1
|
Ding G, Li L, Chopp M, Zhang L, Li Q, Luo H, Wei M, Zhang J, Boyd E, Zhang Z, Jiang Q. Velocity of cerebrospinal fluid in the aqueduct measured by phase-contrast MRI in rat. NMR IN BIOMEDICINE 2024:e5233. [PMID: 39104053 DOI: 10.1002/nbm.5233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Cerebrospinal fluid (CSF) circulation plays a key role in cerebral waste clearance via the glymphatic system. Although CSF flow velocity is an essential component of CSF dynamics, it has not been sufficiently characterized, and particularly, in studies of the glymphatic system in rat. To investigate the relationship between the flow velocity of CSF in the brain aqueduct and the glymphatic waste clearance rate, using phase-contrast MRI we performed the first measurements of CSF velocity in rats. Phase-contrast MRI was performed using a 7 T system to map mean velocity of CSF flow in the aqueduct in rat brain. The effects of age (3 months old versus 18 months old), gender, strain (Wistar, RNU, Dark Agouti), anesthetic agents (isoflurane versus dexmedetomidine), and neurodegenerative disorder (Alzheimer' disease in Fischer TgF344-AD rats, males and females) on CSF velocity were investigated in eight independent groups of rats (12 rats per group). Our results demonstrated that quantitative velocities of CSF flow in the aqueduct averaged 5.16 ± 0.86 mm/s in healthy young adult male Wistar rats. CSF flow velocity in the aqueduct was not altered by rat gender, strain, and the employed anesthetic agents in all rats, also age in the female rats. However, aged (18 months) Wistar male rats exhibited significantly reduced the CSF flow velocity in the aqueduct (4.31 ± 1.08 mm/s). In addition, Alzheimer's disease further reduced the CSF flow velocity in the aqueduct of male and female rats.
Collapse
Affiliation(s)
- Guangliang Ding
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Jing Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
2
|
Haidary M, Ahmadi-Soleimani SM, Ghofraninezad M, Azhdari-Zarmehri H, Beheshti F. Omega-3 fatty acids supplementation prevents learning and memory impairment induced by chronic ethanol consumption in adolescent male rats through restoration of inflammatory and oxidative responses. Int J Dev Neurosci 2024; 84:423-433. [PMID: 38803108 DOI: 10.1002/jdn.10336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE Ethanol (Eth) intake is known to cause numerous detrimental effects on the structure and function of the brain, and it is commonly used as a psychostimulant drug by adolescents. Conversely, omega-3 (O3) can reduce the risk of cognitive decline and promote the maintenance of neurophysiological functions. In this study, we investigated the protective effects of O3 on behavioral alterations, oxidative stress, and interleukin-6 (IL-6) levels induced by chronic Eth intake during adolescence in rats. MATERIALS AND METHODS Adolescent male rats (21 days old) were divided as follows: (1) Vehicle, (2) Eth (Eth in drinking water [20%]), (3-5) Eth + O3 (50/100/150 mg/kg), and (6) O3 (150 mg/kg). After 5 weeks, Morris water maze (MWM) and passive avoidance (PA) tests were performed, and the hippocampal and cortical levels of oxidative stress markers and inflammatory indices were measured. RESULTS Adolescent Eth intake impairs learning and memory function in MWM and PA tests (groups × day, p < 0.05 and p < 0.001, respectively). It was shown that Eth induced oxidative stress and neuroinflammation. O3 improved learning and impairment induced by Eth by reducing the adverse effects of Eth on the oxidant/antioxidant balance in the hippocampi (for malondialdehyde [MDA]/thiol: p < 0.01, p < 0.001, respectively) and for superoxide dismutase (SOD)/catalase (CAT): p < 0.01 and p < 0.05, respectively). Furthermore, we found that O3 prevented the Eth-induced increase of hippocampal IL-6 (p < 0.001). CONCLUSION O3 supplementation acts as an effective approach to prevent learning and memory impairments induced by chronic Eth consumption during adolescence. In this respect, the antioxidant and anti-inflammatory properties of O3 seem to be the main underlying mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Murtaza Haidary
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mina Ghofraninezad
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hassan Azhdari-Zarmehri
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
3
|
Gao H, Liu X, Venkat P, Findeis E, Zacharek A, Powell B, Mccann M, Kim H, Zhang Z, Chopp M. Treatment of vascular dementia in female rats with AV-001, an Angiopoietin-1 mimetic peptide, improves cognitive function. Front Neurosci 2024; 18:1408205. [PMID: 39050669 PMCID: PMC11266070 DOI: 10.3389/fnins.2024.1408205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background Vascular dementia (VaD) is a complex neurodegenerative disorder. We previously found that treatment of VaD in middle-aged male rats subjected to multiple microinfarction (MMI) with AV-001, a Tie2 receptor agonist, significantly improves cognitive function. Age and sex affect the development and response of VaD to therapeutic intervention. Thus, the present study investigated the therapeutic effect of AV-001 on VaD in aged female rats subjected to MMI. Methods Female 18-month-old Wistar rats were subjected to MMI by injecting either 1,000 (low dose, LD-MMI) or 6,000 (high dose, HD-MMI) cholesterol crystals of size 70-100 μm into the right internal carotid artery. AV-001 (1 μg/Kg, i.p.) was administered once daily after MMI for 1 month, with treatment initiated 1 day after MMI. A battery of behavioral tests to examine sensorimotor and cognitive functions was performed at 21-28 days after MMI. All rats were sacrificed at 1 month after MMI. Results Aged female rats subjected to LD-MMI exhibit severe neurological deficits, memory impairment, and significant white matter (WM) and oligodendrogenesis injury in the corpus callosum compared with control rats. HD-MMI in aged female rats induces significant anxiety- and depression-like behaviors, which were not detected in LD-MMI aged female rats. Also, HD-MMI induces significantly increased WM injury compared to LD-MMI. AV-001 treatment of LD-MMI and HD-MMI increases oligodendrogenesis, myelin and axon density in the corpus callosum and striatal WM bundles, promotes WM integrity and attenuates neurological and cognitive deficits. Additionally, both LD-MMI and HD-MMI rats exhibit a significant increase, while AV-001 significantly decreases the levels of inflammatory factors in the cerebrospinal fluid (CSF). Conclusion MMI reduces oligodendrogenesis, and induces demyelination, axonal injury and WM injury, and causes memory impairment, while HD-MMI induces increased WM injury and further depression-like behaviors compared to LD-MMI rats. AV-001 has a therapeutic effect on aged female rats with MMI by reducing WM damage and improving neuro-cognitive outcomes.
Collapse
Affiliation(s)
- Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Xianshuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Elizabeth Findeis
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mikkala Mccann
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Harold Kim
- Vasomune Therapeutics Inc., Toronto, ON, Canada
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| |
Collapse
|
4
|
Boyd ED, Zhang L, Ding G, Li L, Lu M, Li Q, Huang R, Kaur J, Hu J, Chopp M, Zhang Z, Jiang Q. The Glymphatic Response to the Development of Type 2 Diabetes. Biomedicines 2024; 12:401. [PMID: 38398003 PMCID: PMC10886551 DOI: 10.3390/biomedicines12020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The glymphatic system has recently been shown to be important in neurological diseases, including diabetes. However, little is known about how the progressive onset of diabetes affects the glymphatic system. The aim of this study is to investigate the glymphatic system response to the progressive onset of diabetes in a rat model of type 2 diabetic mellitus. Male Wistar rats (n = 45) with and without diabetes were evaluated using MRI glymphatic tracer kinetics, functional tests, and brain tissue immunohistochemistry. Our data demonstrated that the contrast agent clearance impairment gradually progressed with the diabetic duration. The MRI data showed that an impairment in contrast clearance occurred prior to the cognitive deficits detected using functional tests and permitted the detection of an early DM stage compared to the immuno-histopathology and cognitive tests. Additionally, the quantitative MRI markers of brain waste clearance demonstrated region-dependent sensitivity in glymphatic impairment. The improved sensitivity of MRI markers in the olfactory bulb and the whole brain at an early DM stage may be attributed to the important role of the olfactory bulb in the parenchymal efflux pathway. MRI can provide sensitive quantitative markers of glymphatic impairment during the progression of DM and can be used as a valuable tool for the early diagnosis of DM with a potential for clinical application.
Collapse
Affiliation(s)
- Edward D. Boyd
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Rui Huang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
| | - Jasleen Kaur
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48202, USA;
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, E&R B126, 2799 West Grand Boulevard, Detroit, MI 48202, USA; (L.Z.); (G.D.); (L.L.); (Q.L.); (J.K.); (M.C.); (Z.Z.); (Q.J.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Neurology, Wayne State University, Detroit, MI 28202, USA
| |
Collapse
|
5
|
Akbari E, Hossaini D, Amiry GY, Ansari M, Haidary M, Beheshti F, Ahmadi-Soleimani SM. Vitamin B12 administration prevents ethanol-induced learning and memory impairment through re-establishment of the brain oxidant/antioxidant balance, enhancement of BDNF and suppression of GFAP. Behav Brain Res 2023; 438:114156. [PMID: 36243244 DOI: 10.1016/j.bbr.2022.114156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022]
Abstract
There are growing evidence indicating that the adolescent brain is persistently affected by the use of psychostimulant agents. In this regard, alcohol drinking has become rather common among the adolescents in many societies during the last decade. It is currently well known that long-term ethanol exposure deteriorates various cognitive functions such as learning and memory. Mechanistically, these adverse effects have been shown to be mediated by oxidative damage to central nervous system. On the other hand, Vit-B12 is known to improve cognitive performance by suppression of oxidative parameters. Thus, in the present study we aimed to test whether treatment by Vit-B12 could prevent ethanol-induced complications in mice using behavioral and biochemical methods. Different groups of male Syrian mice received ethanol, ethanol+Vit-B12, Vit-B12 alone, or saline during adolescence and then learning and memory functions were assessed by Morris water maze (MWM) and Passive Avoidance (PA) tests. Finally, mice were sacrificed for measurement of biochemical factors. Results indicated that, adolescent ethanol intake impairs learning and memory function through exacerbation of oxidative stress and Vit-B12 treatment improves these complications by re-establishment of oxidant/anti-oxidant balance in CNS. Moreover, we found that Vit-B12 prevents ethanol-induced reduction of BDNF and enhancement of GFAP and acetylcholinesterase (AChE) activity. In conclusion, it seems that Vit-B12 supplementation could be used as an effective therapeutic strategy to prevent learning and memory defects induced by chronic alcohol intake during adolescence.
