin female rats, whereas CRF infusion had anxiogenic effects only in male rats. Crh-r1 mRNA expression was higher in male and lactating rats compared to virgin females; furthermore, male rats had increased Crh-bp mRNA expression compared to virgin female rats, only. Lastly, pharmacological manipulations of the OXT system did not affect maternal responses. In conclusion, finely balanced CRF-R1 signalling in the NAcSh is required for the proper expression of maternal behaviours. Dampened CRF-R2 signalling prevents the onset of anxiety-like behaviour in female rats, whereas CRF-R1 plays a more prominent role in males, highlighting complex sex-differences of the CRF system's regulation of anxiety within the NAcSh.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Luisa Demarchi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Emma Rocaboy
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Sanson A, Krieg P, Schramm MM, Kellner K, Maloumby R, Klampfl SM, Brunton PJ, Bosch OJ. CRF binding protein activity in the hypothalamic paraventricular nucleus is essential for stress adaptations and normal maternal behaviour in lactating rats. Neurobiol Stress 2024; 30:100631. [PMID: 38601362 PMCID: PMC11004997 DOI: 10.1016/j.ynstr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
To ensure the unrestricted expression of maternal behaviour peripartum, activity of the corticotropin-releasing factor (CRF) system needs to be minimised. CRF binding protein (CRF-BP) might be crucial for this adaptation, as its primary function is to sequester freely available CRF and urocortin1, thereby dampening CRF receptor (CRF-R) signalling. So far, the role of CRF-BP in the maternal brain has barely been studied, and a potential role in curtailing activation of the stress axis is unknown. We studied gene expression for CRF-BP and both CRF-R within the paraventricular nucleus (PVN) of the hypothalamus. In lactating rats, Crh-bp expression in the parvocellular PVN was significantly higher and Crh-r1 expression in the PVN significantly lower compared to virgin rats. Acute CRF-BP inhibition in the PVN with infusion of CRF(6-33) increased basal plasma corticosterone concentrations under unstressed conditions in dams. Furthermore, while acute intra-PVN infusion of CRF increased corticosterone secretion in virgin rats, it was ineffective in vehicle (VEH)-pre-treated lactating rats, probably due to a buffering effect of CRF-BP. Indeed, pre-treatment with CRF(6-33) reinstated a corticosterone response to CRF in lactating rats, highlighting the critical role of CRF-BP in maintaining attenuated stress reactivity in lactation. To our knowledge, this is the first study linking hypothalamic CRF-BP activity to hypothalamic-pituitary-adrenal axis regulation in lactation. In terms of behaviour, acute CRF-BP inhibition in the PVN under non-stress conditions reduced blanket nursing 60 min and licking/grooming 90 min after infusion compared to VEH-treated rats, while increasing maternal aggression towards an intruder. Lastly, chronic intra-PVN inhibition of CRF-BP strongly reduced maternal aggression, with modest effects on maternal motivation and care. Taken together, intact activity of the CRF-BP in the PVN during the postpartum period is essential for the dampened responsiveness of the stress axis, as well as for the full expression of appropriate maternal behaviour.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula Krieg
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Milena M. Schramm
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Kerstin Kellner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Stefanie M. Klampfl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Lorenzon F, Gregorio T, Niebisch F, Stolte RCK, Peixe CDMS, Reis WL, Dos Santos GJ, Lima FB. Gestational administration of vitamin D improves maternal care and prevents anxiety-like behavior in male and female Wistar rats prenatally exposed to dexamethasone. Life Sci 2023:121799. [PMID: 37245838 DOI: 10.1016/j.lfs.2023.121799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Prenatal overexposure to glucocorticoids (GC) can lead to behavioral changes in adulthood. We aimed to explore the effects of gestational administration of vitamin D on the behavioral responses of dams and their offspring prenatally exposed to dexamethasone (DEX). Vitamin D (500UI) was given daily during the whole pregnancy (VD group). Half of the groups that received vitamin D were treated with DEX (0.1 mg/kg, VD + DEX group) daily between the 14th and 19th days of pregnancy. The corresponding control groups of progenitors were assigned (CTL and DEX groups, respectively). Maternal care and the dam's behaviors were evaluated during lactation. The offspring had developmental and behavioral parameters evaluated during lactation and at 3, 6, and 12 months of age. Gestational administration of vitamin D increased maternal care and had an anxiolytic-like effect on the dams, but the latter was blocked in DEX-treated dams. Prenatal DEX partially impaired neural development and caused an anxiety-like phenotype in the male and female offspring at 6 months, which was prevented by gestational administration of vitamin D. As well, gestational vitamin D improved memory just in the male offspring, but this response was suppressed by prenatal DEX. We concluded that gestational vitamin D could prevent anxiety-like behavior in adult male and female rats prenatally exposed to DEX, which might be, in part, a result of the maternal care improvement.
Collapse
Affiliation(s)
- Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Tamires Gregorio
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Fernanda Niebisch
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Rafaela Carla Kachel Stolte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Carolina De Moraes Silveira Peixe
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Wagner Luis Reis
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Gustavo Jorge Dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Fernanda Barbosa Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina-UFSC, Campus Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Cai Y, Zhang X, Jiang T, Zhong H, Han X, Ma R, Wu R. 8-OH-DPAT enhances dopamine D2-induced maternal disruption in rats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:467-477. [DOI: 10.1007/s00359-022-01551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
5
|
Ragan CM, Ahmed EI, Vitale EM, Linning-Duffy K, Miller-Smith SM, Maguire J, Lonstein JS. Postpartum State, but Not Maternal Caregiving or Level of Anxiety, Increases Medial Prefrontal Cortex GAD65 and vGAT in Female Rats. Front Glob Womens Health 2022; 2:746518. [PMID: 35211693 PMCID: PMC8861351 DOI: 10.3389/fgwh.2021.746518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Upregulation of the inhibitory neurotransmitter, GABA, is involved in many of the behavioral differences between postpartum and nulliparous female rodents. This is evidenced by studies showing that pharmacological blockade of GABAergic activity impairs maternal caregiving and postpartum affective behaviors. However, the influence of motherhood on the capacity for GABA synthesis or release in the medial prefrontal cortex (mPFC; brain region involved in many social and affective behaviors) is not well-understood. Western blotting was used to compare postpartum and nulliparous rats in protein levels of the 65-kD isoform of glutamic acid decarboxylase (GAD65; synthesizes most GABA released from terminals) and vesicular GABA transporter (vGAT; accumulates GABA into synaptic vesicles for release) in the mPFC. We found that postpartum mothers had higher GAD65 and vGAT compared to virgins, but such differences were not found between maternally sensitized and non-sensitized virgins, indicating that reproduction rather than just the display of maternal caregiving is required. To test whether GAD65 and vGAT levels in the mPFC were more specifically related to anxiety-related behavior within postpartum mothers, we selected 8 low-anxiety and 8 high-anxiety dams based on their time spent in the open arms of an elevated plus maze on postpartum day 7. There were no significant differences between the anxiety groups in either GAD65 or vGAT levels. These data further indicate that frontal cortical GABA is affected by female reproduction and more likely contributes to differences in the display of socioemotional behaviors across, but not within, female reproductive state.
