1
|
Wang X, Liu J, Dai Z, Sui Y. Andrographolide improves PCP-induced schizophrenia-like behaviors through blocking interaction between NRF2 and KEAP1. J Pharmacol Sci 2021; 147:9-17. [PMID: 34294378 DOI: 10.1016/j.jphs.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/02/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Schizophrenia is one of the foremost psychological illness around the world, and recent evidence shows that inflammation and oxidative stress may play a critical role in the etiology of schizophrenia. Andrographolide is a diterpenoid lactone from Andrographis paniculate, which has shown anti-inflammation and anti-oxidative effects. In this study, we explored whether andrographolide can improve schizophrenia-like behaviors through its inhibition of inflammation and oxidative stress in Phencyclidine (PCP)-induced mouse model of schizophrenia. We found that abnormal behavioral including locomotor activity, forced swimming and novel object recognition were ameliorated following andrographolide administration (5 mg/kg and 10 mg/kg). Andrographolide inhibited PCP-induced production of inflammatory cytokines, decreased p-p65, p-IκBα, p-p38 and p-ERK1/2 in the prefrontal cortex. Andrographolide significantly declined the level of MDA and GSH, as well as elevated the activity of SOD, CAT and GCH-px. In addition, andrographolide increased expression of NRF-2, HO-1 and NQO-1, promoted nuclear translocation of NRF-2 through blocking the interaction between NRF-2 and KEAP1, which may be associated with directly binding to NRF-2. Furthermore, antioxidative effects and anti-schizophrenia-like behaviors of andrographolide were compromised by the application of NRF-2 inhibitor ML385. In conclusion, these results suggested that andrographolide improved oxidative stress and schizophrenia-like behaviors induced by PCP through increasing NRF-2 pathway.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Jia Liu
- Department of Clinical Pharmacy, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Dai
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Smaga I, Frankowska M, Filip M. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. Br J Pharmacol 2021; 178:2569-2594. [PMID: 33760228 DOI: 10.1111/bph.15456] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
N-acetylcysteine (NAC) is a well-known and safe mucolytic agent, also used in patients with paracetamol overdose. In addition to these effects, recent preclinical and clinical studies have shown that NAC exerts beneficial effects on different psychiatric disorders. Many potential mechanisms have been proposed to underlie the therapeutic effects of NAC, including the regulation of several neurotransmitters, oxidative homeostasis, and inflammatory mediators. In this paper, we summarize the current knowledge on the ability of NAC to ameliorate symptoms and neuropathologies related to different psychiatric disorders, including attention deficit hyperactivity disorder, anxiety, bipolar disorder, depression, obsessive-compulsive disorder, obsessive-compulsive-related disorder, posttraumatic stress disorder, and schizophrenia. Although preclinical studies have shown a positive effect of NAC on animal models of psychiatric disorders, the clinical efficacy of NAC is not fully established. NAC remains a strong candidate for adjunct treatment for many psychiatric disorders, but additional preclinical and clinical studies are needed.
Collapse
Affiliation(s)
- Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
4
|
Miladinovic T, Ungard RG, Linher-Melville K, Popovic S, Singh G. Functional effects of TrkA inhibition on system x C--mediated glutamate release and cancer-induced bone pain. Mol Pain 2018; 14:1744806918776467. [PMID: 29761734 PMCID: PMC5956640 DOI: 10.1177/1744806918776467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells release the signalling molecule glutamate via the system xC− antiporter, which is upregulated to exchange extracellular cystine for intracellular glutamate to protect against oxidative stress. Here, we demonstrate that this antiporter is functionally influenced by the actions of the neurotrophin nerve growth factor on its cognate receptor tyrosine kinase, TrkA, and that inhibiting this complex may reduce cancer-induced bone pain via its downstream actions on xCT, the functional subunit of system xC−. We have characterized the effects of the selective TrkA inhibitor AG879 on system xC− activity in murine 4T1 and human MDA-MB-231 mammary carcinoma cells, as well as its effects on nociception in our validated immunocompetent mouse model of cancer-induced bone pain, in which BALB/c mice are intrafemorally inoculated with 4T1 murine carcinoma cells. AG879 decreased functional system xC− activity, as measured by cystine uptake and glutamate release, and inhibited nociceptive and physiologically relevant responses in tumour-bearing animals. Cumulatively, these data suggest that the activation of TrkA by nerve growth factor may have functional implications on system xC−-mediated cancer pain. System xC−-mediated TrkA activation therefore presents a promising target for therapeutic intervention in cancer pain treatment.
