1
|
Oga K, Fuchikami M, Kobayashi H, Miyagi T, Fujita S, Fujita S, Okada S, Morinobu S. Involvement of dysregulated hippocampal histone H3K9 methylation at the promoter of the BDNF gene in impaired memory extinction. Psychopharmacology (Berl) 2024; 241:2363-2374. [PMID: 38940908 PMCID: PMC11513706 DOI: 10.1007/s00213-024-06640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
RATIONALE Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Impaired extinction of fear memory (EFM) is one of the core symptoms of PTSD and is associated with stress-induced epigenetic change in gene expression. OBJECTIVES In this study, we examined whether the involvement of histone H3 lysine 9 dimethylation (H3K9me2) in EFM is mediated through brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and whether BIX01294, a selective G9a and GLP histone methyltransferase inhibitor, could be treatment for impaired EFM in an animal model of PTSD. METHODS The single prolonged stress (SPS) paradigm was used to model PTSD. We measured BDNF mRNA levels by RT-PCR, and H3K9me2 levels in the BDNF gene promoters by chromatin immunoprecipitation-qPCR. After undergoing contextual fear conditioning and hippocampal injection of BIX01294, male rats were subjected to extinction training and extinction testing and their freezing times and BDNF mRNA levels were measured. RESULTS Compared to sham rats, SPS rats showed decreased BDNF mRNA levels 2 h after extinction training, no significant changes in levels of global H3K9me2 prior to extinction training, and increased levels of H3K9me2 in BDNF gene promoter IV, but not in BDNF gene promoter I. Administration of BIX01294 ameliorated the decrease in BDNF mRNA levels 2 h after extinction training and subsequently alleviated impaired EFM in extinction tests in SPS rats. CONCLUSION We conclude that reduced hippocampal levels of BDNF mRNA due to increase in H3K9me2 levels may play a role in PTSD-associated EFM impairment, and BIX01294 could be a PTSD treatment option.
Collapse
Affiliation(s)
- Kenichi Oga
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan.
| | - Hironori Kobayashi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Sho Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Fujita
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Satoshi Okada
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-Ku, Kasumi 1-2-3, Hiroshima City, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Psychology, School of Faculty of Health and Wellness Sciences, Hiroshima International University, Kure, Japan
| |
Collapse
|
2
|
Feng Y, Qin J, Lu Y, Wang M, Wang S, Luo F. Suberoylanilide hydroxamic acid attenuates cognitive impairment in offspring caused by maternal surgery during mid-pregnancy. PLoS One 2024; 19:e0295096. [PMID: 38551911 PMCID: PMC10980197 DOI: 10.1371/journal.pone.0295096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.
Collapse
Affiliation(s)
- Yunlin Feng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jia Qin
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanfei Lu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mengdie Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shengqiang Wang
- Department of Anesthesiology, Yichun People’s Hospital, Yichun, China
| | - Foquan Luo
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Hazra S, Hazra JD, Bar-On RA, Duan Y, Edut S, Cao X, Richter-Levin G. The role of hippocampal CaMKII in resilience to trauma-related psychopathology. Neurobiol Stress 2022; 21:100506. [PMID: 36532378 PMCID: PMC9755065 DOI: 10.1016/j.ynstr.2022.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Traumatic stress exposure can form persistent trauma-related memories. However, only a minority of individuals develop post-traumatic stress disorder (PTSD) symptoms upon exposure. We employed a rat model of PTSD, which enables differentiating between exposed-affected and exposed-unaffected individuals. Two weeks after the end of exposure, male rats were tested behaviorally, following an exposure to a trauma reminder, identifying them as trauma 'affected' or 'unaffected.' In light of the established role of hippocampal synaptic plasticity in stress and the essential role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in hippocampal based synaptic plasticity, we pharmacologically inhibited CaMKII or knocked-down (kd) αCaMKII (in two separate experiments) in the dorsal dentate gyrus of the hippocampus (dDG) following exposure to the same trauma paradigm. Both manipulations brought down the prevalence of 'affected' individuals in the trauma-exposed population. A day after the last behavioral test, long-term potentiation (LTP) was examined in the dDG as a measure of synaptic plasticity. Trauma exposure reduced the ability to induce LTP, whereas, contrary to expectation, αCaMKII-kd reversed this effect. Further examination revealed that reducing αCaMKII expression enables the formation of αCaMKII-independent LTP, which may enable increased resilience in the face of a traumatic experience. The current findings further emphasize the pivotal role dDG has in stress resilience.
Collapse
Affiliation(s)
- Somoday Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Joyeeta Dutta Hazra
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
| | - Rani Amit Bar-On
- Faculty of Social Sciences, University of Haifa, Mount Carmel, 3498838, Israel
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Shahaf Edut
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Mount Carmel, 3498838, Israel
- The Integrated Brain and Behavior Research Center IBBR, University of Haifa, Mount Carmel, 3498838, Israel
- Psychology Department, University of Haifa, Mount Carmel, 3498838, Israel
| |
Collapse
|
4
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
5
|
Lguensat A, Boudjafad Z, Giorla E, Bennis M, Baunez C, Garcia R, Ba-M'hamed S. Repeated ethanol exposure following avoidance conditioning impairs avoidance extinction and modifies conditioning-associated prefrontal dendritic changes in a mouse model of post-traumatic stress disorder. Eur J Neurosci 2021; 54:7710-7732. [PMID: 34670326 DOI: 10.1111/ejn.15499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Treatment of post-traumatic stress disorder is complicated by the presence of alcohol use disorder comorbidity. Little is known about the underlying brain mechanisms. We have recently shown, in mice, that the post-traumatic stress disorder-like phenotype is characterised by the increase and decrease in total dendritic number and length in the prelimbic and infralimbic areas of the medial prefrontal cortex, respectively. Here, we examined whether repeated ethanol exposure would exacerbate these changes and whether this would be associated with difficulty to extinguish passive avoidance behaviour, as an indicator of treatment resistance. We also analysed whether other known trauma-associated changes, like increased or decreased corticosterone and decreased brain-derived neurotrophic factor levels, would also be exacerbated. Male mice underwent trauma exposure (1.5-mA footshock), followed, 8 days later, by a conditioned place preference training with ethanol. Tests for fear sensitization, passive avoidance, anxiety-like behaviour, extinction acquisition and relapse susceptibility were used to assess behaviour changes. Plasma corticosterone and brain-derived neurotrophic factor levels and prefrontal dendritic changes were subsequently measured. Trauma-susceptible mice exposed to ethanol acquired a strong place preference and behaved differently from those not exposed to ethanol, with delayed avoidance extinction and higher avoidance relapse vulnerability. Ethanol potentiated trauma-associated dendritic changes in the prelimbic area and suppressed trauma-associated dendritic changes in the infralimbic area. However, ethanol had no effect on trauma-induced increased corticosterone and decreased brain-derived neurotrophic factor levels. These data suggest that the modification of prefrontal trauma-related changes, due to alcohol use, can characterise, and probably support, treatment-resistant post-traumatic stress disorder.
Collapse
Affiliation(s)
- Asmae Lguensat
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco.,Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France
| | - Zineb Boudjafad
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco
| | - Elodie Giorla
- Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France
| | - Mohamed Bennis
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco
| | - Christelle Baunez
- Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France
| | - René Garcia
- Centre National de la Recherche Scientifique, Institut de Neurosciences de la Timone, Aix Marseille Université, Marseille, France.,Graduate School of Life and Health Sciences, Université Côte d'Azur, Nice, France
| | - Saadia Ba-M'hamed
- Laboratoire de Pharmacologie, Neurobiologie, Anthropologie et Environnement, Université Cadi Ayyad, Marrakesh, Morocco
| |
Collapse
|
6
|
Nikitina VA, Zakharova MV, Trofimov AN, Schwarz AP, Beznin GV, Tsikunov SG, Zubareva OE. Neonatal Exposure to Bacterial Lipopolysaccharide Affects Behavior and Expression of Ionotropic Glutamate Receptors in the Hippocampus of Adult Rats after Psychogenic Trauma. BIOCHEMISTRY (MOSCOW) 2021; 86:761-772. [PMID: 34225597 DOI: 10.1134/s0006297921060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
According to the two-hit hypothesis of psychoneuropathology formation, infectious diseases and other pathological conditions occurring during the critical periods of early ontogenesis disrupt normal brain development and increase its susceptibility to stress experienced in adolescence and adulthood. It is believed that these disorders are associated with changes in the functional activity of the glutamatergic system in the hippocampus. Here, we studied expression of NMDA (GluN1, GluN2a, GluN2b) and AMPA (GluA1, GluA2) glutamate receptor subunits, as well as glutamate transporter EAAT2, in the ventral and dorsal regions of the hippocampus of rats injected with LPS during the third postnatal week and then subjected to predator stress (contact with a python) in adulthood. The tests were performed 25 days after the stress. It was found that stress altered protein expression in the ventral, but not in the dorsal hippocampus. Non-stressed LPS-treated rats displayed lower levels of the GluN2b protein in the ventral hippocampus vs. control animals. Stress significantly increased the content of GluN2b in the LPS-treated rats, but not in the control animals. Stress also affected differently the exploratory behavior of LPS-injected and control rats. Compared to the non-stressed animals, stressed control rats demonstrated a higher locomotor activity during the 1st min of the open field test, while the stressed LPS-injected rats displayed lower locomotor activity than the non-stressed rats. In addition, LPS-treated stressed and non-stressed rats spent more time in the open arms of the elevated plus maze and demonstrated reduced blood levels of corticosterone. To summarize the results of our study, exposure to bacterial LPS in the early postnatal ontogenesis affects the pattern of stress-induced changes in the behavior and hippocampal expression of genes coding for ionotropic glutamate receptor subunits after psychogenic trauma suffered in adulthood.