Collapse
Affiliation(s)
- Christina M. Ragan
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- School of Biology and Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eman I. Ahmed
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Erika M. Vitale
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
| | | | - Stephanie M. Miller-Smith
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Joseph S. Lonstein
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Joseph S. Lonstein
| |
Collapse
|
6
|
Cella EC, Conte J, Stolte RCK, Lorenzon F, Gregorio T, Simas BB, Rafacho A, Lima FB. Gestational exposure to excessive levels of dexamethasone impairs maternal care and impacts on the offspring's survival in rats. Life Sci 2020; 264:118599. [PMID: 33127510 DOI: 10.1016/j.lfs.2020.118599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Administration of dexamethasone (DEX) during late gestation is a model to study growth restriction in rodents, but the pup's mortality index can be high, depending on DEX dosage, and little is known about the effects of DEX on maternal care (MC). Considering that an inadequate MC can also contribute to pup's mortality in this model, we evaluated the effects of DEX on dams' behavior and its consequences on offspring survival. We also investigated whether the cross-fostering of pups from dams treated or not with DEX could improve pup's survival. Wistar rats were treated with DEX (14th to 19th day of gestation -0.2 mg/kg, B.W, in the drinking water). Nest building, MC and responses in the elevated plus-maze, forced swimming and object recognition tests were evaluated. DEX reduced gestational weight gain and impaired neonatal development, reducing pup's survival to 0% by the 3rd postnatal day. DEX-treated dams reduced the expression of typical MC and increased anxiety-like behaviors. After cross-fostering, DEX-treated mothers behaved similarly to controls, indicating that a healthy offspring is crucial to induce adequate MC. Cross-fostering increased the survival index from zero to 25% in the DEX offspring. Postnatal development of the DEX offspring was comparable to controls after cross-fostering. We concluded that exposure to DEX during late gestation causes behavioral changes that compromise the maternal emotional state, disrupting the expression of MC. Although it does not seem to be the main cause of pup's mortality, our data indicate that an adequate MC improves pup's survival in this model.
Collapse
Affiliation(s)
- Elisa C Cella
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Júlia Conte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rafaela C K Stolte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Tamires Gregorio
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Bruna B Simas
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Fernanda B Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Psychological and neurobiological mechanisms underlying the decline of maternal behavior. Neurosci Biobehav Rev 2020; 116:164-181. [PMID: 32569707 DOI: 10.1016/j.neubiorev.2020.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022]
Abstract
The maternal behavior decline is important for the normal development of the young and the wellbeing of the mother. This paper reviews limited research on the factors and mechanisms involved in the rat maternal behavior decline and proposes a multi-level model. Framed in the parent-offspring conflict theory (an ultimate cause) and the approach-withdrawal model (a proximate cause), the maternal behavior decline is viewed as an active and effortful process, reflecting the dynamic interplay between the mother and her offspring. It is instigated by the waning of maternal motivation, coupled with the increased maternal aversion by the mother in responding to the changing sensory and motoric patterns of pup stimuli. In the decline phase, the neural circuit that mediates the inhibitory ("withdrawal") responses starts to increase activity and gain control of behavioral outputs, while the excitatory ("approach") maternal neural circuit is being inhibited or reorganized. Various hormones and certain monoamines may play a critical role in tipping the balance between the excitatory and inhibitory neural circuits to synchronize the mother-infant interaction.
Collapse
|
8
|
The Role of Hormonal and Reproductive Status in the Treatment of Anxiety Disorders in Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32002944 DOI: 10.1007/978-981-32-9705-0_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Exposure therapy, a key treatment for anxiety disorders, can be modelled in the laboratory using Pavlovian fear extinction. Understanding the hormonal and neurobiological mechanisms underlying fear extinction in females, who are twice more likely than males to present with anxiety disorders, may aid in optimising exposure therapy outcomes in this population. This chapter will begin by discussing the role of the sex hormones, estradiol and progesterone, in fear extinction in females. We will also propose potential mechanisms by which these hormones may modulate fear extinction. The second half of this chapter will discuss the long-term hormonal, neurological and behavioural changes that arise from pregnancy and motherhood and how these changes may alter the features of fear extinction in females. Finally, we will discuss implications of this research for the treatment of anxiety disorders in women with and without prior reproductive experience.
Collapse
|
9
|
Gao J, Nie L, Li Y, Li M. Serotonin 5-HT2A and 5-HT2C receptors regulate rat maternal behavior through distinct behavioral and neural mechanisms. Neuropharmacology 2020; 162:107848. [DOI: 10.1016/j.neuropharm.2019.107848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/18/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023]
|
10
|
Delgado H, Agrati D, Machado L, Reyes L, Savio E, Engler H, Ferreira A. Cocaine treatment before pregnancy differentially affects the anxiety and brain glucose metabolism of lactating rats if performed during adulthood or adolescence. Behav Brain Res 2019; 372:112070. [PMID: 31276701 DOI: 10.1016/j.bbr.2019.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cocaine exposure disrupts the maternal behavior of lactating rats, yet it is less known whether it alters the affective changes that accompany motherhood. As the long-term action of cocaine on anxiety varies according to the developmental stage of the individuals, this study aimed to compare the effect of a chronic treatment with cocaine to adult and adolescent non-pregnant females on their anxiety-like behavior and basal brain metabolic activity during lactation. Thus, adult and adolescent virgin rats were exposed to cocaine (0.0 or 15.0 mg/kg ip) during 10 days and were mated four days later. Anxiety behavior was evaluated on postpartum days 3-4 in the elevated plus maze test, and the basal brain glucose metabolism was determined on postpartum days 7-9 by means of [18F] fluorodeoxyglucose positron emission tomography. Cocaine treatment during adulthood increased the anxiety-like behavior of lactating females whereas its administration during adolescence decreased it. Also, the basal glucose metabolism of the medial prefrontal cortex differed between lactating females treated with cocaine during adulthood and adolescence. These differential effects of cocaine, according to the age at which the drug was administered, support the idea that the adolescent and adult brains have a distinct susceptibility to this drug, which leads to divergent long-term changes in the neural circuits that regulate anxiety during lactation.
Collapse
Affiliation(s)
- Hernán Delgado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Basic Research Center in Psychology, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay.
| | - Daniella Agrati
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luna Machado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Reyes
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Annabel Ferreira
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
11
|
Nie L, Di T, Li Y, Cheng P, Li M, Gao J. Blockade of serotonin 5-HT 2A receptors potentiates dopamine D 2 activation-induced disruption of pup retrieval on an elevated plus maze, but has no effect on D 2 blockade-induced one. Pharmacol Biochem Behav 2018; 171:74-84. [PMID: 29944910 DOI: 10.1016/j.pbb.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 11/27/2022]
Abstract
Appetitive aspect of rat maternal behavior, such as pup retrieval, is motivationally driven and sensitive to dopamine disturbances. Activation or blockade of dopamine D2 receptors causes a similar disruption of pup retrieval, which may also reflect an increase in maternal anxiety and/or a disruption of executive function. Recent work indicates that serotonin 5-HT2A receptors also play an important role in rat maternal behavior. Given the well-known modulation of 5-HT2A on the mesolimbic and mesocortical dopamine functions, the present study examined the extent to which blockade of 5-HT2A receptors on dopamine D2-mediated maternal effects using a pup retrieval on the elevated plus maze (EPM) test. Sprague-Dawley postpartum female rats were acutely injected with quinpirole (a D2 agonist, 0.10 and 0.25 mg/kg, sc), or haloperidol (a D2 antagonist, 0.1 or 0.2 mg/kg, sc), in combination of MDL100907 (a 5-HT2A receptor antagonist, 1.0 mg/kg, sc, 30 min before quinpirole or haloperidol injection) or saline and tested at 30, 90 and 240 min after quinpirole or haloperidol injection on postpartum days 3 and 7. Quinpirole and haloperidol decreased the number of pup retrieved (an index of maternal motivation) and sequential retrieval score (an index of executive function), prolonged the pup retrieval latencies, reduced the percentage of time spent on the open arms (an index of maternal anxiety), and decreased the distance travelled on the maze in a dose-dependent and time-dependent fashion. MDL100907 treatment by itself had no effect on pup retrieval, but it exacerbated the quinpirole-induced disruption of pup retrieval, but had no effect on the haloperidol-induced one. These findings suggest a complex interactive effect between 5-HT2A and D2 receptors on one or several maternal processes (maternal motivation, anxiety and executive function), and support the idea that one molecular mechanism by which 5-HT2A receptors mediate maternal behavior is through its modulation of D2 receptors.