Collapse
Affiliation(s)
- Tanya Miladinovic
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Robert G Ungard
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katja Linher-Melville
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Snezana Popovic
- 2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- 1 Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.,2 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Phensy A, Duzdabanian HE, Brewer S, Panjabi A, Driskill C, Berz A, Peng G, Kroener S. Antioxidant Treatment with N-acetyl Cysteine Prevents the Development of Cognitive and Social Behavioral Deficits that Result from Perinatal Ketamine Treatment. Front Behav Neurosci 2017. [PMID: 28634445 PMCID: PMC5459895 DOI: 10.3389/fnbeh.2017.00106] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA) receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR) antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH) precursor N-acetyl-cysteine (NAC) can prevent the development of these behavioral deficits. On postnatal days (PND) 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg) of ketamine or saline. Two groups (either ketamine or saline treated) also received NAC throughout development. In adult animals (PND 70-120) we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI) of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.
Collapse
Affiliation(s)
- Aarron Phensy
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Hasmik E Duzdabanian
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Samantha Brewer
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Anurag Panjabi
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Christopher Driskill
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Annuska Berz
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - George Peng
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at DallasRichardson, TX, United States
| |
Collapse
|
6
|
Nashed MG, Ungard RG, Young K, Zacal NJ, Seidlitz EP, Fazzari J, Frey BN, Singh G. Behavioural Effects of Using Sulfasalazine to Inhibit Glutamate Released by Cancer Cells: A Novel target for Cancer-Induced Depression. Sci Rep 2017; 7:41382. [PMID: 28120908 PMCID: PMC5264609 DOI: 10.1038/srep41382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
Despite the lack of robust evidence of effectiveness, current treatment options for cancer-induced depression (CID) are limited to those developed for non-cancer related depression. Here, anhedonia-like and coping behaviours were assessed in female BALB/c mice inoculated with 4T1 mammary carcinoma cells. The behavioural effects of orally administered sulfasalazine (SSZ), a system xc− inhibitor, were compared with fluoxetine (FLX). FLX and SSZ prevented the development of anhedonia-like behaviour on the sucrose preference test (SPT) and passive coping behaviour on the forced swim test (FST). The SSZ metabolites 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP) exerted an effect on the SPT but not on the FST. Although 5-ASA is a known anti-inflammatory agent, neither treatment with SSZ nor 5-ASA/SP prevented tumour-induced increases in serum levels of interleukin-1β (IL-1β) and IL-6, which are indicated in depressive disorders. Thus, the observed antidepressant-like effect of SSZ may primarily be attributable to the intact form of the drug, which inhibits system xc−. This study represents the first attempt at targeting cancer cells as a therapeutic strategy for CID, rather than targeting downstream effects of tumour burden on the central nervous system. In doing so, we have also begun to characterize the molecular pathways of CID.
Collapse
Affiliation(s)
- Mina G Nashed
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Robert G Ungard
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Kimberly Young
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Natalie J Zacal
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Eric P Seidlitz
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Jennifer Fazzari
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, L8N 3K7, Canada.,Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, L8P 3K7, Canada
| | - Gurmit Singh
- Department of Pathology &Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Steullet P, Cabungcal JH, Monin A, Dwir D, O'Donnell P, Cuenod M, Do KQ. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology? Schizophr Res 2016; 176:41-51. [PMID: 25000913 PMCID: PMC4282982 DOI: 10.1016/j.schres.2014.06.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 12/18/2022]
Abstract
Accumulating evidence points to altered GABAergic parvalbumin-expressing interneurons and impaired myelin/axonal integrity in schizophrenia. Both findings could be due to abnormal neurodevelopmental trajectories, affecting local neuronal networks and long-range synchrony and leading to cognitive deficits. In this review, we present data from animal models demonstrating that redox dysregulation, neuroinflammation and/or NMDAR hypofunction (as observed in patients) impairs the normal development of both parvalbumin interneurons and oligodendrocytes. These observations suggest that a dysregulation of the redox, neuroimmune, and glutamatergic systems due to genetic and early-life environmental risk factors could contribute to the anomalies of parvalbumin interneurons and white matter in schizophrenia, ultimately impacting cognition, social competence, and affective behavior via abnormal function of micro- and macrocircuits. Moreover, we propose that the redox, neuroimmune, and glutamatergic systems form a "central hub" where an imbalance within any of these "hub" systems leads to similar anomalies of parvalbumin interneurons and oligodendrocytes due to the tight and reciprocal interactions that exist among these systems. A combination of vulnerabilities for a dysregulation within more than one of these systems may be particularly deleterious. For these reasons, molecules, such as N-acetylcysteine, that possess antioxidant and anti-inflammatory properties and can also regulate glutamatergic transmission are promising tools for prevention in ultra-high risk patients or for early intervention therapy during the first stages of the disease.
