1
|
Xu K, Zhang M, Chen D, Xu B, Hu X, Zhang Q, Zhang R, Zhang N, Li N, Fang Q. Conorphin-66 produces peripherally restricted antinociception via the kappa-opioid receptor with limited side effects. Neuropharmacology 2024; 261:110157. [PMID: 39276862 DOI: 10.1016/j.neuropharm.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/15/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
With the current unmet demand for effective pain relief, analgesics without major central adverse effects are highly appealing, such as peripherally restricted kappa-opioid receptor (KOR) agonists. In this study, Conorphin-66, an analog of the selective KOR peptide agonist Conorphin T, was pharmacologically characterized in a series of experiments, with CR845 serving as the reference compound. Firstly, in vitro functional assay indicated that Conorphin-66 selectively activates KOR and exhibits weak β-arrestin2 signaling bias (-1.54 versus -4.35 for CR845). Additionally, subcutaneous Conorphin-66 produced potent antinociception in mouse pain models with ED50 values ranged from 0.02 to 3.28 μmol/kg, including tail-flick test, post-operative pain, formalin pain, and acetic acid-induced visceral pain. Similarly, CR845 exert potent antinociception in mouse pain models ranged from 0.15 to 1.47 μmol/kg. Notably, antagonism studies revealed that the analgesic effects of Conorphin-66 were mainly mediated by the peripheral KOR. Furthermore, Conorphin-66 produced non-tolerance-forming antinociception over 8 days. Unlike CR845, subcutaneous Conorphin-66 did not promote the sedation, anxiogenic effects, depressive-like effects, but did exhibit diuretic activity. Further study showed that Conorphin-66 does not have apparent antipruritic effects in an acute itch model. Overall, Conorphin-66 emerges as a novel peripherally restricted KOR agonist that produced potent antinociception with reduced side effects.
Collapse
Affiliation(s)
- Kangtai Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Xuanran Hu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Ning Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Veterinary Etiological Biology College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Spencer RH, Noonan PK, Marbury T, Menzaghi F. Impact of renal impairment on the pharmacokinetic profile of intravenous difelikefalin, a kappa opioid receptor agonist for the treatment of pruritus. BMC Nephrol 2024; 25:351. [PMID: 39402448 PMCID: PMC11476771 DOI: 10.1186/s12882-024-03790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Difelikefalin is a selective kappa opioid receptor agonist that is approved for the treatment of moderate-to-severe pruritus associated with chronic kidney disease in adults undergoing hemodialysis (HD). In this study, we assessed the pharmacokinetics (PK) of intravenous (IV) difelikefalin in healthy subjects, in non-dialysis-dependent (NDD) subjects with varying stages of kidney disease, and in subjects with end-stage renal disease (ESRD) undergoing HD. METHODS The PK and safety of single IV doses of difelikefalin (3.0 mcg/kg) were initially evaluated in NDD subjects with mild, moderate, or severe renal impairment compared with matched healthy subjects. Based on those data, the PK and safety of 3 dose levels of IV difelikefalin (0.5, 1.0, or 2.5 mcg/kg) were compared with matched placebo in subjects undergoing HD with each dose administered following dialysis, 3 times over a 1-week treatment period). RESULTS Single IV dosing of difelikefalin in NDD subjects (N = 36) with mild renal impairment demonstrated comparable exposure to healthy subjects with normal renal function, while subjects with moderate or severe renal impairment had higher total exposure. NDD subjects with severe renal impairment had higher total exposure compared with those with moderate renal impairment (i.e., exposure in severe NDD > moderate NDD > mild NDD ≈ healthy subjects). Clearance of difelikefalin correspondingly decreased with increasing renal impairment. In the multiple-dose study in subjects with ESRD undergoing HD (N = 19), IV difelikefalin demonstrated dose proportionality and was shown to be mostly cleared by dialysis; steady state was achieved with the second dose on day 3. Safety findings for all subjects were consistent with the known profile of IV difelikefalin. CONCLUSIONS IV difelikefalin was well tolerated. Similar exposure was observed in NDD subjects with mild renal impairment compared with healthy subjects with normal renal function, with reduced clearance and higher exposure in NDD subjects with moderate or severe renal impairment. Dose proportionality was demonstrated in subjects with ESRD undergoing HD administered IV difelikefalin 3 times per week following dialysis and was shown to be mostly cleared by dialysis. TRIAL REGISTRATION Single-dose study: NA; multiple-dose study: ClinicalTrials.gov registration number NCT02229929, first registration 03/09/2014.
Collapse
|
3
|
Trojniak AE, Dang VQ, Czekner KM, Russo RJ, Mather LM, Stahl EL, Cameron MD, Bohn LM, Aubé J. Synthesis and evaluation of 3,4,5-trisubstituted triazoles as G protein-biased kappa opioid receptor agonists. Eur J Med Chem 2024; 276:116627. [PMID: 38971050 PMCID: PMC11316643 DOI: 10.1016/j.ejmech.2024.116627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Kappa opioid receptor (KOR) agonists represent promising therapeutics for pain relief due to their analgesic properties along with lower abuse potential than opioids that act at the mu opioid receptor. However, typical KOR agonists produce sedation and dysphoria. Previous studies have shown that G protein signaling-biased KOR agonists may present a means to untangle the desired analgesic properties from undesired side effects. In this paper, we report a new series of G protein signaling-biased KOR agonists entailing -S- → -CH2- replacement in a previously reported KOR agonist, triazole 1.1. With an optimized carbon linker in hand, further development of the scaffold was undertaken to investigate the appendages of the triazole core. The structure-activity relationship study of this series is described, including several analogues that display enhanced potency while maintaining G protein-signaling bias compared to triazole 1.1.
Collapse
Affiliation(s)
- Ashley E Trojniak
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Vuong Q Dang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Kerri M Czekner
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Robin J Russo
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Lilyan M Mather
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA
| | - Edward L Stahl
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Michael D Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Laura M Bohn
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL, 33458, USA; The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, Jupiter, FL, 33458, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7363, USA.
| |
Collapse
|
4
|
Rehrauer KJ, Cunningham CW. IUPHAR Review - Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol Res 2023; 197:106966. [PMID: 37865129 DOI: 10.1016/j.phrs.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Though efficacious in managing chronic, severe pain, opioid analgesics are accompanied by significant adverse effects including constipation, tolerance, dependence, and respiratory depression. The life-threatening risks associated with µ opioid receptor agonist-based analgesics challenges their use in clinic. A rational approach to combatting these adverse effects is to develop agents that incorporate activity at a second pharmacologic target in addition to µ opioid receptor activation. The promise of such bivalent or bifunctional ligands is the development of an analgesic with an improved side effect profile. In this review, we highlight ongoing efforts in the development of bivalent and bifunctional analgesics that combine µ agonism with efficacy at κ and δ opioid receptors, the nociceptin opioid peptide (NOP) receptor, σ receptors, and cannabinoid receptors. Several examples of bifunctional analgesics in preclinical and clinical development are highlighted, as are strategies being employed toward the rational design of novel agents.
Collapse
Affiliation(s)
- Kyle J Rehrauer
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA; CUW Center for Structure-Based Drug Discovery and Development, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA.
| |
Collapse
|
5
|
Huskinson SL, Platt DM, Smith ZR, Doyle WS, Zamarripa CA, Dunaway K, Prisinzano TE, Freeman KB. Quantification of observable behaviors following oral administration of oxycodone and nalfurafine in male rhesus monkeys. Drug Alcohol Depend 2023; 252:110953. [PMID: 37734282 PMCID: PMC10615792 DOI: 10.1016/j.drugalcdep.2023.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Recent preclinical studies have investigated the atypical kappa-opioid receptor (KOR) agonist, nalfurafine, as a co-formulary with mu-opioid receptor (MOR) agonists as a potential deterrent for misuse. However, no study has investigated effects of nalfurafine combined with a MOR agonist using an oral route of administration. The objective of the current study was to measure behavioral effects of orally administered oxycodone and nalfurafine, alone and combined, in rhesus monkeys using a quantitative behavioral observation procedure. METHODS Adult male rhesus monkeys (N=5) were orally administered vehicle, oxycodone (0.56-1.8mg/kg), nalfurafine (0.001-0.0056mg/kg), or mixtures (1.0mg/kg oxycodone/0.001-0.0056mg/kg nalfurafine) in a Jell-O vehicle at multiple timepoints (10-320min). Species-typical and drug-induced behaviors were recorded by observers blinded to conditions. RESULTS Oxycodone alone significantly increased scratch and face-rub behaviors without affecting other behaviors. Nalfurafine decreased baseline levels of scratch without affecting other behaviors, and oxycodone-nalfurafine combinations resulted in reduced oxycodone-induced scratching at a dose (0.001mg/kg) that did not produce sedation-like effects. Oxycodone combined with larger nalfurafine doses (0.0032-0.0056mg/kg) also reduced oxycodone induced scratch that were accompanied with sedation-like effects (i.e., increased lip droop). CONCLUSIONS Nalfurafine was orally active in rhesus monkeys, and it reduced oxycodone-induced pruritus at a dose that did not produce sedation-like effects that are commonly observed with prototypical KOR agonists. Combinations of low doses of nalfurafine with MOR agonists such as oxycodone may be well-tolerated by humans who are prescribed MOR agonists for the treatment of pain.