Collapse
Affiliation(s)
- Elham Akbari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Dawood Hossaini
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Ghulam Yahya Amiry
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Mustafa Ansari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Murtaza Haidary
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran.
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran.
| |
Collapse
|
6
|
Purnell BS, Thompson S, Bowman T, Bhasin J, George S, Rust B, Murugan M, Fedele D, Boison D. The role of adenosine in alcohol-induced respiratory suppression. Neuropharmacology 2023; 222:109296. [PMID: 36377091 PMCID: PMC10208026 DOI: 10.1016/j.neuropharm.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Alcohol-related poisoning is the foremost cause of death resulting from excessive acute alcohol consumption. Respiratory failure is crucial to the pathophysiology of fatal alcohol poisoning. Alcohol increases accumulation of extracellular adenosine. Adenosine suppresses breathing. The goal of this investigation was to test the hypothesis that adenosine signaling contributes to alcohol-induced respiratory suppression. In the first experiment, the breathing of mice was monitored following an injection of the non-selective adenosine receptor antagonist caffeine (40 mg/kg), alcohol (5 g/kg), or alcohol and caffeine combined. Caffeine reduced alcohol-induced respiratory suppression suggesting that adenosine contributes to the effects of alcohol on breathing. The second experiment utilized the same experimental design, but with the blood brain barrier impermeant non-selective adenosine receptor antagonist 8-sulfophenyltheophylline (8-SPT, 60 mg/kg) instead of caffeine. 8-SPT did not reduce alcohol-induced respiratory suppression suggesting that adenosine is contributing to alcohol-induced respiratory suppression in the central nervous system. The third and fourth experiments used the same experimental design as the first, but with the selective A1 receptor antagonist DPCPX (1 mg/kg) and the selective A2A receptor antagonist istradefylline (3.3 mg/kg). Istradefylline, but not DPCPX, reduced alcohol-induced respiratory suppression indicating an A2A receptor mediated effect. In the fifth experiment, alcohol-induced respiratory suppression was evaluated in Adk+/- mice which have impaired adenosine metabolism. Alcohol-induced respiratory suppression was exacerbated in Adk+/- mice. These findings indicate that adenosinergic signaling contributes to alcohol-induced respiratory suppression. Improving our understanding of how alcohol affects breathing may lead to better treatment strategies and better outcomes for patients with severe alcohol poisoning.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Sydney Thompson
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Tenise Bowman
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Jayant Bhasin
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Steven George
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Brian Rust
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
7
|
Venkat P, Gao H, Findeis EL, Chen Z, Zacharek A, Landschoot-Ward J, Powell B, Lu M, Liu Z, Zhang Z, Chopp M. Therapeutic effects of CD133 + Exosomes on liver function after stroke in type 2 diabetic mice. Front Neurosci 2023; 17:1061485. [PMID: 36968490 PMCID: PMC10033607 DOI: 10.3389/fnins.2023.1061485] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background and purpose Non-alcoholic fatty liver disease (NAFLD) is known to adversely affect stroke recovery. However, few studies investigate how stroke elicits liver dysfunction, particularly, how stroke in type 2 diabetes mellitus (T2DM) exacerbates progression of NAFLD. In this study, we test whether exosomes harvested from human umbilical cord blood (HUCBC) derived CD133 + cells (CD133 + Exo) improves neuro-cognitive outcome as well as reduces liver dysfunction in T2DM female mice. Methods Female, adult non-DM and T2DM mice subjected to stroke presence or absence were considered. T2DM-stroke mice were randomly assigned to receive PBS or Exosome treatment group. CD133 + Exo (20 μg/200 μl PBS, i.v.) was administered once at 3 days after stroke. Evaluation of neurological (mNSS, adhesive removal test) and cognitive function [novel object recognition (NOR) test, odor test] was performed. Mice were sacrificed at 28 days after stroke and brain, liver, and serum were harvested. Results Stroke induces severe and significant short-term and long-term neurological and cognitive deficits which were worse in T2DM mice compared to non-DM mice. CD133 + Exo treatment of T2DM-stroke mice significantly improved neurological function and cognitive outcome indicated by improved discrimination index in the NOR and odor tests compared to control T2DM-stroke mice. CD133 + Exo treatment of T2DM stroke significantly increased vascular and white matter/axon remodeling in the ischemic brain compared to T2DM-stroke mice. However, there were no differences in the lesion volume between non-DM stroke, T2DM-stroke and CD133 + Exo treated T2DM-stroke mice. In T2DM mice, stroke induced earlier and higher TLR4, NLRP3, and cytokine expression (SAA, IL1β, IL6, TNFα) in the liver compared to heart and kidney, as measured by Western blot. T2DM-stroke mice exhibited worse NAFLD progression with increased liver steatosis, hepatocellular ballooning, fibrosis, serum ALT activity, and higher NAFLD Activity Score compared to T2DM mice and non-DM-stroke mice, while CD133 + Exo treatment significantly attenuated the progression of NAFLD in T2DM stroke mice. Conclusion Treatment of female T2DM-stroke mice with CD133 + Exo significantly reduces the progression of NAFLD/NASH and improves neurological and cognitive function compared to control T2DM-stroke mice.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Poornima Venkat,
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| |
Collapse
|
8
|
Experimentally Induced Animal models for Cognitive dysfunction and Alzheimer's disease. MethodsX 2022; 9:101933. [DOI: 10.1016/j.mex.2022.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
|
9
|
The Role of the Adenosine System on Emotional and Cognitive Disturbances Induced by Ethanol Binge Drinking in the Immature Brain and the Beneficial Effects of Caffeine. Pharmaceuticals (Basel) 2022; 15:ph15111323. [DOI: 10.3390/ph15111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
Collapse
|
10
|
Zhang L, Li C, Huang R, Teng H, Zhang Y, Zhou M, Liu X, Fan B, Luo H, He A, Zhao A, Lu M, Chopp M, Zhang ZG. Cerebral endothelial cell derived small extracellular vesicles improve cognitive function in aged diabetic rats. Front Aging Neurosci 2022; 14:926485. [PMID: 35912073 PMCID: PMC9330338 DOI: 10.3389/fnagi.2022.926485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) mediate cell-cell communication by transferring their cargo biological materials into recipient cells. Diabetes mellitus (DM) induces cerebral vascular dysfunction and neurogenesis impairment, which are associated with cognitive decline and an increased risk of developing dementia. Whether the sEVs are involved in DM-induced cerebral vascular disease, is unknown. Therefore, we studied sEVs derived from cerebral endothelial cells (CEC-sEVs) of aged DM rats (DM-CEC-sEVs) and found that DM-CEC-sEVs robustly inhibited neural stem cell (NSC) generation of new neuroblasts and damaged cerebral endothelial function. Treatment of aged DM-rats with CEC-sEVs derived from adult healthy normal rats (N-CEC-sEVs) ameliorated cognitive deficits and improved cerebral vascular function and enhanced neurogenesis. Intravenously administered N-CEC-sEVs crossed the blood brain barrier and were internalized by neural stem cells in the neurogenic region, which were associated with augmentation of miR-1 and –146a and reduction of myeloid differentiation primary response gene 88 and thrombospondin 1 proteins. In addition, uptake of N-CEC-sEVs by the recipient cells was mediated by clathrin and caveolin dependent endocytosis signaling pathways. The present study provides ex vivo and in vivo evidence that DM-CEC-sEVs induce cerebral vascular dysfunction and neurogenesis impairment and that N-CEC-sEVs have a therapeutic effect on improvement of cognitive function by ameliorating dysfunction of cerebral vessels and increasing neurogenesis in aged DM rats, respectively.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- *Correspondence: Li Zhang,
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Rui Huang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hua Teng
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Min Zhou
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Xiangshuang Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Baoyan Fan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Hao Luo
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Annie He
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Anna Zhao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
11
|
