1
|
Gryksa K, Schäfer T, Gareis F, Fuchs E, Royer M, Schmidtner AK, Bludau A, Neumann ID. Beyond fur color: differences in socio-emotional behavior and the oxytocin system between male BL6 and CD1 mice in adolescence and adulthood. Front Neurosci 2024; 18:1493619. [PMID: 39717700 PMCID: PMC11663876 DOI: 10.3389/fnins.2024.1493619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The development of stress-related psychopathologies, often associated with socio-emotional dysfunctions, is crucially determined by genetic and environmental factors, which shape the individual vulnerability or resilience to stress. Especially early adolescence is considered a vulnerable time for the development of psychopathologies. Various mouse strains are known to age-dependently differ in social, emotional, and endocrine stress responses based on genetic and epigenetic differences. This highlights the importance of the qualified selection of an adequate strain and age for any biomedical research. Neuropeptides like oxytocin (OXT) can contribute to individual and strain-dependent differences in emotional and social behaviors. Methods In this study, we compared anxiety- and fear-related, as well as social behavior and pain perception between male adolescent and adult mice of two commonly used strains, C57BL/6N (BL6) and CD1. Results We revealed BL6 mice as being more anxious, less social, and more susceptible toward non-social and social trauma, both in adolescence and adulthood. Furthermore, during development from adolescence toward adulthood, BL6 mice lack the reduction in fear- and anxiety-related behavior seen in adult CD1 mice and show even higher social fear-responses and perception of noxious stimuli during adulthood. Analysis of the OXT system, by means of receptor autoradiography and immunohistochemistry, showed strain- and age-specific differences in OXT receptor (OXTR) binding in relevant brain regions, but no differences in the number of hypothalamic OXT neurons. However, intracerebroventricular infusion of OXT did neither reduce the high level of anxiety-related nor of social fear-related behavior in adult BL6 mice. Discussion In summary, we show that male BL6 mice present an anxious and stress vulnerable phenotype in adolescence, which further exacerbates in adulthood, whereas CD1 mice show a more resilient socio-emotional state both in adolescence as well as during adulthood. These consistent behavioral differences between the two strains might only be partly mediated by differences in the OXT system but highlight the influence of early-life environment on socio-emotional behavior.
Collapse
|
2
|
Rashidi M, Simon JJ, Bertsch K, Wegen GV, Ditzen B, Flor H, Grinevich V, Wolf RC, Herpertz SC. Effects of intranasal oxytocin on fear extinction learning. Neuropsychopharmacology 2024:10.1038/s41386-024-01996-y. [PMID: 39313675 DOI: 10.1038/s41386-024-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Once a threat no longer exists, extinction of conditioned fear becomes adaptive in order to reduce allotted resources towards cues that no longer predict the threat. In anxiety and stress disorders, fear extinction learning may be affected. Animal findings suggest that the administration of oxytocin (OT) modulates extinction learning in a timepoint-dependent manner, facilitating extinction when administered prior to fear conditioning, but impairing it when administered prior to extinction learning. The aim of the present study was to examine if these findings translate into human research. Using a randomized, double-blind, placebo-controlled, 2-day fear conditioning and extinction learning design, behavioral (self-reported anxiety), physiological (skin conductance response), neuronal (task-based and resting-state functional magnetic resonance imaging), and hormonal (cortisol) data were collected from 124 naturally cycling (taking no hormonal contraceptives) healthy females. When administered prior to conditioning (Day 1), OT, similar to rodent findings, did not affect fear conditioning, but modulated the intrinsic functional connectivity of the anterior insula immediately after fear conditioning. In contrast to animal findings, OT impaired, not facilitated, extinction learning on the next day and increased anterior insula activity. When administered prior to extinction learning (day 2), OT increased the activity in the bilateral middle temporal gyrus, and similar to animal findings, reduced extinction learning. The current findings suggest that intranasal OT impedes fear extinction learning in humans regardless of the timepoint of administration, providing new insights and directions for future translational research and clinical applications.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- Department of Psychology, Julius Maximilians University of Wuerzburg, Wuerzburg, Germany
| | - Gerhard Vincent Wegen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- DZPG, German Center for Mental Health, Berlin, Germany
| |
Collapse
|
3
|
Grossmann CP, Sommer C, Fahliogullari IB, Neumann ID, Menon R. Mating-induced release of oxytocin in the mouse lateral septum: Implications for social fear extinction. Psychoneuroendocrinology 2024; 166:107083. [PMID: 38788461 DOI: 10.1016/j.psyneuen.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In mammals, some physiological conditions are associated with the high brain oxytocin (OXT) system activity. These include lactation in females and mating in males and females, both of which have been linked to reduced stress responsiveness and anxiolysis. Also, in a murine model of social fear conditioning (SFC), enhanced brain OXT signaling in lactating mice, specifically in the lateral septum (LS), was reported to underlie reduced social fear expression. Here, we studied the effects of mating in male mice on anxiety-related behaviour, social (and cued) fear expression and its extinction, and the activity of OXT neurons reflected by cFos expression and OXT release in the LS and amygdala. We further focused on the involvement of brain OXT in the mating-induced facilitation of social fear extinction. We could confirm the anxiolytic effect of mating in male mice irrespective of the occurrence of ejaculation. Further, we found that only successful mating resulting in ejaculation (Ej+) facilitated social fear extinction, whereas mating without ejaculation (Ej-) did not. In contrast, mating did not affect cues fear expression. Using the cellular activity markers cFos and pErk, we further identified the ventral LS (vLS) as a potential region participating in the effect of ejaculation on social fear extinction. In support, microdialysis experiments revealed a rise in OXT release within the LS, but not the amygdala, during mating. Finally, infusion of an OXT receptor antagonist into the LS before mating or into the lateral ventricle (icv) after mating demonstrated a significant role of brain OXT receptor-mediated signaling in the mating-induced facilitation of social fear extinction.
Collapse
Affiliation(s)
- Cindy P Grossmann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Christopher Sommer
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | | | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Walia V, Wal P, Mishra S, Agrawal A, Kosey S, Dilipkumar Patil A. Potential role of oxytocin in the regulation of memories and treatment of memory disorders. Peptides 2024; 177:171222. [PMID: 38649032 DOI: 10.1016/j.peptides.2024.171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Oxytocin (OXT) is an "affiliative" hormone or neurohormone or neuropeptide consists of nine amino acids, synthesized in magnocellular neurons of paraventricular (PVN) and supraoptic nuclei (SON) of hypothalamus. OXT receptors are widely distributed in various region of brain and OXT has been shown to regulate various social and nonsocial behavior. Hippocampus is the main region which regulates the learning and memory. Hippocampus particularly regulates the acquisition of new memories and retention of acquired memories. OXT has been shown to regulate the synaptic plasticity, neurogenesis, and consolidation of memories. Further, findings from both preclinical and clinical studies have suggested that the OXT treatment improves performance in memory related task. Various trials have suggested the positive impact of intranasal OXT in the dementia patients. However, these studies are limited in number. In the present study authors have highlighted the role of OXT in the formation and retrieval of memories. Further, the study demonstrated the outcome of OXT treatment in various memory and related disorders.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, UP 209305, India
| | - Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Aditya Dilipkumar Patil
- Founder, Tech Hom Research Solutions (THRS), Plot no. 38, 1st floor, opposite to biroba mandir, near ST stand, Satara, Maharashtra 415110, India
| |
Collapse
|
5
|
Kornhuber J, Zoicas I. Valence-dependent effects of neuropeptide Y on the expression of conditioned fear and anxiety-like behavior: Involvement of the bed nucleus of the stria terminalis. Neuropharmacology 2024; 246:109847. [PMID: 38218578 DOI: 10.1016/j.neuropharm.2024.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that intracerebroventricular administration of NPY reduces the expression of social fear via simultaneous activation of Y1 and Y2 receptors in a mouse model of social fear conditioning (SFC). In the present study, we investigated whether the anteroventral bed nucleus of the stria terminalis (BNSTav) mediates these effects of NPY, given the important role of BNSTav in regulating anxiety- and fear-related behaviors. We show that while NPY (0.1 nmol/0.2 μl/side) did not reduce the expression of SFC-induced social fear in male CD1 mice, it reduced the expression of both cued and contextual fear by acting on Y2 but not on Y1 receptors within the BNSTav. Prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 μl/side) but not of the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 μl/side) blocked the effects of NPY on the expression of cued and contextual fear. Similarly, NPY exerted non-social anxiolytic-like effects in the elevated plus maze test but not social anxiolytic-like effects in the social approach avoidance test by acting on Y2 receptors and not on Y1 receptors within the BNSTav. These results suggest that administration of NPY within the BNSTav exerts robust Y2 receptor-mediated fear-reducing and anxiolytic-like effects specifically in non-social contexts and add a novel piece of evidence regarding the neural underpinnings underlying the effects of NPY on conditioned fear and anxiety-like behavior.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
6
|
Fam J, Holmes N, Westbrook RF. Stimulating oxytocin receptors in the basolateral amygdala enhances stimulus processing: Differential and consistent effects for stimuli paired with fear versus sucrose in extinction and reversal learning. Psychoneuroendocrinology 2024; 160:106917. [PMID: 38071877 DOI: 10.1016/j.psyneuen.2023.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Oxytocin (OT) influences a range of social behaviors by enhancing the salience of social cues and regulating the expression of specific social behaviors (e.g., maternal care versus defensive aggression). We previously showed that stimulating OT receptors in the basolateral amygdala of rats also enhanced the salience of fear conditioned stimuli: relative to rats given vehicle infusions, rats infused with [Thr4,Gly7]-oxytocin (TGOT), a selective OT receptor agonist, showed greater discrimination between a cue predictive of danger, and one that signaled safety. In the present series of experiments using male rats, the effects of OT receptor activation in the basolateral amygdala on stimulus processing were examined further using conditioning protocols that consist of changes in stimulus-outcome contingencies (i.e., extinction and reversal), and with stimuli paired with aversive (i.e., foot shock) and appetitive (i.e., sucrose) outcomes. It was revealed that the effects of OTR stimulation diverge for aversive and appetitive learning - enhancing the former but not the latter. However, across both types of learning, OTR stimulation enhanced the detection of conditioned stimuli. Overall, these results are consistent with an emerging view of OT's effects on stimulus salience; facilitating the detection of meaningful stimuli while reducing responding to those that are irrelevant.