Collapse
Affiliation(s)
- Sally L Huskinson
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216.
| | - Donna M Platt
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
| | - Zachary R Smith
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William S Doyle
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
| | - C Austin Zamarripa
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Kristen Dunaway
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216
| |
Collapse
|
6
|
Ertas A, Yigitkan S, Orhan IE. A Focused Review on Cognitive Improvement by the Genus Salvia L. (Sage)-From Ethnopharmacology to Clinical Evidence. Pharmaceuticals (Basel) 2023; 16:171. [PMID: 37259321 PMCID: PMC9966473 DOI: 10.3390/ph16020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/09/2023] [Indexed: 08/31/2023] Open
Abstract
Ethnopharmacology has been an important starting point in medical and pharmaceutical sciences for discovering drug candidates from natural sources. In this regard, the genus Salvia L., commonly known as sage, is one of the best-known medicinal and aromatic plants of the Lamiaceae family; it has been recorded as being used for memory enhancement in European folk medicine. Despite the various uses of sage in folk medicines, the records that have pointed out sage's memory-enhancing properties have paved the way for the aforementioned effect to be proven on scientific grounds. There are many preclinical studies and excellent reviews referring to the favorable effect of different species of sage against the cognitive dysfunction that is related to Alzheimer's disease (AD). Hence, the current review discusses clinical studies that provide evidence for the effect of Salvia species on cognitive dysfunction. Clinical studies have shown that some Salvia species, i.e., hydroalcoholic extracts and essential oils of S. officinalis L. and S. lavandulaefolia leaves in particular, have been the most prominently effective species in patients with mild to moderate AD, and these species have shown positive effects on the memory of young and healthy people. However, the numbers of subjects in the studies were small, and standardized extracts were not used for the most part. Our review points out to the need for longer-term clinical studies with higher numbers of subjects being administered standardized sage preparations.
Collapse
Affiliation(s)
- Abdulselam Ertas
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Serkan Yigitkan
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakir 21200, Türkiye
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| |
Collapse
|
7
|
Guan Q, Velho RV, Sehouli J, Mechsner S. Endometriosis and Opioid Receptors: Are Opioids a Possible/Promising Treatment for Endometriosis? Int J Mol Sci 2023; 24:ijms24021633. [PMID: 36675147 PMCID: PMC9864914 DOI: 10.3390/ijms24021633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Endometriosis (EM), defined as the presence of endometrial-like tissue with surrounding smooth muscle cells outside the uterus, is a disregarded gynecological disease reported to affect 6-10% of women of reproductive age, with 30-50% of them suffering from chronic pelvic pain and infertility. Since the exact pathogenic mechanisms of EM are still unclear, no curative therapy is available. As pain is an important factor in EM, optimal analgesia should be sought, which to date has been treated primarily with non-steroidal anti-inflammatory drugs (NSAIDs), metamizole or, in extreme cases, opioids. Here, we review the pain therapy options, the mechanisms of pain development in EM, the endogenous opioid system and pain, as well as the opioid receptors and EM-associated pain. We also explore the drug abuse and addiction to opioids and the possible use of NOP receptors in terms of analgesia and improved tolerability as a target for EM-associated pain treatment. Emerging evidence has shown a promising functional profile of bifunctional NOP/MOP partial agonists as safe and nonaddictive analgesics. However, until now, the role of NOP receptors in EM has not been investigated. This review offers a thought which still needs further investigation but may provide potential options for relieving EM-associated pain.
Collapse
|
8
|
The apelin/APJ signaling system and cytoprotection: Role of its cross-talk with kappa opioid receptor. Eur J Pharmacol 2022; 936:175353. [DOI: 10.1016/j.ejphar.2022.175353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
|
9
|
Evaluation of the Intracellular Signaling Activities of κ-Opioid Receptor Agonists, Nalfurafine Analogs; Focusing on the Selectivity of G-Protein- and β-Arrestin-Mediated Pathways. Molecules 2022; 27:molecules27207065. [PMID: 36296658 PMCID: PMC9611050 DOI: 10.3390/molecules27207065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Opioid receptors (ORs) are classified into three types (μ, δ, and κ), and opioid analgesics are mainly mediated by μOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a β-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the β-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.
Collapse
|
10
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
11
|
Kong L, Shu X, Tang S, Ye R, Sun H, Jiang S, Li Z, Chai J, Fang Y, Lan Y, Yu L, Xie Q, Fu W, Wang Y, Li W, Qiu Z, Liu J, Shao L. SLL-627 Is a Highly Selective and Potent κ Opioid Receptor (KOR) Agonist with an Unexpected Nonreduction in Locomotor Activity. J Med Chem 2022; 65:10377-10392. [PMID: 35900351 DOI: 10.1021/acs.jmedchem.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Undue central nervous system (CNS) side effects including dysphoria and sedation remain to be a challenge for the development of κ opioid receptor (KOR) agonists as effective and safe analgesics. On the basis of our previous work on morphinan-based KOR agonists, a series of 7α-methyl-7β-substituted northebaine derivatives were designed, synthesized, and biologically assayed. Among others, compound 4a (SLL-627) has been identified as a highly selective and potent KOR agonist both in vitro and in vivo, and its molecular basis was also examined and discussed. Besides low liability to conditioned place aversion (CPA) test, treatment of SLL-627 was associated with a nonreduction in locomotor activity, compared to most of the other arylacetamide- or morphinan-based KOR agonists which generally exhibited apparently sedative effects. This unexpected finding provides new insights to dissociate analgesia from sedation for future discovery of innovative KOR agonists.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Xuelian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Siyuan Tang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Rongrong Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huijiao Sun
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Shuang Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Road, Nanjing 210023, China
| | - Zixiang Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jingrui Chai
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yun Fang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yinjie Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Linqian Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Yujun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Zhuibai Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Jinggen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and Collaborative Innovation Center for Brain Science, No. 555 Zuchongzhi Road, Shanghai 201203, China
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China.,State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
12
|
Dalefield ML, Scouller B, Bibi R, Kivell BM. The Kappa Opioid Receptor: A Promising Therapeutic Target for Multiple Pathologies. Front Pharmacol 2022; 13:837671. [PMID: 35795569 PMCID: PMC9251383 DOI: 10.3389/fphar.2022.837671] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Kappa-opioid receptors (KOR) are widely expressed throughout the central nervous system, where they modulate a range of physiological processes depending on their location, including stress, mood, reward, pain, inflammation, and remyelination. However, clinical use of KOR agonists is limited by adverse effects such as dysphoria, aversion, and sedation. Within the drug-development field KOR agonists have been extensively investigated for the treatment of many centrally mediated nociceptive disorders including pruritis and pain. KOR agonists are potential alternatives to mu-opioid receptor (MOR) agonists for the treatment of pain due to their anti-nociceptive effects, lack of abuse potential, and reduced respiratory depressive effects, however, dysphoric side-effects have limited their widespread clinical use. Other diseases for which KOR agonists hold promising therapeutic potential include pruritis, multiple sclerosis, Alzheimer's disease, inflammatory diseases, gastrointestinal diseases, cancer, and ischemia. This review highlights recent drug-development efforts targeting KOR, including the development of G-protein-biased ligands, mixed opioid agonists, and peripherally restricted ligands to reduce side-effects. We also highlight the current KOR agonists that are in preclinical development or undergoing clinical trials.
Collapse
Affiliation(s)
| | | | | | - Bronwyn M. Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
13
|
Huskinson SL, Platt DM, Zamarripa CA, Dunaway K, Brasfield M, Prisinzano TE, Blough BE, Freeman KB. The G-protein biased kappa opioid agonists, triazole 1.1 and nalfurafine, produce non-uniform behavioral effects in male rhesus monkeys. Pharmacol Biochem Behav 2022; 217:173394. [DOI: 10.1016/j.pbb.2022.173394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
|
14
|
BouSaba J, Sannaa W, Camilleri M. Update on the role of naldemedine in opioid-induced constipation in patients with chronic noncancer pain. Therap Adv Gastroenterol 2022; 15:17562848221078638. [PMID: 35509419 PMCID: PMC9058332 DOI: 10.1177/17562848221078638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic noncancer pain (CNCP) affects up to 20% of adults and can interfere with activities of daily living. Up to 4% of adults in the United States receive chronic opioid therapy and up to 57% of patients on long-term opioids for CNCP report opioid-induced constipation (OIC). OIC is essentially constipation occurring after starting opioid treatment. While laxatives are traditionally the first-line therapy for OIC, 81% of patients taking daily laxatives and opioids still reported OIC and considered that it negatively affected their quality of life. Naldemedine is a peripherally acting µ-opioid receptor antagonists (PAMORA) approved for the treatment of OIC in patients with CNCP. This article reviews the mechanism of action, efficacy, and safety of naldemedine in CNCP patients. Naldemedine improves OIC in patients with CNCP by acting as an opioid receptor antagonist in the gastrointestinal tract. It does not interfere with the analgesic properties of opioids or cause withdrawal symptoms since these effects are centrally mediated, and naldemedine does not cross the blood brain barrier. Naldemedine showed significant and sustained improvement in frequency of bowel movements, quality of life, and constipation-related symptoms. It is generally well tolerated with a higher incidence of gastrointestinal adverse events of mild or moderate severity such as diarrhea, abdominal pain, or vomiting compared to placebo. While there are no randomized, controlled trials that compare head-to-head pharmacological therapies used for treatment of OIC, network meta-analysis shows that naldemedine has an overall good benefit-risk profile compared to the other approved medications.
Collapse
|
15
|
Massaly N, Markovic T, Creed M, Al-Hasani R, Cahill CM, Moron JA. Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 157:31-68. [PMID: 33648672 DOI: 10.1016/bs.irn.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Across centuries and civilizations opioids have been used to relieve pain. In our modern societies, opioid-based analgesics remain one of the most efficient treatments for acute pain. However, the long-term use of opioids can lead to the development of analgesic tolerance, opioid-induced hyperalgesia, opioid use disorders, and overdose, which can ultimately produce respiratory depressant effects with fatal consequences. In addition to the nociceptive sensory component of pain, negative affective states arising from persistent pain represent a risk factor for developing an opioid use disorder. Several studies have indicated that the increase in prescribed opioid analgesics since the 1990s represents the root of our current opioid epidemic. In this review, we will present our current knowledge on the endogenous opioid system within the pain neuroaxis and the plastic changes occurring in this system that may underlie the occurrence of pain-induced negative affect leading to misuse and abuse of opioid medications. Dissecting the allostatic neuronal changes occurring during pain is the most promising avenue to uncover novel targets for the development of safer pain medications. We will discuss this along with current and potential approaches to treat pain-induced negative affective states that lead to drug misuse. Moreover, this chapter will provide a discussion on potential avenues to reduce the abuse potential of new analgesic drugs and highlight a basis for future research and drug development based on recent advances in this field.
