1
|
Sarkar S, Martinez Reyes C, Jensen CM, Gavornik JP. M2 receptors are required for spatiotemporal sequence learning in mouse primary visual cortex. J Neurophysiol 2024; 131:1213-1225. [PMID: 38629848 PMCID: PMC11381118 DOI: 10.1152/jn.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.
Collapse
Affiliation(s)
- Susrita Sarkar
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Catalina Martinez Reyes
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Cambria M Jensen
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Wada M, Umesawa Y, Sano M, Tajima S, Kumagaya S, Miyazaki M. Weakened Bayesian Calibration for Tactile Temporal Order Judgment in Individuals with Higher Autistic Traits. J Autism Dev Disord 2023; 53:378-389. [PMID: 35064873 PMCID: PMC9889458 DOI: 10.1007/s10803-022-05442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 02/04/2023]
Abstract
Previous psychophysical studies reported a positive aftereffect in tactile temporal order judgments, which can be explained by the Bayesian estimation model ('Bayesian calibration'). We investigated the relationship between Bayesian calibration and autistic traits in participants with typical development (TD) and autism spectrum disorder (ASD). Bayesian calibration was weakened in TD participants with high autistic traits, consistent with the 'hypo-priors' hypothesis for autistic perceptions. The results from the ASD group were generally observed as a continuation of those from the TD groups. Meanwhile, two ASD participants showed irregularly large positive or negative aftereffects. We discussed the mechanisms behind the general results among TD and ASD participants and two particular results among ASD participants based on the Bayesian estimation model.
Collapse
Affiliation(s)
- Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan.
- Faculty of Informatics, Shizuoka University, Hamamatsu, Shizuoka, 432-8011, Japan.
| | - Yumi Umesawa
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan
- Faculty of Medicine, Kyorin University, Mitaka, Tokyo, 181-8611, Japan
| | - Misako Sano
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan
- Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 461-8673, Japan
| | - Seiki Tajima
- Department of Child Psychiatry, Hospital of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, 359-8555, Japan
| | - Shinichiro Kumagaya
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Tokyo, 153-8904, Japan
| | - Makoto Miyazaki
- Faculty of Informatics, Shizuoka University, Hamamatsu, Shizuoka, 432-8011, Japan.
| |
Collapse
|
3
|
Hintze S, Yee JR. Animals in flow - towards the scientific study of intrinsic reward in animals. Biol Rev Camb Philos Soc 2022; 98:792-806. [PMID: 36579815 DOI: 10.1111/brv.12930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The concept of flow, a state of complete absorption in an intrinsically rewarding activity, has played a pivotal role in advancing notions of human well-being beyond minimising suffering towards promoting flourishing and thriving. While flow has played a fundamental role in human positive psychology, it has not yet been explored in non-human animals, leaving an enormous void in our understanding of intrinsic motivation in animals. As ethology and related fields keep progressing in uncovering complex cognitive and affective capacities of non-human animals, we propose the time is ripe to translate the concept of flow to animals. We start by embedding flow in the topic of intrinsic motivation and describe its impact on positive human psychology and potentially positive animal welfare. We then disambiguate flow from related concepts discussed in the animal literature. Next, we derive experimental approaches in animals from the canonical characteristics of flow in humans and provide guidelines for both inducing and assessing flow by focusing on two characteristics that do not necessarily depend on self-report, namely resistance to distraction and time distortion. Not all aspects of the human flow experience are (yet) translatable, but those that are may improve quality of life in captive non-human animals.
Collapse
Affiliation(s)
- Sara Hintze
- Institute of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 38, 1180, Vienna, Austria
| | - Jason R Yee
- Institute of Animal Welfare Science, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| |
Collapse
|
4
|
Kaneko S, Niki Y, Yamada K, Nasukawa D, Ujihara Y, Toda K. Systemic injection of nicotinic acetylcholine receptor antagonist mecamylamine affects licking, eyelid size, and locomotor and autonomic activities but not temporal prediction in male mice. Mol Brain 2022; 15:77. [PMID: 36068635 PMCID: PMC9450238 DOI: 10.1186/s13041-022-00959-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 12/26/2022] Open
Abstract
Nicotinic acetylcholine receptors are thought to be associated with a wide range of phenomena, such as movement, learning, memory, attention, and addiction. However, the causal relationship between nicotinic receptor activity and behavior remains unclear. Contrary to the studies that examined the functions of muscarinic acetylcholine receptors, the role of the nicotinic acetylcholine receptors on behavior has not been examined as extensively. Here, we examined the effects of intraperitoneal injection of mecamylamine, a nicotinic acetylcholine receptor antagonist, on the performance of male mice in a head-fixed temporal conditioning task and a free-moving open-field task. The head-fixed experimental setup allowed us to record and precisely quantify the licking response while the mice performed the behavioral task with no external cues. In addition, by combining the utility of the head-fixed experimental design with computer vision analysis based on deep learning algorithms, we succeeded in quantifying the eyelid size of awake mice. In the temporal conditioning task, we delivered a 10% sucrose solution every 10 s using a blunt-tipped needle placed within the licking distance of the mice. After the training, the mice showed increased anticipatory licking toward the timing of sucrose delivery, suggesting that the mice could predict the timing of the reward. Systemic injection of mecamylamine decreased licking behavior and caused eye closure but had no effect on learned conditioned predictive behavior in the head-fixed temporal conditioning task. In addition, the injection of mecamylamine decreased spontaneous locomotor activity in a dose-dependent manner in the free-moving open-field task. The results in the open-field experiments further revealed that the effect of mecamylamine on fecal output and urination, suggesting the effects on autonomic activities. Our achievement of successful eyelid size recording has potential as a useful approach in initial screening for drug discovery. Our study paves a way forward to understanding the role of nicotinic acetylcholine receptors on learning and behavior.
Collapse
Affiliation(s)
- Shohei Kaneko
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yasuyuki Niki
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Kota Yamada
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
- Japan Society for Promotion of Science, Tokyo, Japan
| | - Daiki Nasukawa
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, TN, Memphis, USA
| | - Koji Toda
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Bruce RA, Weber MA, Volkman RA, Oya M, Emmons EB, Kim Y, Narayanan NS. Experience-related enhancements in striatal temporal encoding. Eur J Neurosci 2021; 54:5063-5074. [PMID: 34097793 PMCID: PMC8511940 DOI: 10.1111/ejn.15344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Temporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson's disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium spiny neurons (MSNs) via dorsal striatal microelectrode arrays in mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to "switch" response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with task experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that a subset of MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.