Collapse
Affiliation(s)
- Justine Fam
- School of Psychology, University of New South Wales, Australia.
| | - Nathan Holmes
- School of Psychology, University of New South Wales, Australia
| | | |
Collapse
|
7
|
Chbeir S, Carrión V. Resilience by design: How nature, nurture, environment, and microbiome mitigate stress and allostatic load. World J Psychiatry 2023; 13:144-159. [PMID: 37303926 PMCID: PMC10251360 DOI: 10.5498/wjp.v13.i5.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Resilience to psychological stress is defined as adaption to challenging life experiences and not the absence of adverse life events. Determinants of resilience include personality traits, genetic/epigenetic modifications of genes involved in the stress response, cognitive and behavioral flexibility, secure attachment with a caregiver, social and community support systems, nutrition and exercise, and alignment of circadian rhythm to the natural light/dark cycle. Therefore, resilience is a dynamic and flexible process that continually evolves by the intersection of different domains in human’s life; biological, social, and psychological. The objective of this minireview is to summarize the existing knowledge about the multitude factors and molecular alterations that result from resilience to stress response. Given the multiple contributing factors in building resilience, we set out a goal to identify which factors were most supportive of a causal role by the current literature. We focused on resilience-related molecular alterations resulting from mind-body homeostasis in connection with psychosocial and environmental factors. We conclude that there is no one causal factor that differentiates a resilient person from a vulnerable one. Instead, building resilience requires an intricate network of positive experiences and a healthy lifestyle that contribute to a balanced mind-body connection. Therefore, a holistic approach must be adopted in future research on stress response to address the multiple elements that promote resilience and prevent illnesses and psychopathology related to stress allostatic load.
Collapse
Affiliation(s)
- Souhad Chbeir
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, United States
| | - Victor Carrión
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
8
|
Rashidi M, Maier E, Dekel S, Sütterlin M, Wolf RC, Ditzen B, Grinevich V, Herpertz SC. Peripartum effects of synthetic oxytocin: The good, the bad, and the unknown. Neurosci Biobehav Rev 2022; 141:104859. [PMID: 36087759 DOI: 10.1016/j.neubiorev.2022.104859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The first clinical applications of oxytocin (OT) were in obstetrics as a hormone to start and speed up labor and to control postpartum hemorrhage. Discoveries in the 1960s and 1970s revealed that the effects of OT are not limited to its peripheral actions around birth and milk ejection. Indeed, OT also acts as a neuromodulator in the brain affecting fear memory, social attachment, and other forms of social behaviors. The peripheral and central effects of OT have been separately subject to extensive scrutiny. However, the effects of peripheral OT-particularly in the form of administration of synthetic OT (synOT) around birth-on the central nervous system are surprisingly understudied. Here, we provide a narrative review of the current evidence, suggest putative mechanisms of synOT action, and provide new directions and hypotheses for future studies to bridge the gaps between neuroscience, obstetrics, and psychiatry.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.
| | - Eduard Maier
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sharon Dekel
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Kou J, Zhang Y, Zhou F, Gao Z, Yao S, Zhao W, Li H, Lei Y, Gao S, Kendrick KM, Becker B. Anxiolytic Effects of Chronic Intranasal Oxytocin on Neural Responses to Threat Are Dose-Frequency Dependent. PSYCHOTHERAPY AND PSYCHOSOMATICS 2022; 91:253-264. [PMID: 35086102 DOI: 10.1159/000521348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Anxiety disorders are prevalent mental conditions characterized by exaggerated anxious arousal and threat reactivity. Animal and human studies suggest an anxiolytic potential of the neuropeptide oxytocin (OT), yet, while a clinical application will require chronic administration protocols, previous human studies have exclusively focused on single-dose (acute) intranasal OT effects. OBJECTIVE To facilitate the translation of the potential anxiolytic mechanism of OT into clinical application, we determined whether the anxiolytic effects of OT are maintained with repeated (chronic) administration or are influenced by dose frequency and trait anxiety. METHODS In a pre-registered double-blind randomized placebo-controlled pharmaco-fMRI trial the acute (single dose) as well as chronic effects of two different dose frequencies of OT (OT administered daily for 5 days or every other day) on emotional reactivity were assessed in n = 147 individuals with high versus low trait anxiety (ClinicalTrials.gov ID: NCT03085654). RESULTS OT produced valence, dose frequency, and trait anxiety-specific effects, such that the low-frequency (intermittent) chronic dosage specifically attenuated a neural reactivity increase in amygdala-insula-prefrontal circuits observed in the high anxious placebo-treated subjects in response to threatening but not positive stimuli. CONCLUSIONS The present trial provides the first evidence that low-dose frequency chronic intranasal OT has the potential to alleviate exaggerated neural threat reactivity in subjects with elevated anxiety levels, suggesting a treatment potential for anxiety disorders.
Collapse
Affiliation(s)
- Juan Kou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yingying Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yi Lei
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shan Gao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Finton CJ, Ophir AG. Developmental exposure to intranasal vasopressin impacts adult prairie vole spatial memory. Psychoneuroendocrinology 2022; 141:105750. [PMID: 35397260 PMCID: PMC9149121 DOI: 10.1016/j.psyneuen.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
Abstract
Spatial memory is critical for many tasks necessary for survival (i.e., locating mates and food resources). The two mammalian nonapeptides arginine vasopressin (AVP) and oxytocin (OT) are mechanistically important in modulating memory ability, albeit in contrasting ways. In general, AVP facilitates memory consolidation and retrieval while OT is an amnesic. Although AVP and OT are known to have these memory effects, past work has focused on their impact in social memory with little research on their effects on spatial memory. In this experiment, we tested the impact of AVP and OT on spatial memory as determined by performance in the Morris water maze (MWM). We administered doses of AVP, OT, or saline (a control) intranasally to male prairie voles (Microtus ochrogaster), a species whose spatial memory is hypothesized to impact their mating tactics. We also investigated if acute doses (given immediately prior to the memory trial in the MWM) and chronic doses (given daily during adolescence) had differing impacts on spatial cognition. We found that chronic intranasal administration of AVP during post-wean development improved spatial memory performance. In contrast, both chronic and acute administration of OT and acute administration of AVP had no impact on spatial memory. These results together suggest that 1) chronic exposure to AVP has organizational effects on spatial memory in the prairie vole, and 2) acute administration of nonapeptides does not impact the retrieval of spatial memories.
Collapse
Affiliation(s)
- Caitlyn J Finton
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
11
|
Acid Sphingomyelinase Is a Modulator of Contextual Fear. Int J Mol Sci 2022; 23:ijms23063398. [PMID: 35328819 PMCID: PMC8954852 DOI: 10.3390/ijms23063398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Acid sphingomyelinase (ASM) regulates a variety of physiological processes and plays an important role in emotional behavior. The role of ASM in fear-related behavior has not been investigated so far. Using transgenic mice overexpressing ASM (ASMtg) and ASM deficient mice, we studied whether ASM regulates fear learning and expression of cued and contextual fear in a classical fear conditioning paradigm, a model used to investigate specific attributes of post-traumatic stress disorder (PTSD). We show that ASM does not affect fear learning as both ASMtg and ASM deficient mice display unaltered fear conditioning when compared to wild-type littermates. However, ASM regulates the expression of contextual fear in a sex-specific manner. While ASM overexpression enhances the expression of contextual fear in both male and female mice, ASM deficiency reduces the expression of contextual fear specifically in male mice. The expression of cued fear, however, is not regulated by ASM as ASMtg and ASM deficient mice display similar tone-elicited freezing levels. This study shows that ASM modulates the expression of contextual fear but not of cued fear in a sex-specific manner and adds a novel piece of information regarding the involvement of ASM in hippocampal-dependent aversive memory.
Collapse
|
12
|
Bazaz A, Ghanbari A, Vafaei AA, Khaleghian A, Rashidy-Pour A. Oxytocin in dorsal hippocampus facilitates auditory fear memory extinction in rats. Neuropharmacology 2022; 202:108844. [PMID: 34687711 DOI: 10.1016/j.neuropharm.2021.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/11/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Fear extinction is impaired in some psychiatric disorders. Any treatment that facilitates the extinction of fear is a way to advance the treatment of related psychiatric disorders. Recent studies have highlighted the role of oxytocin (OT) in fear extinction, but the endogenous release of OT during fear extinction in the dorsal hippocampal (dHPC) is not clear. We investigated the release of OT during fear extinction and the role of the HPC - medial prefrontal cortex (mPFC) circuit and BDNF in the effects of exogenous OT on auditory fear conditioning in male rats. We found that the release of endogenous OT in the dHPC is significantly increased during the fear extinction process as measured by the microdialysis method. Increased freezing response in the OT-treated rats compared to saline-treated rats showed that exogenous OT in the dHPC enhanced the fear extinction. Injection of BDNF antagonist (ANA-12) into the infralimbic (IL) blocked the effect of exogenous OT on the dHPC. Following OT injection, BDNF levels increased in the dHPC, ventral HPC, and IL cortex; but decreased in the prelimbic cortex (PL). Finally, OT microinjected into the dHPC significantly increased neural activity of pyramidal neurons of the CA1-vHPC and IL but decreased the neural activity in the PL cortex. Our findings strongly support that the dHPC endogenous OT plays a crucial role in enhancing fear extinction. It seems that the activation of the HPC-mPFC pathway, and consequently, the release of BDNF in the IL cortex mediates the enhancing effects of OT on fear extinction.
Collapse
Affiliation(s)
- Amir Bazaz
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Department of physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Khaleghian
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Baldi E, Costa A, Rani B, Passani MB, Blandina P, Romano A, Provensi G. Oxytocin and Fear Memory Extinction: Possible Implications for the Therapy of Fear Disorders? Int J Mol Sci 2021; 22:10000. [PMID: 34576161 PMCID: PMC8467761 DOI: 10.3390/ijms221810000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Several psychiatric conditions such as phobias, generalized anxiety, and post-traumatic stress disorder (PTSD) are characterized by pathological fear and anxiety. The main therapeutic approach used in the management of these disorders is exposure-based therapy, which is conceptually based upon fear extinction with the formation of a new safe memory association, allowing the reduction in behavioral conditioned fear responses. Nevertheless, this approach is only partially resolutive, since many patients have difficulty following the demanding and long process, and relapses are frequently observed over time. One strategy to improve the efficacy of the cognitive therapy is the combination with pharmacological agents. Therefore, the identification of compounds able to strengthen the formation and persistence of the inhibitory associations is a key goal. Recently, growing interest has been aroused by the neuropeptide oxytocin (OXT), which has been shown to have anxiolytic effects. Furthermore, OXT receptors and binding sites have been found in the critical brain structures involved in fear extinction. In this review, the recent literature addressing the complex effects of OXT on fear extinction at preclinical and clinical levels is discussed. These studies suggest that the OXT roles in fear behavior are due to its local effects in several brain regions, most notably, distinct amygdaloid regions.