Collapse
Affiliation(s)
- Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States.
| | - Tamara Markovic
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States
| | - Meaghan Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, United States; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, CA, United States; Shirley and Stefan Hatos Center for Neuropharmacology, University of California Los Angeles, Los Angeles, CA, United States; Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Jose A Moron
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States; Washington University in St Louis, Pain Center, St. Louis, MO, United States; Washington University in St Louis, School of Medicine, St. Louis, MO, United States; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States; Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
16
|
Abstract
The opioid peptides and their receptors have been linked to multiple key biological processes in the nervous system. Here we review the functions of the kappa opioid receptor (KOR) and its endogenous agonists dynorphins (Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L, Proc Natl Acad Sci U S A 76:6666-6670, 1979) in modulating itch and pain (nociception). Specifically, we discuss their roles relative to recent findings that tell us more about the cells and circuits which are impacted by this opioid and its receptor and present reanalysis of single-cell sequencing data showing the expression profiles of these molecules. Since the KOR is relatively specifically activated by peptides derived from the prodynorphin gene and other opioid peptides that show lower affinities, this will be the only interactions we consider (Chavkin C, Goldstein A, Nature 291:591-593, 1981; Chavkin C, James IF, Goldstein A, Science 215:413-415, 1982), although it was noted that at higher doses peptides other than dynorphins might stimulate KOR (Lai J, Luo MC, Chen Q, Ma S, Gardell LR, Ossipov MH, Porreca F, Nat Neurosci 9:1534-1540, 2006). This review has been organized based on anatomy with each section describing the effect of the kappa opioid system in a specific location but let us not forget that most of these circuits are interconnected and are therefore interdependent.
Collapse
Affiliation(s)
- Pang-Yen Tseng
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA
| | - Mark A Hoon
- Molecular Genetics Section, National Institute of Dental and Craniofacial Research/NIH, Bethesda, MD, USA.
| |
Collapse
|
17
|
Viscusi ER, Torjman MC, Munera CL, Stauffer JW, Setnik BS, Bagal SN. Effect of difelikefalin, a selective kappa opioid receptor agonist, on respiratory depression: A randomized, double-blind, placebo-controlled trial. Clin Transl Sci 2021; 14:1886-1893. [PMID: 33982405 PMCID: PMC8504812 DOI: 10.1111/cts.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Difelikefalin, a selective kappa opioid receptor agonist designed to limit central nervous system (CNS) penetration, is under development for the treatment of pruritus. Its hydrophilic, small-peptidic structure limits CNS entry, minimizing potential CNS-mediated adverse events (AEs). This study assessed the effect of difelikefalin on key relevant measures of respiratory depression in healthy volunteers. This single-center, randomized, double-blind, placebo-controlled, three-way crossover study enrolled healthy, nonsmoking volunteers. Subjects were randomized to 1 of 3 treatment sequences of difelikefalin (1.0 or 5.0 mcg/kg i.v.) or placebo on sequential days with an intervening 24 (±2) h washout period. The primary end points included incidence of increased end-tidal carbon dioxide (ETCO2 ) greater than or equal to 10 mm Hg versus baseline or a level greater than 50 mm Hg sustained greater than or equal to 30 seconds, and incidence of reduction in saturation of peripheral oxygen (SpO2 ) to less than 92% sustained greater than or equal to 30 seconds. Secondary end points included incidence of reduced respiratory rate and other safety assessments. Fifteen subjects were randomized and completed the study. No subject on placebo or difelikefalin met the increased ETCO2 or reduced SpO2 primary end point criteria for respiratory depression. All respiratory measures in each group remained near baseline values during 4-h postdose observations. No subject met the reduced respiratory rate criterion or experienced clinically significant changes in ETCO2 , SpO2 , or respiratory rate. The most commonly reported treatment-emergent AEs (TEAEs; ≥20% of subjects) were paresthesia, hypoesthesia, and somnolence in the difelikefalin arms. All TEAEs were mild and resolved without intervention. Difelikefalin 1.0 and 5.0 mcg/kg i.v. did not produce respiratory depression.
Collapse
Affiliation(s)
- Eugene R. Viscusi
- Department of AnesthesiologySidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Marc C. Torjman
- Department of AnesthesiologySidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | | | - Beatrice S. Setnik
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
- AltasciencesMontrealQuebecCanada
| | | |
Collapse
|
18
|
Niu L, Chen L, Luo Y, Huang W, Li Y. Oxycodone versus morphine for analgesia after laparoscopic endometriosis resection. BMC Anesthesiol 2021; 21:194. [PMID: 34289814 PMCID: PMC8293543 DOI: 10.1186/s12871-021-01417-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to compare the analgesic potency of oxycodone versus morphine after laparoscopic deep infiltrating endometriosis resection. Methods Fifty patients undergoing laparoscopic deep infiltrating endometriosis resection were randomized to receive oxycodone or morphine intravenous-PCA after surgery. The primary outcome was opioid consumption during the 24 h after surgery. Secondary outcomes included time to first request for analgesia, the number of bolus, pain, sedation, nausea, vomiting, respiratory depression, and bradycardia. The prominent pain that caused patients to press the analgesic device was also recorded. Results Oxycodone consumption (14.42 ± 2.83) was less than morphine consumption (20.14 ± 3.83). Compared with the morphine group, the total number of bolus (78 vs 123) was less and the average time to first request for analgesia (97.27 ± 59.79 vs 142.17 ± 51) was longer in the oxycodone group. The incidence of nausea was higher in the morphine group than in the oxycodone group at 0–2 h (45.45% vs 17.19%), 2–4 h (50% vs 17.19%),12–24 h (40.91% vs 13.04%) and 0–24 h (39.17% vs 19.13%). The overall incidence of vomiting was higher in the morphine group (27.27% vs 13.92%). There was no difference in visual analogue scale score, the incidence of respiratory depression, and bradycardia between groups. Of the three types of pain that prompted patients to request analgesia, the incidence of visceral pain was highest (59.9%, P < 0.01). Conclusion Oxycodone was more potent than morphine for analgesia after laparoscopic endometriosis resection, and oxycodone has fewer side effects than morphine. Name of the registry: Chinese Clinical Trial Registry Trial registration number: ChiCTR1900021870 URL of trial registry record:http://www.chictr.org.cn/edit.aspx?pid=35799&htm=4 Date of registration: 2019/3/13 0:00:00
Collapse
Affiliation(s)
- Lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University No.58, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Lihong Chen
- Department of Anesthesiology, The Six Affiliated Hospital, Sun Yat-sen University No. 26, Erheng Road, Guangzhou, 510655, China
| | - Yanhua Luo
- Department of Anesthesiology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, No.54 Xianlie South Road, Guangzhou, 510060, China
| | - Wenkao Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, China
| | - Yunsheng Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University No.58, Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Kappa opioid receptor modulation of endometriosis pain in mice. Neuropharmacology 2021; 195:108677. [PMID: 34153313 DOI: 10.1016/j.neuropharm.2021.108677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 06/13/2021] [Indexed: 12/30/2022]
Abstract
The kappa opioid receptor is a constituent of the endogenous opioid analgesia system widely expressed in somatosensory nervous pathways and also in endometrial tissues. This work investigates the possible involvement of kappa opioid receptor on the nociceptive, behavioral and histopathological manifestations of endometriosis in a murine model. Female mice receiving endometrial implants develop a persistent mechanical hypersensitivity in the pelvic area that is stronger during the estrus phase of the estrous cycle. The kappa opioid receptor agonist U50,488H produces a dose-dependent relief of this mechanical hypersensitivity, regardless of the cycle phase. Repeated exposure to a low dose of U50,488H (1 mg/kg/day s.c. for one month) provides sustained relief of mechanical hypersensitivity, without tolerance development or sedative side effects. Interestingly, this treatment also inhibits a decreased rearing behavior associated with spontaneous pain or discomfort in endometriosis mice. This KOR-mediated pain relief does not prevent the anxiety-like behavior or the cognitive impairment exhibited by endometriosis mice, and the growth of endometriotic cysts is also unaltered. These data provide evidence of strong pain-relieving properties of kappa opioid receptor stimulation in female mice with endometriosis pain. The persistence of affective and cognitive manifestations suggests that these comorbidities are independent of pelvic pain and simultaneous treatment of these comorbidities may be necessary for successful management of endometriosis.
Collapse
|
20
|
Chakraborty S, Majumdar S. Natural Products for the Treatment of Pain: Chemistry and Pharmacology of Salvinorin A, Mitragynine, and Collybolide. Biochemistry 2021; 60:1381-1400. [PMID: 32930582 PMCID: PMC7982354 DOI: 10.1021/acs.biochem.0c00629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain remains a very pervasive problem throughout medicine. Classical pain management is achieved through the use of opiates belonging to the mu opioid receptor (MOR) class, which have significant side effects that hinder their utility. Pharmacologists have been trying to develop opioids devoid of side effects since the isolation of morphine from papaver somniferum, more commonly known as opium by Sertürner in 1804. The natural products salvinorin A, mitragynine, and collybolide represent three nonmorphinan natural product-based targets, which are potent selective agonists of opioid receptors, and emerging next-generation analgesics. In this work, we review the phytochemistry and medicinal chemistry efforts on these templates and their effects on affinity, selectivity, analgesic actions, and a myriad of other opioid-receptor-related behavioral effects.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
21
|
Atigari DV, Paton KF, Uprety R, Váradi A, Alder AF, Scouller B, Miller JH, Majumdar S, Kivell BM. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021; 185:108445. [PMID: 33383089 PMCID: PMC8344368 DOI: 10.1016/j.neuropharm.2020.108445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023]
Abstract
Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse potential; however, they have not been utilised clinically due to dysphoria and sedation. We hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor (DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects in the open-field locomotor activity test, respiratory depression in mice using whole-body plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-addictive pain medications with reduced tolerance.