Collapse
Affiliation(s)
- R. Austin. Bruce
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Matthew A. Weber
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | | - Mayu Oya
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | - Eric B. Emmons
- Department of Biology, Wartburg College, Waverly, IA, 50677
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
6
|
Fung BJ, Sutlief E, Hussain Shuler MG. Dopamine and the interdependency of time perception and reward. Neurosci Biobehav Rev 2021; 125:380-391. [PMID: 33652021 PMCID: PMC9062982 DOI: 10.1016/j.neubiorev.2021.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 01/14/2023]
Abstract
Time is a fundamental dimension of our perception of the world and is therefore of critical importance to the organization of human behavior. A corpus of work - including recent optogenetic evidence - implicates striatal dopamine as a crucial factor influencing the perception of time. Another stream of literature implicates dopamine in reward and motivation processes. However, these two domains of research have remained largely separated, despite neurobiological overlap and the apothegmatic notion that "time flies when you're having fun". This article constitutes a review of the literature linking time perception and reward, including neurobiological and behavioral studies. Together, these provide compelling support for the idea that time perception and reward processing interact via a common dopaminergic mechanism.
Collapse
Affiliation(s)
- Bowen J Fung
- The Behavioural Insights Team, Suite 3, Level 13/9 Hunter St, Sydney NSW 2000, Australia.
| | - Elissa Sutlief
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Marshall G Hussain Shuler
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Woods Basic Science Building Rm914, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Ikarashi M, Tanimoto H. Drosophila acquires seconds-scale rhythmic behavior. J Exp Biol 2021; 224:238112. [PMID: 33795422 DOI: 10.1242/jeb.242443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Detection of the temporal structure of stimuli is crucial for prediction. While perception of interval timing is relevant for immediate behavioral adaptations, it has scarcely been investigated, especially in invertebrates. Here, we examined whether the fruit fly, Drosophila melanogaster, can acquire rhythmic behavior in the range of seconds. To this end, we developed a novel temporal conditioning paradigm utilizing repeated electric shocks. Combined automatic behavioral annotation and time-frequency analysis revealed that behavioral rhythms continued after cessation of the shocks. Furthermore, we found that aging impaired interval timing. This study thus not only demonstrates the ability of insects to acquire behavioral rhythms of a few seconds, but highlights a life-course decline of temporal coordination, which is also common in mammals.
Collapse
Affiliation(s)
- Masayoshi Ikarashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| |
Collapse
|
8
|
Timing behavior in genetic murine models of neurological and psychiatric diseases. Exp Brain Res 2021; 239:699-717. [PMID: 33404792 DOI: 10.1007/s00221-020-06021-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
How timing behavior is altered in different neurodevelopmental and neurodegenerative disorders is a contemporary research question. Genetic murine models (GMM) that offer high construct validity also serve as useful tools to investigate this question. But the literature on timing behavior of different GMMs largely remains to be consolidated. The current paper addresses this gap by reviewing studies that have been conducted with GMMs of neurodevelopmental (e.g. ADHD, schizophrenia, autism spectrum disorder), neurodegenerative disorders (e.g., Alzheimer's disease, Huntington's disease) as well as circadian and other mutant lines. The review focuses on those studies that specifically utilized the peak interval procedure to improve the comparability of findings both within and between different disease models. The reviewed studies revealed timing deficits that are characteristic of different disorders. Specifically, Huntington's disease models had weaker temporal control over the termination of their anticipatory responses, Alzheimer's disease models had earlier timed responses, schizophrenia models had weaker temporal control, circadian mutants had shifted timed responses consistent with shifts in the circadian periods. The differences in timing behavior were less consistent for other conditions such as attention deficit and hyperactivity disorder and mutations related to intellectual disability. We discuss the implications of these findings for the neural basis of an internal stopwatch. Finally, we make methodological recommendations for future research for improving the comparability of the timing behavior across different murine models.
Collapse
|
9
|
Measuring attention in rats with a visual signal detection task: Signal intensity vs. signal duration. Pharmacol Biochem Behav 2020; 199:173069. [PMID: 33144207 DOI: 10.1016/j.pbb.2020.173069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
Measurement of attentional performance in animal behavioral research allows us to investigate neural mechanisms underlying attentional processes and translate results to better understand human attentional function, dysfunction and drug treatments to reverse dysfunction. One useful method to measure attention in experimental animal studies is to use an operant visual signal detection paradigm, consisting of two levers and the rapid flashing of a cue lamp to signal a reward. In this study, we tested the relative sensitivity of this task when using different variants of the stimulus signal, varying brightness or duration of the light cue. To investigate roles of different neural systems underlying attentional processes, we assessed the sensitivity of attentional performance with these two different cue variations with blockade of muscarinic acetylcholine and NMDA glutamate receptors with scopolamine and MK-801 (dizocilpine). Operant signal detection was tested using a signal light that varied in intensity (0.027, 0.269, 1.22 lx) of the signal light or in a paradigm which varied the duration (0.5 s, 1 s, 2 s) of the signal light. Both methods of assessing attention showed construct validity for producing gradients of accuracy for signal detection; the dimmest cue led to less accurate responding compared to the brighter cues, and the shortest duration led to less accuracy compared to the longer durations. However, the tests differed in their sensitivity to pharmacological disruption. With the duration test, the high dose of MK-801 along with co-exposure of scopolamine and MK-801 caused a significant reduction of hit and rejection accuracy. Conversely, the intensity variation test did not show significant differences as a function of drug exposures. These data suggest that changes in signal duration, rather than signal intensity, during operant signal detection may have higher sensitivity to detecting drug effects and be a more useful technique for examining pharmacological interventions on attentional behavior and performance.