Culmone L, Powell B, Landschoot-Ward J, Zacharek A, Gao H, Findeis EL, Malik A, Lu M, Chopp M, Venkat P. Treatment With an Angiopoietin-1 Mimetic Peptide Improves Cognitive Outcome in Rats With Vascular Dementia. Front Cell Neurosci 2022; 16:869710. [PMID: 35602559 PMCID: PMC9120946 DOI: 10.3389/fncel.2022.869710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose Vascular dementia (VaD) is a complex neurodegenerative disease affecting cognition and memory. There is a lack of approved pharmacological treatments specifically for VaD. In this study, we investigate the therapeutic effects of AV-001, a Tie2 receptor agonist, in middle-aged rats subjected to a multiple microinfarct (MMI) model of VaD. Methods Male, 10-12 month-old, Wistar rats were employed. The following experimental groups were used: Sham, MMI, MMI+1 μg/Kg AV-001, MMI+3 μg/Kg AV-001, MMI+6 μg/Kg AV-001. AV-001 treatment was initiated at 1 day after MMI and administered once daily via intraperitoneal injection. An investigator blinded to the experimental groups conducted a battery of neuro-cognitive tests including modified neurological severity score (mNSS) test, novel object recognition test, novel odor recognition test, three chamber social interaction test, and Morris water maze test. Rats were sacrificed at 6 weeks after MMI. Results There was no mortality observed after 1, 3, or 6 μg/Kg AV-001 treatment in middle-aged rats subjected to MMI. AV-001 treatment (1, 3, or 6 μg/Kg) does not significantly alter blood pressure or heart rate at 6 weeks after MMI compared to baseline values or the MMI control group. Treatment of MMI with 1 or 3 μg/Kg AV-001 treatment does not significantly alter body weight compared to Sham or MMI control group. While 6 μg/Kg AV-001 treated group exhibit significantly lower body weight compared to Sham and MMI control group, the weight loss is evident starting at 1 day after MMI when treatment was initiated and is not significantly different compared to its baseline values at day 0 or day 1 after MMI. AV-001 treatment significantly decreases serum alanine aminotransferase, serum creatinine, and serum troponin I levels compared to the MMI control group; however, all values are within normal range. MMI induces mild neurological deficits in middle-aged rats indicated by low mNSS scores (<6 on a scale of 0-18). Compared to control MMI group, 1 μg/Kg AV-001 treatment group did not exhibit significantly different mNSS scores, while 3 and 6 μg/Kg AV-001 treatment induced significantly worse mNSS scores on days 21-42 and 14-42 after MMI, respectively. MMI in middle-aged rats induces significant cognitive impairment including short-term memory loss, long-term memory loss, reduced preference for social novelty and impaired spatial learning and memory compared to sham control rats. Rats treated with 1 μg/Kg AV-001 exhibit significantly improved short-term and long-term memory, increased preference for social novelty, and improved spatial learning and memory compared to MMI rats. Treatment with 3 μg/Kg AV-001 improves short-term memory and preference for social novelty but does not improve long-term memory or spatial learning and memory compared to MMI rats. Treatment with 6 μg/Kg AV-001 improves only long-term memory compared to MMI rats. Thus, 1 μg/Kg AV-001 treatment was selected as an optimal dose. Treatment of middle-aged rats subjected to MMI with 1 μg/Kg AV-001 significantly increases axon density, myelin density and myelin thickness in the corpus callosum, as well as increases synaptic protein expression, neuronal branching and dendritic spine density in the cortex, oligodendrocytes and oligodendrocyte progenitor cell number in the cortex and striatum and promotes neurogenesis in the subventricular zone compared to control MMI rats. Conclusions In this study, we present AV-001 as a novel therapeutic agent to improve cognitive function and reduce white matter injury in middle aged-rats subjected to a MMI model of VaD. Treatment of MMI with 1 μg/Kg AV-001 significantly improves cognitive function, and increases axon density, remyelination and neuroplasticity in the brain of middle-aged rats.
Collapse
Affiliation(s)
- Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Ayesha Malik
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
12
|
Ding G, Li L, Zhang L, Chopp M, Davoodi-Bojd E, Li Q, Li C, Wei M, Zhang Z, Jiang Q. MRI Metrics of Cerebral Endothelial Cell-Derived Exosomes for the Treatment of Cognitive Dysfunction Induced in Aging Rats Subjected to Type 2 Diabetes. Diabetes 2022; 71:873-880. [PMID: 35175337 PMCID: PMC9044132 DOI: 10.2337/db21-0754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022]
Abstract
Ongoing neurovascular dysfunction contributes to type 2 diabetes mellitus (T2DM)-induced cognitive deficits. However, it is not known whether early post onset of T2DM interventions may reduce evolving neurovascular dysfunction and thereby lead to diminution of T2DM-induced cognitive deficits. Using multiple MRI metrics, we evaluated neurovascular changes in T2DM rats treated with exosomes derived from cerebral endothelial cells (CEC-Exos). Two months after induction of T2DM in middle-aged male rats by administration of streptozotocin nicotinamide, rats were randomly treated with CEC-Exos twice weekly or saline for 4 consecutive weeks (n = 10/group). MRI measurements were performed at the end of the treatment, which included cerebral blood flow (CBF), contrast-enhanced T1-weighted imaging, and relaxation time constants T1 and T2. MRI analysis showed that compared with controls, the CEC-Exo-treated T2DM rats exhibited significant elevation of T2 and CBF in white matter and significant augmentation of T1 and reduction of blood-brain barrier permeability in gray matter. In the hippocampus, CEC-Exo treatment significantly increased T1 and CBF. Furthermore, CEC-Exo treatment significantly reduced T2DM-induced cognitive deficits measured by the Morris water maze and odor recognition tests. Collectively, our corresponding MRI data demonstrate that treatment of T2DM rats with CEC-Exos robustly reduced neurovascular dysfunction in gray and white matter and the hippocampus.
Collapse
Affiliation(s)
| | - Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| | | | - Qingjiang Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | - Min Wei
- Department of Neurology, Henry Ford Hospital, Detroit, MI
| | | | - Quan Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI
- Department of Physics, Oakland University, Rochester, MI
| |
Collapse
|
13
|
Wagner TJ, Bruce K, Galizio M. Incrementing non-matching- but not matching-to-sample is rapidly learned in an automated version of the odor span task. Anim Cogn 2022; 25:1259-1270. [PMID: 35217968 DOI: 10.1007/s10071-022-01608-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
Abstract
The odor span task (OST) is frequently used to assess memory capacity in rodents. Odor stimuli are presented in a large arena and choices of session-novel odors produce food reward. The procedure can be described as an incrementing non-matching-to-sample contingency because on each trial one new stimulus is presented along with one or more previously presented (non-reinforced) comparison odors. An automated version of this task has recently been developed in which odors are presented with an olfactometer in an operant chamber using a successive conditional discrimination procedure. The present study compared the acquisition of matching- vs. non-matching-to-sample versions of the task with six rats tested under each procedure. All six rats trained on the non-matching variation showed rapid acquisition of the discrimination with high rates of responding to odor stimuli when they were session-novel and low rates of responding to subsequent presentations of those odors. However, only three of the six rats trained on the matching variation met acquisition criteria, and two of the three that did acquire the task required extensive training to do so. These results support findings from the OST that rats can differentiate between stimuli that are session-novel and those previously encountered, but also that a matching contingency is more difficult to learn than a non-matching arrangement. These findings parallel differences observed between acquisition of simple matching- and non-matching-to-sample tasks, but accounts such as novelty preference or the oddity preference effect may not be sufficient to explain the present results.
Collapse
Affiliation(s)
- Thomas J Wagner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Katherine Bruce
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Mark Galizio
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, USA.
| |
Collapse
|
14
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
15
|
Jones CB, Peiffer LB, Davis CM, Sfanos KS. Examining the Effects of 4He Exposure on the Gut-Brain Axis. Radiat Res 2021; 197:242-252. [PMID: 34752622 DOI: 10.1667/rade-20-00285.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
Beyond low-Earth orbit, space radiation poses significant risks to astronaut health. Previous studies have shown that the microbial composition of the gastrointestinal (GI) microbiome changes upon exposure to high-linear energy transfer radiation. Interestingly, radiation-induced shifts in GI microbiota composition are linked to various neuropsychological disorders. Herein, we aimed to study changes in GI microbiota and behaviors of rats exposed to whole-body radiation (0, 5 or 25 cGy 4He, 250 MeV/n) at approximately 6 months of age. Fecal samples were collected 24 h prior to 4He irradiation and 24 h and 7 days postirradiation for quantitative PCR analyses to assess fecal levels of spore-forming bacteria (SFB), Bifidobacterium, Lactobacillus and Akkermansia. Rats were also tested in the social odor recognition memory (SORM) test at day 7 after 4He exposure. A subset of rats was euthanized 90 min after completion of the SORM test, and GI tissue from small intestine to colon were prepared for examining overall histological changes and immunohistochemical staining for serotonin (5-HT). No notable pathological changes were observed in GI tissues. Akkermansia spp. and SFB were significantly decreased in the 25 cGy group at 24 h and 7 days postirradiation compared to pre-exposure, respectively. Bifidobacterium and Lactobacillus spp. showed no significant changes. 5-HT production was significantly higher in the proximal small intestine and the cecum in the 25 cGy group compared to the sham group. The 25 cGy group exhibited deficits in recognition in SORM testing at day 7 postirradiation. Taken together, these results suggest a connection between GI microbiome composition, serotonin production, and neurobehavioral performance, and that this connection may be disrupted upon exposure to 25 cGy of 4He ions.