Collapse
Affiliation(s)
- Diana Vivian Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Kelly Frances Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - András Váradi
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Amy Frances Alder
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Brittany Scouller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - John H Miller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susruta Majumdar
- Center of Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
| | - Bronwyn Maree Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
22
|
Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals (Basel) 2021; 14:ph14020116. [PMID: 33546518 PMCID: PMC7913753 DOI: 10.3390/ph14020116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/13/2023] Open
Abstract
Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the κ-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.
Collapse
|
23
|
Denny L, Al Abadey A, Robichon K, Templeton N, Prisinzano TE, Kivell BM, La Flamme AC. Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease. Clin Transl Immunology 2021; 10:e1234. [PMID: 33489124 PMCID: PMC7811802 DOI: 10.1002/cti2.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side‐effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side‐effect profile. Methods Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non‐immune demyelination. Results Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor‐BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR‐dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. Conclusions Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.
Collapse
Affiliation(s)
- Lisa Denny
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Katharina Robichon
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Nikki Templeton
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences University of Kentucky Lexington KY 40536 USA
| | - Bronwyn M Kivell
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Anne C La Flamme
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| |
Collapse
|
24
|
Spetea M, Schmidhammer H. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handb Exp Pharmacol 2021; 271:163-195. [PMID: 33454858 DOI: 10.1007/164_2020_431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kappa opioid receptor (KOR), a G protein-coupled receptor, and its endogenous ligands, the dynorphins, are prominent members of the opioid neuromodulatory system. The endogenous kappa opioid system is expressed in the central and peripheral nervous systems, and has a key role in modulating pain in central and peripheral neuronal circuits and a wide array of physiological functions and neuropsychiatric behaviors (e.g., stress, reward, emotion, motivation, cognition, epileptic seizures, itch, and diuresis). We review the latest advances in pharmacology of the KOR, chemical developments on KOR ligands with advances and challenges, and therapeutic and potential applications of KOR ligands. Diverse discovery strategies of KOR ligands targeting natural, naturally derived, and synthetic compounds with different scaffolds, as small molecules or peptides, with short or long-acting pharmacokinetics, and central or peripheral site of action, are discussed. These research efforts led to ligands with distinct pharmacological properties, as agonists, partial agonists, biased agonists, and antagonists. Differential modulation of KOR signaling represents a promising strategy for developing pharmacotherapies for several human diseases, either by activating (treatment of pain, pruritus, and epilepsy) or blocking (treatment of depression, anxiety, and addiction) the receptor. We focus on the recent chemical and pharmacological advances on diphenethylamines, a new class of structurally distinct, selective KOR ligands. Design strategies and investigations to define structure-activity relationships together with in vivo pharmacology of diphenethylamines as agonists, biased agonists, and antagonists and their potential use as therapeutics are discussed.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Agostinelli LJ, Bassuk AG. Novel inhibitory brainstem neurons with selective projections to spinal lamina I reduce both pain and itch. J Comp Neurol 2020; 529:2125-2137. [PMID: 33247430 PMCID: PMC8009815 DOI: 10.1002/cne.25076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain (“bottom up” pathway). Some of this information may be modulated by “top‐down” projections from the brain to the spinal cord. Discovering endogenous mechanisms for reducing pain and itch holds enormous potential for developing new treatments. However, neurons mediating the top‐down inhibition of pain are not well understood, nor has any such pathway been identified for itch sensation. Here, we identify a novel population of GABAergic neurons in the ventral brainstem, distinguished by prodynorphin expression, which we named LJA5. LJA5 neurons provide the only known inhibitory projection specifically to lamina I of the spinal cord, which contains sensory neurons that transmit pain and itch information up to the brain. Chemogenetically activating LJA5 neurons in male mice reduces capsaicin‐induced pain and histamine‐induced itch. Identifying this new pathway opens new treatment opportunities for chronic, refractory pain, and pruritis.
Collapse
Affiliation(s)
- Lindsay J Agostinelli
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Alexander G Bassuk
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Schmidhammer H, Erli F, Guerrieri E, Spetea M. Development of Diphenethylamines as Selective Kappa Opioid Receptor Ligands and Their Pharmacological Activities. Molecules 2020; 25:E5092. [PMID: 33147885 PMCID: PMC7663249 DOI: 10.3390/molecules25215092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023] Open
Abstract
Among the opioid receptors, the kappa opioid receptor (KOR) has been gaining substantial attention as a promising molecular target for the treatment of numerous human disorders, including pain, pruritus, affective disorders (i.e., depression and anxiety), drug addiction, and neurological diseases (i.e., epilepsy). Particularly, the knowledge that activation of the KOR, opposite to the mu opioid receptor (MOR), does not produce euphoria or leads to respiratory depression or overdose, has stimulated the interest in discovering ligands targeting the KOR as novel pharmacotherapeutics. However, the KOR mediates the negative side effects of dysphoria/aversion, sedation, and psychotomimesis, with the therapeutic promise of biased agonism (i.e., selective activation of beneficial over deleterious signaling pathways) for designing safer KOR therapeutics without the liabilities of conventional KOR agonists. In this review, the development of new KOR ligands from the class of diphenethylamines is presented. Specifically, we describe the design strategies, synthesis, and pharmacological activities of differently substituted diphenethylamines, where structure-activity relationships have been extensively studied. Ligands with distinct profiles as potent and selective agonists, G protein-biased agonists, and selective antagonists, and their potential use as therapeutic agents (i.e., pain treatment) and research tools are described.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/therapeutic use
- Humans
- Ligands
- Pain/drug therapy
- Pain/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (F.E.); (E.G.)
| | | | | | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; (F.E.); (E.G.)
| |
Collapse
|
27
|
Lv S, Zhang X, Feng Y, Zhou Y, Cui B, Yang Y, Wang X. Intravenous Administration of Pyroglutamyl Apelin-13 Alleviates Murine Inflammatory Pain via the Kappa Opioid Receptor. Front Neurosci 2020; 14:929. [PMID: 33013308 PMCID: PMC7506098 DOI: 10.3389/fnins.2020.00929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Apelin is an endogenous neuropeptide, which has wide distribution in central nervous system and peripheral tissues. Pyroglutamyl apelin-13 [(pyr)apelin-13] is the major apelin isoform in human plasma. However, the role of peripheral (pyr)apelin-13 in pain regulation is unknown. The aim of this study was to investigate the effect of the peripheral injection of (pyr)apelin-13 on inflammatory pain using the formalin test as well as to evaluate the mechanistic basis for the effect. Results showed intravenous (i.v.) injection of (pyr)apelin-13 (10, 20 mg/kg) to significantly decrease licking/biting time during the second phase of the mouse formalin test. In contrast, i.v. injection of apelin-13 had no influence on such effect. Intramuscular injection of (pyr)apelin-13 reduced licking/biting time during the second phase only at a dose of 20 mg/kg. The antinociception of i.v. (pyr)apelin-13 was antagonized by the apelin receptor (APJ, angiotensin II receptor-like 1) antagonist, apelin-13(F13A). (pyr)apelin-13 (i.v. 20 mg/kg) markedly upregulated Aplnr and Adcy2 gene expression in the prefrontal cortex, whereas Fos gene expression was downregulated. The antinociception of i.v. (pyr)apelin-13 was blocked by the opioid receptor antagonist naloxone and the specific kappa opioid receptor (KOR) antagonist nor-binaltorphimine (nor-BNI). (pyr)Apelin-13 upregulated the dynorphin and KOR gene expression and protein levels in the mouse prefrontal cortex, not in striatum. (pyr)Apelin-13 did not influence the motor behavior. Our results demonstrate that i.v. injection of (pyr)apelin-13 induces antinociception via the KOR in the inflammatory pain mouse model.
Collapse
Affiliation(s)
- Shuangyu Lv
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaomei Zhang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yu Feng
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Binbin Cui
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yanjie Yang
- Institute of Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinchun Wang
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
28
|
Li G, Nieman AN, Mian MY, Zahn NM, Mikulsky BN, Poe MM, Methuku KR, Liu Y, Cook JM, Stafford DC, Arnold LA. A Structure-Activity Relationship Comparison of Imidazodiazepines Binding at Kappa, Mu, and Delta Opioid Receptors and the GABA A Receptor. Molecules 2020; 25:E3864. [PMID: 32854311 PMCID: PMC7503500 DOI: 10.3390/molecules25173864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 01/06/2023] Open
Abstract
Analgesic and anti-inflammatory properties mediated by the κ opioid receptor (KOR) have been reported for oxadiazole imidazodiazepines. Affinities determined by radioligand competition assays of more than seventy imidazodiazepines using cell homogenates from HEK293 cells that overexpress KOR, µ opioid receptor (MOR), and δ opioid receptor (DOR) are presented. Affinities to synaptic, benzodiazepine-sensitive receptors (BZR) were determined with rat brain extract. The highest affinity for KOR was recorded for GL-I-30 (Ki of 27 nM) and G-protein recruitment was observed with an EC50 of 32 nM. Affinities for MOR and DOR were weak for all compounds. Ester and amide imidazodiazepines were among the most active KOR ligands but also competed with 3H-flunitrazepam for brain extract binding, which is mediated predominately by gamma aminobutyric acid type A receptors (GABAAR) of the α1-3β2-3γ1-2 subtypes. Imidazodiazepines with carboxylic acid and primary amide groups did not bind KOR but interacted strongly with GABAARs. Pyridine substitution reduced KOR affinity. Oxadiazole imidazodiazepines exhibited good KOR binding and interacted weakly with BZR, whereas oxazole imidazodiazepines were more selective towards BZR. Compounds that lack the imidazole moiety, the pendent phenyl, or pyridine substitutions exhibited insignificant KOR affinities. It can be concluded that a subset of imidazodiazepines represents novel KOR ligands with high selectivity among opioid receptors.