Collapse
Affiliation(s)
| | - Maria V Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | | | - Alexander P Schwarz
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb V Beznin
- Institute of Experimental Medicine, Saint Petersburg, 197376, Russia
| | - Sergei G Tsikunov
- Institute of Experimental Medicine, Saint Petersburg, 197376, Russia
| | - Olga E Zubareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia.
| |
Collapse
|
7
|
Omura J, Fuchikami M, Araki M, Miyagi T, Okamoto Y, Morinobu S. Chemogenetic activation of the mPFC alleviates impaired fear memory extinction in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110090. [PMID: 32896603 DOI: 10.1016/j.pnpbp.2020.110090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/19/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM Although impaired extinction of fear memory (EFM) is a hallmark symptom of posttraumatic stress disorder (PTSD), the mechanisms underlying the impairment are unknown. Activation of the infralimbic cortex (IL) in the medial prefrontal cortex (mPFC) has been reported to predict successful fear extinction, whereas functionally disrupting this region impairs extinction. We examined whether chemogenetic activation of the IL could alleviate impaired EFM in a single prolonged stress (SPS) rat model of PTSD. METHODS Chemogenetic activation of IL and prelimbic (PL) excitatory neurons was undertaken to evaluate EFM using a contextual fear conditioning paradigm. Neuronal activity in the IL was recorded using a 32-multichannel silicon electrode. To examine histological changes in the mPFC, apoptosis was measured by TUNEL staining. RESULTS Chemogenetic activation of excitatory neurons in the IL, but not the PL, enhanced EFM in sham rats and resulted in alleviation of EFM impairment in SPS rats. The alleviation of impaired EFM in SPS rats was observed during the extinction test session. Neuronal activity in the IL of SPS rats was lower than that of sham rats after clozapine-n-oxide administration. Increased apoptosis was found in the IL of SPS rats. CONCLUSIONS These findings suggest that a decreased excitatory response in the IL due, at least in part, to an increase in apoptosis in SPS rats leads to impaired EFM, and that neuronal activation during extinction training could be useful for the treatment of impaired EFM in PTSD patients.
Collapse
Affiliation(s)
- Jun Omura
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Motoaki Araki
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neuroscience, Division of Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| |
Collapse
|
8
|
Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, McIntyre C, Perrine SA, Risbrough VB, Sabban EL, Jeromin A, Haas M. Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Front Behav Neurosci 2021; 15:652636. [PMID: 34054443 PMCID: PMC8162789 DOI: 10.3389/fnbeh.2021.652636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.
Collapse
Affiliation(s)
| | - Lauren E Chaby
- Cohen Veterans Bioscience, New York City, NY, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX, United States
| | - Miranda M Lim
- Departments of Neurology, Behavioral Neuroscience, Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.,Sleep Disorders Clinic, VA Portland Health Care System, Portland, OR, United States
| | - Christa McIntyre
- Department of Neuroscience, The University of Texas at Dallas, Richardson, TX, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John. D. Dingell VA Medical Center, Detroit, MI, United States
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | | | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, United States
| |
Collapse
|
9
|
Huang FL, Li F, Zhang WJ, Li SJ, Yang ZH, Yang TL, Qi J, Duan Q, Li CQ. Brd4 participates in epigenetic regulation of the extinction of remote auditory fear memory. Neurobiol Learn Mem 2021; 179:107383. [PMID: 33460788 DOI: 10.1016/j.nlm.2021.107383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/02/2020] [Accepted: 01/10/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Inaccurate fear memories can be maladaptive and potentially portrait a core symptomatic dimension of fear adaptive disorders such as post-traumatic stress disorder (PTSD), which is generally characterized by an intense and enduring memory for the traumatic events. Evidence exists in support of epigenetic regulation of fear behavior. Brd4, a member of the bromodomain and extra-terminal domain (BET) protein family, serves as a chromatin "reader" by binding to histones in acetylated lysine residues, and hence promotes transcriptional activities. However, less is known whether Brd4 participates in modulating cognitive activities especially memory formation and extinction. Here we provide evidence for a role of Brd4 in modulation of auditory fear memory. Auditory fear conditioning resulted in a biphasic Brd4 activation in the anterior cingulate cortex (ACC) and hippocampus of adult mice. Thus, Brd4 phosphorylation occurred 6 h and 3-14 days, respectively, after auditory fear conditioning. Systemic inhibition of Brd4 with a BET inhibitor, JQ1, impaired the extinction of remote (i.e., 14 days after conditioning) fear memory. Further, conditional Brd4 knockout in excitatory neurons of the forebrain impaired remote fear extinction as observed in the JQ1-treated mice. Herein, we identified that Brd4 is essential for extinction of remote fear in rodents. These results thus indicate that Brd4 potentially plays a role in the pathogenesis of PTSD.
Collapse
Affiliation(s)
- Fu-Lian Huang
- Department of Physiology, Yiyang Medical College, Yiyang 413000, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Wen-Juan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Song-Ji Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Ze-Hua Yang
- Department of Physiology, Yiyang Medical College, Yiyang 413000, China
| | - Tian-Lun Yang
- Cardiovascular Division, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Qi
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qiong Duan
- Cardiovascular Division, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Hypertension Research Institute, Nanchang 330006, China.
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| |
Collapse
|
10
|
Sivasangari K, Rajan KE. Standardized Bacopa monnieri Extract Ameliorates Learning and Memory Impairments through Synaptic Protein, Neurogranin, Pro-and Mature BDNF Signaling, and HPA Axis in Prenatally Stressed Rat Offspring. Antioxidants (Basel) 2020; 9:antiox9121229. [PMID: 33291595 PMCID: PMC7761874 DOI: 10.3390/antiox9121229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/10/2023] Open
Abstract
Prenatal stress (PNS) influences offspring neurodevelopment, inducing anxiety-like behavior and memory deficits. We investigated whether pretreatment of Bacopa monnieri extract (CDRI-08/BME) ameliorates PNS-induced changes in signaling molecules, and changes in the behavior of Wistar rat offspring. Pregnant rats were randomly assigned into control (CON)/prenatal stress (PNS)/PNS and exposed to BME treatment (PNS + BME). Dams were exposed to stress by placing them in a social defeat cage, where they observed social defeat from gestational day (GD)-16–18. Pregnant rats in the PNS + BME group were given BME treatment from GD-10 to their offspring’s postnatal day (PND)-23, and to their offspring from PND-15 to -30. PNS led to anxiety-like behavior; impaired memory; increased the level of corticosterone (CORT), adrenocorticotropic hormone, glucocorticoid receptor, pro-apoptotic Casepase-3, and 5-HT2C receptor; decreased anti-apoptotic Bcl-2, synaptic proteins (synaptophysin, synaptotagmin-1), 5-HT1A, receptor, phosphorylation of calmodulin-dependent protein kinase II/neurogranin, N-methyl-D-aspartate receptors (2A,2B), postsynaptic density protein 95; and conversion of pro and mature brain derived neurotropic factor in their offspring. The antioxidant property of BME possibly inhibiting the PNS-induced changes in observed molecules, anxiety-like behavior, and memory deficits. The observed results suggest that pretreatment of BME could be an effective coping strategy to prevent PNS-induced behavioral impairments in their offspring.
Collapse
|
11
|
Chaby LE, Sadik N, Burson NA, Lloyd S, O'Donnel K, Winters J, Conti AC, Liberzon I, Perrine SA. Repeated stress exposure in mid-adolescence attenuates behavioral, noradrenergic, and epigenetic effects of trauma-like stress in early adult male rats. Sci Rep 2020; 10:17935. [PMID: 33087769 PMCID: PMC7578655 DOI: 10.1038/s41598-020-74481-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Stress in adolescence can regulate vulnerability to traumatic stress in adulthood through region-specific epigenetic activity and catecholamine levels. We hypothesized that stress in adolescence would increase adult trauma vulnerability by impairing extinction-retention, a deficit in PTSD, by (1) altering class IIa histone deacetylases (HDACs), which integrate effects of stress on gene expression, and (2) enhancing norepinephrine in brain regions regulating cognitive effects of trauma. We investigated the effects of adolescent-stress on adult vulnerability to severe stress using the single-prolonged stress (SPS) model in male rats. Rats were exposed to either (1) adolescent-stress (33-35 postnatal days) then SPS (58-60 postnatal days; n = 14), or (2) no adolescent-stress and SPS (58-60 postnatal days; n = 14), or (3) unstressed conditions (n = 8). We then measured extinction-retention, norepinephrine, HDAC4, and HDAC5. As expected, SPS exposure induced an extinction-retention deficit. Adolescent-stress prior to SPS eliminated this deficit, suggesting adolescent-stress conferred resiliency to adult severe stress. Adolescent-stress also conferred region-specific resilience to norepinephrine changes. HDAC4 and HDAC5 were down-regulated following SPS, and these changes were also modulated by adolescent-stress. Regulation of HDAC levels was consistent with the pattern of cognitive effects of SPS; only animals exposed to SPS without adolescent-stress exhibited reduced HDAC4 and HDAC5 in the prelimbic cortex, hippocampus, and striatum. Thus, HDAC regulation caused by severe stress in adulthood interacts with stress history such that seemingly conflicting reports describing effects of adolescent stress on adult PTSD vulnerability may stem in part from dynamic HDAC changes following trauma that are shaped by adolescent stress history.