Collapse
Affiliation(s)
- Lina Nie
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Tianqi Di
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Yu Li
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Peng Cheng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China
| | - Ming Li
- Faculty of Psychology, Southwest University, Chongqing, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | - Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Ministry of Education, China; Chongqing Collaborative Innovation Center for Brain Science, Chongqing, China.
| |
Collapse
|
12
|
Li X, Ding X, Wu R, Chen L, Gao J, Hu G, Li M. A behavioral mechanistic investigation of the role of 5-HT 1A receptors in the mediation of rat maternal behavior. Pharmacol Biochem Behav 2018; 169:16-26. [PMID: 29649502 DOI: 10.1016/j.pbb.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
Abstract
Previous work suggests that 5-HT1A receptors play a special role in rodent maternal aggression, but not in other aspects of maternal care (e.g. pup retrieval and nest building). The present study re-assessed the basic effects of 5-HT1A activation or blockade on various maternal responses in postpartum female rats. We also examined the possible behavioral mechanisms underlying the maternal effects of 5-HT1A. Sprague-Dawley mother rats were injected with a 5-HT1A agonist 8-OH-DPAT (0.1, 0.5 or 1.0 mg/kg, sc), a 5-HT1A antagonist WAY-101405 (0.1, 0.5 or 1.0 mg/kg, sc) or 0.9% saline solution on postpartum days 3, 5, and 7. Maternal behavior was tested 30 min before, 30 min, 120 min, and 240 min after the injection. Acute and repeated 8-OH-DPAT treatment significantly disrupted pup retrieval, pup licking, nursing, and nest building in a dose-dependent fashion, whereas WAY-101405 had no effect at the tested doses. The 5-HT1A receptor specificity of 8-OH-DPAT's action was confirmed as its maternal disruption effect was reversed by pretreatment of WAY-100635 (a highly selective 5-HT1A receptor antagonist). Subsequent pup preference test found that 8-OH-DPAT did not decrease the pup preference over a novel object, thus no inhibition on maternal motivation or maternal affect. The pup separation test and pup retrieval on an elevated plus maze test also failed to find any motivational and motor impairment effect with 8-OH-DPAT. However, 8-OH-DPAT at the maternal disruptive dose did disrupt the prepulse inhibition (a measure of attentional function) of acoustic startle response and enhanced the basal startle response. These findings suggest that stimulation of 5-HT1A receptors by 8-OH-DPAT impairs maternal care by partially interfering with the attentional processing or basal anxiety. More work is needed to further delineate the psychological and neuronal mechanisms underlying the maternal disruptive effect of 5-HT1A receptor activation.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, The First Peoples's Hospital of Changzhou, 185 Juqian Street, Changzhou, Jiangsu 213003, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Xiaojing Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Ruiyong Wu
- Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | - Leilei Chen
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jun Gao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
13
|
Behavioral mechanisms underlying the maternal disruptive effect of serotonin 5-HT 2A receptor activation in Sprague-Dawley rats. J Neural Transm (Vienna) 2018; 125:1065-1075. [PMID: 29616335 DOI: 10.1007/s00702-018-1878-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
Recent evidence indicates that acute activation of 5-HT2A receptors causes a disruption of maternal behavior in rats. However, the behavioral mechanisms underlying such a disruption are not known. We addressed this issue using two behavioral approaches targeting the maternal motivational and emotional processing systems. First, we used the pup-separation technique to increase maternal motivation to see whether pup separation is capable of reducing the maternal disruptive effect of TCB-2 (a high-affinity 5-HT2A agonist) treatment. On postpartum days 4 and 6, different groups of Sprague-Dawley dams were treated with the TCB-2 (5.0 mg/kg, sc) or vehicle and their maternal behaviors were tested after either a 4-h pup-separation or no-pup-separation condition. Although acute TCB-2 injection disrupted maternal behavior, this disruption was not attenuated by pup separation, even after we optimized the timing of separation to maximize its increase on maternal motivation. Acute TCB-2 also impaired the retrieval of food pellets, suggesting a general effect on motivated behaviors. Next, we used a pup preference test and found that dams treated with TCB-2 exhibited an even stronger preference to pups over a male conspecific than vehicle-treated dams, indicating an enhanced motivational and emotional processing of the rewarding property of pups. These findings suggest that TCB-2 has a disruptive effect on rat maternal behavior, and this disruption is not likely due to the drug's effect on mothers' motivational and emotional processing of the incentive salience of pups, although this motivational suppression account cannot be completely ruled out. Future work could explore other possible behavioral mechanisms, such as the drug's effect on executive function.
Collapse
|
14
|
Mitra S, Mucha M, Owen S, Bult-Ito A. Postpartum Lactation-Mediated Behavioral Outcomes and Drug Responses in a Spontaneous Mouse Model of Obsessive-Compulsive Disorder. ACS Chem Neurosci 2017; 8:2683-2697. [PMID: 28945961 DOI: 10.1021/acschemneuro.7b00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using a spontaneous mouse model of obsessive-compulsive disorder (OCD), the current study evaluated the influence of postpartum lactation on the expression of compulsive-like behaviors, SSRI effectiveness, and the putative role of oxytocin and dopamine in mediating these lactation specific behavioral outcomes. Compulsive-like lactating mice were less compulsive-like in nest building and marble burying and showed enhanced responsiveness to fluoxetine (50 mg/kg) in comparison to compulsive-like nonlactating and nulliparous females. Lactating mice exhibited more anxiety-like behavior in the open field test compared to the nulliparous females, while chronic fluoxetine reduced anxiety-like behaviors. Blocking the oxytocin receptor with L368-899 (5 mg/kg) in the lactating mice exacerbated the compulsive-like and depression-like behaviors. The dopamine D2 receptor (D2R) agonist bromocriptine (10 mg/kg) suppressed marble burying, nest building, and central entries in the open field, but because it also suppressed overall locomotion in the open field, activation of the D2R receptor may have inhibited overall activity nonspecifically. Lactation- and fluoxetine-mediated behavioral outcomes in compulsive-like mice, therefore, appear to be partly regulated by oxytocinergic mechanisms. Serotonin immunoreactivity and serum levels were higher in lactating compulsive-like mice compared to nonlactating and nulliparous compulsive-like females. Together, these results suggest behavioral modulation, serotonergic alterations, and changes in SSRI effectiveness during lactation in compulsive-like mice. This warrants further investigation of postpartum events in OCD patients.
Collapse
Affiliation(s)
- Swarup Mitra
- Department
of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
- IDeA
Network of Biomedical Research Excellence (INBRE), University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - McKenzie Mucha
- Department
of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Savanah Owen
- Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| |
Collapse
|
15
|
Sivadas N, Radhakrishnan A, Aswathy B, Kumar VM, Gulia KK. Dynamic changes in sleep pattern during post-partum in normal pregnancy in rat model. Behav Brain Res 2017; 320:264-274. [DOI: 10.1016/j.bbr.2016.11.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022]
|
16
|
Naik RR, de Jong TR. Transient and persistent behavioral and molecular changes in primiparous female Wistar rats. Eur J Neurosci 2016; 45:797-804. [DOI: 10.1111/ejn.13411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Roshan R. Naik
- Department of Behavioral and Molecular Neurobiology; University of Regensburg; 93040 Regensburg Germany
| | - Trynke R. de Jong
- Department of Behavioral and Molecular Neurobiology; University of Regensburg; 93040 Regensburg Germany
| |
Collapse
|
17
|
Ragan CM, Harding KM, Lonstein JS. Associations among within-litter differences in early mothering received and later emotional behaviors, mothering, and cortical tryptophan hydroxylase-2 expression in female laboratory rats. Horm Behav 2016; 77:62-71. [PMID: 26219576 PMCID: PMC7005883 DOI: 10.1016/j.yhbeh.2015.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
Abstract
This article is part of a Special Issue "Parental Care". The effects of differential maternal care received on offspring phenotype in rodents has been extensively studied between litters, but the consequences of differential mothering within litters on offspring neurobehavioral development have been rarely examined. We here investigated how variability in maternal care received among female rat siblings (measured four times daily on postnatal days 4, 6, 8, and 10) relates to the siblings' later emotional and maternal behaviors. As previously reported, we found that some female pups received up to three times more maternal licking bouts compared to their sisters; this difference was positively correlated with the pups' body weights. The number of maternal licking bouts that females received was negatively correlated with their later neophobic behaviors in an open field during periadolescence, but positively correlated with their anxiety-related behavior in an elevated plus maze during adulthood. Licking received was also positively correlated with females' later likelihood to retrieve pups in a maternal sensitization paradigm. In addition, females' neophobia during adolescence and anxiety-related behavior during adulthood predicted some aspects of both postpartum and sensitized maternal responsiveness. Medial prefrontal cortex expression of tryptophan hydroxylase-2 (TPH2; enzyme necessary for serotonin synthesis) was negatively associated with early maternal licking received. Interestingly, cortical TPH2 was positively associated with the maternal responsiveness of sensitized virgins but negatively associated with it in postpartum females. These results indicate that within-litter differences in maternal care received is an often neglected, but important, contributor to individual differences in offspring socioemotional behaviors as well as to the cortical serotonin neurochemistry that may influence these behaviors.