Collapse
Affiliation(s)
- Elisabetta Baldi
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
| | - Alessia Costa
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Barbara Rani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Maria Beatrice Passani
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences (DSS), University of Florence, 50139 Florence, Italy; (A.C.); (B.R.); (M.B.P.)
| | - Patrizio Blandina
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| | - Adele Romano
- Department of Physiology and Pharmacology ‘V. Erspamer’, Sapienza University of Rome, 00185 Rome, Italy;
| | - Gustavo Provensi
- Section of Pharmacology of Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| |
Collapse
|
14
|
Belém-Filho IJA, Brasil TFS, Fortaleza EAT, Antunes-Rodrigues J, Corrêa FMA. A functional selective effect of oxytocin secreted under restraint stress in rats. Eur J Pharmacol 2021; 904:174182. [PMID: 34004212 DOI: 10.1016/j.ejphar.2021.174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022]
Abstract
Restraint stress (RS) is an unavoidable stress model that triggers activation of the autonomic nervous system, endocrine activity, and behavioral changes in rodents. Furthermore, RS induces secretion of oxytocin into the bloodstream, indicating a possible physiological role in the stress response in this model. The presence of oxytocin receptors in vessels and heart favors this possible idea. However, the role of oxytocin secreted in RS and effects on the cardiovascular system are still unclear. The aim of this study was to analyze the influence of oxytocin on cardiovascular effects during RS sessions. Rats were subjected to pharmacological (blockade of either oxytocin, vasopressin, or muscarinic receptors) or surgical (hypophysectomy or sinoaortic denervation) approaches to study the functional role of oxytocin and its receptor during RS. Plasma levels of oxytocin and vasopressin were measured after RS. RS increased arterial pressure, heart rate, and plasma oxytocin content, but not vasopressin. Treatment with atosiban (a Gi biased agonist) inhibited restraint-evoked tachycardia without affecting blood pressure. However, this effect was no longer observed after sinoaortic denervation, homatropine (M2 muscarinic antagonist) treatment or hypophysectomy, indicating that parasympathetic activation mediated by oxytocin secreted to the periphery is responsible for blocking the increase in tachycardic responses observed in the atosiban-treated group. Corroborating this, L-368,899 (oxytocin antagonist) treatment showed an opposite effect to atosiban, increasing tachycardic responses to restraint. Thus, this provides evidence that oxytocin secreted to the periphery attenuates tachycardic responses evoked by restraint via increased parasympathetic activity, promoting cardioprotection by reducing the stress-evoked heart rate increase.
Collapse
Affiliation(s)
| | - Taíz Francine Silva Brasil
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Morgan Aguiar Corrêa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
15
|
Nygaard KR, Swift RG, Glick RM, Wagner RE, Maloney SE, Gould GG, Dougherty JD. Oxytocin receptor activation does not mediate associative fear deficits in a Williams Syndrome model. GENES, BRAIN, AND BEHAVIOR 2021; 21:e12750. [PMID: 33978321 PMCID: PMC8842878 DOI: 10.1111/gbb.12750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
Williams Syndrome results in distinct behavioral phenotypes, which include learning deficits, anxiety, increased phobias and hypersociability. While the underlying mechanisms driving this subset of phenotypes is unknown, oxytocin (OT) dysregulation is hypothesized to be involved as some studies have shown elevated blood OT and altered OT receptor expression in patients. A "Complete Deletion" (CD) mouse, modeling the hemizygous deletion in Williams Syndrome, recapitulates many of the phenotypes present in humans. These CD mice also exhibit impaired fear responses in the conditioned fear task. Here, we address whether OT dysregulation is responsible for this impaired associative fear memory response. We show direct delivery of an OT receptor antagonist to the central nervous system did not rescue the attenuated contextual or cued fear memory responses in CD mice. Thus, increased OT signaling is not acutely responsible for this phenotype. We also evaluated OT receptor and serotonin transporter availability in regions related to fear learning, memory and sociability using autoradiography in wild type and CD mice. While no differences withstood correction, we identified regions that may warrant further investigation. There was a nonsignificant decrease in OT receptor expression in the lateral septal nucleus and nonsignificant lowered serotonin transporter availability in the striatum and orbitofrontal cortex. Together, these data suggest the fear conditioning anomalies in the Williams Syndrome mouse model are independent of any alterations in the oxytocinergic system caused by deletion of the Williams locus.
Collapse
Affiliation(s)
- Kayla R. Nygaard
- Department of GeneticsWashington University in St. LouisSt. LouisMissouriUSA,Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Raylynn G. Swift
- Department of GeneticsWashington University in St. LouisSt. LouisMissouriUSA,Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Rebecca M. Glick
- Department of GeneticsWashington University in St. LouisSt. LouisMissouriUSA,Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Rachael E. Wagner
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Susan E. Maloney
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA,Intellectual and Developmental Disabilities Research CenterWashington University in St. LouisSt. LouisMissouriUSA
| | - Georgianna G. Gould
- Department of Cellular and Integrative PhysiologyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Joseph D. Dougherty
- Department of GeneticsWashington University in St. LouisSt. LouisMissouriUSA,Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA,Intellectual and Developmental Disabilities Research CenterWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
16
|
Engel S, Schumacher S, Niemeyer H, Kuester A, Burchert S, Klusmann H, Rau H, Willmund GD, Knaevelsrud C. Associations between oxytocin and vasopressin concentrations, traumatic event exposure and posttraumatic stress disorder symptoms: group comparisons, correlations, and courses during an internet-based cognitive-behavioural treatment. Eur J Psychotraumatol 2021; 12:1886499. [PMID: 33968321 PMCID: PMC8078934 DOI: 10.1080/20008198.2021.1886499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is characterized by impairments in extinction learning and social behaviour, which are targeted by trauma-focused cognitive behavioural treatment (TF-CBT). The biological underpinnings of TF-CBT can be better understood by adding biomarkers to the clinical evaluation of interventions. Due to their involvement in social functioning and fear processing, oxytocin and arginine vasopressin might be informative biomarkers for TF-CBT, but to date, this has never been tested. Objective: To differentiate the impact of traumatic event exposure and PTSD symptoms on blood oxytocin and vasopressin concentrations. Further, to describe courses of PTSD symptoms, oxytocin and vasopressin during an internet-based TF-CBT and explore interactions between these parameters. Method: We compared oxytocin and vasopressin between three groups of active and former male service members of the German Armed Forces (n = 100): PTSD patients (n = 39), deployed healthy controls who experienced a deployment-related traumatic event (n = 33) and non-deployed healthy controls who never experienced a traumatic event (n = 28). PTSD patients underwent a 5-week internet-based TF-CBT. We correlated PTSD symptoms with oxytocin and vasopressin before treatment onset. Further, we analysed courses of PTSD symptoms, oxytocin and vasopressin from pre- to post-treatment and 3 months follow-up, as well as interactions between the three parameters. Results: Oxytocin and vasopressin did not differ between the groups and were unrelated to PTSD symptoms. PTSD symptoms were highly stable over time, whereas the endocrine parameters were not, and they also did not change in mean. Oxytocin and vasopressin were not associated with PTSD symptoms longitudinally. Conclusions: Mainly due to their insufficient intraindividual stability, single measurements of endogenous oxytocin and vasopressin concentrations are not informative biomarkers for TF-CBT. We discuss how the stability of these biomarkers might be increased and how they could be better related to the specific impairments targeted by TF-CBT.
Collapse
Affiliation(s)
- Sinha Engel
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| | - Sarah Schumacher
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| | - Helen Niemeyer
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| | - Annika Kuester
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Burchert
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| | - Hannah Klusmann
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| | - Heinrich Rau
- Department for Military Mental Health, German Armed Forces, Military Hospital Berlin, Berlin, Germany
| | - Gerd-Dieter Willmund
- Department for Military Mental Health, German Armed Forces, Military Hospital Berlin, Berlin, Germany
| | - Christine Knaevelsrud
- Division of Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Karl A, Carnelley KB, Arikan G, Baldwin DS, Heinrichs M, Stopa L. The effect of attachment security priming and oxytocin on physiological responses to trauma films and subsequent intrusions. Behav Res Ther 2021; 141:103845. [PMID: 33780748 DOI: 10.1016/j.brat.2021.103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
To further understand protective mechanisms to prevent post-traumatic stress disorder or assist recovery from psychological trauma, this study investigated whether pharmacological and psychological activation of a secure attachment representation elicits higher felt-security and a related response pattern of reduced physiological arousal and increased parasympathetic activation; and whether it protects individuals from developing intrusions and experiencing distress in the week following exposure to a trauma film. Using a double-blind, experimental mixed factorial design, 101 volunteers received either oxytocin or placebo and either secure attachment or neutral priming before watching a trauma film. We measured felt security as an indicator of the strength of activation of a secure attachment representation, skin conductance and heart rate as indicators of physiological arousal, and high frequency heart rate variability as an indicator of parasympathetic activation during the priming and the film. Participants then completed a seven-day intrusion diary. Secure attachment priming, but not oxytocin administration or the combination of both, was associated with reduced physiological arousal and increased parasympathetic activity during priming. Although secure attachment priming was not related to the absolute number of intrusions or to less perceived distress or physiological arousal during the trauma film, it was associated with lower intrusion-related distress in the 7-days post-testing. Our findings extend previous research that suggests the importance of interventions that address intrusion-related distress for recovery from trauma, and suggest a promising role for secure attachment priming in trauma-focused psychological therapies. We contribute to the growing literature that finds that higher subjective distress during a trauma is associated with higher intrusion-related distress. We discuss theoretical implications and possible mechanisms through which secure attachment priming may exert potential beneficial effects.