Collapse
Affiliation(s)
- Carli B Jones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren B Peiffer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine M Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
An L, Chopp M, Zacharek A, Shen Y, Chen Z, Qian Y, Li W, Landschoot-Ward J, Liu Z, Venkat P. Cardiac Dysfunction in a Mouse Vascular Dementia Model of Bilateral Common Carotid Artery Stenosis. Front Cardiovasc Med 2021; 8:681572. [PMID: 34179145 PMCID: PMC8225957 DOI: 10.3389/fcvm.2021.681572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Cardiac function is associated with cognitive function. Previously, we found that stroke and traumatic brain injury evoke cardiac dysfunction in mice. In this study, we investigate whether bilateral common carotid artery stenosis (BCAS), a model that induces vascular dementia (VaD) in mice, induces cardiac dysfunction. Methods: Late-adult (6-8 months) C57BL/6J mice were subjected to sham surgery (n = 6) or BCAS (n = 8). BCAS was performed by applying microcoils (0.16 mm internal diameter) around both common carotid arteries. Cerebral blood flow and cognitive function tests were performed 21-28 days post-BCAS. Echocardiography was conducted in conscious mice 29 days after BCAS. Mice were sacrificed 30 days after BCAS. Heart tissues were isolated for immunohistochemical evaluation and real-time PCR assay. Results: Compared to sham mice, BCAS in mice significantly induced cerebral hypoperfusion and cognitive dysfunction, increased cardiac hypertrophy, as indicated by the increased heart weight and the ratio of heart weight/body weight, and induced cardiac dysfunction and left ventricular (LV) enlargement, indicated by a decreased LV ejection fraction (LVEF) and LV fractional shortening (LVFS), increased LV dimension (LVD), and increased LV mass. Cognitive deficits significantly correlated with cardiac deficits. BCAS mice also exhibited significantly increased cardiac fibrosis, increased oxidative stress, as indicated by 4-hydroxynonenal and NADPH oxidase-2, increased leukocyte and macrophage infiltration into the heart, and increased cardiac interleukin-6 and thrombin gene expression. Conclusions: BCAS in mice without primary cardiac disease provokes cardiac dysfunction, which, in part, may be mediated by increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Lulu An
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yi Shen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Zhili Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Yu Qian
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Wei Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
17
|
Wooden JI, Spinetta MJ, Nguyen T, O'Leary CI, Leasure JL. A Sensitive Homecage-Based Novel Object Recognition Task for Rodents. Front Behav Neurosci 2021; 15:680042. [PMID: 34177480 PMCID: PMC8232937 DOI: 10.3389/fnbeh.2021.680042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
The recognition of novel objects is a common cognitive test for rodents, but current paradigms have limitations, such as low sensitivity, possible odor confounds and stress due to being performed outside of the homecage. We have developed a paradigm that takes place in the homecage and utilizes four stimuli per trial, to increase sensitivity. Odor confounds are eliminated because stimuli consist of inexpensive, machined wooden beads purchased in bulk, so each experimental animal has its own set of stimuli. This paradigm consists of three steps. In Step 1, the sampling phase, animals freely explore familiar objects (FO). Novel Objects (NO1 and NO2) are soiled with bedding from the homecage, to acquire odor cues identical to those of the FO. Steps 2 and 3 are test phases. Herein we report results of this paradigm from neurologically intact adult rats and mice of both sexes. Identical procedures were used for both species, except that the stimuli used for the mice were smaller. As expected in Step 2 (NO1 test phase), male and female rats and mice explored NO1 significantly more than FO. In Step 3 (NO2 test phase), rats of both sexes demonstrated a preference for NO2, while this was seen only in female mice. These results indicate robust novelty recognition during Steps 2 and 3 in rats. In mice, this was reliably seen only in Step 2, indicating that Step 3 was difficult for them under the given parameters. This paradigm provides flexibility in that length of the sampling phase, and the delay between test and sampling phases can be adjusted, to tailor task difficulty to the model being tested. In sum, this novel object recognition test is simple to perform, requires no expensive supplies or equipment, is conducted in the homecage (reducing stress), eliminates odor confounds, utilizes 4 stimuli to increase sensitivity, can be performed in both rats and mice, and is highly flexible, as sampling phase and the delay between steps can be adjusted to tailor task difficulty. Collectively, these results indicate that this paradigm can be used to quantify novel object recognition across sex and species.
Collapse
Affiliation(s)
- Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Michael J Spinetta
- Department of Psychology, Seattle University, Seattle, WA, United States
| | - Teresa Nguyen
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Charles I O'Leary
- Department of Psychology, Seattle University, Seattle, WA, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, United States.,Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
18
|
Porru S, Maccioni R, Bassareo V, Peana AT, Salamone JD, Correa M, Acquas E. Effects of caffeine on ethanol-elicited place preference, place aversion and ERK phosphorylation in CD-1 mice. J Psychopharmacol 2020; 34:1357-1370. [PMID: 33103552 DOI: 10.1177/0269881120965892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Epidemiological studies indicate a rise in the combined consumption of caffeinated and alcoholic beverages, which can lead to increased risk of alcoholic-beverage overconsumption. However, the effects of the combination of caffeine and ethanol in animal models related to aspects of drug addiction are still underexplored. AIMS To characterize the pharmacological interaction between caffeine and ethanol and establish if caffeine can affect the ability of ethanol (2 g/kg) to elicit conditioned place preference and conditioned place aversion, we administered caffeine (3 or 15 mg/kg) to male CD-1 mice before saline or ethanol. Moreover, we determined if these doses of caffeine could affect ethanol (2 g/kg) elicited extracellular signal-regulated kinase phosphorylation in brain areas, nucleus accumbens, bed nucleus of stria terminalis, central nucleus of the amygdala, and basolateral amygdala, previously associated with this type of associative learning. RESULTS In the place-conditioning paradigm, caffeine did not have an effect on its own, whereas ethanol elicited significant conditioned-place preference and conditioned-place aversion. Caffeine (15 mg/kg) significantly prevented the acquisition of ethanol-elicited conditioned-place preference and, at both doses, also prevented the acquisition of ethanol-elicited conditioned-place aversion. Moreover, both doses of caffeine also prevented ethanol-elicited extracellular signal-regulated kinase phosphorylation expression in all brain areas examined. CONCLUSIONS The present data indicate a functional antagonistic action of caffeine and ethanol on associative learning and extracellular signal-regulated kinase phosphorylation after an acute interaction. These results could provide exciting grounds for further studies, also in a translational perspective, of their pharmacological interaction modulating other processes involved in drug consumption and addiction.
Collapse
Affiliation(s)
- Simona Porru
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy.,Department of Psychobiology, University Jaume I, Castelló, Spain
| | - Riccardo Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Alessandra T Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, USA
| | - Mercè Correa
- Department of Psychobiology, University Jaume I, Castelló, Spain
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy.,Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Fernandes PR, Almeida FB, da Cunha MMMV, Feddern CF, Freese L, Barros HMT. The effects of caffeine on alcohol oral self-administration behavior in rats. Physiol Behav 2020; 223:112966. [DOI: 10.1016/j.physbeh.2020.112966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
|
20
|
Venkat P, Culmone L, Chopp M, Landschoot-Ward J, Wang F, Zacharek A, Chen J. HUCBC Treatment Improves Cognitive Outcome in Rats With Vascular Dementia. Front Aging Neurosci 2020; 12:258. [PMID: 32973489 PMCID: PMC7461871 DOI: 10.3389/fnagi.2020.00258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022] Open
Abstract
Background and purpose: Vascular dementia (VaD) is the second common cause of dementia after Alzheimer's disease in older people. Yet, there are no FDA approved drugs specifically for VaD. In this study, we have investigated the therapeutic effects of human umbilical cord blood cells (HUCBC) treatment on the cognitive outcome, white matter (WM) integrity, and glymphatic system function in rats subject to a multiple microinfarction (MMI) model of VaD. Methods: Male, retired breeder rats were subjected to the MMI model (800 ± 100 cholesterol crystals/300 μl injected into the internal carotid artery), and 3 days later were treated with phosphate-buffered saline (PBS) or HUCBC (5 × 106, i.v.). Sham rats were included as naïve control. Following a battery of cognitive tests, rats were sacrificed at 28 days after MMI and brains extracted for immunohistochemical evaluation and Western blot analysis. To evaluate the glymphatic function, fluorescent tracers (Texas Red dextran, MW: 3 kD and FITC-dextran, MW: 500 kD) was injected into the cisterna magna over 30 min at 14 days after MMI. Rats (3-4/group/time point) were sacrificed at 30 min, 3 h, and 6 h, and the tracer movement analyzed using laser scanning confocal microscopy. Results: Compared to control MMI rats, HUCBC treated MMI rats exhibit significantly improved short-term memory and long-term memory exhibited by increased discrimination index in novel object recognition task with retention delay of 4 h and improved novel odor recognition task with retention delay of 24 h, respectively. HUCBC treatment also improves spatial learning and memory as measured using the Morris water maze test compared to control MMI rats. HUCBC treatment significantly increases axon and myelin density increases oligodendrocyte and oligodendrocyte progenitor cell number and increases Synaptophysin expression in the brain compared to control MMI rats. HUCBC treatment of MMI in rats significantly improves glymphatic function by reversing MMI induced delay in the penetration of cerebrospinal fluid (CSF) into the brain parenchyma via glymphatic pathways and reversing delayed clearance from the brain. HUCBC treatment significantly increases miR-126 expression in serum, aquaporin-4 (AQP4) expression around cerebral vessels, and decreases transforming growth factor-β (TGF-β) protein expression in the brain which may contribute to HUCBC induced improved glymphatic function. Conclusions: HUCBC treatment of an MMI rat model of VaD promotes WM remodeling and improves glymphatic function which together may aid in the improvement of cognitive function and memory. Thus, HUCBC treatment warrants further investigation as a potential therapy for VaD.