Collapse
|
10
|
Balcı F, Freestone D. The Peak Interval Procedure in Rodents: A Tool for Studying the Neurobiological Basis of Interval Timing and Its Alterations in Models of Human Disease. Bio Protoc 2020; 10:e3735. [PMID: 33659396 PMCID: PMC7854006 DOI: 10.21769/bioprotoc.3735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/02/2022] Open
Abstract
Animals keep track of time intervals in the seconds to minutes range with, on average, high accuracy but substantial trial-to-trial variability. The ability to detect the statistical signatures of such timing behavior is an indispensable feature of a good and theoretically-tractable testing procedure. A widely used interval timing procedure is the peak interval (PI) procedure, where animals learn to anticipate rewards that become available after a fixed delay. After learning, they cluster their responses around that reward-availability time. The in-depth analysis of such timed anticipatory responses leads to the understanding of an internal timing mechanism, that is, the processing dynamics and systematic biases of the brain's clock. This protocol explains in detail how the PI procedure can be implemented in rodents, from training through testing to analysis. We showcase both trial-by-trial and trial-averaged analytical methods as a window into these internal processes. This protocol has the advantages of capturing timing behavior in its full-complexity in a fashion that allows for a theoretical treatment of the data.
Collapse
Affiliation(s)
- Fuat Balcı
- Koç University, Department of Psychology, Istanbul, Turkey
| | - David Freestone
- William Paterson University, Department of Psychology, NJ, United States
| |
Collapse
|
11
|
Gür E, Duyan YA, Arkan S, Karson A, Balcı F. Interval timing deficits and their neurobiological correlates in aging mice. Neurobiol Aging 2020; 90:33-42. [PMID: 32220513 DOI: 10.1016/j.neurobiolaging.2020.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/27/2020] [Accepted: 02/22/2020] [Indexed: 11/24/2022]
Abstract
Age-related neurobiological and cognitive alterations suggest that interval timing (as a related function) is also altered in aging, which can, in turn, disrupt timing-dependent functions. We investigated alterations in interval timing with aging and accompanying neurobiological changes. We tested 4-6, 10-12, and 18-20 month-old mice on the dual peak interval procedure. Results revealed a specific deficit in the termination of timed responses (stop-times). The decision processes contributed more to timing variability (vs. clock/memory process) in the aged mice. We observed age-dependent reductions in the number of dopaminergic neurons in the VTA and SNc, cholinergic neurons in the medial septum/diagonal band (MS/DB) complex, and density of dopaminergic axon terminals in the DLS/DMS. Negative correlations were found between the number of dopaminergic neurons in the VTA and stop times, and the number of cholinergic neurons in MS/DB complex and the acquisition of stop times. Our results point at age-dependent changes in the decisional components of interval timing and the role of dopaminergic and cholinergic functions in these behavioral alterations.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Yalçın Akın Duyan
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Sertan Arkan
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey; Kocaeli University, Physiology Department, Umuttepe Campus, Kocaeli, Turkey
| | - Ayşe Karson
- Kocaeli University, Physiology Department, Umuttepe Campus, Kocaeli, Turkey
| | - Fuat Balcı
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
12
|
Gür E, Duyan YA, Balcı F. Probabilistic Information Modulates the Timed Response Inhibition Deficit in Aging Mice. Front Behav Neurosci 2019; 13:196. [PMID: 31551727 PMCID: PMC6734164 DOI: 10.3389/fnbeh.2019.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/13/2019] [Indexed: 01/04/2023] Open
Abstract
How interval timing is affected by aging constitutes one of the contemporary research questions. There is however a limited number of studies that investigate this research question in animal models of aging. The current study investigated how temporal decision-making is affected by aging. Initially, we trained young (2–3 month-old) and old C57BL/6J male mice (18–19 month-old) independently with short (3 s) and long (9 s) intervals by signaling, in each trial, the hopper associated with the interval that is in effect in that trial. The probability of short and long trials was manipulated (0.25 or 0.75) for different animals in each age group. During testing, both hoppers were illuminated, and thus active trial type was not differentiated. We expected mice to spontaneously combine the independently acquired time interval-location-probability information to adaptively guide their timing behavior in test trials. This adaptive ability and the resultant timing behavior were analyzed and compared between the age groups. Both young and old mice indeed adjusted their timing behavior in an abrupt fashion based on the independently acquired temporal-spatial-probabilistic information. The core timing ability of old mice was also intact. However, old mice had difficulty in terminating an ongoing timed response when the probability for the short trial was higher and this difference disappeared in the group that was exposed to a lower probability of short trials. These results suggest an inhibition problem in old mice as reflected through the threshold modulation process in timed decisions, which is cognitively penetrable to the probabilistic information.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision Making Laboratory, Koç University, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Yalçın Akın Duyan
- Timing and Decision Making Laboratory, Koç University, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Fuat Balcı
- Timing and Decision Making Laboratory, Koç University, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
13
|
Marshall HJ, Pezze MA, Fone KCF, Cassaday HJ. Age-related differences in appetitive trace conditioning and novel object recognition procedures. Neurobiol Learn Mem 2019; 164:107041. [PMID: 31351120 PMCID: PMC6857625 DOI: 10.1016/j.nlm.2019.107041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/31/2019] [Accepted: 07/10/2019] [Indexed: 11/25/2022]
Abstract
Longitudinal study of middle age in the rat with matched younger control cohort. Appetitive trace conditioning and novel object recognition tests of working memory. Transient between-groups working memory impairments aged 12 compared with 2 months. Object exploration reduced with age but working memory recovered. Object exploration and ITI nosepoking showed some correlation with 5-HIAA/5-HT.
Appetitive trace conditioning (TC) was examined over 6 months in younger-adult (2–8 months) and middle-aged (12–18 months) male Wistar RccHan rats, to test for early age-related impairment in working memory. Novel object recognition (NOR) was included as a comparison task, to provide a positive control in the event that the expected impairment in TC was not demonstrated. The results showed that TC improved at both ages at the 2 s but not at the 10 s trace interval. There was, however, evidence for reduced improvement from one day to the next in the middle-aged cohort tested with the 2 s trace conditioned stimulus. Moreover, within the 10 s trace, responding progressively distributed later in the trace interval, in the younger-adult but not the middle-aged cohort. Middle-aged rats showed NOR discriminative impairment at a 24 h but not at a 10 min retention interval. Object exploration was overall reduced in middle-aged rats and further reduced longitudinally. At the end of the study, assessing neurochemistry by HPLC-ED showed reduced 5-HIAA/5-HT in the dorsal striatum of the middle-aged rats and some correlations between striatal 5-HIAA/5-HT and activity parameters. Overall the results suggest that, taken in isolation, age-related impairments may be overcome by experience. This recovery in performance was seen despite the drop in activity levels in older animals, which might be expected to contribute to cognitive decline.