Collapse
MESH Headings
- Adolescent
- Adolescent Behavior/physiology
- Adolescent Behavior/psychology
- Animals
- Brain/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Extinction, Psychological/physiology
- Histone Deacetylases/metabolism
- Humans
- Male
- Norepinephrine/metabolism
- Psychology, Adolescent
- Rats, Sprague-Dawley
- Retention, Psychology/physiology
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/genetics
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/psychology
- Stress, Psychological
Collapse
Affiliation(s)
- Lauren E Chaby
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicole A Burson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Scott Lloyd
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Kelly O'Donnel
- Department of Psychology, University of Colorado, Colorado Springs, CO, USA
| | - Jesse Winters
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alana C Conti
- Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M College of Medicine, Bryan, TX, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
12
|
Baig MR, Beck RD, Wilson JL, Lemmer JA, Meraj A, Meyer EC, Mintz J, Peterson AL, Roache JD. Quetiapine augmentation of prolonged exposure therapy in veterans with PTSD and a history of mild traumatic brain injury: design and methodology of a pilot study. Mil Med Res 2020; 7:46. [PMID: 33032657 PMCID: PMC7545554 DOI: 10.1186/s40779-020-00278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Selective serotonergic reuptake inhibitors (SSRIs) are first-line pharmacologic treatments for patients with posttraumatic stress disorder (PTSD), but must be given over extended period of time before the onset of action. The use of SSRIs in PTSD patients with mild traumatic brain injury (mTBI) is problematic since SSRIs could exacerbate post-concussion syndrome (PCS) symptoms. VA/DOD guidelines identify trauma-focused psychotherapy as the best evidence-based treatment for PTSD, but overall effectiveness is limited by reduced levels of patient engagement and retention. A previous study from this research group suggested that quetiapine monotherapy, but not risperidone or valproate, could increase engagement in trauma-focused psychotherapy. METHODS We report the study protocol of a pilot study funded under the South-Central Mental Illness Research, Education, and Clinical Center pilot study program from the U.S. Department of Veterans Affairs. This randomized, open-label study was designed to evaluate the feasibility of completing a randomized trial of quetiapine vs. treatment as usual to promote patient engagement in PTSD patients with a history of mTBI. DISCUSSION We expect that the success of this ongoing study should provide us with the preliminary data necessary to design a full-scale randomized trial. Positive efficacy results in a full- scale trial should inform new VA guidelines for clinical practice by showing that quetiapine-related improvements in patient engagement and retention may be the most effective approach to assure that VA resources achieve the best possible outcome for veterans. TRIAL REGISTRATION NCT04280965 .
Collapse
Affiliation(s)
- Muhammad R Baig
- Mental Health, South Texas Veterans Healthcare System, 116 A, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA. .,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA. .,Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Robert D Beck
- Mental Health, South Texas Veterans Healthcare System, 116 A, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA.,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Jennifer L Wilson
- Mental Health, South Texas Veterans Healthcare System, 116 A, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA.,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Jennifer A Lemmer
- Mental Health, South Texas Veterans Healthcare System, 116 A, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA.,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Adeel Meraj
- Mental Health, South Texas Veterans Healthcare System, 116 A, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA
| | - Eric C Meyer
- Department of Veterans Affairs VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA.,Central Texas Veterans Healthcare System, Waco, TX, USA.,Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Jim Mintz
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alan L Peterson
- Mental Health, South Texas Veterans Healthcare System, 116 A, 7400 Merton Minter Blvd, San Antonio, TX, 78229, USA.,Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Psychology, University of Texas at San Antonio, San Antonio, USA
| | - John D Roache
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
The role of glucocorticoid receptors in the induction and prevention of hippocampal abnormalities in an animal model of posttraumatic stress disorder. Psychopharmacology (Berl) 2020; 237:2125-2137. [PMID: 32333135 DOI: 10.1007/s00213-020-05523-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Numerous clinical studies have led to the hypothesis that elevated glucocorticoid levels in response to extreme stress might trigger a pathophysiological cascade which consequently leads to functional and morphological changes in the hippocampus. OBJECTIVES To elucidate the pathophysiology of PTSD, we examined the alteration of hippocampal gene expression through the glucocorticoid receptor (GR) in the single prolonged stress (SPS) paradigm, a rat model of PTSD. METHODS We measured nuclear GRs by western blot, and the binding of GR to the promoter of Bcl-2 and Bax genes by chromatin immunoprecipitation-qPCR as well as the expression of these 2 genes by RT-PCR in the hippocampus of SPS rats. In addition, we examined the preventive effects of a GR antagonist on SPS-induced molecular, morphological, and behavioral alterations (hippocampal gene expression of Bcl-2 and Bax, hippocampal apoptosis using TUNEL staining, impaired fear memory extinction (FME) using the contextual fear conditioning paradigm). RESULTS Exposure to SPS increased nuclear GR expression and GR binding to Bcl-2 gene, and decreased Bcl-2 mRNA expression. Administration of GR antagonist immediately after SPS prevented activation of the glucocorticoid cascade, hippocampal apoptosis, and impairment FME in SPS rats. CONCLUSION The activation of GRs in response to severe stress may trigger the pathophysiological cascade leading to impaired FME and hippocampal apoptosis. In contrast, administration of GR antagonist could be useful for preventing the development of PTSD.
Collapse
|
14
|
Affiliation(s)
- Abdallah Hamze
- Equipe Labellisée Ligue Contre Le Cancer, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, BioCIS UMR 8076, Université Paris-Sud, CNRS, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
15
|
Qi F, Liu T, Zhang X, Gao X, Li Z, Chen L, Lin C, Wang L, Wang ZJ, Tang H, Chen Z. Ketamine reduces remifentanil-induced postoperative hyperalgesia mediated by CaMKII-NMDAR in the primary somatosensory cerebral cortex region in mice. Neuropharmacology 2020; 162:107783. [PMID: 31541650 DOI: 10.1016/j.neuropharm.2019.107783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/29/2022]
Abstract
Remifentanil is commonly used clinically for perioperative pain relief, but it may induce postoperative hyperalgesia. Low doses of ketamine have remained a common choice in clinical practice, but the mechanisms of ketamine have not yet been fully elucidated. In this study, we examined the possible effects of ketamine on calcium/calmodulin-dependent protein kinase II α (CaMKIIα) and N-methyl-d-aspartate receptor (NMDAR) subunit NR2B in a mouse model of remifentanil-induced postoperative hyperalgesia (RIPH) in the primary somatosensory cerebral cortex (SI) region. The paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were used to assess mechanical allodynia and thermal hyperalgesia, respectively, before and after intraoperative remifentanil administration. Before surgery, mice received intrathecal injections of the following drugs: ketamine, NMDA, BayK8644 (CaMKII activator), and KN93 (CaMKII inhibitor). Immunofluorescence was performed to determine the anatomical location and expression of activated CaMKIIα, phosphorylated CaMKIIα (p-CaMKIIα). Additionally, western blotting was performed to assess p-CaMKIIα and NMDAR expression levels in the SI region. Remifentanil decreased the PWMT and PWTL at 0.5 h, 2 h, and 5 h and increased p-CaMKIIα expression in the SI region. Ketamine increased the PWMT and PWTL and reversed the p-CaMKIIα upregulation. Both BayK8644 and NMDA reversed the effect of ketamine, decreased the PWMT and PWTL, and upregulated p-CaMKIIα expression. In contrast, KN93 enhanced the effect of ketamine by reducing hyperalgesia and downregulating p-CaMKIIα expression. These results suggested that ketamine reversed RIPH by inhibiting the phosphorylation of CaMKIIα and the NMDA receptor in the SI region in mice.
Collapse
Affiliation(s)
- Fang Qi
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China; Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College,Yangtze University, Jingzhou, Hubei, 434020, China
| | - Tianping Liu
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China; Department of Anesthesiology, The First College of Clinical Medical Science, China Three Gorges University,Yichang Central People's Hospital, Yichang, Hubei, 443003, China
| | - Xiaoyu Zhang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China
| | - Xiaowei Gao
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China
| | - Zigang Li
- Department of Anesthesiology, Women's Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Ling Chen
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China
| | - Chen Lin
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China
| | - Linlin Wang
- Department of physiology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL, 60607, USA
| | - Huifang Tang
- Department of pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Zhijun Chen
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Gulin, Guangxi, 541004, China; Department of Anesthesiology, Wuhan NO. 1 Hospital, Wuhan, Hubei, 430022, China.