Collapse
Affiliation(s)
- Anke Karl
- Psychology, University of Exeter, Exeter, UK.
| | | | - Gizem Arikan
- Department of Psychology, Ozyegin University, Istanbul, Turkey
| | - David S Baldwin
- Faculty of Medicine, University of Southampton, UK; Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | | | - Lusia Stopa
- School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
18
|
Kreutzmann JC, Fendt M. Intranasal oxytocin compensates for estrus cycle-specific reduction of conditioned safety memory in rats: Implications for psychiatric disorders. Neurobiol Stress 2021; 14:100313. [PMID: 33778132 PMCID: PMC7985696 DOI: 10.1016/j.ynstr.2021.100313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 01/12/2023] Open
Abstract
Stress and anxiety disorder patients frequently fail to benefit from psychotherapies which often consist of inhibitory fear learning paradigms. One option to improve the therapy outcome is medication-enhanced psychotherapy. Research in humans and laboratory rodents has demonstrated that oxytocin (OT) reduces fear and facilitates fear extinction. However, the role of OT in conditioned safety learning, an understudied but highly suitable type of inhibitory fear learning, remains to be investigated. The present study aimed at investigating the effect of intranasal OT on conditioned safety. To test this, Sprague Dawley rats (♂n = 57; ♀n = 72) were safety conditioned. The effects of pre-training or pre-testing intranasal OT on conditioned safety and contextual fear, both measured by the acoustic startle response, and on corticosterone plasma levels were assessed. Furthermore, the involvement of the estrous cycle was analyzed. The present data show that intranasal OT administration before the acquisition or recall sessions enhanced conditioned safety memory in female rats while OT had no effects in male rats. Further analysis of the estrus cycle revealed that vehicle-treated female rats in the metestrus showed reduced safety memory which was compensated by OT-treatment. Moreover, all vehicle-treated rats, regardless of sex, expressed robust contextual fear following conditioning. Intranasal OT-treated rats showed a decrease in contextual fear, along with reduced plasma corticosterone levels. The present data demonstrate that intranasal OT has the capacity to compensate deficits in safety learning, along with a reduction in contextual fear and corticosterone levels. Therefore, add-on treatment with intranasal OT could optimize the therapy of anxiety disorders.
Collapse
Affiliation(s)
- Judith C Kreutzmann
- Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology & Toxicology, Otto-von-Guericke University Magdeburg, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
19
|
Intranasal oxytocin decreases fear generalization in males, but does not modulate discrimination threshold. Psychopharmacology (Berl) 2021; 238:677-689. [PMID: 33241482 DOI: 10.1007/s00213-020-05720-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND A previously acquired fear response often spreads to perceptually or conceptually close stimuli or contexts. This process, known as fear generalization, facilitates the avoidance of danger, and dysregulations in this process play an important role in anxiety disorders. Oxytocin (OT) has been shown to modulate fear learning, yet effects on fear generalization remain unknown. METHODS We employed a randomized, placebo-controlled, double-blind, between-subject design during which healthy male participants received either intranasal OT or placebo (PLC) following fear acquisition and before fear generalization with concomitant acquisition of skin conductance responses (SCRs). Twenty-four to 72 h before the fear learning and immediately after the fear generalization task, participants additionally complete a discrimination threshold task. RESULTS Relative to PLC, OT significantly reduced perceived risk and SCRs towards the CS+ and GS1 (the generalization stimulus that is most similar to CS+) during fear generalization, whereas the discrimination threshold was not affected. CONCLUSIONS Together, the results suggest that OT can attenuate fear generalization in the absence of effects on discrimination threshold. This study provides the first evidence for effects of OT on fear generalization in humans and suggests that OT may have therapeutic potential in anxiety disorders characterized by dysregulated fear generalization.
Collapse
|
20
|
Marvar PJ, Andero R, Hurlemann R, Lago TR, Zelikowsky M, Dabrowska J. Limbic Neuropeptidergic Modulators of Emotion and Their Therapeutic Potential for Anxiety and Post-Traumatic Stress Disorder. J Neurosci 2021; 41:901-910. [PMID: 33472824 PMCID: PMC7880296 DOI: 10.1523/jneurosci.1647-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predictable threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmacotherapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural processes that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimination by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies demonstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments. Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique core elements of PTSD pathophysiology.
Collapse
Affiliation(s)
- Paul J Marvar
- Department of Pharmacology & Physiology, Department of Psychiatry and Behavioral Sciences, George Washington Institute for Neuroscience, George Washington University, Washington, DC, 20037
| | - Raül Andero
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain, 08193. Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain, 28029. ICREA, Pg. Lluís Companys 23, Barcelona, Spain, 08010
| | - Rene Hurlemann
- Department of Psychiatry, School of Medicine & Health Sciences, and Research Center Neurosensory Science, University of Oldenburg, Oldenburg, 26129, Germany
| | - Tiffany R Lago
- Department of Psychiatry, Veterans Administration Boston Healthcare System, Boston, Massachusetts, 02130
| | - Moriel Zelikowsky
- Department of Neurobiology and Anatomy, University of Utah, School of Medicine, Salt Lake City, Utah, 84112
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, 60064
| |
Collapse
|
21
|
Sex-dimorphic role of prefrontal oxytocin receptors in social-induced facilitation of extinction in juvenile rats. Transl Psychiatry 2020; 10:356. [PMID: 33077706 PMCID: PMC7572379 DOI: 10.1038/s41398-020-01040-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022] Open
Abstract
We previously reported that in the adult animal extinction in pairs resulted in enhanced extinction, showing that social presence can reduce previously acquired fear responses. Based on our findings that juvenile and adult animals differ in the mechanisms of extinction, here we address whether the social presence of a conspecific affects extinction in juvenile animals similarly to adults. We further address whether such presence has a different impact on juvenile males and females. To that end, we examined in our established experimental setting whether conditioned male and female animals extinguish contextual fear memory better while in pairs. Taking advantage of the role of oxytocin (OT) in the mediation of extinction memory and social interaction, we also study the effect of antagonizing the OT receptors (OTR) either systemically or in the prefrontal cortex on social interaction-induced effects of fear extinction. The results show that social presence accelerates extinction in males and females as compared to the single condition. Yet, we show differential and opposing effects of an OTR antagonist in both sexes. Whereas in females, the systemic application of an OTR antagonist is associated with impaired extinction, it is associated with enhanced extinction in males. In contrast, prefrontal OT is not engaged in extinction in juvenile males, while is it is critical in females. Previously reported differences in the levels of prefrontal OT between males and females might explain the differences in OT action. These results suggest that even during the juvenile period, critical mechanisms are differently involved in the regulation of fear in males and females.
Collapse
|
22
|
Olivera-Pasilio V, Dabrowska J. Oxytocin Promotes Accurate Fear Discrimination and Adaptive Defensive Behaviors. Front Neurosci 2020; 14:583878. [PMID: 33071751 PMCID: PMC7538630 DOI: 10.3389/fnins.2020.583878] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The nonapeptide, oxytocin (OT), known for its role in social bonding and attachment formation, has demonstrated anxiolytic properties in animal models and human studies. However, its role in the regulation of fear responses appears more complex, brain site-specific, sex-specific, and dependent on a prior stress history. Studies have shown that OT neurons in the hypothalamus are activated during cued and contextual fear conditioning and during fear recall, highlighting the recruitment of endogenous oxytocin system in fear learning. OT is released into the extended amygdala, which contains the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), both critical for the regulation of fear and anxiety-like behaviors. Behavioral studies report that OT in the CeA reduces contextual fear responses; whereas in the BNST, OT receptor (OTR) neurotransmission facilitates cued fear and reduces fear responses to un-signaled, diffuse threats. These ostensibly contrasting behavioral effects support growing evidence that OT works to promote fear discrimination by reducing contextual fear or fear of diffuse threats, yet strengthening fear responses to imminent and predictable threats. Recent studies from the basolateral nucleus of the amygdala (BLA) support this notion and show that activation of OTR in the BLA facilitates fear discrimination by increasing fear responses to discrete cues. Also, OTR transmission in the CeA has been shown to mediate a switch from passive freezing to active escape behaviors in confrontation with an imminent, yet escapable threat but reduce reactivity to distant threats. Therefore, OT appears to increase the salience of relevant threat-signaling cues yet reduce fear responses to un-signaled, distant, or diffuse threats. Lastly, OTR signaling has been shown to underlie emotional discrimination between conspecifics during time of distress, social transmission of fear, and social buffering of fear. As OT has been shown to enhance salience of both positive and negative social experiences, it can also serve as a warning system against potential threats in social networks. Here, we extend the social salience hypothesis by proposing that OT enhances the salience of relevant environmental cues also in non-social contexts, and as such promotes active defensive behaviors.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
23
|
Pawłowska A, Borg C, de Jong PJ, Both S. The effect of differential disgust conditioning and subsequent extinction versus counterconditioning procedures on women's sexual responses to erotic stimuli. Behav Res Ther 2020; 134:103714. [PMID: 32932180 DOI: 10.1016/j.brat.2020.103714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/06/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
Recent theoretical accounts point to disgust as an important factor in the development and persistence of sexual dysfunctions. This study tested if (i) contingent disgust experiences can render initially sexually arousing stimuli disgusting, and (ii) such acquired disgust responses could be best neutralized via a CS-only extinction or a counterconditioning procedure. Participants (N = 74) were exposed to a differential conditioning procedure that was followed by either a CS-only extinction or a counterconditioning procedure. Erotic films served as the CS+/CS-. A disgusting film served as the US. During the extinction procedure, the CS+ was no longer followed by the disgusting US. During counterconditioning the CS+ was paired with positive stimuli. After conditioning, the CS + elicited lower genital arousal and was rated as significantly more disgusting, less pleasant, and less sexually arousing than the CS-. These diminished genital and subjective sexual arousal responses to the CS+ were successfully restored after both the extinction and the counterconditioning procedure, whereas conditioned feelings of disgust and behavioral avoidance persisted. There was no evidence for differential effectiveness of either procedure. Thus, sexual responses can be attenuated by learned sex-disgust associations and restored by extinction and counterconditioning procedures, but conditioned feelings of disgust seem more resistant.