Collapse
Affiliation(s)
- Hayley J Marshall
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom
| | - Marie A Pezze
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom
| | - Kevin C F Fone
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom
| | - Helen J Cassaday
- University of Nottingham, Psychology, University Park, Nottingham NG72RD, United Kingdom.
| |
Collapse
|
14
|
Zhang Q, Jung D, Larson T, Kim Y, Narayanan NS. Scopolamine and Medial Frontal Stimulus-Processing during Interval Timing. Neuroscience 2019; 414:219-227. [PMID: 31299344 DOI: 10.1016/j.neuroscience.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and Alzheimer's disease (AD) involve loss of cholinergic neurons in the basal forebrain. Here, we investigate how cholinergic dysfunction impacts the frontal cortex during interval timing, a process that can be impaired in PD and AD patients. Interval timing requires participants to estimate an interval of several seconds by making a motor response, and depends on the medial frontal cortex (MFC), which is richly innervated by basal forebrain cholinergic projections. Past work has shown that scopolamine, a muscarinic cholinergic receptor antagonist, reliably impairs interval timing. We tested the hypothesis that scopolamine would attenuate time-related ramping, a key form of temporal processing in the MFC. We recorded neuronal ensembles from eight mice during performance of a 12-s fixed-interval timing task, which was impaired by the administration of scopolamine. Consistent with past work, scopolamine impaired timing. To our surprise, we found that time-related ramping was unchanged, but stimulus-related activity was enhanced in the MFC. Principal component analyses revealed no consistent changes in time-related ramping components, but did reveal changes in higher components. Taken together, these data indicate that scopolamine changes stimulus processing rather than temporal processing in the MFC. These data could help understand how cholinergic dysfunction affects cortical circuits in diseases such as PD, DLB, and AD.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Dennis Jung
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Travis Larson
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Youngcho Kim
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Nandakumar S Narayanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
15
|
Gür E, Fertan E, Alkins K, Wong AA, Brown RE, Balcı F. Interval timing is disrupted in female 5xFAD mice: An indication of altered memory processes. J Neurosci Res 2019; 97:817-827. [PMID: 30973189 DOI: 10.1002/jnr.24418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/23/2022]
Abstract
Temporal information processing in the seconds-to-minutes range is disrupted in patients with Alzheimer's disease (AD). In this study, we investigated the timing behavior of the 5xFAD mouse model of AD in the peak interval (PI) procedure. Nine-month-old female mice were trained with sucrose solution reinforcement for their first response after a fixed-interval (FI) and tested in the inter-mixed non-reinforced PI trials that lasted longer than FI. Timing performance indices were estimated from steady-state timed anticipatory nose-poking responses in the PI trials. We found that the time of maximal reward expectancy (peak time) of the 5xFAD mice was significantly earlier than that of the wild-type (WT) controls with no differences in other indices of timing performance. These behavioral differences corroborate the findings of previous studies on the disruption of temporal associative memory abilities of 5xFAD mice and can be accounted for by the scalar timing theory based on altered long-term memory consolidation of temporal information in the 5xFAD mice. This is the first study to directly show an interval timing phenotype in a genetic mouse model of AD.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kindree Alkins
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fuat Balcı
- Timing and Decision Making Laboratory, Psychology Department, Koç University, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
16
|
Zeki M, Balcı F. A Simplified Model of Communication Between Time Cells: Accounting for the Linearly Increasing Timing Imprecision. Front Comput Neurosci 2019; 12:111. [PMID: 30760994 PMCID: PMC6361830 DOI: 10.3389/fncom.2018.00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
Many organisms can time intervals flexibly on average with high accuracy but substantial variability between the trials. One of the core psychophysical features of interval timing functions relates to the signatures of this timing variability; for a given individual, the standard deviation of timed responses/time estimates is nearly proportional to their central tendency (scalar property). Many studies have aimed at elucidating the neural basis of interval timing based on the neurocomputational principles in a fashion that would explain the scalar property. Recent experimental evidence shows that there is indeed a specialized neural system for timekeeping. This system, referred to as the "time cells," is composed of a group of neurons that fire sequentially as a function of elapsed time. Importantly, the time interval between consecutively firing time cell ensembles has been shown to increase with more elapsed time. However, when the subjective time is calculated by adding the distributions of time intervals between these sequentially firing time cell ensembles, the standard deviation would be compressed by the square root function. In light of this information the question becomes, "How should the signaling between the sequentially firing time cell ensembles be for the resulting variability to increase linearly with time as required by the scalar property?" We developed a simplified model of time cells that offers a mechanism for the synaptic communication of the sequentially firing neurons to address this ubiquitous property of interval timing. The model is composed of a single layer of time cells formulated in the form of integrate-and-fire neurons with feed-forward excitatory connections. The resulting behavior is simple neural wave activity. When this model is simulated with noisy conductances, the standard deviation of the time cell spike times increases proportionally to the mean of the spike-times. We demonstrate that this statistical property of the model outcomes is robustly observed even when the values of the key model parameters are varied.
Collapse
Affiliation(s)
- Mustafa Zeki
- Department of Mathematics, College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Fuat Balcı
- Department of Psychology, Koç University, Istanbul, Turkey
| |
Collapse
|
17
|
Gür E, Fertan E, Kosel F, Wong AA, Balcı F, Brown RE. Sex differences in the timing behavior performance of 3xTg-AD and wild-type mice in the peak interval procedure. Behav Brain Res 2018; 360:235-243. [PMID: 30508608 DOI: 10.1016/j.bbr.2018.11.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 01/11/2023]
Abstract
We investigated interval timing behavior of 10-month-old male and female 3xTg-AD mice compared with their B6129F2/J wild type controls using the peak interval procedure with a 15 s target interval. Multiple parameters reflecting different aspects of timing performance were extracted from steady-state anticipatory nose-poking behavior using two different approaches: single trial analyses and average response curve analyses. These measures can dissociate the differences in performance due to distortions in the interval timing ability or to motivational decline (i.e. apathy); both of which have been reported in Alzheimer patients. We found that the interval timing ability of male and female 3xTg-AD mice did not differ from wild-type controls. However, in measures reflecting motivational state, we found significant sex differences regardless of genotype. Specifically, female mice initiated anticipatory responding later in the trial and had lower response amplitudes than males. Although our findings can also be interpreted in terms of differences in temporal control for response initiation, they more strongly suggest the effect of differential incentive motivation between sexes on timing behavior in these mice.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Filip Kosel
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimee A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fuat Balcı
- Timing and Decision Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Research Center for Translational Medicine, Koç University, Istanbul, Turkey.