| |
Collapse
|
16
|
Montagud-Romero S, Cantacorps L, Valverde O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J Psychopharmacol 2019; 33:1573-1587. [PMID: 31294671 DOI: 10.1177/0269881119857208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol exposure during development has detrimental effects, including a wide range of physical, cognitive and neurobehavioural anomalies known as foetal alcohol spectrum disorders. However, alcohol consumption among pregnant woman is an ongoing latent health problem. AIM In the present study, the effects of trichostatin A (TSA) on emotional and cognitive impairments caused by prenatal and lactational alcohol exposure were assessed. TSA is an inhibitor of class I and II histone deacetylases enzymes (HDAC), and for that, HDAC4 activity was determined. We also evaluated mechanisms underlying the behavioural effects observed, including the expression of brain-derived neurotrophic factor (BDNF) in discrete brain regions and newly differentiated neurons in the dentate gyrus (DG). METHODS C57BL/6 female pregnant mice were used, with limited access to a 20% v/v alcohol solution as a procedure to model binge alcohol drinking during gestation and lactation. Male offspring were treated with TSA during the postnatal days (PD28-35) and behaviourally evaluated (PD36-55). RESULTS Early alcohol exposure mice presented increased anxiogenic-like responses and memory deterioration - effects that were partially reversed with TSA. Early alcohol exposure produces a decrease in BDNF levels in the hippocampus (HPC) and prefrontal cortex, a reduction of neurogenesis in the DG and increased activity levels of the HDAC4 in the HPC. CONCLUSIONS Such findings support the participation of HDAC enzymes in cognitive and emotional alterations induced by binge alcohol consumption during gestation and lactation and would indicate potential benefits of HDAC inhibitors for some aspects of foetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Medical Research Institute, Neurosciences Programme, Barcelona, Spain
| |
Collapse
|
17
|
Uniyal A, Singh R, Akhtar A, Dhaliwal J, Kuhad A, Sah SP. Pharmacological rewriting of fear memories: A beacon for post-traumatic stress disorder. Eur J Pharmacol 2019; 870:172824. [PMID: 31778672 DOI: 10.1016/j.ejphar.2019.172824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a psychopathological response that develops after exposure to an extreme life-threatening traumatic event. Its prevalence ranges from 0.5% to 14.5% worldwide. Due to the complex pathophysiology of PTSD, currently available treatment approaches are associated with high chances of failure, thus further research to identify better pharmacotherapeutic approaches is needed. The traumatic event associated with fear memories plays an important role in the development of PTSD and could be considered as the main culprit. PTSD patient feels frightened in a safe environment as the memories of the traumatic event are revisited. Neurocircuit involving normal processing of fear memories get disturbed in PTSD hence making a fear memory to remain to dominate even after years of trauma. Persistence of fear memories could be explained by acquisition, re-(consolidation) and extinction triad as all of these processes have been widely explored in preclinical as well as clinical studies and set a therapeutic platform for fear memory associated disorders. This review focuses on neurocircuit and pathophysiology of PTSD in context to fear memories and pharmacological targeting of fear memory for the management of PTSD.
Collapse
Affiliation(s)
- Ankit Uniyal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India; Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi, 221005, Uttar Pradesh, India
| | - Raghunath Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Jatinder Dhaliwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences, UGC-CAS, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
18
|
Reddy RG, Surineni G, Bhattacharya D, Marvadi SK, Sagar A, Kalle AM, Kumar A, Kantevari S, Chakravarty S. Crafting Carbazole-Based Vorinostat and Tubastatin-A-like Histone Deacetylase (HDAC) Inhibitors with Potent in Vitro and in Vivo Neuroactive Functions. ACS OMEGA 2019; 4:17279-17294. [PMID: 31656902 PMCID: PMC6811854 DOI: 10.1021/acsomega.9b01950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Small-molecule inhibitors of HDACs (HDACi) induce hyperacetylation of histone and nonhistone proteins and have emerged as potential therapeutic agents in most animal models tested. The established HDACi vorinostat and tubastatin-A alleviate neurodegenerative and behavioral conditions in animal models of neuropsychiatric disorders restoring the neurotrophic milieu. In spite of the neuroactive pharmacological role of HDACi (vorinostat and tubastatin-A), they are limited by efficacy and toxicity. Considering these limitations and concern, we have designed novel compounds 3-11 as potential HDACi based on the strategic crafting of the key pharmacophoric elements of vorinostat and tubastatin-A into architecting a single molecule. The molecules 3-11 were synthesized through a multistep reaction sequence starting from carbazole and were fully characterized by NMR and mass spectral analysis. The novel molecules 3-11 showed remarkable pan HDAC inhibition and the potential to increase the levels of acetyl H3 and acetyl tubulin. In addition, few novel HDAC inhibitors 4-8, 10, and 11 exhibited significant neurite outgrowth-promoting activity with no observable cytotoxic effects, and interestingly, compound 5 has shown comparably more neurite growth than the parent compounds vorinostat and tubastatin-A. Also, compound 5 was evaluated for possible mood-elevating effects in a chronic unpredictable stress model of Zebrafish. It showed potent anxiolytic and antidepressant-like effects in the novel tank test and social interaction test, respectively. Furthermore, the potent in vitro and in vivo neuroactive compound 5 has shown selectivity for class II over class I HDACs. Our results suggest that the novel carbazole-based HDAC inhibitors, crafted with vorinostat and tubastatin-A pharmacophoric moieties, have potent neurite outgrowth activity and potential to be developed as therapeutics to treat depression and related psychiatric disorders.
Collapse
Affiliation(s)
- R. Gajendra Reddy
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Goverdhan Surineni
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Dwaipayan Bhattacharya
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Sandeep Kumar Marvadi
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
| | - Arpita Sagar
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Arunasree M. Kalle
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Arvind Kumar
- CSIR-Centre
for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Srinivas Kantevari
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| | - Sumana Chakravarty
- Applied
Biology Division and Fluoro and Agrochemical Division, CSIR-Indian
Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, Telangana, India
- Academy
of Scientific and Innovative Research (AcSIR), Chennai 600113, India
| |
Collapse
|
19
|
Rakesh G, Morey RA, Zannas AS, Malik Z, Clausen A, Marx CE, Kritzer MD, Szabo ST. Resilience as a translational endpoint in the treatment of PTSD. Mol Psychiatry 2019; 24:1268-1283. [PMID: 30867558 PMCID: PMC6713904 DOI: 10.1038/s41380-019-0383-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 12/31/2022]
Abstract
Resilience is a neurobiological entity that shapes an individual's response to trauma. Resilience has been implicated as the principal mediator in the development of mental illness following exposure to trauma. Although animal models have traditionally defined resilience as molecular and behavioral changes in stress responsive circuits following trauma, this concept needs to be further clarified for both research and clinical use. Here, we analyze the construct of resilience from a translational perspective and review optimal measurement methods and models. We also seek to distinguish between resilience, stress vulnerability, and posttraumatic growth. We propose that resilience can be quantified as a multifactorial determinant of physiological parameters, epigenetic modulators, and neurobiological candidate markers. This multifactorial definition can determine PTSD risk before and after trauma exposure. From this perspective, we propose the use of an 'R Factor' analogous to Spearman's g factor for intelligence to denote these multifactorial determinants. In addition, we also propose a novel concept called 'resilience reserve', analogous to Stern's cognitive reserve, to summarize the sum total of physiological processes that protect and compensate for the effect of trauma. We propose the development and application of challenge tasks to measure 'resilience reserve' and guide the assessment and monitoring of 'R Factor' as a biomarker for PTSD.
Collapse
Affiliation(s)
- Gopalkumar Rakesh
- Duke-UNC Brain Imaging and Analysis Center (BIAC), Durham, NC, 27710, USA. .,Durham VA Health Care System, Durham, NC, 27705, USA. .,VISN 6 VA Mid-Atlantic Mental Illness Research Education and Clinical Center (MIRECC), 3022 Croasdaile Drive, Durham, NC, 27705, USA.
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham NC, Duke University School of Medicine, Durham, NC 27710,VISN 6 VA Mid-Atlantic Mental Illness Research Education and Clinical Center (MIRECC), 3022 Croasdaile Drive, Durham, NC 27705
| | | | - Zainab Malik
- Child and Adolescent Psychiatry, University of California, Davis, CA 95616
| | - Ashley Clausen
- Duke-UNC Brain Imaging and Analysis Center (BIAC), Durham VA Health Care System, VISN 6 VA Mid-Atlantic Mental Illness Research Education and Clinical Center, 3022 Croasdaile Drive, Durham, NC 27705
| | - Christine E Marx
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, 27710, USA,Division of Translational Neurosciences, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Michael D Kritzer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Steven T Szabo
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, 27710, USA,Veterans Affairs Medical Center, Mental Health Service Line, Durham, North Carolina, 27710, USA
| |
Collapse
|
20
|
Baig MR, Wilson JL, Lemmer JA, Beck RD, Peterson AL, Roache JD. Enhancing Completion of Cognitive Processing Therapy for Posttraumatic Stress Disorder with Quetiapine in Veterans with Mild Traumatic Brain Injury: a Case Series. Psychiatr Q 2019; 90:431-445. [PMID: 31054021 DOI: 10.1007/s11126-019-09638-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To evaluate the outcomes of the antiarousal medications valproate, risperidone, and quetiapine on completion of treatment of cognitive processing therapy (CPT) for PTSD. A case series of fifty treatment-seeking adult (≥18 years) veterans with mild traumatic brain injury and combat-related PTSD who had unsuccessful trials of 2 or more first-line agents and previously declined treatment with trauma-focused therapy, seen at the psychiatric outpatient services of the local Polytrauma Rehabilitation Center from January 1, 2014, through December 31, 2017. Patients were prescribed valproate (n = 8), risperidone (n = 17), or quetiapine (n = 25) and were referred for individual weekly treatment with CPT. Outcome measurements of interest were measures of engagement and completion rate of CPT, PTSD Checklist total score (range, 0-80; higher scores indicate greater PTSD severity) and arousal subscale score (range, 0-24; higher scores indicate greater arousal severity), and clinical observations of sleep variables. Of the 50 patients included in the study, 48 (96%) were men; mean (SD) age was 36 (8) years. Eighteen (86%) patients initially receiving quetiapine and none taking valproate or risperidone became adequately engaged in and completed CPT. Among patients who completed CPT, the mean decrease in the PTSD Checklist score was 25 [95% CI, 30 to 20] and 9 (50%) patients no longer met criteria for PTSD. These preliminary findings support quetiapine as an adjunctive medication to facilitate CPT. A pragmatic trial is needed to evaluate the efficacy, safety, and feasibility of quetiapine to improve engagement in and completion rate of CPT.