Collapse
Affiliation(s)
- Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | | | - Fengjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
21
|
Allen LM, Lesyshyn RA, O'Dell SJ, Allen TA, Fortin NJ. The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory. Behav Brain Res 2020; 379:112215. [PMID: 31682866 PMCID: PMC6917868 DOI: 10.1016/j.bbr.2019.112215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 01/20/2023]
Abstract
Considerable research in rodents and humans indicates the hippocampus and prefrontal cortex are essential for remembering temporal relationships among stimuli, and accumulating evidence suggests the perirhinal cortex may also be involved. However, experimental parameters differ substantially across studies, which limits our ability to fully understand the fundamental contributions of these structures. In fact, previous studies vary in the type of temporal memory they emphasize (e.g., order, sequence, or separation in time), the stimuli and responses they use (e.g., trial-unique or repeated sequences, and incidental or rewarded behavior), and the degree to which they control for potential confounding factors (e.g., primary and recency effects, or order memory deficits secondary to item memory impairments). To help integrate these findings, we developed a new paradigm testing incidental memory for trial-unique series of events, and concurrently assessed order and item memory in animals with damage to the hippocampus, prefrontal cortex, or perirhinal cortex. We found that this new approach led to robust order and item memory, and that hippocampal, prefrontal and perirhinal damage selectively impaired order memory. These findings suggest the hippocampus, prefrontal cortex and perirhinal cortex are part of a broad network of structures essential for incidentally learning the order of events in episodic memory.
Collapse
Affiliation(s)
- Leila M Allen
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States; Cogntive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, United States
| | - Rachel A Lesyshyn
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| | - Steven J O'Dell
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States
| | - Timothy A Allen
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, United States; Cogntive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, United States
| | - Norbert J Fortin
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, United States; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
22
|
Bellozi PM, Pelição R, Santos MC, Lima IV, Saliba SW, Vieira ÉL, Campos AC, Teixeira AL, de Oliveira AC, Nakamura-Palacios EM, Rodrigues LC. URB597 ameliorates the deleterious effects induced by binge alcohol consumption in adolescent rats. Neurosci Lett 2019; 711:134408. [DOI: 10.1016/j.neulet.2019.134408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
|
23
|
Abdelaziz BM, Helmy MW, Katary MA, Abd-Alhaseeb MM, Ghoneim AI. Protective effects of Astragalus kahiricus root extract on ethanol-induced retrograde memory impairments in mice. JOURNAL OF HERBMED PHARMACOLOGY 2019; 8:295-301. [DOI: 10.15171/jhp.2019.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder that has no definite cure. Currently, there is great interest in using plant-based medicines to treat AD. In the present study, the neuroprotective effects of Astragalus kahiricus root extract were evaluated in a retrograde amnesia model. Methods: Male albino mice were given four training sessions in the Morris water maze for seven consecutive days. Treated groups were administered A. kahiricus (25 or 50 mg/kg, i.p.) before ethanol (3.5 gm/kg, i.p) injection. All animals were given a test session in the Morris water maze apparatus. Acetylcholinesterase activity and the levels of oxidative stress biomarkers were also measured. Results: Memory impairment was observed, after ethanol administration, as increased escape latency time and path length travelled by the animals. On the other hand, A. kahiricus significantly reduced both escape latency time and path length. In addition, the extract demonstrated an inhibitory effect on acetylcholinesterase activity and total nitrite level. Moreover, A. kahiricus significantly increased the level of reduced glutathione in mice brain. Conclusion: This study demonstrated the potential behavioural and biochemical neuroprotective properties of A. kahiricus root extract, which might further be considered an important candidate for the treatment of AD.
Collapse
Affiliation(s)
- Basma M. Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maged W. Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohamed A. Katary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohammad M. Abd-Alhaseeb
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Asser I. Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
24
|
Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Landschoot-Ward J, Shen Y, Chen J. MiR-126 Mediates Brain Endothelial Cell Exosome Treatment-Induced Neurorestorative Effects After Stroke in Type 2 Diabetes Mellitus Mice. Stroke 2019; 50:2865-2874. [PMID: 31394992 DOI: 10.1161/strokeaha.119.025371] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Purpose- Stroke patients with type 2 diabetes mellitus (T2DM) exhibit increased vascular and white matter damage and have worse prognosis compared with nondiabetic stroke patients. We investigated the neurorestorative effects of exosomes derived from mouse brain endothelial cells (EC-Exo) as treatment for stroke in T2DM mice and investigated the role of miR-126 in mediating EC-Exo-derived therapeutic benefits in T2DM-stroke mice. Methods- Adult, male BKS.Cg-m+/+Leprdb/J (T2DM) mice were subjected to photothrombotic stroke model. T2DM mice were intravenously injected at 3 days after stroke with (1) PBS; (2) liposome mimic (vehicle control, 3×1010); (3) EC-Exo (3×1010); (4) knockdown of miR-126 in EC-Exo (miR-126-/- EC-Exo, 3×1010). Behavioral and cognitive tests were performed, and mice were sacrificed at 28 days after stroke. Results- Compared with non-DM stroke mice, T2DM-stroke mice exhibit significantly decreased serum and brain tissue miR-126 expression. Endothelial cells and EC-Exo contain high levels of miR-126 compared with other cell types or exosomes derived from other types of cells, respectively (smooth muscle cells, astrocytes, and marrow stromal cells). Compared with PBS or liposome mimic treatment, EC-Exo treatment of T2DM-stroke mice significantly improves neurological and cognitive function, increases axon density, myelin density, vascular density, arterial diameter, as well as induces M2 macrophage polarization in the ischemic boundary zone. MiR-126-/- EC-Exo treatment significantly decreases miR-126 expression in serum and brain, as well as attentuates EC-Exo treatment-induced functional improvement and does not significantly increase axon and myelin density, vascular density, arterial diameter or induce M2 macrophage polarization in T2DM-stroke mice. In vitro, EC-Exo treatment significantly increases primary cortical neuron axonal outgrowth and increases endothelial capillary tube formation whereas miR-126-/- EC-Exo attentuates EC-Exo induced capillary tube formation and axonal outgrowth. Conclusions- EC-Exo treatment of stroke promotes neurorestorative effects in T2DM mice. MiR-126 may mediate EC-Exo-induced neurorestorative effects in T2DM mice. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Poornima Venkat
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Chengcheng Cui
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Michael Chopp
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.).,Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Alex Zacharek
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Fengjie Wang
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Julie Landschoot-Ward
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Yi Shen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| | - Jieli Chen
- From the Department of Neurology, Henry Ford Hospital, Detroit, MI (P.V., C.C., M.C., A.Z., F.W., J.L.-W., Y.S., J.C.)
| |
Collapse
|
25
|
Feizolahi F, Azarbayjani MA, Nasehi M, Peeri M, Zarrindast MR. The combination of swimming and curcumin consumption may improve spatial memory recovery after binge ethanol drinking. Physiol Behav 2019; 207:139-150. [PMID: 31071339 DOI: 10.1016/j.physbeh.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
|
26
|
Yu P, Venkat P, Chopp M, Zacharek A, Shen Y, Liang L, Landschoot-Ward J, Liu Z, Jiang R, Chen J. Deficiency of tPA Exacerbates White Matter Damage, Neuroinflammation, Glymphatic Dysfunction and Cognitive Dysfunction in Aging Mice. Aging Dis 2019; 10:770-783. [PMID: 31440383 PMCID: PMC6675536 DOI: 10.14336/ad.2018.0816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease primarily involved in mediating thrombus breakdown and regulating catabolism of amyloid-beta (Aβ). The aim of this study is to investigate age-dependent decline of endogenous tPA and the effects of tPA decline on glymphatic function and cognitive outcome in mice. Male, young (3m), adult (6m) and middle-aged (12m) C57/BL6 (wild type) and tPA knockout (tPA-/-) mice were subject to a battery of cognitive tests and white matter (WM) integrity, neuroinflammation, and glymphatic function were evaluated. Adult WT mice exhibit significantly decreased brain tPA level compared to young WT mice and middle-aged WT mice have significantly lower brain tPA levels than young and adult WT mice. Middle-aged WT mice exhibit significant neuroinflammation, reduced WM integrity and increased thrombin deposition compared to young and adult mice, and increased blood brain barrier (BBB) permeability and reduced cognitive ability compared to young WT mice. In comparison to adult WT mice, adult tPA-/- mice exhibit significant BBB leakage, decreased dendritic spine density, increased thrombin deposition, neuroinflammation, and impaired functioning of the glymphatic system. Compared to age-matched WT mice, adult and middle-aged tPA-/- mice exhibit significantly increased D-Dimer expression and decreased perivascular Aquaporin-4 expression. Compared to age-matched WT mice, young, adult and middle-aged tPA-/- mice exhibit significant cognitive impairment, axonal damage, and increased deposition of amyloid precursor protein (APP), Aβ, and fibrin. Endogenous tPA may play an important role in contributing to aging induced cognitive decline, axonal/WM damage, BBB disruption and glymphatic dysfunction in the brain.