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
18
|
Davis GL, Stewart A, Stanwood GD, Gowrishankar R, Hahn MK, Blakely RD. Functional coding variation in the presynaptic dopamine transporter associated with neuropsychiatric disorders drives enhanced motivation and context-dependent impulsivity in mice. Behav Brain Res 2017; 337:61-69. [PMID: 28964912 DOI: 10.1016/j.bbr.2017.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Recent genetic analyses have provided evidence that clinical commonalities associated with different psychiatric diagnoses often have shared mechanistic underpinnings. The development of animal models expressing functional genetic variation attributed to multiple disorders offers a salient opportunity to capture molecular, circuit and behavioral alterations underlying this hypothesis. In keeping with studies suggesting dopaminergic contributions to attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BPD) and autism spectrum disorder (ASD), subjects with these diagnoses have been found to express a rare, functional coding substitution in the dopamine (DA) transporter (DAT), Ala559Val. We developed DAT Val559 knock-in mice as a construct valid model of dopaminergic alterations that drive multiple clinical phenotypes, and here evaluate the impact of lifelong expression of the variant on impulsivity and motivation utilizing the 5- choice serial reaction time task (5-CSRTT) and Go/NoGo as well as tests of time estimation (peak interval analysis), reward salience (sucrose preference), and motivation (progressive ratio test). Our findings indicate that the DAT Val559 variant induces impulsivity behaviors that are dependent upon the reward context, with increased impulsive action observed when mice are required to delay responding for a reward, whereas mice are able to withhold responding if there is a probability of reward for a correct rejection. Utilizing peak interval and progressive ratio tests, we provide evidence that impulsivity is likely driven by an enhanced motivational phenotype that also may drive faster task acquisition in operant tasks. These data provide critical validation that DAT, and more generally, DA signaling perturbations can drive impulsivity that can manifest in specific contexts and not others, and may rely on motivational alterations, which may also drive increased maladaptive reward seeking.
Collapse
Affiliation(s)
- Gwynne L Davis
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Adele Stewart
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, United States.
| | - Raajaram Gowrishankar
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States.
| | - Maureen K Hahn
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Ave, Nashville, TN 37232, United States; Department of Biomedical Science, Charles E. Schmidt College of Medicine, United States; Brain Institute, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, United States.
| |
Collapse
|
19
|
Cope ZA, Halberstadt AL, van Enkhuizen J, Flynn AD, Breier M, Swerdlow NR, Geyer MA, Young JW. Premature responses in the five-choice serial reaction time task reflect rodents' temporal strategies: evidence from no-light and pharmacological challenges. Psychopharmacology (Berl) 2016; 233:3513-25. [PMID: 27534540 PMCID: PMC5023490 DOI: 10.1007/s00213-016-4389-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE The five-choice serial reaction time task (5-CSRTT) is regularly used to study attention and impulsivity. In the 5-CSRTT, rodents initiate a trial, then after an inter-trial interval (ITI), a light appears in one of five holes. Responding in the lit vs. unlit hole reflects attention (accuracy), while responding prematurely before a light appears is suggested to reflect impulsivity/response disinhibition. Comparison of rat and mouse 5-CSRTT performance has raised questions on the validity of premature responses as measuring impulsivity/response inhibition. To minimize effort, rodents may use a temporal strategy, enabling their "timing" of the ITI, minimizing the need to attend during this delay. Greater reliance on this strategy could result in premature responses due to "guesses" if their timing was poor/altered. OBJECTIVES To assess the degree to which rats and/or mice utilize a temporal strategy, we challenged performance using infrequent no-light trials during 5-CSRTT performance. RESULTS Even when no light appeared when one was expected, rats responded ~60 % compared to ~40 % in mice, indicating a greater reliance on a temporal strategy by rats than by mice. Consistent with this hypothesis, rats made more premature responses than mice. Additional studies using a temporal discrimination task and a 5-CSRTT variant demonstrated that delta-9-tetrahydrocannabinol, the active ingredient in cannabis, slowed temporal perception and reduced premature responses. CONCLUSIONS These data provide behavioral and pharmacological evidence indicating that premature responses are heavily influenced by temporal perception. Hence, they may reflect an aspect of waiting impulsivity, but not response disinhibition, an important distinction for translational clinical research.
Collapse
Affiliation(s)
- Zackary A. Cope
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Aaron D. Flynn
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Michelle Breier
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804,Research Service, VA San Diego Healthcare System, San Diego, CA
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804,Research Service, VA San Diego Healthcare System, San Diego, CA,Correspondence: Jared W. Young, Ph.D., Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, California, 92093-0804, Tel: +1 619 543 3582, Fax: +1 619 735 9205,
| |
Collapse
|
20
|
|
21
|
An assessment of horse (Equus ferus caballus) responding on fixed interval schedules of reinforcement: An individual analysis. Behav Processes 2015; 120:1-13. [PMID: 26297471 DOI: 10.1016/j.beproc.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/05/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
Abstract
We assessed different measures of temporal control of horse (N=16) responding on fixed interval schedules of reinforcement and a peak procedure. Subjects were trained to insert their heads into a response hoop to break an infrared beam in order to receive horse treats from an automatic feeder. We analyzed cumulative response records, binned response levels, quarter life, latency to first response, breakpoint, and inter-response patterns of the fixed interval trials. To analyze the peak procedure trials, we performed a series of bin analyses. To avoid potential pitfalls associated with aggregate analyses, we performed individual trial and subject analyses using an ordinal analysis within Observation Oriented Modeling. Most subjects produced clear indications that responding came under temporal control of the fixed interval schedules for most of our investigated measures, and some subjects' response levels peaked at half of the peak trial intervals. We provide the first quantitative evidence of equine timing performances using protocols based on fixed interval schedules of reinforcement.