Collapse
Affiliation(s)
- Muhammad R Baig
- Mental Health, South Texas Veterans Healthcare System, San Antonio, TX, USA. .,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA. .,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Jennifer L Wilson
- Mental Health, South Texas Veterans Healthcare System, San Antonio, TX, USA.,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Jennifer A Lemmer
- Mental Health, South Texas Veterans Healthcare System, San Antonio, TX, USA.,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Robert D Beck
- Mental Health, South Texas Veterans Healthcare System, San Antonio, TX, USA.,Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | - Alan L Peterson
- Mental Health, South Texas Veterans Healthcare System, San Antonio, TX, USA.,Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Psychology, University of Texas at San Antonio, San Antonio, TX, USA
| | - John D Roache
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
21
|
Sah A, Sotnikov S, Kharitonova M, Schmuckermair C, Diepold RP, Landgraf R, Whittle N, Singewald N. Epigenetic Mechanisms Within the Cingulate Cortex Regulate Innate Anxiety-Like Behavior. Int J Neuropsychopharmacol 2019; 22:317-328. [PMID: 30668714 PMCID: PMC6441131 DOI: 10.1093/ijnp/pyz004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pathological anxiety originates from a complex interplay of genetic predisposition and environmental factors, acting via epigenetic mechanisms. Epigenetic processes that can counteract detrimental genetic risk towards innate high anxiety are not well characterized. METHODS We used female mouse lines of selectively bred high (HAB)- vs low (LAB)-innate anxiety-related behavior and performed select environmental and pharmacological manipulations to alter anxiety levels as well as brain-specific manipulations and immunohistochemistry to investigate neuronal mechanisms associated with alterations in anxiety-related behavior. RESULTS Inborn hyperanxiety of high anxiety-like phenotypes was effectively reduced by environmental enrichment exposure. c-Fos mapping revealed that hyperanxiety in high anxiety-like phenotypes was associated with blunted challenge-induced neuronal activation in the cingulate-cortex, which was normalized by environmental enrichment. Relating this finding with epigenetic modifications, we found that high anxiety-like phenotypes (compared with low-innate anxiety phenotypes) showed reduced acetylation in the hypoactivated cingulate-cortex neurons following a mild emotional challenge, which again was normalized by environmental enrichment. Paralleling the findings using environmental enrichment, systemic administration of histone-deacetylase-inhibitor MS-275 elicited an anxiolytic-like effect, which was correlated with increased acetylated-histone-3 levels within cingulate-cortex. Finally, as a proof-of-principle, local MS-275 injection into cingulate-cortex rescued enhanced innate anxiety and increased acetylated-histone-3 within the cingulate-cortex, suggesting this epigenetic mark as a biomarker for treatment success. CONCLUSIONS Taken together, the present findings provide the first causal evidence that the attenuation of high innate anxiety-like behavior via environmental/pharmacological manipulations is epigenetically mediated via acetylation changes within the cingulate-cortex. Finally, histone-3 specific histone-deacetylase-inhibitor could be of therapeutic importance in anxiety disorders.
Collapse
Affiliation(s)
- Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Claudia Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | | | - Nigel Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria,Correspondence: Nicolas Singewald, PhD, Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80–82/III, A-6020 Innsbruck, Austria ()
| |
Collapse
|
22
|
Lin CC, Chang HA, Tai YM, Chen TY, Wan FJ, Chang CC, Tung CS, Liu YP. Subchronic administration of aripiprazole improves fear extinction retrieval of Pavlovian conditioning paradigm in rats experiencing psychological trauma. Behav Brain Res 2019; 362:181-187. [PMID: 30610908 DOI: 10.1016/j.bbr.2018.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/29/2018] [Indexed: 11/15/2022]
Abstract
People may suffer from an intruded fear memory when the attributable traumatic events no longer exist. This is of highly clinical relevance to trauma-induced mental disorders, such as posttraumatic stress disorder (PTSD). Mechanism underlying PTSD largely lies in the abnormal process of fear extinction and a functional imbalance within amygdala associated fear circuit areas. Previous evidence suggested central dopamine plays a key role in the regulation of the fear memory process, yet it remains unclear whether the intervention of dopamine modulators would be beneficial for the fear extinction abnormalities. The present study examined the performance of Pavlovian conditioned fear and the changes of dopamine profiles following a subchronic 14-day regimen of aripiprazole (a partial agonist of dopamine D2 receptors to normalize the condition caused by dopamine imbalance) in rats previously experienced a psychologically traumatic procedure of single prolonged stress (SPS). The results demonstrated that aripiprazole at 5.0 mg/kg reversed the SPS-impaired fear memory dysfunction and the SPS-reduced dopamine efflux in the amygdala. The present study suggests a therapeutic potential of subchronic treatment with aripiprazole in managing patients suffered from fear extinction problem.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Yueh-Ming Tai
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Yen Chen
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Fang-Jung Wan
- Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Che-Se Tung
- Division of Medical Research and Education, Cheng Hsin General Hospital, Taipei, 11220, Taiwan
| | - Yia-Ping Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 11490, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, 11220, Taiwan; Department of Psychiatry, Tri-Service General Hospital, Taipei, 11490, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, Department of Physiology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
23
|
Abstract
The measurement of Pavlovian forms of fear extinction offers a relatively simple behavioral preparation that is nonetheless tractable, from a translational perspective, as an approach to study mechanisms of exposure therapy and biological underpinnings of anxiety and trauma-related disorders such as post-traumatic stress disorder (PTSD). Deficient fear extinction is considered a robust clinical endophenotype for these disorders and, as such, has particular significance in the current "age of RDoC (research domain criteria)." Various rodent models of impaired extinction have thus been generated with the objective of approximating this clinical, relapse prone aberrant extinction learning. These models have helped to reveal neurobiological correlates of extinction circuitry failure, gene variants, and other mechanisms underlying deficient fear extinction. In addition, they are increasingly serving as tools to investigate ways to therapeutically overcome poor extinction to support long-term retention of extinction memory and thus protection against various forms of fear relapse; modeled in the laboratory by measuring spontaneous recovery, reinstatement and renewal of fear. In the current article, we review models of impaired extinction built around (1) experimentally induced brain region and neural circuit disruptions (2) spontaneously-arising and laboratory-induced genetic modifications, or (3) exposure to environmental insults, including stress, drugs of abuse, and unhealthy diet. Collectively, these models have been instrumental in advancing in our understanding of extinction failure and underlying susceptibilities at the neural, genetic, molecular, and neurochemical levels; generating renewed interest in developing novel, targeted and effective therapeutic treatments for anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| |
Collapse
|
24
|
Kataoka T, Fuchikami M, Nojima S, Nagashima N, Araki M, Omura J, Miyagi T, Okamoto Y, Morinobu S. Combined brain-derived neurotrophic factor with extinction training alleviate impaired fear extinction in an animal model of post-traumatic stress disorder. GENES BRAIN AND BEHAVIOR 2018; 18:e12520. [PMID: 30246290 DOI: 10.1111/gbb.12520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post-traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal-prefrontal brain-derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal-prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme-linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF-TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.
Collapse
Affiliation(s)
- Tsutomu Kataoka
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Manabu Fuchikami
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Shinji Nojima
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuyuki Nagashima
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Motoaki Araki
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Jun Omura
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuhiro Miyagi
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Division of Frontier Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Occupational Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, Japan
| |
Collapse
|
25
|
Kim GS, Smith AK, Nievergelt CM, Uddin M. Neuroepigenetics of Post-Traumatic Stress Disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:227-253. [PMID: 30072055 PMCID: PMC6474244 DOI: 10.1016/bs.pmbts.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While diagnosis of PTSD is based on behavioral symptom clusters that are most directly associated with brain function, epigenetic studies of PTSD in humans to date have been limited to peripheral tissues. Animal models of PTSD have been key for understanding the epigenetic alterations in the brain most directly relevant to endophenotypes of PTSD, in particular those pertaining to fear memory and stress response. This chapter provides an overview of neuroepigenetic studies based on animal models of PTSD, with an emphasis on the effect of stress on fear memory. Where relevant, we also describe human-based studies with relevance to neuroepigenetic insights gleaned from animal work and suggest promising directions for future studies of PTSD neuroepigenetics in living humans that combine peripheral epigenetic measures with measures of central nervous system activity, structure and function.
Collapse
Affiliation(s)
- Grace S Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Medical Scholars Program, University of Illinois College of Medicine, Urbana, IL, United States
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, United States
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Monica Uddin
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
26
|
Effect of Histone Acetylation on N-Methyl-D-Aspartate 2B Receptor Subunits and Interleukin-1 Receptors in Association with Nociception-Related Somatosensory Cortex Dysfunction in a Mouse Model of Sepsis. Shock 2018; 45:660-7. [PMID: 26682951 DOI: 10.1097/shk.0000000000000547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Whole-body inflammation (i.e., sepsis) often results in brain-related sensory dysfunction. We previously reported that interleukin (IL)-1 resulted in synaptic dysfunction of septic encephalopathy, but the underlying molecular mechanisms remain unknown, as do effective treatments. Using mice, we examined immunohistochemistry, co-immunoprecipitation, enzyme-linked immunosorbent assay, and behavior analyses, and investigated the role of the N-methyl-D-aspartate 2B subunit (NR2B) of NMDA receptor, IL-1 receptor, and histone acetylation in the pathophysiology underlying sensory dysfunction induced by lipopolysaccharide (LPS). Mice groups of sham-operated, LPS, LPS with an NR2B antagonist, or LPS with resveratrol (a histone acetylation activator) were analyzed. We found that LPS increased NR2B and interleukin-1 receptor (IL-1R) immunoreactivity. The expression of Iba1, a marker for microglia and/or macrophages, increased more significantly in the brain than in the spinal cord, implicating NR2B and IL-1R in brain inflammation. Immunoprecipitation with NR2B and IL-1R revealed related antibodies. Blood levels of IL-1β (i.e., the IL-1R ligand) increased, though not significantly, suggesting that inflammation peaked at 20 h. Behavioral assessments of central (CNS) and peripheral sensory (PNS) function indicated that LPS delayed CNS but not PNS escape latency. Finally, NR2B antagonist or resveratrol in the lateral ventricle antagonized the effects of LPS in the brain and improved animal survival. In summary, histone acetylation may control expression of NR2B and IL-1R, alleviating inflammation-induced sensory neuronal dysfunction caused by LPS.