Collapse
Affiliation(s)
- Aleksandra Pawłowska
- Department of Clinical Psychology & Experimental Psychopathology Faculty of Behavioral and Social Sciences, University of Groningen Grote Kruisstraat 2/1, 9712, TS Groningen, the Netherlands.
| | - Charmaine Borg
- Department of Clinical Psychology & Experimental Psychopathology Faculty of Behavioral and Social Sciences, University of Groningen Grote Kruisstraat 2/1, 9712, TS Groningen, the Netherlands
| | - Peter J de Jong
- Department of Clinical Psychology & Experimental Psychopathology Faculty of Behavioral and Social Sciences, University of Groningen Grote Kruisstraat 2/1, 9712, TS Groningen, the Netherlands
| | - Stephanie Both
- Department of Psychosomatic Gynecology and Sexology, Leiden University Medical Center, Rijnsburgerweg 10, 2333, AA, Leiden, the Netherlands
| |
Collapse
|
24
|
Selective sub-nucleus effects of intra-amygdala oxytocin on fear extinction. Behav Brain Res 2020; 393:112798. [PMID: 32653556 DOI: 10.1016/j.bbr.2020.112798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 01/20/2023]
Abstract
There is growing evidence that the neuropeptide oxytocin (OT) modulates fear and extinction in humans and rodents through actions in corticolimbic circuits including the central amygdala (CeA). Prior studies have, however, been limited to subjects that exhibit intact basal extinction, rather than extinction-impaired populations that could potentially therapeutically benefit from viable OT-targeting treatments. Here, we assessed the effects of pre-extinction training infusion of OT into the CeA, or basolateral amygdala (BLA), on extinction in an inbred mouse strain (S1) model of impaired extinction. We found that intra-CeA OT, at a dose of 0.01 μg, enabled extinction memory formation, as evidenced by lesser freezing as compared to vehicle-infused controls on a drug-free retrieval test. Conversely, infusion of a higher, 1.0 μg OT dose, markedly reduced freezing and increased grooming during extinction training and produced elevated freezing on drug-free retrieval. Infusion of the 0.01 μg dose into the BLA was without behavioral effects. Together, our data show that OT acts in a dose-dependent manner within the CeA to promote extinction in otherwise extinction-deficient mice. These findings provide further support for the potential utility of OT as an adjunctive treatment to extinction-based therapies for trauma and anxiety disorders.
Collapse
|
25
|
Witteveen AB, Stramrood CAI, Henrichs J, Flanagan JC, van Pampus MG, Olff M. The oxytocinergic system in PTSD following traumatic childbirth: endogenous and exogenous oxytocin in the peripartum period. Arch Womens Ment Health 2020; 23:317-329. [PMID: 31385103 PMCID: PMC7244459 DOI: 10.1007/s00737-019-00994-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Birth experiences can be traumatic and may give rise to PTSD following childbirth (PTSD-FC). Peripartum neurobiological alterations in the oxytocinergic system are highly relevant for postpartum maternal behavioral and affective adaptions like bonding and lactation but are also implicated in the response to traumatic events. Animal models demonstrated that peripartum stress impairs beneficial maternal postpartum behavior. Early postpartum activation of the oxytocinergic system may, however, reverse these effects and thereby prevent adverse long-term consequences for both mother and infant. In this narrative review, we discuss the impact of trauma and PTSD-FC on normal endogenous oxytocinergic system fluctuations in the peripartum period. We also specifically focus on the potential of exogenous oxytocin (OT) to prevent and treat PTSD-FC. No trials of exogenous OT after traumatic childbirth and PTSD-FC were available. Evidence from non-obstetric PTSD samples and from postpartum healthy or depressed samples implies restorative functional neuroanatomic and psychological effects of exogenous OT such as improved PTSD symptoms and better mother-to-infant bonding, decreased limbic activation, and restored responsiveness in dopaminergic reward regions. Adverse effects of intranasal OT on mood and the increased fear processing and reduced top-down control over amygdala activation in women with acute trauma exposure or postpartum depression, however, warrant cautionary use of intranasal OT. Observational and experimental studies into the role of the endogenous and exogenous oxytocinergic system in PTSD-FC are needed and should explore individual and situational circumstances, including level of acute distress, intrapartum exogenous OT exposure, or history of childhood trauma.
Collapse
Affiliation(s)
- A. B. Witteveen
- Department of Midwifery Science/AVAG, Amsterdam Public Health research institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - C. A. I. Stramrood
- Department of Obstetrics and Gynaecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands
| | - J. Henrichs
- Department of Midwifery Science/AVAG, Amsterdam Public Health research institute, Amsterdam UMC, location VUmc, Van der Boechorststraat 7, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - J. C. Flanagan
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, 29425 SC USA
| | - M. G. van Pampus
- Department of Obstetrics and Gynaecology, OLVG, Oosterpark 9, Amsterdam, 1091 AC The Netherlands
| | - M. Olff
- Department of Psychiatry, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands
- Arq Psychotrauma Expert Group, Nienoord 5, Diemen, 1112 XE The Netherlands
| |
Collapse
|
26
|
Hirota Y, Arai A, Young LJ, Osako Y, Yuri K, Mitsui S. Oxytocin receptor antagonist reverses the blunting effect of pair bonding on fear learning in monogamous prairie voles. Horm Behav 2020; 120:104685. [PMID: 31935400 PMCID: PMC7117995 DOI: 10.1016/j.yhbeh.2020.104685] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 01/31/2023]
Abstract
Social relationships among spouses, family members, and friends are known to affect physical and mental health. In particular, long-lasting bonds between socio-sexual partners have profound effects on cognitive, social, emotional, and physical well-being. We have previously reported that pair bonding in monogamous prairie voles (Microtus ochrogaster) is prevented by a single prolonged stress (SPS) paradigm, which causes behavioral and endocrine symptoms resembling post-traumatic stress disorder (PTSD) patients in rats (Arai et al., 2016). Since fear memory function is crucial for anxiety-related disorders such as PTSD, we investigated the effects of pair bonding on fear learning in prairie voles. We applied an SPS paradigm to male prairie voles after the cohabitation with a male (cage-mate group) or female (pair-bonded group). The cage-mate group, but not the pair-bonded group, showed enhanced fear response in a contextual fear conditioning test following the SPS treatment. Immunohistochemical analyses revealed that cFos-positive cells in the central amygdala were increased in the pair-bonded group after the contextual fear conditioning test and that oxytocin immunoreactivity in the paraventricular nucleus of the hypothalamus was significantly higher in the pair-bonded group than the cage-mate group. This pair-bonding dependent blunting of fear memory response was confirmed by a passive avoidance test, another fear-based learning test. Interestingly, intracerebroventricular injection of an oxytocin receptor antagonist 30 min before the passive avoidance test blocked the blunting effect of pair bonding on fear learning. Thus, pair bonding between socio-sexual partners results in social buffering in the absence of the partner, blunting fear learning, which may be mediated by oxytocin signaling.
Collapse
Affiliation(s)
- Yu Hirota
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
| | - Aki Arai
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Center, Emory University School of Medicine, 954 Gatewood Rd., Atlanta, GA 30329, USA; Center for Social Neural Networks, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Yoji Osako
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Kazunari Yuri
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Oko-cho, Nankoku, Kochi 783-8505, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa, Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
27
|
The Role of Hormonal and Reproductive Status in the Treatment of Anxiety Disorders in Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32002944 DOI: 10.1007/978-981-32-9705-0_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Exposure therapy, a key treatment for anxiety disorders, can be modelled in the laboratory using Pavlovian fear extinction. Understanding the hormonal and neurobiological mechanisms underlying fear extinction in females, who are twice more likely than males to present with anxiety disorders, may aid in optimising exposure therapy outcomes in this population. This chapter will begin by discussing the role of the sex hormones, estradiol and progesterone, in fear extinction in females. We will also propose potential mechanisms by which these hormones may modulate fear extinction. The second half of this chapter will discuss the long-term hormonal, neurological and behavioural changes that arise from pregnancy and motherhood and how these changes may alter the features of fear extinction in females. Finally, we will discuss implications of this research for the treatment of anxiety disorders in women with and without prior reproductive experience.
Collapse
|
28
|
Le Dorze C, Borreca A, Pignataro A, Ammassari-Teule M, Gisquet-Verrier P. Emotional remodeling with oxytocin durably rescues trauma-induced behavioral and neuro-morphological changes in rats: a promising treatment for PTSD. Transl Psychiatry 2020; 10:27. [PMID: 32066681 PMCID: PMC7026036 DOI: 10.1038/s41398-020-0714-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Recent evidence indicates that reactivated memories are malleable and can integrate new information upon their reactivation. We injected rats with oxytocin to investigate whether the delivery of a drug which dampens anxiety and fear before the reactivation of trauma memory decreases the emotional load of the original representation and durably alleviates PTSD-like symptoms. Rats exposed to the single prolonged stress (SPS) model of PTSD were classified 15 and 17 days later as either resilient or vulnerable to trauma on the basis of their anxiety and arousal scores. Following 2 other weeks, they received an intracerebral infusion of oxytocin (0.1 µg/1 µL) or saline 40 min before their trauma memory was reactivated by exposure to SPS reminders. PTSD-like symptoms and reactivity to PTSD-related cues were examined 3-14 days after oxytocin treatment. Results showed that vulnerable rats treated with saline exhibited a robust PTSD syndrome including increased anxiety and decreased arousal, as well as intense fear reactions to SPS sensory and contextual cues. Exposure to a combination of those cues resulted in c-fos hypo-activation and dendritic arbor retraction in prefrontal cortex and amygdala neurons, relative to resilient rats. Remarkably, 83% of vulnerable rats subjected to oxytocin-based emotional remodeling exhibited a resilient phenotype, and SPS-induced morphological alterations in prelimbic cortex and basolateral amygdala were eliminated. Our findings emphasize the translational potential of the present oxytocin-based emotional remodeling protocol which, when administered even long after the trauma, produces deep re-processing of traumatic memories and durable attenuation of the PTSD symptomatology.