Collapse
|
22
|
Daniels CW, Watterson E, Garcia R, Mazur GJ, Brackney RJ, Sanabria F. Revisiting the effect of nicotine on interval timing. Behav Brain Res 2015; 283:238-50. [PMID: 25637907 DOI: 10.1016/j.bbr.2015.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/13/2015] [Accepted: 01/18/2015] [Indexed: 11/18/2022]
Abstract
This paper reviews the evidence for nicotine-induced acceleration of the internal clock when timing in the seconds-to-minutes timescale, and proposes an alternative explanation to this evidence: that nicotine reduces the threshold for responses that result in more reinforcement. These two hypotheses were tested in male Wistar rats using a novel timing task. In this task, rats were trained to seek food at one location after 8s since trial onset and at a different location after 16s. Some rats received the same reward at both times (group SAME); some received a larger reward at 16s (group DIFF). Steady baseline performance was followed by 3 days of subcutaneous nicotine administration (0.3mg/kg), baseline recovery, and an antagonist challenge (mecamylamine, 1.0mg/kg). Nicotine induced a larger, immediate reduction in latencies to switch (LTS) in group DIFF than in group SAME. This effect was sustained throughout nicotine administration. Mecamylamine pretreatment and nicotine discontinuation rapidly recovered baseline performance. These results support a response-threshold account of nicotinic disruption of timing performance, possibly mediated by nicotinic acetylcholine receptors. A detailed analysis of the distribution of LTSs suggests that anomalous effects of nicotine on LTS dispersion may be due to loss of temporal control of behavior.
Collapse
|
23
|
Atomoxetine reduces hyperactive/impulsive behaviours in neurokinin-1 receptor 'knockout' mice. Pharmacol Biochem Behav 2014; 127:56-61. [PMID: 25450119 PMCID: PMC4258612 DOI: 10.1016/j.pbb.2014.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 01/23/2023]
Abstract
Background Mice with functional ablation of the neurokinin-1 receptor gene (NK1R−/−) display behavioural abnormalities which resemble the hyperactivity, inattention and impulsivity seen in Attention Deficit Hyperactivity Disorder (ADHD). Here, we investigated whether the established ADHD treatment, atomoxetine, alleviates these abnormalities when tested in the light/dark exploration box (LDEB) and 5-Choice Serial Reaction-Time Task (5-CSRTT). Methods Separate cohorts of mice were tested in the 5-CSRTT and LDEB after treatment with no injection, vehicle or atomoxetine (5-CSRTT: 0.3, 3 or 10 mg/kg; LDEB: 1, 3 or 10 mg/kg). Results Atomoxetine reduced the hyperactivity displayed by NK1R−/− mice in the LDEB at a dose (3 mg/kg) which did not affect the locomotor activity of wildtypes. Atomoxetine (10 mg/kg) also reduced impulsivity in NK1R−/− mice, but not wildtypes, in the 5-CSRTT. No dose of drug affected attention in either genotype. Conclusions This evidence that atomoxetine reduces hyperactive/impulsive behaviours in NK1R−/− mice consolidates the validity of using NK1R−/− mice in research of the aetiology and treatment of ADHD. We compared the behavioural response to atomoxetine in NK1R−/− and wildtype mice. Atomoxetine reduced hyperactivity and impulsivity in NK1R−/− mice but not wildtypes. This was not explained by changes in animals' emotional status or motor motivation. NK1R−/− mice are more sensitive to atomoxetine (an ADHD treatment) than wildtypes. These findings consolidate the NK1R−/− mouse model of ADHD.
Collapse
|
24
|
Gershman SJ, Moustafa AA, Ludvig EA. Time representation in reinforcement learning models of the basal ganglia. Front Comput Neurosci 2014; 7:194. [PMID: 24409138 PMCID: PMC3885823 DOI: 10.3389/fncom.2013.00194] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022] Open
Abstract
Reinforcement learning (RL) models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between RL models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both RL and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Marcs Institute for Brain and Behaviour, University of Western Sydney Sydney, NSW, Australia
| | - Elliot A Ludvig
- Princeton Neuroscience Institute and Department of Mechanical and Aerospace Engineering, Princeton University Princeton, NJ, USA ; Department of Psychology, University of Warwick Coventry, UK
| |
Collapse
|
25
|
Heilbronner SR, Meck WH. Dissociations between interval timing and intertemporal choice following administration of fluoxetine, cocaine, or methamphetamine. Behav Processes 2014; 101:123-34. [PMID: 24135569 PMCID: PMC4081038 DOI: 10.1016/j.beproc.2013.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 12/26/2022]
Abstract
The goal of our study was to characterize the relationship between intertemporal choice and interval timing, including determining how drugs that modulate brain serotonin and dopamine levels influence these two processes. In Experiment 1, rats were tested on a standard 40-s peak-interval procedure following administration of fluoxetine (3, 5, or 8 mg/kg) or vehicle to assess basic effects on interval timing. In Experiment 2, rats were tested in a novel behavioral paradigm intended to simultaneously examine interval timing and impulsivity. Rats performed a variant of the bi-peak procedure using 10-s and 40-s target durations with an additional "defection" lever that provided the possibility of a small, immediate reward. Timing functions remained relatively intact, and 'patience' across subjects correlated with peak times, indicating a negative relationship between 'patience' and clock speed. We next examined the effects of fluoxetine (5 mg/kg), cocaine (15 mg/kg), or methamphetamine (1 mg/kg) on task performance. Fluoxetine reduced impulsivity as measured by defection time without corresponding changes in clock speed. In contrast, cocaine and methamphetamine both increased impulsivity and clock speed. Thus, variations in timing may mediate intertemporal choice via dopaminergic inputs. However, a separate, serotonergic system can affect intertemporal choice without affecting interval timing directly. This article is part of a Special Issue entitled: Associative and Temporal Learning.