Collapse
|
27
|
Souza RR, Robertson NM, Pruitt DT, Noble L, Meyers EC, Gonzales PA, Bleker NP, Carey HL, Hays SA, Kilgard MP, McIntyre CK, Rennaker RL. The M-Maze task: An automated method for studying fear memory in rats exposed to protracted aversive conditioning. J Neurosci Methods 2018; 298:54-65. [PMID: 29452180 DOI: 10.1016/j.jneumeth.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fear conditioning (FC) in rodents is the most used animal model to investigate the neurobiology of posttraumatic stress disorder (PTSD). Although research using FC has generated a better understanding of fear memories, studies often rely on mild or moderate FC training and behavioral analysis generally focuses on measuring freezing responses within few test sessions. NEW METHOD We introduce the M-Maze task, a system that measures extinction of conditioned fear using suppression of operant behavior. The apparatus consists of an M-shaped maze where rats are trained to alternate nose poking at two pellet dispensers. Proximity sensors measure the animal's locomotion, as well as the latencies and number of operant behaviors. Here we also describe the protracted aversive conditioning (PAC), a rat model of severe fear that induces resistant extinction following a 4-day conditioning protocol that combines delay, unpredictable, and short- and long-trace conditioning. RESULTS An intense one-day auditory FC protocol induced a sharp elevation in transit time and suppression of nose pokes by conditioned cues, but in contrast to what is found in PTSD patients, fear extinction was rapidly observed. On the other hand, PAC alone or in combination with exposure to single prolonged stress induced persistent extinction impairments in M-Maze tests, as well as enhanced anxiety, and social withdrawal. COMPARISON WITH OTHER EXISTING METHODS The M-Maze task is fully automated and allows multiple animals to be tested simultaneously in long-term experiments. Moreover, PAC training can be an alternative approach to study extinction-resistant fear. CONCLUSIONS The M-Maze task allows rapid and unbiased measurements of fear-induced suppression. We suggest that long-term assessment of extinction impairments would lead to a better understanding of the neurobiology of persistent fear and the screening for new therapies.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Nicole M Robertson
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - David T Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Lindsey Noble
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Eric C Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Phillip A Gonzales
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Nathaniel P Bleker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Holle L Carey
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science. The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
28
|
Revisiting metaplasticity: The roles of calcineurin and histone deacetylation in unlearning odor preference memory in rat pups. Neurobiol Learn Mem 2018; 154:62-69. [PMID: 29421612 DOI: 10.1016/j.nlm.2018.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/16/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Previous work has shown that 24 h duration odor preference learning, induced by one-trial training, generates a down-regulation of the GluN1 receptor in anterior piriform cortex at 3 h, and results in metaplastic unlearning if a second training trial is given at 3 h. The GluN1 receptor upregulates at 24 h so 24 h spaced training is highly effective in extending memory duration. The present study replicates the piriform cortex unlearning result in the olfactory bulb circuit and further studies the relationship between the initial training strength and its associated metaplastic effect. Intrabulbar infusions that block calcineurin or inhibit histone deacetylation normally produce extended days-long memory. If given during training, they are not associated with GluN1 downregulation at 3 h and do not recruit an unlearning process at that time. The two memory strengthening protocols do not appear to interact, but are also not synergistic. These outcomes argue that it is critical to understand the metaplastic effects of training in order to optimize training protocols in the service of either memory strengthening or of memory weakening.
Collapse
|
29
|
Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA. Single-Prolonged Stress: A Review of Two Decades of Progress in a Rodent Model of Post-traumatic Stress Disorder. Front Psychiatry 2018; 9:196. [PMID: 29867615 PMCID: PMC5962709 DOI: 10.3389/fpsyt.2018.00196] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a common, costly, and often debilitating psychiatric condition. However, the biological mechanisms underlying this disease are still largely unknown or poorly understood. Considerable evidence indicates that PTSD results from dysfunction in highly-conserved brain systems involved in stress, anxiety, fear, and reward. Pre-clinical models of traumatic stress exposure are critical in defining the neurobiological mechanisms of PTSD, which will ultimately aid in the development of new treatments for PTSD. Single prolonged stress (SPS) is a pre-clinical model that displays behavioral, molecular, and physiological alterations that recapitulate many of the same alterations observed in PTSD, illustrating its validity and giving it utility as a model for investigating post-traumatic adaptations and pre-trauma risk and protective factors. In this manuscript, we review the present state of research using the SPS model, with the goals of (1) describing the utility of the SPS model as a tool for investigating post-trauma adaptations, (2) relating findings using the SPS model to findings in patients with PTSD, and (3) indicating research gaps and strategies to address them in order to improve our understanding of the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Michael J Lisieski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alana C Conti
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, MI, United States.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.,Mental Health Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
30
|
Souza RR, Noble LJ, McIntyre CK. Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD. Front Pharmacol 2017; 8:615. [PMID: 28955225 PMCID: PMC5600994 DOI: 10.3389/fphar.2017.00615] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
The endurance of memories of emotionally arousing events serves the adaptive role of minimizing future exposure to danger and reinforcing rewarding behaviors. However, following a traumatic event, a subset of individuals suffers from persistent pathological symptoms such as those seen in posttraumatic stress disorder (PTSD). Despite the availability of pharmacological treatments and evidence-based cognitive behavioral therapy, a considerable number of PTSD patients do not respond to the treatment, or show partial remission and relapse of the symptoms. In controlled laboratory studies, PTSD patients show deficient ability to extinguish conditioned fear. Failure to extinguish learned fear could be responsible for the persistence of PTSD symptoms such as elevated anxiety, arousal, and avoidance. It may also explain the high non-response and dropout rates seen during treatment. Animal models are useful for understanding the pathophysiology of the disorder and the development of new treatments. This review examines studies in a rodent model of PTSD with the goal of identifying behavioral and physiological factors that predispose individuals to PTSD symptoms. Single prolonged stress (SPS) is a frequently used rat model of PTSD that involves exposure to several successive stressors. SPS rats show PTSD-like symptoms, including impaired extinction of conditioned fear. Since its development by the Liberzon lab in 1997, the SPS model has been referred to by more than 200 published papers. Here we consider the findings of these studies and unresolved questions that may be investigated using the model.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| | - Lindsey J Noble
- Texas Biomedical Device Center, School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States.,Cognition and Neuroscience Program, School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| | - Christa K McIntyre
- Cognition and Neuroscience Program, School of Behavioral and Brain Sciences, University of Texas at Dallas, RichardsonTX, United States
| |
Collapse
|
31
|
Hemstedt TJ, Lattal KM, Wood MA. Reconsolidation and extinction: Using epigenetic signatures to challenge conventional wisdom. Neurobiol Learn Mem 2017; 142:55-65. [PMID: 28119018 DOI: 10.1016/j.nlm.2017.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Epigenetic mechanisms have the potential to give rise to lasting changes in cell function that ultimately can affect behavior persistently. This concept is especially interesting with respect to fear reconsolidation and fear memory extinction. These two behavioral approaches are used in the laboratory to investigate how fear memory can be attenuated, which becomes important when searching for therapeutic intervention to treat anxiety disorders and post-traumatic stress disorder. Here we review the role of several key epigenetic mechanisms in reconsolidation and extinction of learned fear and their potential to persistently alter behavioral responses to conditioned cues. We also briefly discuss how epigenetic mechanisms may establish persistent behaviors that challenge our definitions of extinction and reconsolidation.
Collapse
Affiliation(s)
- Thekla J Hemstedt
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, Irvine, CA, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Center for the Neurobiology of Learning and Memory, Irvine, CA, USA.
| |
Collapse
|
32
|
Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction. Transl Psychiatry 2016; 6:e974. [PMID: 27922638 PMCID: PMC5315560 DOI: 10.1038/tp.2016.231] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
Extinction-based exposure therapy is used to treat anxiety- and trauma-related disorders; however, there is the need to improve its limited efficacy in individuals with impaired fear extinction learning and to promote greater protection against return-of-fear phenomena. Here, using 129S1/SvImJ mice, which display impaired fear extinction acquisition and extinction consolidation, we revealed that persistent and context-independent rescue of deficient fear extinction in these mice was associated with enhanced expression of dopamine-related genes, such as dopamine D1 (Drd1a) and -D2 (Drd2) receptor genes in the medial prefrontal cortex (mPFC) and amygdala, but not hippocampus. Moreover, enhanced histone acetylation was observed in the promoter of the extinction-regulated Drd2 gene in the mPFC, revealing a potential gene-regulatory mechanism. Although enhancing histone acetylation, via administering the histone deacetylase (HDAC) inhibitor MS-275, does not induce fear reduction during extinction training, it promoted enduring and context-independent rescue of deficient fear extinction consolidation/retrieval once extinction learning was initiated as shown following a mild conditioning protocol. This was associated with enhanced histone acetylation in neurons of the mPFC and amygdala. Finally, as a proof-of-principle, mimicking enhanced dopaminergic signaling by L-dopa treatment rescued deficient fear extinction and co-administration of MS-275 rendered this effect enduring and context-independent. In summary, current data reveal that combining dopaminergic and epigenetic mechanisms is a promising strategy to improve exposure-based behavior therapy in extinction-impaired individuals by initiating the formation of an enduring and context-independent fear-inhibitory memory.