Collapse
MESH Headings
- Animals
- Azepines/chemistry
- Azepines/pharmacology
- GABA-A Receptor Agonists/chemistry
- GABA-A Receptor Agonists/pharmacology
- HEK293 Cells
- Humans
- Protein Binding
- Receptors, GABA-A/chemistry
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Guanguan Li
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Amanda N. Nieman
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Md Yeunus Mian
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Nicolas M. Zahn
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | | | - Michael M. Poe
- Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008, USA;
| | - Kashi R. Methuku
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Yongfeng Liu
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA;
| | - James M. Cook
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
| | - Douglas C. Stafford
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
- Pantherics Incorporated, La Jolla, CA 92037, USA;
| | - Leggy A. Arnold
- Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA; (A.N.N.); (M.Y.M.); (N.M.Z.); (K.R.M.); (J.M.C.); (D.C.S.)
- Pantherics Incorporated, La Jolla, CA 92037, USA;
| |
Collapse
|
29
|
Parker KE, Sugiarto E, Taylor AMW, Pradhan AA, Al-Hasani R. Pain, Motivation, Migraine, and the Microbiome: New Frontiers for Opioid Systems and Disease. Mol Pharmacol 2020; 98:433-444. [PMID: 32958571 DOI: 10.1124/mol.120.119438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
For decades the broad role of opioids in addiction, neuropsychiatric disorders, and pain states has been somewhat well established. However, in recent years, with the rise of technological advances, not only is the existing dogma being challenged, but we are identifying new disease areas in which opioids play a critical role. This review highlights four new areas of exploration in the opioid field. The most recent addition to the opioid family, the nociceptin receptor system, shows promise as the missing link in understanding the neurocircuitry of motivation. It is well known that activation of the kappa opioid receptor system modulates negative affect and dysphoria, but recent studies now implicate the kappa opioid system in the modulation of negative affect associated with pain. Opioids are critical in pain management; however, the often-forgotten delta opioid receptor system has been identified as a novel therapeutic target for headache disorders and migraine. Lastly, changes to the gut microbiome have been shown to directly contribute to many of the symptoms of chronic opioid use and opioid related behaviors. This review summarizes the findings from each of these areas with an emphasis on identifying new therapeutic targets. SIGNIFICANCE STATEMENT: The focus of this minireview is to highlight new disease areas or new aspects of disease in which opioids have been implicated; this includes pain, motivation, migraine, and the microbiome. In some cases, this has resulted in the pursuit of a novel therapeutic target and resultant clinical trial. We believe this is very timely and will be a refreshing take on reading about opioids and disease.
Collapse
Affiliation(s)
- Kyle E Parker
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Elizabeth Sugiarto
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Anna M W Taylor
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Amynah A Pradhan
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Ream Al-Hasani
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| |
Collapse
|
30
|
Agostinelli LJ, Mix MR, Hefti MM, Scammell TE, Bassuk AG. Input-output connections of LJA5 prodynorphin neurons. J Comp Neurol 2020; 529:635-654. [PMID: 32602558 PMCID: PMC7769903 DOI: 10.1002/cne.24974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
Abstract
Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain. Sensory information may be modulated by projections from the brain to the spinal cord, but the neural substrates for top‐down sensory control are incompletely understood. We identified a novel population of inhibitory neurons in the mouse brainstem, distinguished by their expression of prodynorphin, which we named LJA5. Here, we identify a similar group of Pdyn+ neurons in the human brainstem, and we define the efferent and afferent projection patterns of LJA5 neurons in mouse. Using specific genetic tools, we selectively traced the projections of the Pdyn‐expressing LJA5 neurons through the brain and spinal cord. Terminal fields were densest in the lateral and ventrolateral periaqueductal gray (PAG), lateral parabrachial nucleus (LPB), caudal pressor area, and lamina I of the spinal trigeminal nucleus and all levels of the spinal cord. We then labeled cell types in the PAG, LPB, medulla, and spinal cord to better define the specific targets of LJA5 boutons. LJA5 neurons send the only known inhibitory descending projection specifically to lamina I of the spinal cord, which transmits afferent pain, temperature, and itch information up to the brain. Using retrograde tracing, we found LJA5 neurons receive inputs from sensory and stress areas such as somatosensory/insular cortex, preoptic area, paraventricular nucleus, dorsomedial nucleus and lateral hypothalamus, PAG, and LPB. This pattern of inputs and outputs suggest LJA5 neurons are uniquely positioned to be activated by sensation and stress, and in turn, inhibit pain and itch.
Collapse
Affiliation(s)
- Lindsay J Agostinelli
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Madison R Mix
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander G Bassuk
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
31
|
Mercadante S, Romualdi P. The Therapeutic Potential of Novel Kappa Opioid Receptor-based Treatments. Curr Med Chem 2020; 27:2012-2020. [PMID: 30666905 DOI: 10.2174/0929867326666190121142459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/13/2018] [Accepted: 12/29/2018] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Similarly to the μ opioid receptor, kappa opioid receptor (KOR), is present either in the central nervous system or in peripheral tissues. In the last years, several molecules, able to interact with KOR, have been the focus of basic research for their therapeutic potential in the field of chronic pain, as well as in depression, autoimmune disorders and neurological diseases. DISCUSSION The role of KOR system and the consequent clinical effects derived by its activation or inhibition are discussed. Their potential therapeutic utilization in conditions of stress and drug relapse, besides chronic pain, is presented here, including the possible use of KORagonists in drug addiction. Moreover, the potential role of KOR-antagonists, KOR agonistantagonists and peripheral KOR agonists is proposed. CONCLUSION Other than pain, KORs have a role in regulating reward and mood. Due to its location, KORs seem to mediate interactions between psychiatric disorders, addiction and depression. Experimental studies in animal models have identified brain mechanisms that may contribute to clarify specific pathophysiological processes.
Collapse
Affiliation(s)
- Sebastiano Mercadante
- Pain Relief & Palliative/Supportive Care Unit, La Maddalena Cancer Center, Palermo, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Huskinson SL, Platt DM, Brasfield M, Follett ME, Prisinzano TE, Blough BE, Freeman KB. Quantification of observable behaviors induced by typical and atypical kappa-opioid receptor agonists in male rhesus monkeys. Psychopharmacology (Berl) 2020; 237:2075-2087. [PMID: 32372348 PMCID: PMC7308209 DOI: 10.1007/s00213-020-05519-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOR) agonists are antinociceptive but have side effects that limit their therapeutic utility. New KOR agonists have been developed that are fully efficacious at the KOR but may produce fewer or reduced side effects that are typical of KOR agonists. OBJECTIVES We determined behavioral profiles for typical and atypical KOR agonists purported to differ in intracellular-signaling profiles as well as a mu-opioid receptor (MOR) agonist, oxycodone, using a behavioral scoring system based on Novak et al. (Am J Primatol 28:124-138, 1992, Am J Primatol 46:213-227, 1998) and modified to quantify drug-induced effects (e.g., Duke et al. J Pharmacol Exp Ther 366:145-157, 2018). METHODS Six adult male rhesus monkeys were administered a range of doses of the typical KOR agonists, U50-488H (0.0032-0.1 mg/kg) and salvinorin A (0.00032-0.01 mg/kg); the atypical KOR agonists, nalfurafine (0.0001-0.001 mg/kg) and triazole 1.1 (0.01-0.32 mg/kg); the MOR agonist, oxycodone (0.0032-0.32 mg/kg); and as controls, cocaine (0.032-0.32 mg/kg) and ketamine (0.32-10 mg/kg). For time-course determinations, the largest dose of each KOR agonist or MOR agonist was administered across timepoints (10-320 min). In mixture conditions, oxycodone (0.1 mg/kg) was followed by KOR-agonist administration. RESULTS Typical KOR agonists produced sedative-like and motor-impairing effects. Nalfurafine was similar to typical KOR agonists on most outcomes, and triazole 1.1 produced no effects on its own except for reducing scratch during time-course determinations. In the mixture, all KOR agonists reduced oxycodone-induced scratching, U50-488H and nalfurafine reduced species-typical activity, and U50-488H increased rest/sleep posture. CONCLUSIONS Atypical "biased" KOR agonists produce side-effect profiles that are relatively benign (triazole 1.1) or reduced (nalfurafine) compared to typical KOR agonists.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Diterpenes, Clerodane/pharmacology
- Dose-Response Relationship, Drug
- Macaca mulatta
- Male
- Morphinans/pharmacology
- Motor Activity/drug effects
- Motor Activity/physiology
- Oxycodone/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Spiro Compounds/pharmacology
Collapse
Affiliation(s)
- S L Huskinson
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - D M Platt
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - M Brasfield
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - M E Follett
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - T E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - B E Blough
- Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - K B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
33
|
Zhu X, Chen L, Zheng S, Pan L. Comparison of ED95 of Butorphanol and Sufentanil for gastrointestinal endoscopy sedation: a randomized controlled trial. BMC Anesthesiol 2020; 20:101. [PMID: 32359348 PMCID: PMC7195772 DOI: 10.1186/s12871-020-01027-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 01/07/2023] Open
Abstract
Background Butorphanol, a synthetic opioid partial agonist analgesic, has been widely used to control perioperative pain. However, the ideal dose and availability of butorphanol for gastrointestinal (GI) endoscopy are not well known. The aim of this study was to evaluated the 95% effective dose (ED95) of butorphanol and sufentanil in GI endoscopy and compared their clinical efficacy, especially regarding the recovery time. Methods The study was divided into two parts. For the first part, voluntary patients who needed GI endoscopy anesthesia were recruited to measure the ED95 of butorphanol and sufentanil needed to achieve successful sedation before GI endoscopy using the sequential method (the Dixon up-and-down method). The second part was a double-blind, randomized study. Two hundred cases of painless GI endoscopy patients were randomly divided into two groups (n = 100), including group B (butorphanol at the ED95 dose) and group S (sufentanil at the ED95 dose). Propofol was infused intravenously as the sedative in both groups. The recovery time, visual analogue scale (VAS) score, hand grip strength, fatigue severity scores, incidence of nausea and vomiting, and incidence of dizziness were recorded. Results The ED95 of butorphanol for painless GI endoscopy was 9.07 μg/kg (95% confidence interval: 7.81–19.66 μg/kg). The ED95 of sufentanil was 0.1 μg/kg (95% CI, 0.079–0.422 μg/kg). Both butorphanol and sufentanil provided a good analgesic effect for GI endoscopy. However, the recovery time for butorphanol was significantly shorter than that for sufentanil (P < 0.05, group B vs. group S:21.26 ± 7.70 vs. 24.03 ± 7.80 min). Conclusions Butorphanol at 9.07 μg/kg was more effective than sufentanil for GI endoscopy sedation and notably reduced the recovery time. Trial registration Chinese Clinical Trail Registry (Registration number # ChiCTR1900022780; Date of Registration on April 25rd, 2019).