Collapse
Affiliation(s)
- Sarah R Heilbronner
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
26
|
Hanks JB, González-Maeso J. Animal models of serotonergic psychedelics. ACS Chem Neurosci 2013; 4:33-42. [PMID: 23336043 DOI: 10.1021/cn300138m] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 11/30/2022] Open
Abstract
The serotonin 5-HT(2A) receptor is the major target of psychedelic drugs such as lysergic acid diethylamide (LSD), mescaline, and psilocybin. Serotonergic psychedelics induce profound effects on cognition, emotion, and sensory processing that often seem uniquely human. This raises questions about the validity of animal models of psychedelic drug action. Nonetheless, recent findings suggest behavioral abnormalities elicited by psychedelics in rodents that predict such effects in humans. Here we review the behavioral effects induced by psychedelic drugs in rodent models, discuss the translational potential of these findings, and define areas where further research is needed to better understand the molecular mechanisms and neuronal circuits underlying their neuropsychological effects.
Collapse
Affiliation(s)
- James B. Hanks
- Departments of Psychiatry and ‡Neurology, §Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, United States
| | - Javier González-Maeso
- Departments of Psychiatry and ‡Neurology, §Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, United States
| |
Collapse
|
27
|
Lake JI, Meck WH. Differential effects of amphetamine and haloperidol on temporal reproduction: Dopaminergic regulation of attention and clock speed. Neuropsychologia 2013; 51:284-92. [DOI: 10.1016/j.neuropsychologia.2012.09.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 11/26/2022]
|
28
|
Young JW, Jentsch JD, Bussey TJ, Wallace TL, Hutcheson DM. Consideration of species differences in developing novel molecules as cognition enhancers. Neurosci Biobehav Rev 2012; 37:2181-93. [PMID: 23064177 DOI: 10.1016/j.neubiorev.2012.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 01/15/2023]
Abstract
The NIH-funded CNTRICS initiative has coordinated efforts to promote the vertical translation of novel procognitive molecules from testing in mice, rats and non-human primates, to clinical efficacy in patients with schizophrenia. CNTRICS highlighted improving construct validation of tasks across species to increase the likelihood that the translation of a candidate molecule to humans will be successful. Other aspects of cross-species behaviors remain important however. This review describes cognitive tasks utilized across species, providing examples of differences and similarities of innate behavior between species, as well as convergent construct and predictive validity. Tests of attention, olfactory discrimination, reversal learning, and paired associate learning are discussed. Moreover, information on the practical implication of species differences in drug development research is also provided. The issues covered here will aid in task development and utilization across species as well as reinforcing the positive role preclinical research can have in developing procognitive treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA.
| | | | | | | | | |
Collapse
|
29
|
Evaluation of rate-dependency and internal clock effects of d-amphetamine. Behav Processes 2012; 90:428-32. [DOI: 10.1016/j.beproc.2012.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/08/2012] [Accepted: 04/12/2012] [Indexed: 11/21/2022]
|
30
|
Abstract
Impulsive action, the failure to withhold an inappropriate response, is treated clinically with dopamine agonists such as amphetamine. Despite the therapeutic efficacy, these drugs have inconsistent effects on impulsive action in rodents, causing improvements or disruptions in different tasks. Thus, we hypothesized that amphetamine is producing an effect by altering distinct cognitive processes in each task. To test this idea, we used the response inhibition (RI) task and trained rats to withhold responding for sucrose until a signal is presented. We then varied the duration that subjects were required to inhibit responding (short=4 s; long=60 s; or variable=1-60 s) and examined whether this influenced the pattern of premature responses. We also tested the effects of amphetamine (0.0, 0.125, 0.25, 0.5, and 1.0 mg/kg) on each task variant. The probability of premature responding varied across the premature interval with a unique pattern of time-dependent errors emerging in each condition. Amphetamine also had distinct effects on each version: the drug promoted premature responding when subjects expected a consistent delay, regardless of its duration, but reduced premature responding when the delay was unpredictable. We propose that the ability to inhibit a motor response is controlled by a different combination of cognitive processes in the three task conditions. These include timing, conditioned avoidance, and attention, which then interact with amphetamine to increase or decrease impulsive action. The effect of amphetamine on impulsive action, therefore, is not universal, but depends on the subject's experience and expectation of the task demands.
Collapse
|
31
|
Abstract
We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.
Collapse
|
32
|
Wiener M, Lohoff FW, Coslett HB. Double dissociation of dopamine genes and timing in humans. J Cogn Neurosci 2011; 23:2811-21. [PMID: 21261454 DOI: 10.1162/jocn.2011.21626] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of lines of evidence implicate dopamine in timing [Rammsayer, T. H. Neuropharmacological approaches to human timing. In S. Grondin (Ed.), Psychology of time (pp. 295-320). Bingley, UK: Emerald, 2008; Meck, W. H. Neuropharmacology of timing and time perception. Brain Research, Cognitive Brain Research, 3, 227-242, 1996]. Two human genetic polymorphisms are known to modulate dopaminergic activity. DRD2/ANKK1-Taq1a is a D(2) receptor polymorphism associated with decreased D(2) density in the striatum [Jönsson, E. G., Nothen, M. M., Grunhage, F., Farde, L., Nakashima, Y., Propping, P., et al. Polymorphisms in the dopamine D(2) receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4, 290-296, 1999]; COMT Val158Met is a functional polymorphism associated with increased activity of the COMT enzyme such that catabolism of synaptic dopamine is greater in pFC [Meyer-Lindenberg, A., Kohn, P. D., Kolachana, B., Kippenhan, S., McInerney-Leo, A., Nussbaum, R., et al. Midbrain dopamine and prefrontal function in humans: Interaction and modulation by COMT genotype. Nature Neuroscience, 8, 594-596, 2005]. To investigate the role of dopamine in timing, we genotyped 65 individuals for DRD2/ANKK1-Taq1a, COMT Val158Met, and a third polymorphism, BDNF Val66Met, a functional polymorphism affecting the expression of brain-derived neurotrophic factor [Egan, M. F., Kojima, M., Callicott, J. H., Goldberg, T. E., Kolachana, B. S., Bertolino, A., et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257-269, 2003]. Subjects were tested on a temporal discrimination task with sub- and supra-second intervals (500- and 2000-msec standards) as well as a spontaneous motor tempo task. We found a double dissociation for temporal discrimination: the DRD2/ANKK1-Taq1a polymorphism (A1+ allele) was associated with significantly greater variability for the 500-msec duration only, whereas the COMT Val158Met polymorphism (Val/Val homozygotes) was associated with significantly greater variability for the 2000-msec duration only. No differences were detected for the BDNF Vall66Met variant. Additionally, the DRD2/ANKK1-Taq1a polymorphism was associated with a significantly slower preferred motor tempo. These data provide a potential biological basis for the distinctions between sub- and supra-second timing and suggest that BG are integral for the former whereas pFC is implicated in the latter.