Collapse
Affiliation(s)
- Christina M Ragan
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Kaitlyn M Harding
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Joseph S Lonstein
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Abstract
This article is part of a Special Issue "Parental Care". The postpartum period involves some truly transformational changes in females' socioemotional behaviors. For most female laboratory rodents and women, these changes include an improvement in their affective state, which has positive consequences for their ability to sensitively care for their offspring. There is heterogeneity among females in the likelihood of this positive affective change, though, and some women experience elevated anxiety or depression (or in rodents anxiety- or depression-related behaviors) after giving birth. We aim to contribute to the understanding of this heterogeneity in maternal affectivity by reviewing selected components of the scientific literatures on laboratory rodents and humans examining how mothers' physical contact with her infants, genetics, history of anxiety and depression and early-life and recent-life experiences contribute to individual differences in postpartum affective states. These studies together indicate that multiple biological and environmental factors beyond female maternal state shape affective responses during the postpartum period, and probably do so in an interactive manner. Furthermore, the similar capacity of some of these factors to modulate anxiety and depression in human and rodent mothers suggests cross-species conservation of mechanisms regulating postpartum affectivity.
Collapse
Affiliation(s)
- Daniella Agrati
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
| | - Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Pereira M, Ferreira A. Neuroanatomical and neurochemical basis of parenting: Dynamic coordination of motivational, affective and cognitive processes. Horm Behav 2016; 77:72-85. [PMID: 26296592 DOI: 10.1016/j.yhbeh.2015.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
This article is part of a Special Issue "Parental Care". Becoming a parent is arguably the most profound transforming experience in life. It is also inherently very emotionally and physically demanding, such that the reciprocal interaction with the young changes the brain and behavior of the parents. In this review, we examine the neurobiological mechanisms of parenting primarily discussing recent research findings in rodents and primates, especially humans. We argue that it is essential to consider parenting within a conceptual framework that recognizes the dynamics of the reciprocal mother-young relationship, including both the complexity and neuroplasticity of its underlying mechanisms. Converging research suggests that the concerted activity of a distributed network of subcortical and cortical brain structures regulates different key aspects of parenting, including the sensory analysis of infant stimuli as well as motivational, affective and cognitive processes. The interplay among these processes depends on the action of various neurotransmitters and hormones that modulate the timely and coordinated execution of caregiving responses of the maternal circuitry exquisitely attuned to the young's affect, needs and developmental stage. We conclude with a summary and a set of questions that may guide future research.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, USA.
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
20
|
Yang Y, Qin J, Chen W, Sui N, Chen H, Li M. Behavioral and pharmacological investigation of anxiety and maternal responsiveness of postpartum female rats in a pup elevated plus maze. Behav Brain Res 2015; 292:414-27. [PMID: 26159828 DOI: 10.1016/j.bbr.2015.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
Abstract
The present study investigated the validity of a novel pup-based repeated elevated plus maze task to detect reduced anxiety and increased maternal responsiveness in postpartum female rats and explored the roles of dopamine D2, serotonin transporter and GABA/benzodiazepine receptors in the mediation of these processes. Sprague-Dawley postpartum or nulliparous female rats were tested 4 times every other day on postpartum days 4, 6 and 8 in an elevated plus maze with 4 pups or 4 pup-size erasers placed on each end of the two open arms. When tested with erasers, untreated postpartum mother rats entered the open arms proportionally more than nulliparous rats. They also tended to spend more time in the open arms, indicating reduced anxiety. When tested with pups, postpartum rats retrieved pups into the closed arms, entered the open arms and closed arms more and had a higher moving speed than nulliparous rats, indicating increased maternal responsiveness. Both haloperidol (0.1 or 0.2 mg/kg, sc) and fluoxetine (5 or 10 mg/kg, ip) dose- and time-dependently decreased the percentage of time spent in the open arms and speed, but did not affect the percentage of open arm entries. Diazepam (1.0 or 2.0 mg/kg, ip) did not affect pup retrieval, open arm time/entry in lactating rats. Thus, the percentage of open arm entries appears to be the most sensitive measure of anxiety in postpartum female rats, while speed could be used to index maternal responsiveness to pups, which are likely mediated by the dopamine D2 and serotonin transporter systems.
Collapse
Affiliation(s)
- Yu Yang
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingxue Qin
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China
| | - Nan Sui
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, China; Faculty of Psychology, Southwest University, Chongqing, China.
| | - Ming Li
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| |
Collapse
|
21
|
McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 2015; 38:65-72. [PMID: 25910426 PMCID: PMC4853820 DOI: 10.1016/j.yfrne.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect.
Collapse
Affiliation(s)
- Jenna A McHenry
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Postdoctoral Training Program in Reproductive Mood Disorders, Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, United States; Neuroscience Center, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
22
|
Lonstein JS, Lévy F, Fleming AS. Common and divergent psychobiological mechanisms underlying maternal behaviors in non-human and human mammals. Horm Behav 2015; 73:156-85. [PMID: 26122301 PMCID: PMC4546863 DOI: 10.1016/j.yhbeh.2015.06.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal "models" do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing caregiving behaviors.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA; Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Frédéric Lévy
- Physiologie de la Reproduction et des Comportements, INRA-CNRS-Université de Tours IFCE, Nouzilly 37380, France.
| | - Alison S Fleming
- Fraser Mustard Institute for Human Development, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
23
|
Stamatakis A, Kalpachidou T, Raftogianni A, Zografou E, Tzanou A, Pondiki S, Stylianopoulou F. Rat dams exposed repeatedly to a daily brief separation from the pups exhibit increased maternal behavior, decreased anxiety and altered levels of receptors for estrogens (ERα, ERβ), oxytocin and serotonin (5-HT1A) in their brain. Psychoneuroendocrinology 2015; 52:212-28. [PMID: 25486578 DOI: 10.1016/j.psyneuen.2014.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 11/19/2022]
Abstract
In the present study we investigated the neurobiological mechanisms underlying expression of maternal behavior. Increased maternal behavior was experimentally induced by a brief 15-min separation between the mother and the pups during postnatal days 1 to 22. On postnatal days (PND) 12 and 22, we determined in experimental and control dams levels of anxiety in the elevated plus maze (EPM) as well as the levels of receptors for estrogens (ERα, ERβ), oxytocin (OTR) and serotonin (5-HT1AR) in areas of the limbic system (prefrontal cortex-PFC, hippocampus, lateral septum-SL, medial preoptic area-MPOA, shell of nucleus accumbens-nAc-Sh, central-CeA and basolateral-BLA amygdala), involved in the regulation of maternal behavior. Experimental dams, which showed increased maternal behavior towards their offspring, displayed reduced anxiety in the EPM on both PND12 and PND22. These behavioral differences could be attributed to neurochemical alterations in their brain: On both PND12 and PND22, experimental mothers had higher levels of ERα and OTRs in the PFC, hippocampus, CeA, SL, MPOA and nAc-Sh. The experimental manipulation-induced increase in ERβ levels was less widespread, being localized in PFC, the hippocampal CA2 area, MPOA and nAc-Sh. In addition, 5-HT1ARs were reduced in the PFC, hippocampus, CeA, MPOA and nAc-Sh of the experimental mothers. Our results show that the experience of the daily repeated brief separation from the pups results in increased brain ERs and OTRs, as well as decreased 5-HT1ARs in the dam's brain; these neurochemical changes could underlie the observed increase in maternal behavior and the reduction of anxiety.