Collapse
Affiliation(s)
- Xiaona Zhu
- Department of Anesthesiology, the First Affiliated Hospital, Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Limei Chen
- Department of Anesthesiology, the First Affiliated Hospital, Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Shuang Zheng
- Department of Anesthesiology, the First Affiliated Hospital, Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Linmin Pan
- Department of Anesthesiology, the First Affiliated Hospital, Wenzhou Medical University, Shangcai village, Nanbaixiang town, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
34
|
Drakopoulos A, Koszegi Z, Lanoiselée Y, Hübner H, Gmeiner P, Calebiro D, Decker M. Investigation of Inactive-State κ Opioid Receptor Homodimerization via Single-Molecule Microscopy Using New Antagonistic Fluorescent Probes. J Med Chem 2020; 63:3596-3609. [DOI: 10.1021/acs.jmedchem.9b02011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonios Drakopoulos
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Harald Hübner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research and Centre of Membrane Proteins and Receptors, College of Medical and Dental Sciences, University of Birmingham, B152TT Birmingham, U.K
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
35
|
Bedini A, Di Cesare Mannelli L, Micheli L, Baiula M, Vaca G, De Marco R, Gentilucci L, Ghelardini C, Spampinato S. Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist. Front Pharmacol 2020; 11:188. [PMID: 32210803 PMCID: PMC7066533 DOI: 10.3389/fphar.2020.00188] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Abstract
Kappa opioid receptor (KOPr) agonists represent alternative analgesics for their low abuse potential, although relevant adverse effects have limited their clinical use. Functionally selective KOPr agonists may activate, in a pathway-specific manner, G protein-mediated signaling, that produces antinociception, over β-arrestin 2-dependent induction of p38MAPK, which preferentially contributes to adverse effects. Thus, functionally selective KOPr agonists biased toward G protein-coupled intracellular signaling over β-arrestin-2-mediated pathways may be considered candidate therapeutics possibly devoid of many of the typical adverse effects elicited by classic KOPr agonists. Nonetheless, the potential utility of functionally selective agonists at opioid receptors is still highly debated; therefore, further studies are necessary to fully understand whether it will be possible to develop more effective and safer analgesics by exploiting functional selectivity at KOPr. In the present study we investigated in vitro functional selectivity and in vivo antinociceptive effects of LOR17, a novel KOPr selective peptidic agonist that we synthesized. LOR17-mediated effects on adenylyl cyclase inhibition, ERK1/2, p38MAPK phosphorylation, and astrocyte cell proliferation were studied in HEK-293 cells expressing hKOPr, U87-MG glioblastoma cells, and primary human astrocytes; biased agonism was investigated via cAMP ELISA and β-arrestin 2 recruitment assays. Antinociception and antihypersensitivity were assessed in mice via warm-water tail-withdrawal test, intraperitoneal acid-induced writhing, and a model of oxaliplatin-induced neuropathic cold hypersensitivity. Effects of LOR17 on locomotor activity, exploratory activity, and forced-swim behavior were also assayed. We found that LOR17 is a selective, G protein biased KOPr agonist that inhibits adenylyl cyclase and activates early-phase ERK1/2 phosphorylation. Conversely to classic KOPr agonists as U50,488, LOR17 neither induces p38MAPK phosphorylation nor increases KOPr-dependent, p38MAPK-mediated cell proliferation in astrocytes. Moreover, LOR17 counteracts, in a concentration-dependent manner, U50,488-induced p38MAPK phosphorylation and astrocyte cell proliferation. Both U50,488 and LOR17 display potent antinociception in models of acute nociception, whereas LOR17 counteracts oxaliplatin-induced thermal hypersensitivity better than U50,488, and it is effective after single or repeated s.c. administration. LOR17 administered at a dose that fully alleviated oxaliplatin-induced thermal hypersensitivity did not alter motor coordination, locomotor and exploratory activities nor induced pro-depressant-like behavior. LOR17, therefore, may emerge as a novel KOPr agonist displaying functional selectivity toward G protein signaling and eliciting antinociceptive/antihypersensitivity effects in different animal models, including oxaliplatin-induced neuropathy.
Collapse
Affiliation(s)
- Andrea Bedini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug and Children Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug and Children Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gabriela Vaca
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rossella De Marco
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy.,Department of Agricultural, Food, Enviromental and Animal Science (Di4A), Udine, Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug and Children Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Brust TF. Biased Ligands at the Kappa Opioid Receptor: Fine-Tuning Receptor Pharmacology. Handb Exp Pharmacol 2020; 271:115-135. [PMID: 33140224 DOI: 10.1007/164_2020_395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The kappa opioid receptor (KOR) is a G protein-coupled receptor (GPCR) that can signal through multiple signaling pathways. KOR agonists are known to relieve pain and itch, as well as induce dysphoria, sedation, hallucinations, and diuresis. As is the case with many other GPCRs, specific signaling pathways downstream of the KOR have been linked to certain physiological responses induced by the receptor. Those studies motivated the search and discovery of a number of KOR ligands that preferentially activate one signaling pathway over another. Such compounds are termed functionally selective or biased ligands, and may present a way of inducing desired receptor effects with reduced adverse reactions. In this chapter, I review the molecular intricacies of KOR signaling and discuss the studies that have used biased signaling through the KOR as a way to selectively modulate in vivo physiology.
Collapse
Affiliation(s)
- Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA.
| |
Collapse
|
37
|
Spetea M, Rief SB, Haddou TB, Fink M, Kristeva E, Mittendorfer H, Haas S, Hummer N, Follia V, Guerrieri E, Asim MF, Sturm S, Schmidhammer H. Synthesis, Biological, and Structural Explorations of New Zwitterionic Derivatives of 14- O-Methyloxymorphone, as Potent μ/δ Opioid Agonists and Peripherally Selective Antinociceptives. J Med Chem 2019; 62:641-653. [PMID: 30571123 PMCID: PMC6348443 DOI: 10.1021/acs.jmedchem.8b01327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, the synthesis and pharmacological characterization of an extended library of differently substituted N-methyl-14- O-methylmorphinans with natural and unnatural amino acids and three dipeptides at position 6 that emerged as potent μ/δ opioid receptor (MOR/DOR) agonists with peripheral antinociceptive efficacy is reported. The current study adds significant value to our initial structure-activity relationships on a series of zwitterionic analogues of 1 (14- O-methyloxymorphone) by targeting additional amino acid residues. The new derivatives showed high binding and potent agonism at MOR and DOR in vitro. In vivo, the new 6-amino acid- and 6-dipeptide-substituted derivatives of 1 were highly effective in inducing antinociception in the writhing test in mice after subcutaneous administration, which was antagonized by naloxone methiodide demonstrating activation of peripheral opioid receptors. Such peripheral opioid analgesics may represent alternatives to presently available drugs for a safer pain therapy.
Collapse
MESH Headings
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/therapeutic use
- Animals
- Cell Membrane/metabolism
- Dipeptides/chemistry
- Humans
- Male
- Mice
- Morphine/therapeutic use
- Oxymorphone/analogs & derivatives
- Oxymorphone/chemistry
- Oxymorphone/metabolism
- Oxymorphone/therapeutic use
- Pain/chemically induced
- Pain/drug therapy
- Pain/pathology
- Protein Binding
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
|
38
|
Lv SY, Cui B, Yang Y, Du H, Zhang X, Zhou Y, Ye W, Nie X, Li Y, Wang Q, Chen WD, Wang YD. Spexin/NPQ Induces FBJ Osteosarcoma Oncogene (Fos) and Produces Antinociceptive Effect against Inflammatory Pain in the Mouse Model. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:886-899. [PMID: 30664863 DOI: 10.1016/j.ajpath.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/05/2018] [Accepted: 12/07/2018] [Indexed: 01/12/2023]
Abstract
Spexin/NPQ is a novel highly conserved neuropeptide. It has a widespread expression in the periphery and central nervous system. However, the effects of central spexin on acute inflammatory pain are still unknown. This study explored the mechanisms and effects of supraspinal spexin on inflammatory pain. The results from the mouse formalin test show that i.c.v. administration of spexin decreased licking/biting time during the late and early phases. The nonamidated spexin had no effect on pain response. The antinociception of spexin was blocked by galanin receptor 3 antagonist SNAP 37889. The Galr3 and Adcy4 mRNA levels in the brain were increased after injection with spexin. The antinociceptive effects of spexin were completely reversed by opioid receptor antagonist naloxone and κ-opioid receptor antagonist nor-binaltorphimine dihydrochloride. Spexin up-regulated the dynorphin and κ-opioid receptor gene and protein expression. PCR array assay and real-time PCR analysis show that spexin up-regulated the mRNA level of the FBJ osteosarcoma oncogene (Fos). T-5224, the inhibitor of c FBJ osteosarcoma oncogene (c-Fos)/activator protein 1 (AP-1), blocked the increased mRNA level of Pdyn and Oprk1 induced by spexin. I.C.V. spexin (2.43 mg/kg) increased the number of c-Fos-positive neurons in most subsections of periaqueductal gray. In addition, in the acetic acid-induced writhing test, i.c.v. spexin produced an antinociceptive effect. Our results indicate that spexin might be a novel neuropeptide with an antinociceptive effect against acute inflammatory pain.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Binbin Cui
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yanjie Yang
- Laboratory of Cell Signal Transduction, School of Medicine, Henan University, Kaifeng, China
| | - Hua Du
- Department of Pathology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Xiaomei Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yuchen Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yang Li
- Department of Orthopaedics, The 969th Hospital of People's Liberation Army of China, Hohhot, China
| | - Qun Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China; Department of Pathology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China.