Collapse
Affiliation(s)
- Peng Yu
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.,2Neurology, Henry Ford Hospital, Detroit, MI, USA.,3Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | - Michael Chopp
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,4Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Yi Shen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Linlin Liang
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA.,5Reproductive Medical Center, Henan Provincial People's Hospital, Zhengzhou, China
| | - Julie Landschoot-Ward
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Zhongwu Liu
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Rongcai Jiang
- 1Department of Neurosurgery, Tianjin Medical University General Hospital, and Tianjin Neurological institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jieli Chen
- 2Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
27
|
Venkat P, Chopp M, Zacharek A, Cui C, Landschoot-Ward J, Qian Y, Chen Z, Chen J. Sildenafil treatment of vascular dementia in aged rats. Neurochem Int 2019; 127:103-112. [DOI: 10.1016/j.neuint.2018.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 01/08/2023]
|
28
|
Temporary inactivation of the medial prefrontal cortex impairs the formation, but not the retrieval of social odor recognition memory in rats. Neurobiol Learn Mem 2019; 161:115-121. [DOI: 10.1016/j.nlm.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 11/23/2022]
|
29
|
Short and Long-Term Changes in Social Odor Recognition and Plasma Cytokine Levels Following Oxygen ( 16O) Ion Radiation Exposure. Int J Mol Sci 2019; 20:ijms20020339. [PMID: 30650610 PMCID: PMC6359552 DOI: 10.3390/ijms20020339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Future long-duration space missions will involve travel outside of the Earth’s magnetosphere protection and will result in astronauts being exposed to high energy and charge (HZE) ions and protons. Exposure to this type of radiation can result in damage to the central nervous system and deficits in numerous cognitive domains that can jeopardize mission success. Social processing is a cognitive domain that is important for people living and working in groups, such as astronauts, but it has received little attention in terms of HZE ion exposure. In the current study, we assessed the effects of whole-body oxygen ion (16O; 1000 MeV/n) exposure (1 or 10 cGy) on social odor recognition memory in male Long-Evans rats at one and six months following exposure. Radiation exposure did not affect rats’ preferences for a novel social odor experienced during Habituation at either time point. However, rats exposed to 10 cGy displayed short and long-term deficits in 24-h social recognition. In contrast, rats exposed to 1 cGy only displayed long-term deficits in 24-h social recognition. While an age-related decrease in Ki67+ staining (a marker of cell proliferation) was found in the subventricular zone, it was unaffected by radiation exposure. At one month following exposure, plasma KC/GRO (CXCL1) levels were elevated in the 1 cGy rats, but not in the 10 cGy rats, suggesting that peripheral levels of this cytokine could be associated with intact social recognition at earlier time points following radiation exposure. These results have important implications for long-duration missions and demonstrate that behaviors related to social processing could be negatively affected by HZE ion exposure.
Collapse
|
30
|
Sun W, Li X, Tang C, An L. Acute Low Alcohol Disrupts Hippocampus-Striatum Neural Correlate of Learning Strategy by Inhibition of PKA/CREB Pathway in Rats. Front Pharmacol 2018; 9:1439. [PMID: 30574089 PMCID: PMC6291496 DOI: 10.3389/fphar.2018.01439] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
The hippocampus and striatum guide place-strategy and response-strategy learning, respectively, and they have dissociable roles in memory systems, which could compensate in case of temporary or permanent damage. Although acute alcohol (AA) treatment had been shown to have adverse effects on hippocampal function, whether it causes the functional compensation and the underlying mechanisms is unknown. In this study, rats treated with a low dose of AA avoided a hippocampus-dependent spatial strategy, instead preferring a striatum-dependent response strategy. Consistently, the learning-induced increase in hippocampal, but not striatal, pCREB was rendered less pronounced due to diminished activity of pPKA, but not pERK or pCaMKII. As rats approached the turn-decision area, Sp-cAMP, a PKA activator, was found to mitigate the inhibitory effect of AA on intra- and cross-structure synchronized neuronal oscillations, and rescue response-strategy bias and spatial learning deficits. Our study provides strong evidence of the critical link between neural couplings and strategy selection. Moreover, the PKA/CREB-signaling pathway is involved in the suppressive effect of AA on neural correlates of place-learning strategy. The novel important evidence provided here shows the functional couplings between the hippocampus and striatum in spatial learning processing and suggests possible avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Acupuncture-Moxibustion and Orthopedics, Guiyang University of Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
31
|
Fan B, Liu XS, Szalad A, Wang L, Zhang R, Chopp M, Zhang ZG. Influence of Sex on Cognition and Peripheral Neurovascular Function in Diabetic Mice. Front Neurosci 2018; 12:795. [PMID: 30429771 PMCID: PMC6220055 DOI: 10.3389/fnins.2018.00795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Cognition impairment and peripheral neuropathy (DPN) are two major complications of diabetes. The aim of the present study is to investigate the effect of sex differences on cognition and DPN in diabetic mice. Male and female BKS.Cg-m+/+Leprdb/J (db/db) and db/m mice were used. At ages of 20 and 30 weeks, all animals were subjected to learning, memory and neurological function tests. Regional blood flow in footpad and sciatic nerves were measured using laser Doppler flowmetry. Our data showed that male db/db mice aged 20 weeks and 30 weeks spent significantly more time to locate the hidden platform in the correct quadrant and spent significantly less time exploring the cage with a new stranger mouse compared to aged-matched female db/db mice. Electrophysiological recordings showed that male db mice aged 30 weeks had significantly reduced motor and sensory nerve conduction velocity compared with females. Hot plate and tactile allodynia tests revealed that males exhibited significantly higher thermal and mechanical latency than females. Male db mice aged 30 weeks displayed significantly reduced blood perfusion in sciatic nerve and footpad tissues compared with females. In addition, compared with male and female non-diabetic db/m mice, db/db mice exhibited increased time spent on locating the hidden platform, decreased time spent on exploring the novel odor bead and an unfamiliar mouse, as well as showed significantly lower levels of blood flow, lower velocity of MCV and SCV, higher thermal and mechanical latencies. Blood glucose levels and body weight were not significantly different between male and female diabetic animals (age 30 weeks), but male db mice showed a higher serum total cholesterol content. Together, our data suggest that males develop a greater extent of diabetes-induced cognition deficits and peripheral neurovascular dysfunction than females.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Lei Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Ruilan Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
32
|
Robinson S, Christ CC, Cahill MM, Aldrich SJ, Taylor-Yeremeeva E. Voluntary exercise or systemic propranolol ameliorates stress-related maladaptive behaviors in female rats. Physiol Behav 2018; 198:120-133. [PMID: 30336229 DOI: 10.1016/j.physbeh.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
Many people will experience at least one traumatic event in their lifetime, with up to 20% developing Post-Traumatic Stress Disorder (PTSD) or PTSD-like symptoms. In addition, the likelihood that females will develop PTSD after trauma is more than twice that of males. Despite its prevalence, current treatment strategies for trauma victims are limited and substantial portions of affected individuals remain resistant to treatment, suggesting that additional interventions are necessary. Using an animal model of traumatic stress, the present studies tested the hypothesis that either voluntary exercise and/or administration of the adrenergic beta-receptor antagonist propranolol, would ameliorate stress-related maladaptive behaviors. In Study 1 four groups of female rats were exposed to a sequence of stressors that included anesthesia, restraint, forced swim, exposure to predator scent and fear conditioning. Rats then underwent re-exposure sessions in which stress-related conditioned stimuli were presented. In addition to re-exposure, stressed rats were treated with propranolol (10 mg/kg) and/or given the opportunity to engage in voluntary wheel running intermittently for 4 weeks. Stress-associated maladaptive behavior was assessed using the elevated plus and open field mazes and fear memory tests. Cognitive ability was assessed using a novel odor recognition task. A main effect of exercise on behaviors related to anxiety and resilience was observed, but neither a main effect of propranolol nor a synergistic effect of propranolol and exercise were observed. Neither stress induction nor treatment influenced recognition memory. In contrast, in Study 2 in which the timing and dosage of propranolol (0.25-2.0 mg/kg), and the number and timing of re-exposure sessions were adjusted, propranolol produced both a reduction in anxiety-like behaviors as well as resilience to a subsequent stressor. These results are consistent with the notion that combining re-exposure therapy with additional interventions is beneficial for female trauma victims. Furthermore, the findings support the view that in pre-clinical models, voluntary exercise, which bolsters hippocampal function and propranolol, which affects amygdala-dependent memory reconsolidation and peripheral noradrenergic signaling, can ameliorate stress-related symptoms.
Collapse
Affiliation(s)
- Siobhan Robinson
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States.
| | - Christa C Christ
- Department of Psychology, University of South Carolina Upstate, Spartanburg, SC 29303, United States
| | - Margaret M Cahill
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| | - Sara J Aldrich
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| | - Elisa Taylor-Yeremeeva
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY 13323, United States
| |
Collapse
|
33
|
Perez EC, Rodgers SP, Inoue T, Pedersen SE, Leasure JL, Gaber MW. Olfactory Memory Impairment Differs by Sex in a Rodent Model of Pediatric Radiotherapy. Front Behav Neurosci 2018; 12:158. [PMID: 30116180 PMCID: PMC6084003 DOI: 10.3389/fnbeh.2018.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/09/2018] [Indexed: 11/24/2022] Open
Abstract
Although an effective treatment for pediatric brain tumors, cranial radiation therapy (CRT) damages surrounding healthy tissue, thereby disrupting brain development. Animal models of pediatric CRT have primarily relied on visual tasks to assess cognitive impairment. Moreover, there has been a lack of sex comparisons as most research on the cognitive effects of pediatric CRT does not include females. Therefore, we utilized olfaction, an ethologically relevant sensory modality, to assess cognitive impairment in an animal model of CRT that included both male and female mice. Specifically, we used the novel odor recognition (NOdorR) task with social odors to test recognition memory, a cognitive parameter that has been associated with olfactory neurogenesis, a form of cellular plasticity damaged by CRT. In addition to odor recognition memory, olfactory ability or discrimination of non-social and social odors were assessed both acutely and 3 months after CRT. Magnetic resonance imaging (MRI) and histology were performed after behavioral testing to assess long-term damage by CRT. Long-term but not acute radiation-induced impairment in odor recognition memory was observed, consistent with delayed onset of cognitive impairment in human patients. Males showed greater exploration of social odors than females, but general exploration was not affected by irradiation. However, irradiated males had impaired odor recognition memory in adulthood, compared to non-irradiated males (or simply male controls). Female olfactory recognition memory, in contrast, was dependent on estrus stage. CRT damage was demonstrated by (1) histological evaluation of olfactory neurogenesis, which suggested a reduction in CRT versus control, and (2) imaging analyses which showed that the majority of brain regions were reduced in volume by CRT. Specifically, two regions involved in social odor processing (amygdala and piriform cortex) were damaged by cranial irradiation in males but not females, paralleling olfactory recognition findings.