Collapse
Affiliation(s)
- Claire Le Dorze
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Antonella Borreca
- Santa Lucia Foundation, via del fosso di fiorano 64, 00143, Rome, Italy
| | - Annabella Pignataro
- Santa Lucia Foundation, via del fosso di fiorano 64, 00143, Rome, Italy
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | - Pascale Gisquet-Verrier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
29
|
Jurek B, Meyer M. Anxiolytic and Anxiogenic? How the Transcription Factor MEF2 Might Explain the Manifold Behavioral Effects of Oxytocin. Front Endocrinol (Lausanne) 2020; 11:186. [PMID: 32322239 PMCID: PMC7156634 DOI: 10.3389/fendo.2020.00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
The neuromodulator oxytocin, since its first synthesis by du Vigneaud in 1953, has mainly been associated with beneficial physiological effects, as well as positive social and emotional behaviors. This overall positive picture of oxytocin as the "love-, cuddle-, or bonding-hormone" has repeatedly been challenged since then. Oxytocin-induced effects that would be perceived as negative by the individual, such as increased anxiety or potentiation of stress-induced ACTH release, as well as the regulation of negative approach-related emotions, such as envy and schadenfreude (gloating) have been described. The general consent is that oxytocin, instead of acting unidirectional, induces changes in the salience network to shift the emphasis of emotional contexts, and therefore can, e.g., produce both anxiolytic as well as anxiogenic behavioral outcomes. However, the underlying mechanisms leading to alterations in the salience network are still unclear. With the aim to understand the manifold effects of oxytocin on a cellular/molecular level, a set of oxytocin receptor-coupled signaling cascades and downstream effectors regulating transcription and translation has been identified. Those oxytocin-driven effectors, such as MEF2 and CREB, are known modulators of the neuronal and glial cytoarchitecture. We hypothesize that, by determining cellular morphology and connectivity, MEF2 is one of the key factors that might contribute to the diverse behavioral effects of oxytocin.
Collapse
|
30
|
Effects of intraperitoneal and intracerebroventricular injections of oxytocin on social and emotional behaviors in pubertal male mice. Physiol Behav 2019; 212:112701. [DOI: 10.1016/j.physbeh.2019.112701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
|
31
|
Velasco ER, Florido A, Milad MR, Andero R. Sex differences in fear extinction. Neurosci Biobehav Rev 2019; 103:81-108. [PMID: 31129235 PMCID: PMC6692252 DOI: 10.1016/j.neubiorev.2019.05.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 05/19/2019] [Indexed: 12/18/2022]
Abstract
Despite the exponential increase in fear research during the last years, few studies have included female subjects in their design. The need to include females arises from the knowledge gap of mechanistic processes underlying the behavioral and neural differences observed in fear extinction. Moreover, the exact contribution of sex and hormones in relation to learning and behavior is still largely unknown. Insights from this field could be beneficial as fear-related disorders are twice as prevalent in women compared to men. Here, we review an up-to-date summary of animal and human studies in adulthood that report sex differences in fear extinction from a structural and functional approach. Furthermore, we describe how these factors could contribute to the observed sex differences in fear extinction during normal and pathological conditions.
Collapse
Affiliation(s)
- E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | - M R Milad
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Corporació Sanitaria Parc Taulí, Sabadell, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
32
|
Sharma K, LeBlanc R, Haque M, Nishimori K, Reid MM, Teruyama R. Sexually dimorphic oxytocin receptor-expressing neurons in the preoptic area of the mouse brain. PLoS One 2019; 14:e0219784. [PMID: 31295328 PMCID: PMC6622548 DOI: 10.1371/journal.pone.0219784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Oxytocin is involved in the regulation of social behaviors including parental behaviors in a variety of species. Oxytocin triggers social behaviors by binding to oxytocin receptors (OXTRs) in various parts of the brain. OXTRs are present in the preoptic area (POA) where hormone-sensitive sexually dimorphic nuclei exist. The present study was conducted to examine whether sex differences exist in the distribution of neurons expressing OXTRs in the POA. Using OXTR-Venus (an enhanced variant of yellow fluorescent protein) mice, the distribution of OXTR-Venus cells in the POA was compared between sexes. The total number of OXTR-Venus cells in the medial POA (MPOA) was significantly greater in females than in males. No detectable OXTR-Venus cells were observed in the anteroventral periventricular nucleus (AVPV) within the MPOA in most of the brain sections from males. We further examined the total number of OXTR-Venus cells in the AVPV and the rest of the MPOA between the sexes. The total number of OXTR-Venus cells in the AVPV in females (615 ± 43) was significantly greater than that in males (14 ± 2), whereas the total number of OXTR-Venus cells in the rest of the MPOA did not differ significantly between the sexes. Thus, the sexually dimorphic expression of OXTR-Venus specifically occurred in the AVPV, but not in the rest of the MPOA. We also examined whether the expression of OXTR in the AVPV is driven by the female gonadal hormone, estrogen. Immunocytochemistry and single-cell RT-PCR revealed the presence of the estrogen receptor α in OXTR-Venus cells in the female AVPV. Moreover, ovariectomy resulted in the absence of OXTR-Venus expression in the AVPV, whereas estrogen replacement therapy restored OXTR-Venus expression. These results demonstrate that the expression of OXTR in the AVPV is primarily female specific and estrogen dependent. The presence of the sexually dimorphic expression of OXTR in the AVPV suggests the involvement of OXTR neurons in the AVPV in the regulation of female-specific behavior and/or physiology.
Collapse
Affiliation(s)
- Kaustubh Sharma
- Department of Biological Sciences, Louisiana State University, Louisiana, United States of America
| | - Ryan LeBlanc
- Department of Biological Sciences, Louisiana State University, Louisiana, United States of America
| | - Masudul Haque
- Department of Biological Sciences, Louisiana State University, Louisiana, United States of America
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Madigan M. Reid
- Department of Biological Sciences, Louisiana State University, Louisiana, United States of America
| | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
33
|
Demographic, sampling- and assay-related confounders of endogenous oxytocin concentrations: A systematic review and meta-analysis. Front Neuroendocrinol 2019; 54:100775. [PMID: 31351080 DOI: 10.1016/j.yfrne.2019.100775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
Studies on endogenous oxytocin concentrations are often criticized for the debatable comparability between specimens and the variation in reported values. We performed meta-regressions on k = 229 studies (n = 12 741 participants), testing whether specimen, extraction, sex, age, time of day, or fasting instructions influenced oxytocin measurements. Predicted oxytocin concentrations differed depending on specimen and extraction: Measurements were extremely high in unextracted blood, compared to extracted blood and other specimens. Measurements were higher in samples with more female participants and higher age. Instructions not to smoke before sampling were correlated with higher oxytocin in unextracted samples. There was no impact of instructions to refrain from eating, drinking, consume caffeine, alcohol or exercising. Oxytocin concentrations increased from morning to afternoon. Our results showed that oxytocin is differentially reflected in blood, saliva, urine and cerebrospinal fluid. Extraction impacts oxytocin measurements, particularly in blood. Considering relevant confounders might increase comparability between studies.
Collapse
|
34
|
Hu J, Wang Z, Feng X, Long C, Schiller D. Post-retrieval oxytocin facilitates next day extinction of threat memory in humans. Psychopharmacology (Berl) 2019; 236:293-301. [PMID: 30370450 PMCID: PMC6374199 DOI: 10.1007/s00213-018-5074-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/10/2018] [Indexed: 01/28/2023]
Abstract
RATIONALE Memories can return to a labile state and become amenable to modification by pharmacological and behavioral manipulations after retrieval. This process may reduce the impact of aversive memories and provide a promising therapeutic technique for the treatment of anxiety disorders. A growing body of evidence suggests that the mammalian neuropeptide oxytocin (OT) plays a role in the regulation of emotional memories in animals. However, the effects of OT on threat memory in humans remain largely unknown. OBJECTIVES This study aimed to investigate the effects of OT administration following threat memory retrieval on subsequent memory expression in human participants. METHODS In a double-blind, randomized, placebo-controlled, between-subject design, 61 healthy human individuals completed a 3-day experiment. All the participants underwent threat conditioning on day 1. On day 2, the participants were randomized to receive an intranasal dose of OT (40 IU) or placebo after memory retrieval, or an intranasal dose of OT (40 IU) without retrieval. On day 3, the participants were tested for extinction and reinstatement. RESULTS On day 3, all groups showed equivalent stimulus discrimination during the early phase of extinction. However, the group that received OT following a memory reminder showed a greater decline in stimulus discrimination by the late phase of extinction relative to the two other groups. CONCLUSIONS The results indicate that OT did not block reconsolidation to prevent the return of threat memory but rather interacted with post-retrieval processes to facilitate next day extinction. The study provides novel preliminary evidence for the role of OT in human threat memory.
Collapse
Affiliation(s)
- Jingchu Hu
- School of Life Sciences, South China Normal University, Guangzhou, China,School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Zijie Wang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Xiaoyi Feng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China.
| | - Daniela Schiller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Intranasal oxytocin administration promotes emotional contagion and reduces aggression in a mouse model of callousness. Neuropharmacology 2018; 143:250-267. [DOI: 10.1016/j.neuropharm.2018.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/30/2022]
|
36
|
Abstract
In this chapter, we introduce a new area of social pharmacology that encompasses the study of the role of neuromodulators in modulating a wide range of social behaviors and brain function, with the interplay of genetic and epigenetic factors. There are increasing evidences for the role of the neuropeptide oxytocin in modulating a wide range of social behaviors, in reducing anxiety, and in impacting the social brain network. Oxytocin also promotes social functions in patients with neuropsychiatric disorders, such as autism and reduces anxiety and fear in anxiety disorders. In this chapter, we will emphasize the importance of integrating basic research and clinical human research in determining optimal strategies for drug discoveries for social dysfunctions and anxiety disorders. We will highlight the significance of adopting a precision medicine approach to optimize targeted treatments with oxytocin in neuropsychiatry. Oxytocin effects on social behavior and brain function can vary from one individual to another based on external factors, such as heterogeneity in autism phenotype, childhood experiences, personality, attachment style, and oxytocin receptor polymorphisms. Hence, targeted therapies for subgroups of patients can help alleviating some of the core symptoms and lead to a better future for these patients and their families.