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
39
|
Placzek MS, Schroeder FA, Che T, Wey HY, Neelamegam R, Wang C, Roth BL, Hooker JM. Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging. ACS Chem Neurosci 2019; 10:384-395. [PMID: 30212182 DOI: 10.1021/acschemneuro.8b00293] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kappa opioid receptor (KOR) modulation has been pursued in many conceptual frameworks for the treatment of human pain, depression, and anxiety. As such, several imaging tools have been developed to characterize the density of KORs in the human brain and its occupancy by exogenous drug-like compounds. While exploring the pharmacology of KOR tool compounds using positron emission tomography (PET), we observed discrepancies in the apparent competition binding as measured by changes in binding potential (BPND, binding potential with respect to non-displaceable uptake). This prompted us to systematically look at the relationships between baseline BPND maps for three common KOR PET radioligands, the antagonists [11C]LY2795050 and [11C]LY2459989, and the agonist [11C]GR103545. We then measured changes in BPND using kappa antagonists (naloxone, naltrexone, LY2795050, JDTic, nor-BNI), and found BPND was affected similarly between [11C]GR103545 and [11C]LY2459989. Longitudinal PET studies with nor-BNI and JDTic were also examined, and we observed a persistent decrease in [11C]GR103545 BPND up to 25 days after drug administration for both nor-BNI and JDTic. Kappa agonists were also administered, and butorphan and GR89696 (racemic GR103545) impacted binding to comparable levels between the two radiotracers. Of greatest significance, kappa agonists salvinorin A and U-50488 caused dramatic reductions in [11C]GR103545 BPND but did not change [11C]LY2459989 binding. This discrepancy was further examined in dose-response studies with each radiotracer as well as in vitro binding experiments.
Collapse
Affiliation(s)
- Michael S. Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Frederick A. Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27516, United States
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
40
|
Devereaux AL, Mercer SL, Cunningham CW. DARK Classics in Chemical Neuroscience: Morphine. ACS Chem Neurosci 2018; 9:2395-2407. [PMID: 29757600 DOI: 10.1021/acschemneuro.8b00150] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As the major psychoactive agent in opium and direct precursor for heroin, morphine is a historically critical molecule in chemical neuroscience. A structurally complex phenanthrene alkaloid produced by Papaver somniferum, morphine has fascinated chemists seeking to disentangle pharmacologically beneficial analgesic effects from addiction, tolerance, and dependence liabilities. In this review, we will detail the history of morphine, from the first extraction and isolation by Sertürner in 1804 to the illicit use of morphine and proliferation of opioid use and abuse disorders currently ravaging the United States. Morphine is a molecule of great cultural relevance, as the agent that single-handedly transformed our understanding of pharmacognosy, receptor dynamics, and substance abuse and dependence disorders.
Collapse
Affiliation(s)
- Andrea L. Devereaux
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| | - Susan L. Mercer
- Department of Pharmaceutical Sciences, College of Pharmacy, Lipscomb University, Nashville, Tennessee 37204, United States
| | - Christopher W. Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| |
Collapse
|
41
|
Lattanzi R, Rief S, Schmidhammer H, Negri L, Spetea M. In vitro and in vivo Pharmacological Activities of 14- O-Phenylpropyloxymorphone, a Potent Mixed Mu/Delta/Kappa-Opioid Receptor Agonist With Reduced Constipation in Mice. Front Pharmacol 2018; 9:1002. [PMID: 30233377 PMCID: PMC6127270 DOI: 10.3389/fphar.2018.01002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Pain, particularly chronic pain, is still an unsolved medical condition. Central goals in pain control are to provide analgesia of adequate efficacy and to reduce complications associated with the currently available drugs. Opioids are the mainstay for the treatment of moderate to severe pain. However, opioid pain medications also cause detrimental side effects, thus highlighting the need of innovative and safer analgesics. Opioids mediate their actions via the activation of opioid receptors, with the mu-opioid receptor as the primary target for analgesia, but also for side effects. One long-standing focus of drug discovery is the pursuit for new opioids exhibiting a favorable dissociation between analgesia and adverse effects. In this study, we describe the in vitro and in vivo pharmacological profiles of the 14-O-phenylpropyl substituted analog of the mu-opioid agonist 14-O-methyloxymorphone (14-OMO). The consequence of the substitution of the 14-O-methyl in 14-OMO with a 14-O-phenylpropyl group on in vitro binding and functional activity, and in vivo behavioral properties (nociception and gastrointestinal motility) was investigated. In binding studies, 14-O-phenylpropyloxymorphone (POMO) displayed very high affinity at mu-, delta-, and kappa-opioid receptors (Ki values in nM, mu:delta:kappa = 0.073:0.13:0.30) in rodent brain membranes, with complete loss of mu-receptor selectivity compared to 14-OMO. In guinea-pig ileum and mouse vas deferens bioassays, POMO was a highly efficacious and full agonist, being more potent than 14-OMO. In the [35S]GTPγS binding assays with membranes from CHO cells expressing human opioid receptors, POMO was a potent mu/delta-receptor full agonist and a kappa-receptor partial agonist. In vivo, POMO was highly effective in acute thermal nociception (hot-plate test, AD50 = 0.7 nmol/kg) in mice after subcutaneous administration, with over 70- and 9000-fold increased potency than 14-OMO and morphine, respectively. POMO-induced antinociception is mediated through the activation of the mu-opioid receptor, and it does not involve delta- and kappa-opioid receptors. In the charcoal test, POMO produced fourfold less inhibition of the gastrointestinal transit than 14-OMO and morphine. In summary, POMO emerges as a new potent mixed mu/delta/kappa-opioid receptor agonist with reduced liability to cause constipation at antinociceptive doses.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | - Silvia Rief
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Lucia Negri
- Department of Physiology and Pharmacology “Vittorio Erspamer,” Sapienza University of Rome, Rome, Italy
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
42
|
Minervini V, Lu HY, Padarti J, Osteicoechea DC, France CP. Interactions between kappa and mu opioid receptor agonists: effects of the ratio of drugs in mixtures. Psychopharmacology (Berl) 2018; 235:2245-2256. [PMID: 29785554 PMCID: PMC6045970 DOI: 10.1007/s00213-018-4920-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
RATIONALE Pain is the leading reason for seeking health care, and mu opioid receptor agonists continue to be prescribed despite well-documented adverse effects. Kappa opioid receptor agonists have antinociceptive effects with little to no abuse liability and might be useful for treating pain in mixtures. Kappa:mu opioid mixtures might be useful if therapeutic effects of each drug can be selectively increased while reducing or avoiding the adverse effects that occur with larger doses of each drug alone. OBJECTIVE This study characterized the effects of the kappa opioid receptor agonist spiradoline alone (0.32-56 mg/kg) and in 1:10, 1:3, 1:1, and 3:1 mixtures with the mu opioid receptor agonists morphine (1.0-32 mg/kg) and etorphine (1-10 μg/kg) on warm water tail-withdrawal latency, body temperature, responding for food, and fecal output in male Sprague-Dawley rats (n = 24). RESULTS Antinociceptive effects were greater than additive for 1:10 and 1:3 spiradoline:morphine mixtures and for 1:10, 1:3, and 1:1 spiradoline:etorphine mixtures. The potency of spiradoline to produce hypothermia was greater with 1:3 and 3:1 spiradoline:etorphine mixtures but not with 1:10 or 1:1 mixtures or with any spiradoline:morphine mixture. The effects of 1:3 spiradoline:morphine on responding for food were additive, whereas 1:1 and 3:1 were greater than additive. Spiradoline did not significantly alter morphine-induced decreases in fecal output. CONCLUSIONS Overall, mixtures of kappa and mu opioids might have therapeutic potential for treating pain, particularly when the mixture has a greater ratio of mu to kappa agonist. If adverse effects of each constituent drug are reduced or avoided, then kappa:mu mixtures might be advantageous to mu opioids alone.
Collapse
MESH Headings
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Dose-Response Relationship, Drug
- Male
- Morphine/metabolism
- Morphine/pharmacology
- Morphine/therapeutic use
- Pain/drug therapy
- Pain/metabolism
- Pain Measurement/drug effects
- Pain Measurement/methods
- Pyrrolidines/metabolism
- Pyrrolidines/pharmacology
- Pyrrolidines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Vanessa Minervini
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Hannah Y Lu
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Jahnavi Padarti
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Daniela C Osteicoechea
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Charles P France
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA.
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA.