Collapse
Affiliation(s)
- Emma C Perez
- Behavioral Neuroscience Lab, Department of Psychology, University of Houston, Houston, TX, United States.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Shaefali P Rodgers
- Behavioral Neuroscience Lab, Department of Psychology, University of Houston, Houston, TX, United States
| | - Taeko Inoue
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Steen E Pedersen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States.,Department of Physiology and Biochemistry, Ross University School of Medicine, Roseau, Dominica
| | - J Leigh Leasure
- Behavioral Neuroscience Lab, Department of Psychology, University of Houston, Houston, TX, United States.,Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - M Waleed Gaber
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
34
|
Mange A, Cao Y, Zhang S, Hienz RD, Davis CM. Whole-Body Oxygen (16O) Ion-Exposure-Induced Impairments in Social Odor Recognition Memory in Rats are Dose and Time Dependent. Radiat Res 2018; 189:292-299. [DOI: 10.1667/rr14849.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ami Mange
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuqing Cao
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sandy Spring Friends School, Sandy Spring, Maryland
| | - SiYuan Zhang
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Sandy Spring Friends School, Sandy Spring, Maryland
| | - Robert D. Hienz
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institutes for Behavior Resources, Baltimore, Maryland
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Jiang Q, Zhang L, Ding G, Davoodi-Bojd E, Li Q, Li L, Sadry N, Nedergaard M, Chopp M, Zhang Z. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab 2017; 37:1326-1337. [PMID: 27306755 PMCID: PMC5453454 DOI: 10.1177/0271678x16654702] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The glymphatic system has recently been shown to clear brain extracellular solutes and abnormalities in glymphatic clearance system may contribute to both initiation and progression of neurological diseases. Despite that diabetes is known as a risk factor for vascular diseases, little is known how diabetes affects the glymphatic system. The current study is the first investigation of the effect of diabetes on the glymphatic system and the link between alteration of glymphatic clearance and cognitive impairment in Type-2 diabetes mellitus rats. MRI analysis revealed that clearance of cerebrospinal fluid contrast agent Gd-DTPA from the interstitial space was slowed by a factor of three in the hippocampus of Type-2 diabetes mellitus rats compared to the non-DM rats and confirmed by florescence imaging analysis. Cognitive deficits detected by behavioral tests were highly and inversely correlated to the retention of Gd-DTPA contrast and fluorescent tracer in the hippocampus of Type-2 diabetes mellitus rats. Type-2 diabetes mellitus suppresses clearance of interstitial fluid in the hippocampus and hypothalamus, suggesting that an impairment of the glymphatic system contributes to Type-2 diabetes mellitus-induced cognitive deficits. Whole brain MRI provides a sensitive, non-invasive tool to quantitatively evaluate cerebrospinal fluid and interstitial fluid exchange in Type-2 diabetes mellitus and possibly in other neurological disorders, with potential clinical application.
Collapse
Affiliation(s)
- Quan Jiang
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA.,2 Department of Physics, Oakland University, Rochester, MI, USA
| | - Li Zhang
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Guangliang Ding
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Qingjiang Li
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Lian Li
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Neema Sadry
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Maiken Nedergaard
- 3 Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.,4 Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Michael Chopp
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA.,2 Department of Physics, Oakland University, Rochester, MI, USA
| | - Zhenggang Zhang
- 1 Departments of Neurology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
36
|
White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies. Neurobiol Aging 2016; 50:96-106. [PMID: 27940353 DOI: 10.1016/j.neurobiolaging.2016.11.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022]
Abstract
We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p < 0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits.
Collapse
|
37
|
López-Cruz L, San-Miguel N, Bayarri P, Baqi Y, Müller CE, Salamone JD, Correa M. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A 2A and A 1 Receptors. Front Behav Neurosci 2016; 10:206. [PMID: 27853423 PMCID: PMC5090123 DOI: 10.3389/fnbeh.2016.00206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022] Open
Abstract
Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0-1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg), and even blocked social preference at higher doses (30.0-60.0 mg/kg). The A1 antagonist Cyclopentyltheophylline (CPT; 3-9 mg/kg) did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5-6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the formation of social memories, and A2A adenosine antagonists can prevent the amnestic effects of ethanol, so that animals can recognize familiar conspecifics. On the other hand, ethanol can counteract the social withdrawal induced by caffeine, a non-selective adenosine A1/A2A receptor antagonist. These results show the complex set of interactions between ethanol and caffeine, some of which could be the result of the opposing effects they have in modulating the adenosine system.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
| | - Noemí San-Miguel
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
| | - Pilar Bayarri
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
| | - Younis Baqi
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie, Universität BonnBonn, Germany
| | - Christa E. Müller
- Pharma-Zentrum Bonn, Pharmazeutisches Institut, Pharmazeutische Chemie, Universität BonnBonn, Germany
| | - John D. Salamone
- Department of Psychological Sciences, University of ConnecticutStorrs, CT, USA
| | - Mercé Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume ICastelló, Spain
- Department of Psychological Sciences, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
38
|
Jia LJ, Tang P, Brandon NR, Luo Y, Yu B, Xu Y. Effects of Propofol General Anesthesia on Olfactory Relearning. Sci Rep 2016; 6:33538. [PMID: 27628686 PMCID: PMC5024337 DOI: 10.1038/srep33538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
How general anesthesia interferes with sensory processing to cause amnesia remains unclear. Here, we show that activation of a learning-associated immediate early gene in rat olfactory cortices is uninterrupted by propofol, an intravenous general anesthetic with putative actions on the inhibitory GABAA receptors. Once learned under anesthesia, a novel odor can no longer re-activate the same high-level transcription programming during subsequent conscious relearning. Behavioral tests indicate that the animals’ ability to consciously relearn a pure odorant, first experienced under general anesthesia, is indeed compromised. In contrast, when a mixture of two novel odorants is first experienced under anesthesia and then relearned consciously in pairs with one of the components, the animals show a deficit in relearning only the component but not the mixture. Our results reveal a previously unknown mechanism of unconscious memory due to irreplaceable neuronal commitment under general anesthesia and support the notion that general anesthesia acts at stages beyond cellular coding to disrupt sensory integration for higher-order association.
Collapse
Affiliation(s)
- Li-Jie Jia
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nicole R Brandon
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
39
|
More SV, Kumar H, Cho DY, Yun YS, Choi DK. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int J Mol Sci 2016; 17:E1447. [PMID: 27598124 PMCID: PMC5037726 DOI: 10.3390/ijms17091447] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Hemant Kumar
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Duk-Yeon Cho
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Yo-Sep Yun
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
40
|
Zhang L, Chopp M, Zhang Y, Xiong Y, Li C, Sadry N, Rhaleb I, Lu M, Zhang ZG. Diabetes Mellitus Impairs Cognitive Function in Middle-Aged Rats and Neurological Recovery in Middle-Aged Rats After Stroke. Stroke 2016; 47:2112-8. [PMID: 27387991 DOI: 10.1161/strokeaha.115.012578] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/10/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus (DM) is a common metabolic disease among the middle-aged and older population, which leads to an increase of stroke incidence and poor stroke recovery. The present study was designed to investigate the impact of DM on brain damage and on ischemic brain repair after stroke in aging animals. METHODS DM was induced in middle-aged rats (13 months) by administration of nicotinamide and streptozotocin. Rats with confirmed hyperglycemia status 30 days after nicotinamide-streptozotocin injection and age-matched non-DM rats were subjected to embolic middle cerebral artery occlusion. RESULTS Middle-aged rats subjected to nicotinamide-streptozotocin injection became hyperglycemic and developed cognitive deficits 2 months after induction of DM. Histopathologic analysis revealed that there was sporadic vascular disruption, including cerebral microvascular thrombosis, blood-brain barrier leakage, and loss of paravascular aquaporin-4 in the hippocampi. Importantly, middle-aged DM rats subjected to stroke had exacerbated sensorimotor and cognitive deficits compared with age-matched non-DM ischemic rats during stroke recovery. Compared with age-matched non-DM ischemic rats, DM ischemic rats exhibited aggravated neurovascular disruption in the bilateral hippocampi and white matter, suppressed stroke-induced neurogenesis and oligodendrogenesis, and impaired dendritic/spine plasticity. However, DM did not enlarge infarct volume. CONCLUSIONS Our data suggest that DM exacerbates neurovascular damage and hinders brain repair processes, which likely contribute to the impairment of stroke recovery.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.).
| | - Michael Chopp
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Yanlu Zhang
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Ye Xiong
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Chao Li
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Neema Sadry
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Imane Rhaleb
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Mei Lu
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| | - Zheng Gang Zhang
- From the Department of Neurology (L.Z., M.C., C.L., N.S., I.R., Z.G.Z.), Department of Neurosurgery (Y.Z., Y.X.), and Department of Biostatistics and Research Epidemiology (M.L.), Henry Ford Hospital, Detroit, MI; and Department of Physics, Oakland University, Rochester, MI (M.C.)