Collapse
Affiliation(s)
- Antonios Stamatakis
- Biology-Biochemistry Lab, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, GR-11527 Athens, Greece
| | - Theodora Kalpachidou
- Biology-Biochemistry Lab, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, GR-11527 Athens, Greece
| | - Androniki Raftogianni
- Biology-Biochemistry Lab, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, GR-11527 Athens, Greece
| | - Efstratia Zografou
- Biology-Biochemistry Lab, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, GR-11527 Athens, Greece
| | - Athanasia Tzanou
- Biology-Biochemistry Lab, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, GR-11527 Athens, Greece
| | - Stavroula Pondiki
- Biology-Biochemistry Lab, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, GR-11527 Athens, Greece
| | - Fotini Stylianopoulou
- Biology-Biochemistry Lab, School of Health Sciences, National and Kapodistrian University of Athens, Papadiamantopoulou 123, GR-11527 Athens, Greece.
| |
Collapse
|
24
|
Affective, Cognitive, and Motivational Processes of Maternal Care. PERINATAL PROGRAMMING OF NEURODEVELOPMENT 2015; 10:199-217. [DOI: 10.1007/978-1-4939-1372-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Szabó ÉR, Cservenák M, Lutz TA, Gévai L, Endrényi M, Simon L, Dobolyi Á. Behavioural changes in mothers and maternally sensitised female mice. BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The maternal motivation and depression-like behaviour of primiparous mother and maternally sensitised virgin female mice were investigated. During a 1-h test period, dams and sensitised female mice spent significantly more time in pup-associated than in control cages when they could freely choose between them, while virgin control and ovariectomised females had no such preference. In the forced swim test, the time spent in active (swimming and struggling) and passive (floating) behaviours was measured for 6 min. Mother mice spent more time engaged in active behaviours than virgin and sensitised female mice, while the latter two groups did not differ from each other in the forced swim test. The results suggest that maternal motivation is increased in postpartum mothers and maternally sensitised female mice. We also provide the first demonstration that postpartum mother mice display anti-depression-like behaviours in the forced swim test, while maternally sensitised females do not show such emotional changes.
Collapse
Affiliation(s)
- Éva R. Szabó
- aMTA-ELTE-NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- bLaboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- aMTA-ELTE-NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- bLaboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Thomas A. Lutz
- cInstitute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Lőrinc Gévai
- dSensorimotory Adaptation and Vestibular Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Miklós Endrényi
- dSensorimotory Adaptation and Vestibular Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - László Simon
- dSensorimotory Adaptation and Vestibular Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Árpád Dobolyi
- aMTA-ELTE-NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- bLaboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Uriarte N, Fernández MV, Agrati D, Zuluaga MJ, Ferreño M, Ferreira A. Maternal and affective behaviors of lactating rats reared in overlapping litters. ACTA ACUST UNITED AC 2014; 108:221-30. [PMID: 24746748 DOI: 10.1016/j.jphysparis.2014.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 02/08/2023]
Abstract
Postpartum mating in rats gives rise to complex family units consisting of the mother and two overlapping litters. As a consequence, newborn pups of the second litter, since the moment they are born, acquire experience not only from interaction with the mother and age-matched littermates but also from interaction with older siblings. Newborn pups reared in overlapping litters (OLs) receive a different pattern of maternal stimulation compared to those reared in single litters (SL: one litter of same aged pups), as the mothers reduce some maternal behavior components and juvenile pups from the first litter develop maternal behavior. Since there is strong evidence showing that variations in maternal behavior are transmitted throughout generations, we hypothesized that the altered pattern of maternal stimulation received by OL reared females would modify their behavior during motherhood. To test this hypothesis maternal behavior, maternal aggression and experimental anxiety of dams reared under OL and SL conditions during the first postpartum week were compared. No differences were found between the groups in their maternal behavior and aggression. This result may be explained by the maternal behavior of the juveniles that could compensate for the deficits in the caregiving behaviors received by OL litters. However, a subtle temporal reorganization of the licking behavior was found in OL reared mothers, together with an increased anxiety-related behavior in the plus maze test. These results suggest dissociation in the effects provoked by early environmental alterations on different behavioral systems, and more importantly, that independently of their early family composition, both groups can cope effectively with the changing demands of the pups.
Collapse
Affiliation(s)
- Natalia Uriarte
- Laboratorio de Neurociencias, Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Uruguay; Laboratorio de Experimentación Animal, Facultad de Ciencias, Universidad de la República, Uruguay.
| | - María Victoria Fernández
- Laboratorio de Neurociencias, Sección Biomatemática, Facultad de Ciencias, Universidad de la República, Uruguay; Laboratorio de Experimentación Animal, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Daniella Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay; Laboratorio de Experimentación Animal, Facultad de Ciencias, Universidad de la República, Uruguay
| | - María José Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay; Laboratorio de Experimentación Animal, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Marcela Ferreño
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay; Laboratorio de Experimentación Animal, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Annabel Ferreira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Uruguay; Laboratorio de Experimentación Animal, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
27
|
Ragan CM, Lonstein JS. Differential postpartum sensitivity to the anxiety-modulating effects of offspring contact is associated with innate anxiety and brainstem levels of dopamine beta-hydroxylase in female laboratory rats. Neuroscience 2014; 256:433-44. [PMID: 24161285 PMCID: PMC4097074 DOI: 10.1016/j.neuroscience.2013.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/26/2013] [Accepted: 10/09/2013] [Indexed: 12/15/2022]
Abstract
In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase-2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams' innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females' anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring.
Collapse
Affiliation(s)
- C M Ragan
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - J S Lonstein
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
de Almeida RMM, Ferreira A, Agrati D. Sensory, hormonal, and neural basis of maternal aggression in rodents. Curr Top Behav Neurosci 2014; 17:111-130. [PMID: 24841427 DOI: 10.1007/7854_2014_312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We review existing knowledge of the neural, hormonal, and sensory basis of maternal aggression in the female rat. Although females may express different kinds of aggression, such as defense or dominance, the most frequent and conspicuous form of aggressive behavior among females is the one associated with motherhood. Maternal aggression occurs in various vertebrate and invertebrate species; however, our emphasis will be on maternal aggression in rats because most of the physiological investigations have been performed in this species. Firstly, we address those factors that predispose the female to attack, such as the endocrine profile, the maternal state, and the stimulation provided by the pups, as well as those that trigger the aggressive response, as the intruder's characteristics and the context. As the postpartum aggression is a fundamental component of the maternal repertoire, we emphasize its association with maternal motivation and the reduction of fear and anxiety in dams. Finally, we outline the neurocircuitry involved in the control of maternal aggression, stressing the role of the ventro-orbital region of prefrontal cortex and the serotoninergic system.