Collapse
|
33
|
Blouin AM, Sillivan SE, Joseph NF, Miller CA. The potential of epigenetics in stress-enhanced fear learning models of PTSD. ACTA ACUST UNITED AC 2016; 23:576-86. [PMID: 27634148 PMCID: PMC5026205 DOI: 10.1101/lm.040485.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
Prolonged distress and dysregulated memory processes are the core features of post-traumatic stress disorder (PTSD) and represent the debilitating, persistent nature of the illness. However, the neurobiological mechanisms underlying the expression of these symptoms are challenging to study in human patients. Stress-enhanced fear learning (SEFL) paradigms, which encompass both stress and memory components in rodents, are emerging as valuable preclinical models of PTSD. Rodent models designed to study the long-term mechanisms of either stress or fear memory alone have identified a critical role for numerous epigenetic modifications to DNA and histone proteins. However, the epigenetic modifications underlying SEFL remain largely unknown. This review will provide a brief overview of the epigenetic modifications implicated in stress and fear memory independently, followed by a description of existing SEFL models and the few epigenetic mechanisms found to date to underlie SEFL. The results of the animal studies discussed here highlight neuroepigenetics as an essential area for future research in the context of PTSD through SEFL studies, because of its potential to identify novel candidates for neurotherapeutics targeting stress-induced pathogenic memories.
Collapse
Affiliation(s)
- Ashley M Blouin
- Department of Metabolism and Aging and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Stephanie E Sillivan
- Department of Metabolism and Aging and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Nadine F Joseph
- Department of Metabolism and Aging and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Courtney A Miller
- Department of Metabolism and Aging and Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
34
|
Stockhorst U, Antov MI. Modulation of Fear Extinction by Stress, Stress Hormones and Estradiol: A Review. Front Behav Neurosci 2016; 9:359. [PMID: 26858616 PMCID: PMC4726806 DOI: 10.3389/fnbeh.2015.00359] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022] Open
Abstract
Fear acquisition and extinction are valid models for the etiology and treatment of anxiety, trauma- and stressor-related disorders. These disorders are assumed to involve aversive learning under acute and/or chronic stress. Importantly, fear conditioning and stress share common neuronal circuits. The stress response involves multiple changes interacting in a time-dependent manner: (a) the fast first-wave stress response [with central actions of noradrenaline, dopamine, serotonin, corticotropin-releasing hormone (CRH), plus increased sympathetic tone and peripheral catecholamine release] and (b) the second-wave stress response [with peripheral release of glucocorticoids (GCs) after activation of the hypothalamus-pituitary-adrenocortical (HPA) axis]. Control of fear during extinction is also sensitive to these stress-response mediators. In the present review, we will thus examine current animal and human data, addressing the role of stress and single stress-response mediators for successful acquisition, consolidation and recall of fear extinction. We report studies using pharmacological manipulations targeting a number of stress-related neurotransmitters and neuromodulators [monoamines, opioids, endocannabinoids (eCBs), neuropeptide Y, oxytocin, GCs] and behavioral stress induction. As anxiety, trauma- and stressor-related disorders are more common in women, recent research focuses on female sex hormones and identifies a potential role for estradiol in fear extinction. We will thus summarize animal and human data on the role of estradiol and explore possible interactions with stress or stress-response mediators in extinction. This also aims at identifying time-windows of enhanced (or reduced) sensitivity for fear extinction, and thus also for successful exposure therapy.
Collapse
Affiliation(s)
- Ursula Stockhorst
- Experimental Psychology II and Biological Psychology, Institute of Psychology, University of OsnabrückOsnabrück, Germany
| | - Martin I. Antov
- Experimental Psychology II and Biological Psychology, Institute of Psychology, University of OsnabrückOsnabrück, Germany
| |
Collapse
|
35
|
Perrine SA, Eagle AL, George SA, Mulo K, Kohler RJ, Gerard J, Harutyunyan A, Hool SM, Susick LL, Schneider BL, Ghoddoussi F, Galloway MP, Liberzon I, Conti AC. Severe, multimodal stress exposure induces PTSD-like characteristics in a mouse model of single prolonged stress. Behav Brain Res 2016; 303:228-37. [PMID: 26821287 DOI: 10.1016/j.bbr.2016.01.056] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/26/2022]
Abstract
Appropriate animal models of posttraumatic stress disorder (PTSD) are needed because human studies remain limited in their ability to probe the underlying neurobiology of PTSD. Although the single prolonged stress (SPS) model is an established rat model of PTSD, the development of a similarly-validated mouse model emphasizes the benefits and cross-species utility of rodent PTSD models and offers unique methodological advantages to that of the rat. Therefore, the aims of this study were to develop and describe a SPS model for mice and to provide data that support current mechanisms relevant to PTSD. The mouse single prolonged stress (mSPS) paradigm, involves exposing C57Bl/6 mice to a series of severe, multimodal stressors, including 2h restraint, 10 min group forced swim, exposure to soiled rat bedding scent, and exposure to ether until unconsciousness. Following a 7-day undisturbed period, mice were tested for cue-induced fear behavior, effects of paroxetine on cue-induced fear behavior, extinction retention of a previously extinguished fear memory, dexamethasone suppression of corticosterone (CORT) response, dorsal hippocampal glucocorticoid receptor protein and mRNA expression, and prefrontal cortex glutamate levels. Exposure to mSPS enhanced cue-induced fear, which was attenuated by oral paroxetine treatment. mSPS also disrupted extinction retention, enhanced suppression of stress-induced CORT response, increased mRNA expression of dorsal hippocampal glucocorticoid receptors and decreased prefrontal cortex glutamate levels. These data suggest that the mSPS model is a translationally-relevant model for future PTSD research with strong face, construct, and predictive validity. In summary, mSPS models characteristics relevant to PTSD and this severe, multimodal stress modifies fear learning in mice that coincides with changes in the hypothalamo-pituitary-adrenal (HPA) axis, brain glucocorticoid systems, and glutamatergic signaling in the prefrontal cortex.
Collapse
Affiliation(s)
- Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Andrew L Eagle
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sophie A George
- Department of Psychiatry, Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kostika Mulo
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert J Kohler
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Justin Gerard
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Arman Harutyunyan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven M Hool
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura L Susick
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| | - Brandy L Schneider
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Matthew P Galloway
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Israel Liberzon
- Department of Psychiatry, Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA,; Department of Psychiatry, VA Medical Center, Ann Arbor, MI, USA
| | - Alana C Conti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA,; Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
36
|
Maren S, Holmes A. Stress and Fear Extinction. Neuropsychopharmacology 2016; 41:58-79. [PMID: 26105142 PMCID: PMC4677122 DOI: 10.1038/npp.2015.180] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022]
Abstract
Stress has a critical role in the development and expression of many psychiatric disorders, and is a defining feature of posttraumatic stress disorder (PTSD). Stress also limits the efficacy of behavioral therapies aimed at limiting pathological fear, such as exposure therapy. Here we examine emerging evidence that stress impairs recovery from trauma by impairing fear extinction, a form of learning thought to underlie the suppression of trauma-related fear memories. We describe the major structural and functional abnormalities in brain regions that are particularly vulnerable to stress, including the amygdala, prefrontal cortex, and hippocampus, which may underlie stress-induced impairments in extinction. We also discuss some of the stress-induced neurochemical and molecular alterations in these brain regions that are associated with extinction deficits, and the potential for targeting these changes to prevent or reverse impaired extinction. A better understanding of the neurobiological basis of stress effects on extinction promises to yield novel approaches to improving therapeutic outcomes for PTSD and other anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Stephen Maren
- Department of Psychology, Institute of Neuroscience, Texas A&M University, College Station, TX, USA
| | - Andrew Holmes
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
37
|
Liu FF, Yang LD, Sun XR, Zhang H, Pan W, Wang XM, Yang JJ, Ji MH, Yuan HM. NOX2 Mediated-Parvalbumin Interneuron Loss Might Contribute to Anxiety-Like and Enhanced Fear Learning Behavior in a Rat Model of Post-Traumatic Stress Disorder. Mol Neurobiol 2015; 53:6680-6689. [PMID: 26650043 DOI: 10.1007/s12035-015-9571-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, yet the precise mechanisms underlying PTSD remains largely to be determined. Using an animal model of PTSD induced by a single prolonged stress (SPS), we assessed the role of hippocampal nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and parvalbumin (PV) interneurons in the development of PTSD symptoms. In the present study, behavioral tests were performed by the open field (day 13 after SPS) and fear conditioning tests (days 13 and 14 after SPS). For the interventional study, rats were chronically treated with a NADPH oxidase inhibitor apocynin either by early or delayed administration. The levels of tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-10, malondialdehyde, superoxide dismutase, NOX2, 4-hydroxynonenal, and PV in the hippocampus were measured at the indicated time points. In the present study, we showed that SPS rats displayed anxiety-like and enhanced fear learning behavior, which was accompanied by the increased expressions of malondialdehyde, IL-6, NOX2, 4-hydroxynonenal, and decreased PV expression. Notably, early but not delayed treatment with apocynin reversed all these abnormalities after SPS. In conclusion, our results provided evidence that NOX2 activation in the hippocampus, at least in part, contributes to oxidative stress and neuroinflammation, which further results in PV interneuron loss and consequent PTSD symptoms in a rat model of PTSD induced by SPS.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lin-Dong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Ru Sun
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hui Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Wei Pan
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xing-Ming Wang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mu-Huo Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Hong-Mei Yuan
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
38
|
HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand? Biochem Soc Trans 2015; 42:569-81. [PMID: 24646280 PMCID: PMC3961057 DOI: 10.1042/bst20130233] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel strategy to treat anxiety and fear-related disorders such as phobias, panic and PTSD (post-traumatic stress disorder) is combining CBT (cognitive behavioural therapy), including extinction-based exposure therapy, with cognitive enhancers. By targeting and boosting mechanisms underlying learning, drug development in this field aims at designing CBT-augmenting compounds that help to overcome extinction learning deficits, promote long-term fear inhibition and thus support relapse prevention. Progress in revealing the role of epigenetic regulation of specific genes associated with extinction memory generation has opened new avenues in this direction. The present review examines recent evidence from pre-clinical studies showing that increasing histone acetylation, either via genetic or pharmacological inhibition of HDACs (histone deacetylases) by e.g. vorinostat/SAHA (suberoylanilide hydroxamic acid), entinostat/MS-275, sodium butyrate, TSA (trichostatin A) or VPA (valproic acid), or by targeting HATs (histone acetyltransferases), augments fear extinction and, importantly, generates a long-term extinction memory that can protect from return of fear phenomena. The molecular mechanisms and pathways involved including BDNF (brain-derived neurotrophic factor) and NMDA (N-methyl-D-aspartate) receptor signalling are just beginning to be revealed. First studies in healthy humans are in support of extinction-facilitating effects of HDAC inhibitors. Very recent evidence that HDAC inhibitors can rescue deficits in extinction-memory-impaired rodents indicates a potential clinical utility of this approach also for exposure therapy-resistant patients. Important future work includes investigation of the long-term safety aspects of HDAC inhibitor treatment, as well as design of isotype(s)-specific inhibitors. Taken together, HDAC inhibitors display promising potential as pharmacological adjuncts to augment the efficacy of exposure-based approaches in anxiety and trauma therapy.