| |
Collapse
|
41
|
Park HJ, Lee S, Jung JW, Lee YC, Choi SM, Kim DH. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission. Biomol Ther (Seoul) 2016; 24:433-7. [PMID: 27257009 PMCID: PMC4930288 DOI: 10.4062/biomolther.2015.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 11/16/2022] Open
Abstract
Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Medicinal Biotechnology, College of Health Sciences and Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Seungheon Lee
- Department of Aquatic Biomedical Sciences, School of Marine Biomedical Science, College of Ocean Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Ji Wook Jung
- Department of Herbal Medicinal Pharmacology, College of Herbal Bio-industry, Daegu Haany University, Kyungsan 38610, Republic of Korea
| | - Young Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences and Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Jebong-ro, Gwangju 61469, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences and Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
42
|
Irish coffee: Effects of alcohol and caffeine on object discrimination in zebrafish. Pharmacol Biochem Behav 2016; 143:34-43. [DOI: 10.1016/j.pbb.2016.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 01/19/2023]
|
43
|
Connell M. Expert testimony in sexual assault cases: Alcohol intoxication and memory. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2015; 42-43:98-105. [PMID: 26372634 DOI: 10.1016/j.ijlp.2015.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
At court-martial tribunals in the United States military, cases involving alcohol facilitated sexual assault often pivot on the alleged victim's level of intoxication or impairment and ability to consent to the sexual act. These cases frequently arise following a night of partying and heavy drinking among a group of friends and acquaintances, military and civilian. The determination of whether a sexual act was consensual may rest on estimates of the alleged victim's blood alcohol concentration and related behavioral indicia of impairment. Expert testimony may be presented by the prosecution and/or the defense, from forensic toxicologists and psychiatrists or psychologists regarding the potential involvement of alcohol and its impact on the participants relevant to the charges at court-martial. A review of the state of the science is offered to bring such testimony into perspective. Appellate cases illustrate that the experts' testimony may sometimes elucidate, sometimes obfuscate, and sometimes exceed professional expertise and invade the province of the factfinder.
Collapse
Affiliation(s)
- Mary Connell
- 2830 S. Hulen Street, No. 375, Fort Worth, TX 76109, USA.
| |
Collapse
|
44
|
Alterations in the hippocampal phosphorylated CREB expression in drug state-dependent learning. Behav Brain Res 2015; 292:109-15. [PMID: 26055203 DOI: 10.1016/j.bbr.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023]
Abstract
The present study investigated the possible alterations of hippocampal CREB phosphorylation in drug state-dependent memory retrieval. One-trial step-down passive avoidance task was used to assess memory retrieval in adult male NMRI mice. Pre-training administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol (1g/kg, i.p) or nicotine (0.7 mg/kg, s.c.) reversed ethanol-induced amnesia, indicating ethanol- or ethanol-nicotine induced state-dependent learning (STD). Using Western blot analysis, it was found that the p-CREB/CREB ratio in the hippocampus increased in the mice that showed successful memory retrieval as compared with untrained mice. In contrast, pre-training administration of ethanol (1g/kg, i.p.) decreased the hippocampal p-CREB/CREB ratio in comparison with the control group. The hippocampal p-CREB/CREB ratio enhanced in ethanol- and ethanol-nicotine induced STD. Moreover, memory impairment induced by pre-training administration of WIN (1 mg/kg, i.p.) improved in the animals that received pre-test administration of WIN (1 mg/kg, i.p.), ethanol (0.5 g/kg, i.p.) or nicotine (0.7 mg/kg, s.c.), suggesting a cross STD between the drugs. The p-CREB/CREB ratio in the hippocampus decreased in the of WIN-induced amnesia and STD groups in comparison with the control group. In addition, cross state-dependent learning between WIN and ethanol or nicotine was associated with the increase of the hippocampal p-CREB/CREB ratio. It can be concluded that phosphorylation of CREB in the hippocampus is a critical event underlying the interaction of co-administration of drugs on memory retrieval in passive avoidance learning.
Collapse
|
45
|
Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol 2015; 272:97-108. [PMID: 25987538 DOI: 10.1016/j.expneurol.2015.05.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 02/02/2023]
Abstract
Vascular dementia (VaD) is the second leading form of dementia after Alzheimer's disease (AD) plaguing the elderly population. VaD is a progressive disease caused by reduced blood flow to the brain, and it affects cognitive abilities especially executive functioning. VaD is poorly understood and lacks suitable animal models, which constrain the progress on understanding the basis of the disease and developing treatments. This review article discusses VaD, its risk factors, induced cognitive disability, various animal (rodent) models of VaD, pathology, and mechanisms of VaD and treatment options.
Collapse
Affiliation(s)
- Poornima Venkat
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Physics, Oakland University, Rochester, MI, USA.
| | - Michael Chopp
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Physics, Oakland University, Rochester, MI, USA.
| | - Jieli Chen
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China.
| |
Collapse
|
46
|
Zhang Y, Chopp M, Meng Y, Zhang ZG, Doppler E, Winter S, Schallert T, Mahmood A, Xiong Y. Cerebrolysin improves cognitive performance in rats after mild traumatic brain injury. J Neurosurg 2015; 122:843-55. [PMID: 25614944 DOI: 10.3171/2014.11.jns14271] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT Long-term memory deficits occur after mild traumatic brain injuries (mTBIs), and effective treatment modalities are currently unavailable. Cerebrolysin, a peptide preparation mimicking the action of neurotrophic factors, has beneficial effects on neurodegenerative diseases and brain injuries. The present study investigated the long-term effects of Cerebrolysin treatment on cognitive function in rats after mTBI. METHODS Rats subjected to closed-head mTBI were treated with saline (n = 11) or Cerebrolysin (2.5 ml/kg, n = 11) starting 24 hours after injury and then daily for 28 days. Sham animals underwent surgery without injury (n = 8). To evaluate cognitive function, the modified Morris water maze (MWM) test and a social odor-based novelty recognition task were performed after mTBI. All rats were killed on Day 90 after mTBI, and brain sections were immunostained for histological analyses of amyloid precursor protein (APP), astrogliosis, neuroblasts, and neurogenesis. RESULTS Mild TBI caused long-lasting cognitive memory deficits in the MWM and social odor recognition tests up to 90 days after injury. Compared with saline treatment, Cerebrolysin treatment significantly improved both long-term spatial learning and memory in the MWM test and nonspatial recognition memory in the social odor recognition task up to 90 days after mTBI (p < 0.05). Cerebrolysin significantly increased the number of neuroblasts and promoted neurogenesis in the dentate gyrus, and it reduced APP levels and astrogliosis in the corpus callosum, cortex, dentate gyrus, CA1, and CA3 regions (p < 0.05). CONCLUSIONS These results indicate that Cerebrolysin treatment of mTBI improves long-term cognitive function, and this improvement may be partially related to decreased brain APP accumulation and astrogliosis as well as increased neuroblasts and neurogenesis.
Collapse
|
47
|
Bortolotto JW, Melo GMD, Cognato GDP, Vianna MRM, Bonan CD. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish. Neurobiol Learn Mem 2014; 118:113-9. [PMID: 25490060 DOI: 10.1016/j.nlm.2014.11.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/29/2022]
Abstract
Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.
Collapse
Affiliation(s)
- Josiane Woutheres Bortolotto
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Gabriela Madalena de Melo
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Giana de Paula Cognato
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, s/n°, CEP 96010-900, Pelotas, RS, Brazil
| | - Mônica Ryff Moreira Vianna
- Laboratório de Biologia e Desenvolvimento do Sistema Nervoso, Departamento de Ciências Morfofisiológicas, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; ZebLab - Grupo de Pesquisa em modelos experimentais em zebrafish, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Chiu GS, Darmody PT, Walsh JP, Moon ML, Kwakwa KA, Bray JK, McCusker RH, Freund GG. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety. Brain Behav Immun 2014; 41:218-31. [PMID: 24907587 PMCID: PMC4167209 DOI: 10.1016/j.bbi.2014.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 02/03/2023] Open
Abstract
Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by 2-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain.
Collapse
Affiliation(s)
- Gabriel S Chiu
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Patrick T Darmody
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - John P Walsh
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Morgan L Moon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Kristin A Kwakwa
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Julie K Bray
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA
| | - Robert H McCusker
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Gregory G Freund
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois, Urbana, IL, USA; Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
49
|
Lehmkuhl AM, Dirr ER, Fleming SM. Olfactory assays for mouse models of neurodegenerative disease. J Vis Exp 2014:e51804. [PMID: 25177842 PMCID: PMC4827975 DOI: 10.3791/51804] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In many neurodegenerative diseases and particularly in Parkinson's disease, deficits in olfaction are reported to occur early in the disease process and may be a useful behavioral marker for early detection. Earlier detection in neurodegenerative disease is a major goal in the field because this is when neuroprotective therapies have the best potential to be effective. Therefore, in preclinical studies testing novel neuroprotective strategies in rodent models of neurodegenerative disease, olfactory assessment could be highly useful in determining therapeutic potential of compounds and translation to the clinic. In the present study we describe a battery of olfactory assays that are useful in measuring olfactory function in mice. The tests presented in this study were chosen because they measure olfaction abilities in mice related to food odors, social odors, and non-social odors. These tests have proven useful in characterizing novel genetic mouse models of Parkinson's disease as well as in testing potential disease-modifying therapies.
Collapse
Affiliation(s)
| | - Emily R Dirr
- Department of Neurology, University of Cincinnati; Department of Neuroscience, Cell Biology, and Physiology, Wright State University
| | - Sheila M Fleming
- Department of Psychology, University of Cincinnati; Department of Neurology, University of Cincinnati;
| |
Collapse
|
50
|
Neha, Sodhi RK, Jaggi AS, Singh N. Animal models of dementia and cognitive dysfunction. Life Sci 2014; 109:73-86. [DOI: 10.1016/j.lfs.2014.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/28/2022]
|