Collapse
Affiliation(s)
- Rosa Maria Martins de Almeida
- Laboratório de Psicologia Experimental, Neurociências e Comportamento (LPNeC), Instituto de Psicologia do Desenvolvimento e da Personalidade da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil,
| | | | | |
Collapse
|
29
|
Lactation reduces stress-caused dopaminergic activity and enhances GABAergic activity in the rat medial prefrontal cortex. J Mol Neurosci 2013; 52:515-24. [PMID: 24085524 DOI: 10.1007/s12031-013-0104-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023]
Abstract
We investigated the effect of restraint on the release of dopamine, GABA and glutamate in the medial prefrontal cortex (mPFC) of lactating compared with virgin Wistar female rats; besides the expression of D1, neuropeptide Y Y2, GABA receptors and corticotropin-releasing factor (CRF). Results from microdialysis experiments showed that basal dopamine and GABA, but not glutamate, concentrations were higher in lactating rats. In virgin animals, immobilization caused significant increase in dopamine, whereas GABA was unchanged and glutamate reduced. In lactating animals, restrain significantly decreased dopamine concentrations and, in contrast to virgin animals, GABA and glutamate concentrations increased. We found a higher expression of CRF, as well as the D1 and neuropeptide Y Y2 receptors in the left mPFC of virgin stressed rats; also, only stressed lactating animals showed a significant increase in immunopositive cells to GABA in the left cingulate cortex; meanwhile, a significant decrease was measured in virgin rats after stress in the left prelimbic region. The increased inhibition of the mPFC dopamine cells during stress and the down-regulated expression of the neuropeptide Y Y2 receptor may explain the lower CRF and hyporesponse to stress measured in lactating animals. Interestingly, participation of mPFC in stress regulation seems to be lateralized.
Collapse
|
30
|
Pittet F, Coignard M, Houdelier C, Richard-Yris MA, Lumineau S. Effects of maternal experience on fearfulness and maternal behaviour in a precocial bird. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Chauke M, de Jong TR, Garland T, Saltzman W. Paternal responsiveness is associated with, but not mediated by reduced neophobia in male California mice (Peromyscus californicus). Physiol Behav 2012; 107:65-75. [PMID: 22634280 DOI: 10.1016/j.physbeh.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 04/21/2012] [Accepted: 05/14/2012] [Indexed: 01/21/2023]
Abstract
Hormones associated with pregnancy and parturition have been implicated in facilitating the onset of maternal behavior via reductions in neophobia, anxiety, and stress responsiveness. To determine whether the onset of paternal behavior has similar associations in biparental male California mice (Peromyscus californicus), we compared paternal responsiveness, neophobia (novel-object test), and anxiety-like behavior (elevated plus maze, EPM) in isolated virgins (housed alone), paired virgins (housed with another male), expectant fathers (housed with pregnant pairmate), and new fathers (housed with pairmate and pups). Corticotropin-releasing hormone (CRH) and Fos immunoreactivity (IR) were quantified in brain tissues following exposure to a predator-odor stressor or under baseline conditions. New fathers showed lower anxiety-like behavior than expectant fathers and isolated virgins in EPM tests. In all housing conditions, stress elevated Fos-IR in the hypothalamic paraventricular nucleus (PVN). Social isolation reduced overall (baseline and stress-induced) Fos- and colocalized Fos/CRH-IR, and increased overall CRH-IR, in the PVN. In the central nucleus of the amygdala, social isolation increased stress-induced CRH-IR and decreased stress-induced activation of CRH neurons. Across all housing conditions, paternally behaving males displayed more anxiety-related behavior than nonpaternal males in the EPM, but showed no differences in CRH- or Fos-IR. Finally, the latency to engage in paternal behavior was positively correlated with the latency to approach a novel object. These results suggest that being a new father does not reduce anxiety, neophobia, or neural stress responsiveness. Low levels of neophobia, however, were associated with, but not necessary for paternal responsiveness.
Collapse
Affiliation(s)
- Miyetani Chauke
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
32
|
Larsen CM, Grattan DR. Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun 2012; 26:201-9. [PMID: 21820505 DOI: 10.1016/j.bbi.2011.07.233] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/04/2011] [Accepted: 07/14/2011] [Indexed: 11/17/2022] Open
Abstract
Elevated prolactin during pregnancy increases neurogenesis in the subventricular zone of the lateral ventricle (SVZ) of the maternal brain. Evidence from our laboratory has shown that low prolactin in early pregnancy, and the consequent suppression of neurogenesis in the SVZ in the adult brain, is associated with increased postpartum anxiety and markedly impaired maternal behavior. Daughters of low prolactin mothers also display increased anxiety and a significant delay in the onset of puberty, which is associated with epigenetic changes in neuronal development (see Fig. 1). This suggests that, in rodents, low prolactin in early pregnancy exerts long-term effects that influence maternal mood postpartum, and offspring development. This mini-review aims to summarize the evidence showing that the prolactin-induced increase in SVZ neurogenesis during pregnancy underlies normal postpartum maternal interactions with pups.
Collapse
Affiliation(s)
- C M Larsen
- Centre for Neuroendocrinology, Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
33
|
Glasper ER, Kozorovitskiy Y, Pavlic A, Gould E. Paternal experience suppresses adult neurogenesis without altering hippocampal function in Peromyscus californicus. J Comp Neurol 2011; 519:2271-81. [PMID: 21456007 DOI: 10.1002/cne.22628] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Paternal care is rare among mammals, occurring in ≈6% of species. California mice (Peromyscus californicus) are unusual; fathers participate extensively in raising their young and display the same components of parental care as mothers, with the exception of nursing. Parenting is a complex experience, having stressful and enriching aspects. The hippocampus is sensitive to experience and responds to both stress and environmental enrichment with changes in structure and function. In rats, where females care exclusively for offspring, parenting is associated with suppressed hippocampal adult neurogenesis. Since this effect has been causally linked to lactation, it is unlikely that fathers would show a similar change. To investigate this issue, we examined adult neurogenesis in the hippocampus of California mouse fathers compared to males without pups and observed reduced adult neurogenesis. Similar effects were found in California mouse mothers. Next, we investigated whether behaviors linked to the hippocampus, namely, object recognition and novelty-suppressed feeding, were altered in fathers, and observed no substantial changes. During caregiving, suppressed adult neurogenesis does not appear to be related to changes in behaviors associated with the hippocampus, although it is possible that there are other effects on hippocampal function.
Collapse
Affiliation(s)
- Erica R Glasper
- Department of Psychology and Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Nulliparous female mice that have not experienced mating, pregnancy or parturition show near immediate spontaneous maternal behaviour when presented with foster pups. The fact that virgin mice display spontaneous maternal behaviour indicates that the hormonal events of pregnancy and parturition are not necessary to produce a rapid onset of maternal behaviour in mice. However, it is not known how similar maternal behaviour is between virgin and lactating mice. In the present study, we show that naturally postpartum females are faster to retrieve pups and spend more time crouching over pups than spontaneously maternal virgin females, and that these differences diminish with increased maternal experience. Moreover, 4 days of experience with pups induced pup retrieval on a novel T-maze. Furthermore, the effects of experience on subsequent maternal responsiveness are not dependent on gonadal hormones because ovariectomised females with 4 days of pup experience show pup retrieval on a novel T-maze similar to that of postpartum mice. Four days of maternal experience also induced T-maze pup retrieval in ovariectomised aromatase knockout female mice that was not significantly different from the maternal responsiveness of ovariectomised wild-type littermates. These data suggest that maternal experience can induce maternal behaviour in females that have never been exposed to oestradiol at any time in development or adulthood. Finally, ovariectomised pup-experienced females continue to retrieve pups on a novel T-maze 1 month after the initial experience, suggesting that, even in the absence of oestradiol, maternal experience produces long-lasting modifications in maternal responsiveness.