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, USA.
| |
Collapse
|
43
|
De Marco R, Bedini A, Spampinato S, Comellini L, Zhao J, Artali R, Gentilucci L. Constraining Endomorphin-1 by β,α-Hybrid Dipeptide/Heterocycle Scaffolds: Identification of a Novel κ-Opioid Receptor Selective Partial Agonist. J Med Chem 2018; 61:5751-5757. [PMID: 29901392 DOI: 10.1021/acs.jmedchem.8b00296] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herein we present the expedient synthesis of endomorphin-1 analogues containing stereoisomeric β2-homo-Freidinger lactam-like scaffolds ([Amo2]EM), and we discuss opioid receptor (OR) affinity, enzymatic stability, functional activity, in vivo antinociceptive effects, and conformational and molecular docking analysis. Hence, H-Tyr-Amo-Trp-PheNH2 resulted to be a new chemotype of highly stable, selective, partial KOR agonist inducing analgesia, therefore displaying great potential interest as a painkiller possibly with reduced harmful side effects.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Andrea Bedini
- Department of Pharmacy and Biotechnology , University of Bologna , Via Irnerio 48 , 40126 Bologna , Italy
| | - Santi Spampinato
- Department of Pharmacy and Biotechnology , University of Bologna , Via Irnerio 48 , 40126 Bologna , Italy
| | - Lorenzo Comellini
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Junwei Zhao
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| | - Roberto Artali
- Scientia Advice , 20832 Desio , Monza and Brianza , Italy
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician" , University of Bologna , Via Selmi 2 , 40126 Bologna , Italy
| |
Collapse
|
44
|
Abstract
Opioids are the most commonly used and effective analgesic treatments for severe pain, but they have recently come under scrutiny owing to epidemic levels of abuse and overdose. These compounds act on the endogenous opioid system, which comprises four G protein-coupled receptors (mu, delta, kappa, and nociceptin) and four major peptide families (β-endorphin, enkephalins, dynorphins, and nociceptin/orphanin FQ). In this review, we first describe the functional organization and pharmacology of the endogenous opioid system. We then summarize current knowledge on the signaling mechanisms by which opioids regulate neuronal function and neurotransmission. Finally, we discuss the loci of opioid analgesic action along peripheral and central pain pathways, emphasizing the pain-relieving properties of opioids against the affective dimension of the pain experience.
Collapse
Affiliation(s)
- Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA
| | - Daniel C Castro
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63130, USA; .,Division of Basic Research, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63130, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, California 94304, USA; .,Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94304, USA.,Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA.,Stanford Neurosciences Institute, Palo Alto, California 94304, USA.,New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, California 94304, USA
| |
Collapse
|
45
|
Lazenka ML, Moerke MJ, Townsend EA, Freeman KB, Carroll FI, Negus SS. Dissociable effects of the kappa opioid receptor agonist nalfurafine on pain/itch-stimulated and pain/itch-depressed behaviors in male rats. Psychopharmacology (Berl) 2018; 235:203-213. [PMID: 29063139 PMCID: PMC5750069 DOI: 10.1007/s00213-017-4758-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Nalfurafine is a G protein signaling-biased kappa opioid receptor (KOR) agonist approved in Japan for second-line treatment of uremic pruritus. Neither nalfurafine nor any other KOR agonist is currently approved anywhere for treatment of pain, but recent evidence suggests that G protein signaling-biased KOR agonists may have promise as candidate analgesics/antipruritics with reduced side effects compared to nonbiased or ß-arrestin-signaling-biased KOR agonists. OBJECTIVES This study compared nalfurafine effects in rats using assays of pain-stimulated and pain-depressed behavior used previously to evaluate other candidate analgesics. Nalfurafine effects were also examined in complementary assays of itch-stimulated and itch-depressed behavior. METHODS Intraperitoneal lactic acid (IP acid) and intradermal serotonin (ID 5HT) served as noxious and pruritic stimuli, respectively, in male Sprague Dawley rats to stimulate stretching (IP acid) or scratching (ID 5HT) or to depress positively reinforced operant responding in an assay of intracranial self-stimulation (ICSS; both stimuli). RESULTS Nalfurafine was equipotent to decrease IP acid-stimulated stretching and ID 5HT-stimulated scratching; however, doses of nalfurafine that decreased these pain/itch-stimulated behaviors also decreased control ICSS performance. Moreover, nalfurafine failed to alleviate either IP acid- or ID 5HT-induced depression of ICSS. CONCLUSIONS These results suggest that nalfurafine-induced decreases in pain/itch-stimulated behaviors may reflect nonselective decreases in motivated behavior rather than analgesia or antipruritus against the noxious and pruritic stimuli used here. This conclusion agrees with the absence of clinical data for nalfurafine analgesia and the weak clinical data for nalfurafine antipruritus. Nalfurafine bias for G protein signaling may not be sufficient for clinically safe and reliable analgesia or antipruritus.
Collapse
Affiliation(s)
- Matthew L Lazenka
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Megan J Moerke
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - E Andrew Townsend
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kevin B Freeman
- Division of Neurobiology and Behavior Research, Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, USA
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
46
|
Sneddon LU. Comparative Physiology of Nociception and Pain. Physiology (Bethesda) 2018; 33:63-73. [DOI: 10.1152/physiol.00022.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 11/22/2022] Open
Abstract
The study of diverse animal groups allows us to discern the evolution of the neurobiology of nociception. Nociception functions as an important alarm system alerting the individual to potential and actual tissue damage. All animals possess nociceptors, and, in some animal groups, it has been demonstrated that there are consistent physiological mechanisms underpinning the nociceptive system. This review considers the comparative biology of nociception and pain from an evolutionary perspective.
Collapse
Affiliation(s)
- Lynne U. Sneddon
- University of Liverpool, Institute of Integrative Biology, The BioScience Building, Liverpool, United Kingdom
| |
Collapse
|
47
|
G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides. Toxins (Basel) 2017; 9:toxins9110372. [PMID: 29144441 PMCID: PMC5705987 DOI: 10.3390/toxins9110372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a complex and debilitating condition associated with a large personal and socioeconomic burden. Current pharmacological approaches to treating chronic pain such as opioids, antidepressants and anticonvulsants exhibit limited efficacy in many patients and are associated with dose-limiting side effects that hinder their clinical use. Therefore, improved strategies for the pharmacological treatment of pathological pain are urgently needed. G-protein coupled receptors (GPCRs) are ubiquitously expressed on the surface of cells and act to transduce extracellular signals and regulate physiological processes. In the context of pain, numerous and diverse families of GPCRs expressed in pain pathways regulate most aspects of physiological and pathological pain and are thus implicated as potential targets for therapy of chronic pain. In the search for novel compounds that produce analgesia via GPCR modulation, animal venoms offer an enormous and virtually untapped source of potent and selective peptide molecules. While many venom peptides target voltage-gated and ligand-gated ion channels to inhibit neuronal excitability and blunt synaptic transmission of pain signals, only a small proportion are known to interact with GPCRs. Of these, only a few have shown analgesic potential in vivo. Here we review the current state of knowledge regarding venom peptides that target GPCRs to produce analgesia, and their development as therapeutic compounds.
Collapse
|
48
|
Knezevic NN, Yekkirala A, Yaksh TL. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics. Anesth Analg 2017; 125:1714-1732. [PMID: 29049116 PMCID: PMC5679134 DOI: 10.1213/ane.0000000000002442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- From the *Department of Anesthesiology, Advocate Illinois Masonic Medical Center Chicago, Illinois; Departments of †Anesthesiology and ‡Surgery, University of Illinois, Chicago, Illinois; §Department of Neurobiology, Harvard Medical School, and Boston Children's Hospital, Boston, Massachusetts; ‖Blue Therapeutics, Harvard Innovation Launch Lab, Allston, Massachusetts; and Departments of ¶Anesthesiology and #Pharmacology, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
49
|
Erli F, Guerrieri E, Ben Haddou T, Lantero A, Mairegger M, Schmidhammer H, Spetea M. Highly Potent and Selective New Diphenethylamines Interacting with the κ-Opioid Receptor: Synthesis, Pharmacology, and Structure-Activity Relationships. J Med Chem 2017; 60:7579-7590. [PMID: 28825813 PMCID: PMC5601360 DOI: 10.1021/acs.jmedchem.7b00981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/26/2022]
Abstract
We previously reported on a series of small molecules targeting the κ-opioid (KOP) receptor featuring a diphenethylamine scaffold and showed the promise of these ligands as effective analgesics with reduced liability for adverse effects. This study expands the structure-activity relationships on our original series by presenting several modifications in the lead compounds 1 (HS665) and 2 (HS666). A library of new diphenethylamines was designed, synthesized, and pharmacologically evaluated. In comparison with 1 and 2, the KOP receptor affinity, selectivity, and agonist activity were modulated by introducing bulkier N-substituents, a 2-fluoro substitution, and additional hydroxyl groups at positions 3' and 4'. Several analogues showed subnanomolar affinity and excellent KOP receptor selectivity acting as full or partial agonists, and one as an antagonist. The new diphenethylamines displayed antinociceptive efficacies with increased potencies than U50,488, 1 and 2 in the writhing assay and without inducing motor dysfunction after sc administration in mice.
Collapse
Affiliation(s)
| | | | - Tanila Ben Haddou
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Aquilino Lantero
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Michael Mairegger
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Helmut Schmidhammer
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical
Chemistry, Institute of Pharmacy and Center for Molecular Biosciences
Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
50
|
Camilleri M, Lembo A, Katzka DA. Opioids in Gastroenterology: Treating Adverse Effects and Creating Therapeutic Benefits. Clin Gastroenterol Hepatol 2017; 15:1338-1349. [PMID: 28529168 PMCID: PMC5565678 DOI: 10.1016/j.cgh.2017.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023]
Abstract
The use of opioid medications on both an acute and chronic basis is ubiquitous in the United States. As opioid receptors densely populate the gastrointestinal tract, symptoms and side effects can be expected in these patients. In the esophagus, dysmotility may result, manifesting with dysphagia and a syndrome indistinguishable from primary achalasia. In the stomach, a marked delay in gastric emptying may occur with postprandial nausea and early satiety. Postoperatively, particularly with abdominal surgery, opioid-induced ileus may ensue. In the colon, opioid-induced constipation is common. A unique syndrome termed narcotic bowel syndrome is characterized by chronic abdominal pain often accompanied by nausea and vomiting in the absence of other identifiable causes. With the recognition of the important role of opioids on gastrointestinal function, novel drugs have been developed that use this physiology. These medications include peripheral acting opioid agonists to treat opioid-induced constipation and combination agonist and antagonists used for diarrhea-predominant irritable bowel syndrome. This review summarizes the most recent data in these areas.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Anthony Lembo
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - David A Katzka
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|