Collapse
Affiliation(s)
- Elissar Andari
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA.
| | - Rene Hurlemann
- Department of Psychiatry, Medical Psychology Division, NEMO (Neuromodulation of Emotion) Research Group, University of Bonn, Bonn, Germany
| | - Larry J Young
- Department of Psychiatry, Center for Translational Social Neuroscience, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
37
|
Janeček M, Dabrowska J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res 2018; 375:143-172. [PMID: 30054732 DOI: 10.1007/s00441-018-2889-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 01/28/2023]
Abstract
Despite its relatively well-understood role as a reproductive and pro-social peptide, oxytocin (OT) tells a more convoluted story in terms of its modulation of fear and anxiety. This nuanced story has been obscured by a great deal of research into the therapeutic applications of exogenous OT, driving more than 400 ongoing clinical trials. Drawing from animal models and human studies, we review the complex evidence concerning OT's role in fear learning and anxiety, clarifying the existing confusion about modulation of fear versus anxiety. We discuss animal models and human studies demonstrating the prevailing role of OT in strengthening fear memory to a discrete signal or cue, which allows accurate and rapid threat detection that facilitates survival. We also review ostensibly contrasting behavioral studies that nonetheless provide compelling evidence of OT attenuating sustained contextual fear and anxiety-like behavior, arguing that these OT effects on the modulation of fear vs. anxiety are not mutually exclusive. To disambiguate how endogenous OT modulates fear and anxiety, an understudied area compared to exogenous OT, we survey behavioral studies utilizing OT receptor (OTR) antagonists. Based on emerging evidence about the role of OTR in rat dorsolateral bed nucleus of stria terminalis (BNST) and elsewhere, we postulate that OT plays a critical role in facilitating accurate discrimination between stimuli representing threat and safety. Supported by human studies, we demonstrate that OT uniquely facilitates adaptive fear but reduces maladaptive anxiety. Last, we explore the limited literature on endogenous OT and its interaction with corticotropin-releasing factor (CRF) with a special emphasis on the dorsolateral BNST, which may hold the key to the neurobiology of phasic fear and sustained anxiety.
Collapse
Affiliation(s)
- Michael Janeček
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
38
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Oxytocin Signaling in the Lateral Septum Prevents Social Fear during Lactation. Curr Biol 2018; 28:1066-1078.e6. [DOI: 10.1016/j.cub.2018.02.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/03/2023]
|
40
|
Beneficial effects of chronic oxytocin administration and social co-housing in a rodent model of post-traumatic stress disorder. Behav Pharmacol 2018; 27:704-717. [PMID: 27740964 DOI: 10.1097/fbp.0000000000000270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Post-traumatic stress disorder (PTSD) is in part due to a deficit in memory consolidation and extinction. Oxytocin (OXT) has anxiolytic effects and promotes prosocial behaviors in both rodents and humans, and evidence suggests that it plays a role in memory consolidation. We studied the effects of administered OXT and social co-housing in a rodent model of PTSD. Acute OXT yielded a short-term increase in the recall of the traumatic memory if administered immediately after trauma. Low doses of OXT delivered chronically had a cumulating anxiolytic effect that became apparent after 4 days and persisted. Repeated injections of OXT after short re-exposures to the trauma apparatus yielded a long-term reduction in anxiety. Co-housing with naive nonshocked animals decreased the memory of the traumatic context compared with single-housed animals. In the long term, these animals showed less thigmotaxis and increased interest in novel objects, and a low OXT plasma level. Co-housed PTSD animals showed an increase in risk-taking behavior. These results suggest beneficial effects of OXT if administered chronically through increases in memory consolidation after re-exposure to a safe trauma context. We also show differences between the benefits of social co-housing with naive rats and co-housing with other shocked animals on trauma-induced long-term anxiety.
Collapse
|
41
|
Oxytocin, social factors, and the expression of conditioned disgust (anticipatory nausea) in male rats. Behav Pharmacol 2018; 27:718-725. [PMID: 27740965 DOI: 10.1097/fbp.0000000000000271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disgust has been proposed to have evolved as a means to rid the body and mouth of noxious substances and toxins, as well as to motivate and facilitate avoidance of contact with disease-causing organisms and infectious materials. Nonemetic species, such as the rat, show distinctive facial expressions, including the gaping reaction, indicative of nausea-based disgust. These conditioned disgust responses can be used to model anticipatory nausea in humans, which is a learned response observed following chemotherapy treatment. As social factors play a role in the modulation and expression of conditioned disgust responses in rats, and the nonapeptide, oxytocin (OT), is involved in the modulation of social behavior, the present study examined the effects of an OT antagonist, L-368 899, on the development and expression of socially mediated conditioned disgust in male rats. When administered 10 min before testing in a distinct context (different from the original conditioning context), L-368 899 (5 mg/kg) significantly decreased gaping behavior in rats that were conditioned with a social partner. LiCl-treated rats administered L-368 899 before testing also showed decreased social initiations toward their social partner. These findings suggest that OT may play a role in the modulation and expression of socially mediated conditioned disgust in rats.
Collapse
|
42
|
Muttenthaler M, Andersson Å, Vetter I, Menon R, Busnelli M, Ragnarsson L, Bergmayr C, Arrowsmith S, Deuis JR, Chiu HS, Palpant NJ, O'Brien M, Smith TJ, Wray S, Neumann ID, Gruber CW, Lewis RJ, Alewood PF. Subtle modifications to oxytocin produce ligands that retain potency and improved selectivity across species. Sci Signal 2017; 10:10/508/eaan3398. [PMID: 29208680 DOI: 10.1126/scisignal.aan3398] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxytocin and vasopressin mediate various physiological functions that are important for osmoregulation, reproduction, cardiovascular function, social behavior, memory, and learning through four G protein-coupled receptors that are also implicated in high-profile disorders. Targeting these receptors is challenging because of the difficulty in obtaining ligands that retain selectivity across rodents and humans for translational studies. We identified a selective and more stable oxytocin receptor (OTR) agonist by subtly modifying the pharmacophore framework of human oxytocin and vasopressin. [Se-Se]-oxytocin-OH displayed similar potency to oxytocin but improved selectivity for OTR, an effect that was retained in mice. Centrally infused [Se-Se]-oxytocin-OH potently reversed social fear in mice, confirming that this action was mediated by OTR and not by V1a or V1b vasopressin receptors. In addition, [Se-Se]-oxytocin-OH produced a more regular contraction pattern than did oxytocin in a preclinical labor induction and augmentation model using myometrial strips from cesarean sections. [Se-Se]-oxytocin-OH had no activity in human cardiomyocytes, indicating a potentially improved safety profile and therapeutic window compared to those of clinically used oxytocin. In conclusion, [Se-Se]-oxytocin-OH is a novel probe for validating OTR as a therapeutic target in various biological systems and is a promising new lead for therapeutic development. Our medicinal chemistry approach may also be applicable to other peptidergic signaling systems with similar selectivity issues.
Collapse
Affiliation(s)
- Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia. .,Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Åsa Andersson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Pharmacy, The University of Queensland, Brisbane, Queensland 4104, Australia
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| | - Marta Busnelli
- CNR-Institute of Neuroscience, 20129 Milan, Italy.,Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christian Bergmayr
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sarah Arrowsmith
- Department of Cellular and Molecular Physiology, Harris-Wellbeing Preterm Birth Centre, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Margaret O'Brien
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway H91 CF50, Ireland
| | - Terry J Smith
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway H91 CF50, Ireland
| | - Susan Wray
- Department of Cellular and Molecular Physiology, Harris-Wellbeing Preterm Birth Centre, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
43
|
Bürkner PC, Williams DR, Simmons TC, Woolley JD. Intranasal Oxytocin May Improve High-Level Social Cognition in Schizophrenia, But Not Social Cognition or Neurocognition in General: A Multilevel Bayesian Meta-analysis. Schizophr Bull 2017; 43:1291-1303. [PMID: 28586471 PMCID: PMC5737621 DOI: 10.1093/schbul/sbx053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
While there is growing interest in the potential for intranasal oxytocin (IN-OT) to improve social cognition and neurocognition (ie, nonsocial cognition) in schizophrenia, the extant literature has been mixed. Here, we perform a Bayesian meta-analysis of the efficacy of IN-OT to improve areas of social and neurocognition in schizophrenia. A systematic search of original research publications identified randomized controlled trials (RCTs) of IN-OT as a treatment for social and neurocognitive deficits in schizophrenia for inclusion. Standardized mean differences (SMD) and corresponding variances were used in multilevel Bayesian models to obtain meta-analytic effect-size estimates. Across a total of 12 studies (N = 273), IN-OT did not improve social cognition (SMD = 0.07, 95% credible interval [CI] = [-0.06, 0.17]) or neurocognition (SMD = 0.12, 95% CI = [-0.12, 0.34]). There was moderate between study heterogeneity for social cognition outcomes (τs= 0.12). Moderator analyses revealed that IN-OT had a significantly larger effect on high-level social cognition (ie, mentalizing and theory of mind) compared to low-level social cognition (ie, social cue perception) (b = 0.19, 95% CI = [0.05, 0.33]). When restricting our analysis to outcomes for high-level social cognition, there was a significant effect of IN-OT (SMD = 0.20, 95 % CI = [0.05, 0.33]) but the effect was not robust to sensitivity analyses. The present analysis indicates that IN-OT may have selective effects on high-level social cognition, which provides a more focused target for future studies of IN-OT.
Collapse
Affiliation(s)
| | - Donald R Williams
- Department of Psychology, University of California, Davis, Davis, CA
| | - Trenton C Simmons
- Department of Psychology, University of California, Davis, Davis, CA
| | - Josh D Woolley
- Department of Psychiatry, UCSF Weill Institute for Neuroscience, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
44
|
Kornhuber J, Zoicas I. Neuropeptide Y prolongs non-social memory and differentially affects acquisition, consolidation, and retrieval of non-social and social memory in male mice. Sci Rep 2017; 7:6821. [PMID: 28754895 PMCID: PMC5533709 DOI: 10.1038/s41598-017-07273-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/23/2017] [Indexed: 01/08/2023] Open
Abstract
Neuropeptide Y (NPY) and its receptors (especially Y1, Y2, and Y5) are highly expressed in brain regions involved in learning and memory processes. Accordingly, NPY was shown to modulate cognitive functions in rodents. Here, we investigated possible memory-enhancing effects of NPY and determined the role of the NPY system in the acquisition, consolidation, and retrieval of non-social and social memory in mice, using the object and social discrimination tests, respectively. Intracerebroventricular (icv) infusion of NPY (1 nmol/2 µl) prolonged retention of non-social (object) memory, but not of social memory. This effect was blocked by the Y1 receptor antagonist BIBO3304 trifluoroacetate (2 nmol/2 µl), but not by the Y2 receptor antagonist BIIE0246 (2 nmol/2 µl). While icv infusion of NPY did not affect the acquisition, consolidation, and retrieval of non-social and social memory, icv infusion of BIBO3304 trifluoroacetate and BIIE0246 blocked the consolidation of non-social memory and the retrieval of both non-social and social memory. This study suggests that NPY has memory-enhancing effects in a non-social context by specifically acting on Y1 receptors. It further suggests that the central NPY system exerts differential effects on the sequential phases of non-social and social memory.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany.