Collapse
Affiliation(s)
- D S Stolzenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
35
|
Mann PE, Gervais KJ. Environmental enrichment delays pup-induced maternal behavior in rats. Dev Psychobiol 2011; 53:371-82. [DOI: 10.1002/dev.20526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 12/20/2010] [Indexed: 02/05/2023]
|
36
|
Tarantino LM, Sullivan PF, Meltzer-Brody S. Using animal models to disentangle the role of genetic, epigenetic, and environmental influences on behavioral outcomes associated with maternal anxiety and depression. Front Psychiatry 2011; 2:44. [PMID: 21811473 PMCID: PMC3141357 DOI: 10.3389/fpsyt.2011.00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/05/2011] [Indexed: 11/13/2022] Open
Abstract
The etiology of complex psychiatric disorders results from both genetics and the environment. No definitive environmental factor has been implicated, but studies suggest that deficits in maternal care and bonding may be an important contributing factor in the development of anxiety and depression. Perinatal mood disorders such as postpartum depression occur in approximately 10% of pregnant women and can result in detriments in infant care and bonding. The consequences of impaired maternal-infant attachment during critical early brain development may lead to adverse effects on socioemotional and neurocognitive development in infants resulting in long-term behavioral and emotional problems, including increased vulnerability for mental illness. The exact mechanisms by which environmental stressors such as poor maternal care increase the risk for psychiatric disorders are not known and studies in humans have proven challenging. Two inbred mouse strains may prove useful for studying the interaction between maternal care and mood disorders. BALB/c (BALB) mice are considered an anxious strain in comparison to C57BL/6 (B6) mice in behavioral models of anxiety. These strain differences are most often attributed to genetics but may also be due to environment and gene by environment interactions. For example, BALB mice are described as poor mothers and B6 mice as good mothers and mothering behavior in rodents has been reported to affect both anxiety and stress behaviors in offspring. Changes in gene methylation patterns in response to maternal care have also been reported, providing evidence for epigenetic mechanisms. Characterization of these two mouse inbred strains over the course of pregnancy and in the postpartum period for behavioral and neuroendocrine changes may provide useful information by which to inform human studies, leading to advances in our understanding of the etiology of anxiety and depression and the role of genetics and the environment.
Collapse
Affiliation(s)
- Lisa M Tarantino
- Department of Psychiatry, University of North Carolina Chapel Hill, NC, USA
| | | | | |
Collapse
|
37
|
John D Salamone, Merce Correa, Andrew M Farrar, Eric J Nunes. Role of dopamine–adenosine interactions in the brain circuitry regulating effort-related decision making: insights into pathological aspects of motivation. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Brain dopamine, particularly in the nucleus accumbens, has been implicated in activational aspects of motivation and effort-related processes. Accumbens dopamine depletions reduce the tendency of rats to work for food, and alter effort-related decision making, but leave aspects of food motivation such as appetite intact. Recent evidence indicates that the purine neuromodulator adenosine, largely through actions on adenosine A2A receptors, also participates in regulating effort-related processes. Adenosine A2A antagonists can reverse the effects of dopamine D2 antagonists on effort-related choice, and intra-accumbens injections of adenosine A2A agonists produce effects that are similar to those induced by accumbens dopamine depletion or antagonism. These studies have implications for the understanding and treatment of energy-related disorders such as anergia and fatigue in psychiatry and neurology.
Collapse
|
38
|
Macbeth AH, Luine VN. Changes in anxiety and cognition due to reproductive experience: A review of data from rodent and human mothers. Neurosci Biobehav Rev 2010; 34:452-67. [DOI: 10.1016/j.neubiorev.2009.08.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/14/2022]
|
39
|
Seip KM, Morrell JI. Exposure to pups influences the strength of maternal motivation in virgin female rats. Physiol Behav 2008; 95:599-608. [PMID: 18817796 PMCID: PMC2586058 DOI: 10.1016/j.physbeh.2008.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 07/16/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
Following repeated exposure to foster pups, virgin female rats acquire and eventually express a full spectrum of maternal caretaking behaviors directed toward pups. Though these behaviors are vigorous, these females are reportedly less motivated to seek out and interact with pups (i.e. maternally motivated) than parturient females during early postpartum. The present study systematically assesses how the length of pup-exposure and nature of interactions between the female-pup dyad affect maternal motivation in the virgin female rat. Virgin females were exposed to young pups consistently (24 h/day) across a prolonged period (21 days), briefly (1 h/day) across a relatively brief period (7 days), or distally (pups inaccessible in mesh bag). During final pup-exposure days, females were conditioned and tested for their preference for a pup-associated chamber (e.g. maternal motivation) using conditioned place preference. Early postpartum females provided a comparison group. Fully maternal behavior only emerged in females given prolonged pup-exposure; this behavior improved significantly over time and was maximally expressed for a duration equivalent to early postpartum. Females given brief pup-exposure expressed only emergent maternal behaviors initiated by pups; distal pup-exposure evoked pup-avoidance. Virgin females given prolonged or brief pup-exposure expressed substantial pup-associated chamber preference, with more females preferring the pup-associated chamber following longer pup-exposures in a subtle stepwise relationship. Maternal motivation was strikingly similar in prolonged pup-exposure virgin and early postpartum females. Females given distal pup-exposure completely lacked maternal motivation. Maternal behavior did not predict chamber preference. Results suggest that pup-exposure, regardless of length, is sufficient to support strong maternal motivation, whereas parity is not required.
Collapse
Affiliation(s)
- Katharine M Seip
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| | | |
Collapse
|
40
|
Zhao C, Li M. Sedation and disruption of maternal motivation underlie the disruptive effects of antipsychotic treatment on rat maternal behavior. Pharmacol Biochem Behav 2008; 92:147-56. [PMID: 19041338 DOI: 10.1016/j.pbb.2008.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
The behavioral mechanisms underlying antipsychotic-induced maternal behavior deficits were examined in the present study. Different groups of postpartum rats were treated with haloperidol (0.1 mg/kg), clozapine (10.0 mg/kg), chlordiazepoxide (5.0 mg/kg, an anxiolytic) or vehicle (0.9% saline) on Days 4 and 6 postpartum and their maternal behaviors were tested under either pup-separation (e.g. pups were removed from their mothers for 4 h before testing) or no-pup-separation condition. Maternal behavior and drug-induced sedation were further tested for 3 days from Day 8 to 12 postpartum. Results show that pup-separation, which putatively increases maternal motivation, did significantly shorten clozapine-elongated pup approach latency, increase pup licking and nursing but fail to reverse the deficits in pup retrieval and nest building in the lactating rats treated with haloperidol and clozapine. Repeated haloperidol treatment produced a progressively enhanced disruption on pup retrieval and nest building and an attenuated sedation. In contrast, clozapine showed a progressively diminished disruption on pup retrieval and a concomitantly diminished sedative effect. Based on these findings, we suggest that antipsychotic drugs disrupt active maternal responses at least in part by suppressing maternal motivation, and drug-induced sedation also contributes to this disruptive effect, especially with clozapine.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA
| | | |
Collapse
|
41
|
Agrati D, Zuluaga MJ, Fernández-Guasti A, Meikle A, Ferreira A. Maternal condition reduces fear behaviors but not the endocrine response to an emotional threat in virgin female rats. Horm Behav 2008; 53:232-40. [PMID: 18021777 DOI: 10.1016/j.yhbeh.2007.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 09/20/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Lactating dams and maternal virgin females are less fearful in behavioral tests compared with non-maternal animals, suggesting that maternal condition per se reduces the negative value of threatening stimuli. In addition, lactating females exhibit a diminished hypothalamic-pituitary-adrenal response to potential environmental threats. Can the maternal condition, independently of the endocrine profile of lactation, promote a reduction in the behavioral as well as in the endocrine response to an emotional stressor? To answer this question, anxiety-related and fear behaviors as well as the levels of corticosterone were evaluated in response to a bright-lit open field-loud noise model in maternal and non-maternal non-ovariectomized virgin females and lactating dams in the presence of the pups. Maternal animals, both lactating and virgin, presented an increased exploration of the bright-lit open field and a significant reduction of fear behaviors, indicated by the decreased flight and immobility responses to the subsequent activation of a loud noise, in comparison to non-maternal virgins. Interestingly, maternal virgin females, as non-maternal rats, showed high corticosterone plasma levels, in contrast to the lower endocrine response exhibited by lactating dams when confronted to this threat. Present results suggest that maternal condition allows females to take risks when caring for their young, a behavioral strategy that is independent of the reduced hypothalamic-pituitary-adrenal axis response characteristic of lactation. This evidence points towards a clear dissociation in the mechanisms regulating behavioral and endocrine responses to emotional stressors during motherhood.