Collapse
|
39
|
Environmental Enrichment Reduces Anxiety by Differentially Activating Serotonergic and Neuropeptide Y (NPY)-Ergic System in Indian Field Mouse (Mus booduga): An Animal Model of Post-Traumatic Stress Disorder. PLoS One 2015; 10:e0127945. [PMID: 26016844 PMCID: PMC4446351 DOI: 10.1371/journal.pone.0127945] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
Exposure to a predator elicits an innate fear response and mimics several behavioral disorders related to post-traumatic stress disorder (PTSD). The protective role of an enriched condition (EC) against psychogenic stressors in various animal models has been well documented. However, this condition has not been tested in field mice in the context of PTSD. In this study, we show that field mice (Mus booduga) housed under EC exhibit predominantly proactive and less reactive behavior compared with mice housed under standard conditions (SC) during exposure to their natural predator (field rat Rattus rattus). Furthermore, we observed that EC mice displayed less anxiety-like behavior in an elevated plus maze (EPM) and light/dark-box after exposure to the predator (7 hrs/7 days). In EC mice, predator exposure elevated the level of serotonin (5-Hydroxytrypamine, [5-HT]) in the amygdala as part of the coping response. Subsequently, the serotonin transporter (SERT) and 5-HT1A receptor were up-regulated significantly, but the same did not occur in the 5-HT2C receptor, which is associated with the activation of calmodulin-dependent protein kinase-II (CaMKII) and a transcription factor cAMP response element binding protein (CREB). Our results show that predator exposure induced the activation of CaMKII/CREB, which is accompanied with increased levels of histone acetylation (H3, H4) and decreased histone deacetylases (HDAC1, 2). Subsequently, in the amygdala, the transcription of brain-derived neurotrophic factor (BDNF), neuropeptide Y (NPY) and its Y1 receptor were up-regulated, whereas the Y2 receptor was down-regulated. Therefore, EC facilitated a coping response against a fear associated cue in a PTSD animal model and reduced anxiety by differentially activating serotonergic and NPY-ergic systems.
Collapse
|
40
|
Daws SE, Vaissière T, Miller CA. Neuroepigenetic Regulation of Pathogenic Memories. NEUROEPIGENETICS 2015; 1:28-33. [PMID: 25642412 PMCID: PMC4310006 DOI: 10.1016/j.nepig.2014.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our unique collection of memories determines our individuality and shapes our future interactions with the world. Remarkable advances into the neurobiological basis of memory have identified key epigenetic mechanisms that support the stability of memory. Various forms of epigenetic regulation at the levels of DNA methylation, histone modification, and non-coding RNAs (ncRNAs) can modulate transcriptional and translational events required for memory processes. By changing the cellular profile in the brain's emotional, reward, and memory circuits, these epigenetic modifications have also been linked to perseverant, pathogenic memories. In this review, we will delve into the relevance of epigenetic dysregulation to pathogenic memory mechanisms by focusing on two neuropsychiatric disorders perpetuated by aberrant memory associations: substance use disorder (SUD) and post-traumatic stress disorder (PTSD). As our understanding improves, neuroepigenetic mechanisms may someday be harnessed to develop novel therapeutic targets for the treatment of these chronic, relapsing disorders.
Collapse
Affiliation(s)
- Stephanie E Daws
- Department of Metabolism & Aging, Department of Neuroscience, The Scripps Research Institute, Jupiter, FL USA
| | - Thomas Vaissière
- Department of Metabolism & Aging, Department of Neuroscience, The Scripps Research Institute, Jupiter, FL USA
| | - Courtney A Miller
- Department of Metabolism & Aging, Department of Neuroscience, The Scripps Research Institute, Jupiter, FL USA
| |
Collapse
|
41
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
42
|
Griffiths B, Hunter R. Neuroepigenetics of stress. Neuroscience 2014; 275:420-35. [DOI: 10.1016/j.neuroscience.2014.06.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 06/16/2014] [Indexed: 01/12/2023]
|
43
|
Bukalo O, Pinard CR, Holmes A. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 2014; 171:4690-718. [PMID: 24835117 DOI: 10.1111/bph.12779] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/28/2014] [Accepted: 05/04/2014] [Indexed: 12/11/2022] Open
Abstract
The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)-amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC-amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC-amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC-amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC-amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | | |
Collapse
|
44
|
Bahari-Javan S, Sananbenesi F, Fischer A. Histone-acetylation: a link between Alzheimer's disease and post-traumatic stress disorder? Front Neurosci 2014; 8:160. [PMID: 25009454 PMCID: PMC4067694 DOI: 10.3389/fnins.2014.00160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The orchestration of gene-expression programs is essential for cellular homeostasis. Epigenetic processes provide to the cell a key mechanism that allows the regulation of gene-expression networks in response to environmental stimuli. Recently epigenetic mechanisms such as histone-modifications have been implicated with cognitive function and altered epigenome plasticity has been linked to the pathogenesis of neurodegenerative and neuropsychiatric diseases. Thus, key regulators of epigenetic gene-expression have emerged as novel drug targets for brain diseases. Numerous recent review articles discuss in detail the current findings of epigenetic processes in brain diseases. The aim of this article is not to give yet another comprehensive overview of the field but to specifically address the question why the same epigenetic therapies that target histone-acetylation may be suitable to treat seemingly different diseases such as Alzheimer's disease and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Sanaz Bahari-Javan
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany ; Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Germany
| | - Farahnaz Sananbenesi
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany ; Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Germany
| |
Collapse
|
45
|
Fitzgerald PJ, Seemann JR, Maren S. Can fear extinction be enhanced? A review of pharmacological and behavioral findings. Brain Res Bull 2014; 105:46-60. [PMID: 24374101 PMCID: PMC4039692 DOI: 10.1016/j.brainresbull.2013.12.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
Abstract
There is considerable interest, from both a basic and clinical standpoint, in gaining a greater understanding of how pharmaceutical or behavioral manipulations alter fear extinction in animals. Not only does fear extinction in rodents model exposure therapy in humans, where the latter is a cornerstone of behavioral intervention for anxiety disorders such as post-traumatic stress disorder and specific phobias, but also understanding more about extinction provides basic information into learning and memory processes and their underlying circuitry. In this paper, we briefly review three principal approaches that have been used to modulate extinction processes in animals and humans: a purely pharmacological approach, the more widespread approach of combining pharmacology with behavior, and a purely behavioral approach. The pharmacological studies comprise modulation by: brain derived neurotrophic factor (BDNF), d-cycloserine, serotonergic and noradrenergic drugs, neuropeptides, endocannabinoids, glucocorticoids, histone deacetylase (HDAC) inhibitors, and others. These studies strongly suggest that extinction can be modulated by drugs, behavioral interventions, or their combination, although not always in a lasting manner. We suggest that pharmacotherapeutic manipulations provide considerable promise for promoting effective and lasting fear reduction in individuals with anxiety disorders. This article is part of a Special Issue entitled 'Memory enhancement'.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychology, Texas A&M University, College Station, TX 77843-4235, United States
| | - Jocelyn R Seemann
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States
| | - Stephen Maren
- Department of Psychology, Texas A&M University, College Station, TX 77843-4235, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843-4235, United States.
| |
Collapse
|