Collapse
Affiliation(s)
- Martin Wiener
- University of Pennsylvania, Philadelphia, PA 19104-6241, USA.
| | | | | |
Collapse
|
33
|
Motivational effects on interval timing in dopamine transporter (DAT) knockdown mice. Brain Res 2010; 1325:89-99. [DOI: 10.1016/j.brainres.2010.02.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/23/2022]
|
34
|
Johnson RN, Ward RD, Odum AL. Baseline training history and effects of methamphetamine on performance of pigeons on an interval-bisection task. Behav Processes 2010; 84:484-9. [PMID: 20170715 DOI: 10.1016/j.beproc.2010.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 11/19/2022]
Abstract
Length of baseline training influences how methamphetamine disrupts temporal performance under a peak interval schedule. Acute methamphetamine produces overestimation of time following relatively brief training, but following extended training, methamphetamine produces more general loss of stimulus control. The current study extends the study of training length on the effects of methamphetamine to an interval-bisection procedure. Six pigeons responded under a psychophysical choice procedure in which responses to one key color were correct after presentation of four shorter sample durations and responses to another key color were correct after presentation of four longer sample durations. One group of three pigeons received briefer baseline training (45 sessions), while another group received more extended training (223 sessions) prior to methamphetamine administration. There was no evidence of overestimation of time or generalized loss of stimulus control in either group. Sensitivity (precision of timing) was higher in the group with more extensive training and was disrupted by methamphetamine.
Collapse
Affiliation(s)
- Robert N Johnson
- Department of Psychology, Utah State University, 2800 Old Main Hill, Logan, Logan, UT 84322-2810, United States.
| | | | | |
Collapse
|
35
|
Buhusi CV, Aziz D, Winslow D, Carter RE, Swearingen JE, Buhusi MC. Interval timing accuracy and scalar timing in C57BL/6 mice. Behav Neurosci 2009; 123:1102-13. [PMID: 19824777 DOI: 10.1037/a0017106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In many species, interval timing behavior is accurate-appropriate estimated durations-and scalar-errors vary linearly with estimated durations. Whereas accuracy has been previously examined, scalar timing has not been clearly demonstrated in house mice (Mus musculus), raising concerns about mouse models of human disease. The authors estimated timing accuracy and precision in C57BL/6 mice, the most used background strain for genetic models of human disease, in a peak-interval procedure with multiple intervals. Both when timing 2 intervals (Experiment 1) or 3 intervals (Experiment 2), C57BL/6 mice demonstrated varying degrees of timing accuracy. An important finding was that, both at the individual and group levels, their precision varied linearly with the subjective estimated duration. Further evidence for scalar timing was obtained using an intraclass correlation statistic. This is the first report of consistent, reliable scalar timing in a sizable sample of house mice, thus validating the peak-interval procedure as a valuable technique, the intraclass correlation statistic as a powerful test of the scalar property, and the C57BL/6 strain as a suitable background for behavioral investigations of genetically engineered mice modeling disorders of interval timing.
Collapse
Affiliation(s)
- Catalin V Buhusi
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425-0510, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Balsam P, Sanchez-Castillo H, Taylor K, Van Volkinburg H, Ward RD. Timing and anticipation: conceptual and methodological approaches. Eur J Neurosci 2009; 30:1749-55. [PMID: 19863656 PMCID: PMC2791343 DOI: 10.1111/j.1460-9568.2009.06967.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anticipation occurs on timescales ranging from milliseconds to hours to days. This paper relates the theoretical and methodological developments in the study of interval timing in the seconds, minutes and hours range to research on the anticipatory activity induced by regularly timed daily meals. Daily food-anticipatory activity (FAA) is entrained by procedures which are formally identical to procedures studied in Pavlovian and operant conditioning except for the long duration of the interval between feeding opportunities. As in FAA, the conditioning procedures induce orderly anticipatory activity in advance of food presentation. During the interval between foods the behaviors that express anticipation change as the interval progresses. Consequently, no single response represents a pure measure of anticipation. The ability to distinguish between properties of general anticipatory timing mechanisms such as the scalar property (Gibbon, 1977) and dynamic properties of specific response output systems has been facilitated by teaching animals to use arbitrary anticipatory responses like bar-pressing to obtain food. Interval timing research highlights the importance of identifying the mechanisms of perception, memory, decision making and motivation that all contribute to food anticipation. We suggest that future work focused on the similarities and differences in the neural bases of FAA and interval timing may be useful in unravelling the mechanisms mediating timing behavior.
Collapse
Affiliation(s)
- Peter Balsam
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, Unit #50 New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
37
|
Balci F, Freestone D, Gallistel CR. Risk assessment in man and mouse. Proc Natl Acad Sci U S A 2009; 106:2459-63. [PMID: 19188592 PMCID: PMC2634808 DOI: 10.1073/pnas.0812709106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Indexed: 11/18/2022] Open
Abstract
Human and mouse subjects tried to anticipate at which of 2 locations a reward would appear. On a randomly scheduled fraction of the trials, it appeared with a short latency at one location; on the complementary fraction, it appeared after a longer latency at the other location. Subjects of both species accurately assessed the exogenous uncertainty (the probability of a short versus a long trial) and the endogenous uncertainty (from the scalar variability in their estimates of an elapsed duration) to compute the optimal target latency for a switch from the short- to the long-latency location. The optimal latency was arrived at so rapidly that there was no reliably discernible improvement over trials. Under these nonverbal conditions, humans and mice accurately assess risks and behave nearly optimally. That this capacity is well-developed in the mouse opens up the possibility of a genetic approach to the neurobiological mechanisms underlying risk assessment.
Collapse
Affiliation(s)
- Fuat Balci
- Department of Psychology and Center for Cognitive Science, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020
| | - David Freestone
- Department of Psychology and Center for Cognitive Science, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020
| | - Charles R. Gallistel
- Department of Psychology and Center for Cognitive Science, Rutgers University, 152 Frelinghuysen Road, Piscataway, NJ 08854-8020
| |
Collapse
|