Collapse
Affiliation(s)
- D Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Iguá 4225, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
42
|
Lonstein JS. Regulation of anxiety during the postpartum period. Front Neuroendocrinol 2007; 28:115-41. [PMID: 17604088 DOI: 10.1016/j.yfrne.2007.05.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/25/2007] [Accepted: 05/29/2007] [Indexed: 11/18/2022]
Abstract
Healthy mother-infant interactions are critical for the physical, cognitive, and psychological development of offspring. Such interactions rely on numerous factors, including a positive maternal emotional state. However, many postpartum women experience emotional dysregulation, often involving elevated anxiety. Neuroendocrine factors contributing to the onset of postpartum anxiety symptoms are mostly unknown, but irregularities in hypothalamic-pituitary-adrenal axis function, reduced prolactin and oxytocin signaling, or parturitional withdrawal of ovarian, placental and neural steroids could contribute to anxiety in susceptible women. Although the causes of initial onset are unclear, postpartum anxiety can be mitigated by recent contact with infants. Numerous neurochemical systems, including oxytocin, prolactin, GABA, and norepinephrine mediate this anxiolytic effect of infant contact. Insight into the etiology of postpartum anxiety disorders, and how contact with infants helps counter existing anxiety dysregulation, will surely facilitate the diagnosis and treatment of postpartum women at risk for, or experiencing, an anxiety disorder.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Neuroscience Program & Department of Psychology, Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
43
|
Abstract
Recent studies in both animals and humans indicate that gonadal hormones have profound control over emotional states, and certainly contribute to the increased occurrence of psychiatric illness in women. Reports, as reviewed here, suggest that two important regions of the limbic system, the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), control different aspects of emotional behaviour. Short-term cue-specific emotional responses, like Pavlovian fear conditioning, require activation of the CeA, while long-duration and contextual emotional responses, are dependant on the BNST. There is accumulating experimental evidence that gender and sex hormones specifically modulate BNST-mediated anxiety behaviours. Moreover, the functional separation between the CeA and the BNST may be exaggerated during lactation in the rat, a time of profound hormonal and behavioural change. In this study, the effects of sex hormones on fear and anxiety are reviewed with an emphasis on the differential effects of these hormones on functions subserved by the BNST as opposed to the CeA. Studies, as highlighted here, looking at sex hormone and gender effects on the ability of corticotrophin-releasing factor and bright ambient light to enhance startle, emphasise the importance of understanding both the effect of, and brain region where, gonadal hormones exert their control over emotional behaviour.
Collapse
Affiliation(s)
- D Toufexis
- Emory University, Department of Psychiatry, Yerkes National Primate Centre, Atlanta, GA 30329, USA.
| |
Collapse
|
44
|
Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl) 2007; 191:461-82. [PMID: 17225164 DOI: 10.1007/s00213-006-0668-9] [Citation(s) in RCA: 675] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. OBJECTIVE The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. RESULTS The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. CONCLUSIONS Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression.
Collapse
Affiliation(s)
- J D Salamone
- Division of Behavioral Neuroscience, Department of Psychology, University of Connecticut, Storrs, CT, 06269-1020, USA.
| | | | | | | |
Collapse
|
45
|
Barros VG, Rodríguez P, Martijena ID, Pérez A, Molina VA, Antonelli MC. Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse 2007; 60:609-18. [PMID: 17019679 DOI: 10.1002/syn.20336] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chronic maternal stress during pregnancy has been associated with behavioral alterations that persist into adulthood. Moreover, adoption procedures performed immediately after birth can reverse these alterations. In this study, we examined the effects of prenatal restraint stress and adoption at birth (cross-fostering) on the behavioral response to an anxiety-provoking situation and on the adult male offspring expression of benzodiazepine (BDZ) receptors in selected brain areas. Adult offspring of rats stressed during the last week of pregnancy exhibited higher levels of anxiety than control rats. The anxiogenic behavior found at the elevated plus maze (EPM) has been related to the reduced levels of BDZ receptor levels in specific brain areas. Adult offspring of rats stressed during pregnancy exhibited a decrease in the number of BDZ receptors binding sites in the central amygdaloid nucleus (Ce), CA1, CA3, and the dentate gyrus regions of the hippocampus when compared to controls. Regarding the adoption procedure, control pups raised by a foster gestationally stressed mother showed similar levels of anxiety as stressed groups. Stressed offspring raised by a foster control mother showed reduced anxiety levels compared to that of the control groups. Adoption per se showed no difference in time spent, neither in the open arms of the plus maze nor in BDZ receptor levels, when compared to the corresponding control and stressed groups. Stressed offspring raised by a foster control mother reverted BDZ receptor levels to control values. However, control pups raised by a gestationally stressed foster mother showed similar values compared to the control offspring in hippocampus, in spite of showing an anxiogenic behavior in the EPM. We found a significant increase of Ce BDZ receptor levels in control offspring raised by a foster stressed mother that could be explained as a compensatory effect to a GABA receptor desensitization. In summary, the behavioral outcome of the adult offspring is vulnerable both to the stress experience during the late prenatal period as well as to possible variations in care during lactation by mothers subjected to chronic stress during gestation. There seems to be a direct correlation between anxiety state and BDZ receptor levels in the adult offspring raised by their biological mothers. However, the mechanism of BDZ regulation leading to an anxious behavior might be different if the insult is received only postnatally as opposed to both pre and postnatally.
Collapse
Affiliation(s)
- Virginia G Barros
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
46
|
Pereira M, Ferreira A. Demanding pups improve maternal behavioral impairments in sensitized and haloperidol-treated lactating female rats. Behav Brain Res 2006; 175:139-48. [PMID: 16996623 DOI: 10.1016/j.bbr.2006.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/07/2006] [Accepted: 08/12/2006] [Indexed: 11/24/2022]
Abstract
The impairments in the maternal behavior of ovariectomized sensitized females, relative to lactating dams, resemble those deficits found in lactating females after treatment with the D1/D2 DA receptor antagonist haloperidol, which interferes with maternal motivation. Therefore, it could be speculated that these behavioral deficits found in sensitized females and haloperidol-treated dams are due to a reduced motivation to interact with pups. In support of this hypothesis, we have found that both sensitized and haloperidol-treated lactating females exhibited remarkably similar impairments in the expression of all active maternal behaviors relative to lactating dams. Furthermore, these deficits were overridden when they were allowed to interact with 12h-isolated pups (demanding pups). Interestingly, lactating dams also improved their maternal behavior in the presence of demanding pups, and clearly chose demanding more than non-demanding pups in a preference paradigm. These data support the idea that the behavioral deficits of sensitized and haloperidol-treated lactating females are due to a reduced behavioral activation in response to the incentive cues from pups compared to lactating dams, and not because of a motor inability to express maternal behavior. These findings ultimately suggest that pups modulate the activity of DA system involved in the regulation of maternal behavior.
Collapse
Affiliation(s)
- Mariana Pereira
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | | |
Collapse
|
47
|
Abstract
The maternal and neurobiological responses of biological mothers and pup-induced maternal virgin rats were compared 55 and 80 days after an initial 2-day maternal experience. When tested for home cage responsiveness after prolonged isolation from young, the biological, primiparous rats displayed shorter maternal latencies. Primiparous females tested in the presence of pups on the elevated plus-maze displayed increased exploration of the open arms and increased c-Fos expression in the cortical nucleus of the amygdala. Pup exposure and parity also enhanced activation of the nucleus accumbens shell and medial nucleus of the amygdala, respectively. Therefore, although both nulliparous and primiparous rats retain a maternal memory for a prolonged time, the memory and neurochemical response appear stronger in primiparous mothers.
Collapse
|