Collapse
Affiliation(s)
- P Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - J H Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - A Monin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - D Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - P O'Donnell
- Neuroscience Research Unit, Pfizer, Inc., 700 Main Street, Cambridge, MA 02139, USA
| | - M Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland
| | - K Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Site de Cery, 1008 Prilly-Lausanne, Switzerland.
| |
Collapse
|
8
|
Kong L, Albano R, Madayag A, Raddatz N, Mantsch JR, Choi S, Lobner D, Baker DA. Pituitary Adenylate cyclase-activating polypeptide orchestrates neuronal regulation of the astrocytic glutamate-releasing mechanism system xc (.). J Neurochem 2016; 137:384-93. [PMID: 26851652 DOI: 10.1111/jnc.13566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022]
Abstract
Glutamate signaling is achieved by an elaborate network involving neurons and astrocytes. Hence, it is critical to better understand how neurons and astrocytes interact to coordinate the cellular regulation of glutamate signaling. In these studies, we used rat cortical cell cultures to examine whether neurons or releasable neuronal factors were capable of regulating system xc (-) (Sxc), a glutamate-releasing mechanism that is expressed primarily by astrocytes and has been shown to regulate synaptic transmission. We found that astrocytes cultured with neurons or exposed to neuronal-conditioned media displayed significantly higher levels of Sxc activity. Next, we demonstrated that the pituitary adenylate cyclase-activating polypeptide (PACAP) may be a neuronal factor capable of regulating astrocytes. In support, we found that PACAP expression was restricted to neurons, and that PACAP receptors were expressed in astrocytes. Interestingly, blockade of PACAP receptors in cultures comprised of astrocytes and neurons significantly decreased Sxc activity to the level observed in purified astrocytes, whereas application of PACAP to purified astrocytes increased Sxc activity to the level observed in cultures comprised of neurons and astrocytes. Collectively, these data reveal that neurons coordinate the actions of glutamate-related mechanisms expressed by astrocytes, such as Sxc, a process that likely involves PACAP. A critical gap in modeling excitatory signaling is how distinct components of the glutamate system expressed by neurons and astrocytes are coordinated. In these studies, we found that system xc (-) (Sxc), a glutamate release mechanism expressed by astrocytes, is regulated by releasable neuronal factors including PACAP. This represents a novel form of neuron-astrocyte communication, and highlights the possibility that pathological changes involving astrocytic Sxc may stem from altered neuronal activity.
Collapse
Affiliation(s)
- Linghai Kong
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Rebecca Albano
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Aric Madayag
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Nicholas Raddatz
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
9
|
Do KQ, Cuenod M, Hensch TK. Targeting Oxidative Stress and Aberrant Critical Period Plasticity in the Developmental Trajectory to Schizophrenia. Schizophr Bull 2015; 41:835-46. [PMID: 26032508 PMCID: PMC4466197 DOI: 10.1093/schbul/sbv065] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder reflecting a convergence of genetic risk and early life stress. The slow progression to first psychotic episode represents both a window of vulnerability as well as opportunity for therapeutic intervention. Here, we consider recent neurobiological insight into the cellular and molecular components of developmental critical periods and their vulnerability to redox dysregulation. In particular, the consistent loss of parvalbumin-positive interneuron (PVI) function and their surrounding perineuronal nets (PNNs) as well as myelination in patient brains is consistent with a delayed or extended period of circuit instability. This linkage to critical period triggers (PVI) and brakes (PNN, myelin) implicates mistimed trajectories of brain development in mental illness. Strategically introduced antioxidant treatment or later reinforcement of molecular brakes may then offer a novel prophylactic psychiatry.
Collapse
Affiliation(s)
- Kim Q. Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital-CHUV, Prilly-Lausanne, Switzerland
| | - Takao K. Hensch
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, Cambridge, MA,*To whom correspondence should be addressed; Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, US; tel: +1-617-384-5882; fax: +1-617-495-4038; e-mail:
| |
Collapse
|
10
|
Herrmann AP, Benvenutti R, Pilz LK, Elisabetsky E. N-acetylcysteine prevents increased amphetamine sensitivity in social isolation-reared mice. Schizophr Res 2014; 155:109-11. [PMID: 24725851 DOI: 10.1016/j.schres.2014.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/29/2023]
Abstract
Treating individuals at risk to develop schizophrenia may be strategic to delay or prevent transition to psychosis. We verified the effects of N-acetylcysteine (NAC) in a neurodevelopmental model of schizophrenia. C57 mice were reared in isolation or social groups and treated with NAC from postnatal day 42-70; the locomotor response to amphetamine was assessed at postnatal day 81. NAC treatment in isolated mice prevented the hypersensitivity to amphetamine, suggesting neuroprotection relevant to striatal dopamine. Considering its safety and tolerability profile, complementary studies are warranted to further evaluate the usefulness of NAC to prevent conversion to schizophrenia in at-risk individuals.
Collapse
Affiliation(s)
- Ana P Herrmann
- Laboratório de Etnofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Ramiro Barcelos, 2600, 90035-000 Porto Alegre, RS, Brazil.
| | - Radharani Benvenutti
- Laboratório de Etnofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| | - Luísa K Pilz
- Laboratório de Etnofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Ramiro Barcelos, 2600, 90035-000 Porto Alegre, RS, Brazil
| | - Elaine Elisabetsky
- Laboratório de Etnofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul., Rua Ramiro Barcelos, 2600, 90035-000 Porto Alegre, RS, Brazil
| |
Collapse
|