| |
Collapse
|
45
|
Moaddab M, Dabrowska J. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats. Neuropharmacology 2017; 121:130-139. [PMID: 28456687 PMCID: PMC5553312 DOI: 10.1016/j.neuropharm.2017.04.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 01/25/2023]
Abstract
Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNSTdl) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNSTdl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNSTdl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNSTdl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNSTdl administration of specific OTR antagonist (OTA), (d(CH2)51, Tyr(Me)2, Thr4, Orn8, des-Gly-NH29)-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNSTdl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNSTdl in learning to discriminate between threatening and safe stimuli.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
46
|
Sabihi S, Dong SM, Maurer SD, Post C, Leuner B. Oxytocin in the medial prefrontal cortex attenuates anxiety: Anatomical and receptor specificity and mechanism of action. Neuropharmacology 2017; 125:1-12. [PMID: 28655609 DOI: 10.1016/j.neuropharm.2017.06.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/12/2023]
Abstract
Numerous studies in animals and humans have established that oxytocin (OT) reduces anxiety. In rats, the prelimbic (PL) subregion of the medial prefrontal cortex (mPFC) is among the brain areas implicated in the anxiolytic actions of OT. However, questions remain about the anatomical and receptor specificity of OT and its mechanism of action. Here we assessed whether the regulation of anxiety by mPFC OT is restricted to the PL subregion and evaluated whether oxytocin receptor (OTR) activation is required for OT to have an anxiolytic effect. We also examined whether OT interacts with GABA in the mPFC to reduce anxiety and investigated the extent to which OT in the mPFC affects activation of mPFC GABA neurons as well as neuronal activation in the amygdala, a primary target of the mPFC which is part of the neural network regulating anxiety. We found that OT reduced anxiety-like behavior when delivered to the PL, but not infralimbic or anterior cingulate subregions of the mPFC. The anxiolytic effect of OT in the PL mPFC was blocked by pretreatment with an OTR, but not a vasopressin receptor, antagonist as well as with a GABAA receptor antagonist. Lastly, administration of OT to the PL mPFC was accompanied by increased activation of GABA neurons in the PL mPFC and altered neuronal activation of the amygdala following anxiety testing. These results demonstrate that OT in the PL mPFC attenuates anxiety-related behavior and may do so by engaging GABAergic neurons which ultimately modulate downstream brain regions implicated in anxiety.
Collapse
Affiliation(s)
- Sara Sabihi
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Shirley M Dong
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Skyler D Maurer
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Caitlin Post
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH 43210, United States; The Ohio State University, Department of Neuroscience, Columbus, OH 43210, United States; The Ohio State University, Behavioral Neuroendocrinology Group, Columbus, OH 43210, United States.
| |
Collapse
|
47
|
Intranasal Oxytocin to Prevent Posttraumatic Stress Disorder Symptoms: A Randomized Controlled Trial in Emergency Department Patients. Biol Psychiatry 2017; 81:1030-1040. [PMID: 28087128 DOI: 10.1016/j.biopsych.2016.11.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND There are currently few preventive interventions available for posttraumatic stress disorder (PTSD). Intranasal oxytocin administration early after trauma may prevent PTSD, because oxytocin administration was previously found to beneficially impact PTSD vulnerability factors, including neural fear responsiveness, peripheral stress reactivity, and socioemotional functioning. Therefore, we investigated the effects of intranasal oxytocin administration early after trauma on subsequent clinician-rated PTSD symptoms. We then assessed whether baseline characteristics moderated the intervention's effects. METHODS We performed a multicenter, randomized, double-blind, placebo-controlled clinical trial. Adult emergency department patients with moderate to severe acute distress (n = 120; 85% accident victims) were randomized to intranasal oxytocin (8 days/40 IU twice daily) or placebo (8 days/10 puffs twice daily), initiated within 12 days posttrauma. The Clinician-Administered PTSD Scale (CAPS) was administered at baseline (within 10 days posttrauma) and at 1.5, 3, and 6 months posttrauma. The intention-to-treat sample included 107 participants (oxytocin: n = 53; placebo: n = 54). RESULTS We did not observe a significant group difference in CAPS total score at 1.5 months posttrauma (primary outcome) or across follow-up (secondary outcome). Secondary analyses showed that participants with high baseline CAPS scores receiving oxytocin had significantly lower CAPS scores across follow-up than participants with high baseline CAPS scores receiving placebo. CONCLUSIONS Oxytocin administration early after trauma did not attenuate clinician-rated PTSD symptoms in all trauma-exposed participants with acute distress. However, participants with high acute clinician-rated PTSD symptom severity did show beneficial effects of oxytocin. Although replication is warranted, these findings suggest that oxytocin administration is a promising preventive intervention for PTSD for individuals with high acute PTSD symptoms.
Collapse
|
48
|
Frijling JL. Preventing PTSD with oxytocin: effects of oxytocin administration on fear neurocircuitry and PTSD symptom development in recently trauma-exposed individuals. Eur J Psychotraumatol 2017; 8:1302652. [PMID: 28451068 PMCID: PMC5400019 DOI: 10.1080/20008198.2017.1302652] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/01/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a debilitating psychiatric disorder which develops in approximately 10% of trauma-exposed individuals. Currently, there are few early preventive interventions available for PTSD. Intranasal oxytocin administration early posttrauma may prevent PTSD symptom development, as oxytocin administration was previously found to beneficially impact neurobiological (e.g. amygdala reactivity) and socio-emotional PTSD vulnerability factors. Objective: The overall aim of this dissertation was to investigate the potential of intranasal oxytocin administration as early preventive intervention for PTSD. Methods: We performed a functional magnetic resonance imaging (fMRI) study to assess the acute effects of a single administration of oxytocin on the functional fear neurocircuitry - consisting of the amygdala and (pre)frontal brain regions - in recently trauma-exposed emergency department patients (range n = 37-41). In addition, we performed a multicentre randomized double-blind placebo-controlled clinical trial (RCT) to assess the efficacy of repeated intranasal oxytocin administration early after trauma for preventing PTSD symptom development up to six months posttrauma (n = 107). Results: In our fMRI experiments we observed acutely increased amygdala reactivity to fearful faces and attenuated amygdala-ventromedial and ventrolateral prefrontal cortex functional connectivity after a single oxytocin administration in recently trauma-exposed individuals. However, in our RCT we found that repeated intranasal oxytocin administration early posttrauma reduced subsequent PTSD symptom development in recently trauma-exposed emergency department patients with high acute PTSD symptoms. Conclusions: These findings indicate that repeated intranasal oxytocin is a promising early preventive intervention for PTSD for individuals at increased risk for PTSD due to high acute symptom severity. Administration frequency dependent effects of oxytocin or the effects of oxytocin administration on salience processing may serve as explanatory frameworks for the contrasting oxytocin effects on anxiety-related measures in our clinical and neuroimaging studies.
Collapse
Affiliation(s)
- Jessie L Frijling
- Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
49
|
Poirier GL, Hitora-Imamura N, Sandi C. Emergence in extinction of enhanced and persistent responding to ambiguous aversive cues is associated with high MAOA activity in the prelimbic cortex. Neurobiol Stress 2016; 5:1-7. [PMID: 27981191 PMCID: PMC5145910 DOI: 10.1016/j.ynstr.2016.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022] Open
Abstract
There is a great deal of individual variability in the emotional outcomes of potentially traumatic events, and the underlying mechanisms are only beginning to be understood. In order to further our understanding of individual trajectories to trauma, its vulnerability and resilience, we adapted a model of fear expression to ambiguous vs perfect cues in adult male rats, and examined long-term fear extinction, 2, 3, and 50 days from acquisition. After the final conditioned fear test, mitochondrial enzyme monoamine oxidase A (MAOA) function was examined. In order to identify associations between this function and behavioral expression, an a posteri median segregation approach was adopted, and animals were classified as high or low responding according to level of freezing to the ambiguous cue at remote testing, long after the initial extinction. Those individuals characterized by their higher response showed a freezing pattern that persisted from their previous extinction sessions, in spite of their acquisition levels being equivalent to the low-freezing group. Furthermore, unlike more adaptive individuals, freezing levels of high-freezing animals even increased at initial extinction, to almost double their acquisition session levels. Controlling for perfect cue response at remote extinction, greater ambiguous threat cue response was associated with enhanced prelimbic cortex MAOA functional activity. These findings underscore MAOA as a potential target for the development of interventions to mitigate the impact of traumatic experiences. Potentially traumatic event outcomes vary and mechanisms are poorly understood. We examined fear extinction of perfect or ambiguous cues in adult male rats. Higher freezing to ambiguous cue in extinction yet followed equivalent acquisition. Ambiguous cue response was associated with higher prelimbic cortex MAOA function. These findings support targeting MAOA to mitigate impact of traumatic experiences.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Natsuko Hitora-Imamura
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Distinct oxytocin effects on belief updating in response to desirable and undesirable feedback. Proc Natl Acad Sci U S A 2016; 113:9256-61. [PMID: 27482087 DOI: 10.1073/pnas.1604285113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Humans update their beliefs upon feedback and, accordingly, modify their behaviors to adapt to the complex, changing social environment. However, people tend to incorporate desirable (better than expected) feedback into their beliefs but to discount undesirable (worse than expected) feedback. Such optimistic updating has evolved as an advantageous mechanism for social adaptation. Here, we examine the role of oxytocin (OT)-an evolutionary ancient neuropeptide pivotal for social adaptation-in belief updating upon desirable and undesirable feedback in three studies (n = 320). Using a double-blind, placebo-controlled between-subjects design, we show that intranasally administered OT (IN-OT) augments optimistic belief updating by facilitating updates of desirable feedback but impairing updates of undesirable feedback. The IN-OT-induced impairment in belief updating upon undesirable feedback is more salient in individuals with high, rather than with low, depression or anxiety traits. IN-OT selectively enhances learning rate (the strength of association between estimation error and subsequent update) of desirable feedback. IN-OT also increases participants' confidence in their estimates after receiving desirable but not undesirable feedback, and the OT effect on confidence updating upon desirable feedback mediates the effect of IN-OT on optimistic belief updating. Our findings reveal distinct functional roles of OT in updating the first-order estimation and second-order confidence judgment in response to desirable and undesirable feedback, suggesting a molecular substrate for optimistic belief updating.
Collapse
|