1
|
Weber SJ, Kawa AB, Beutler MM, Kuhn HM, Moutier AL, Westlake JG, Koyshman LM, Moreno CD, Wunsch AM, Wolf ME. Dopamine transmission at D1 and D2 receptors in the nucleus accumbens contributes to the expression of incubation of cocaine craving. Neuropsychopharmacology 2024:10.1038/s41386-024-01992-2. [PMID: 39300272 DOI: 10.1038/s41386-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Relapse represents a consistent clinical problem for individuals with substance use disorder. In the incubation of craving model of persistent craving and relapse, cue-induced drug seeking progressively intensifies or "incubates" during the first weeks of abstinence from drug self-administration and then remains high for months. Previously, we and others have demonstrated that expression of incubated cocaine craving requires strengthening of excitatory synaptic transmission in the nucleus accumbens core (NAcc). However, despite the importance of dopaminergic signaling in the NAcc for motivated behavior, little is known about the role that dopamine (DA) plays in the incubation of cocaine craving. Here we used fiber photometry to measure DA transients in the NAcc of male and female rats during cue-induced seeking tests conducted in early abstinence from cocaine self-administration, prior to incubation, and late abstinence, after incubation of craving has plateaued. We observed DA transients time-locked to cue-induced responding but their magnitude did not differ significantly when measured during early versus late abstinence seeking tests. Next, we tested for a functional role of these DA transients by injecting DA receptor antagonists into the NAcc just before the cue-induced seeking test. Blockade of either D1 or D2 DA receptors reduced cue-induced cocaine seeking after but not before incubation. We found no main effect of sex or significant interaction of sex with other factors in our experiments. These results suggest that DA contributes to incubated cocaine seeking but the emergence of this role reflects changes in postsynaptic responsiveness to DA rather than presynaptic alterations.
Collapse
Affiliation(s)
- Sophia J Weber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alex B Kawa
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Madelyn M Beutler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Hayley M Kuhn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Alana L Moutier
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan G Westlake
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Lara M Koyshman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Cloe D Moreno
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Borland JM. The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents. Neurosci Biobehav Rev 2024; 164:105809. [PMID: 39004323 DOI: 10.1016/j.neubiorev.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
BORLAND, J.M., The effects of different types of social interactions on the electrophysiology of neurons in the nucleus accumbens in rodents, NEUROSCI BIOBEH REV 21(1) XXX-XXX, 2024.-Sociality shapes an organisms' life. The nucleus accumbens is a critical brain region for mental health. In the following review, the effects of different types of social interactions on the physiology of neurons in the nucleus accumbens is synthesized. More specifically, the effects of sex behavior, aggression, social defeat, pair-bonding, play behavior, affiliative interactions, parental behaviors, the isolation from social interactions and maternal separation on measures of excitatory synaptic transmission, intracellular signaling and factors of transcription and translation in neurons in the nucleus accumbens in rodent models are reviewed. Similarities and differences in effects depending on the type of social interaction is then discussed. This review improves the understanding of the molecular and synaptic mechanisms of sociality.
Collapse
|
3
|
Callan L, Caroland-Williams A, Lee G, Belflower J, Belflower J, Modi U, Kase C, Patel A, Collins N, Datta A, Qasi S, Gheidi A. After a period of forced abstinence, rats treated with the norepinephrine neurotoxin DSP-4 still exhibit preserved food-seeking behavior and prefrontal cortex fos-expressing neurons. Heliyon 2024; 10:e32146. [PMID: 39027623 PMCID: PMC11255514 DOI: 10.1016/j.heliyon.2024.e32146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Aims Relapse is a common characteristic of compulsive behaviors like addiction, where individuals tend to return to drug use or overeating after a period of abstinence. PFC (prefrontal cortex) neuronal ensembles are required for drug and food-seeking behaviors and are partially regulated by Norepinephrine (NE). However, the contributions of neuromodulators, such as the adrenergic system, in food-seeking behavior are not fully understood. Main methods To investigate this, we trained male and female rats to press a lever in an operant chamber to obtain banana-flavored food pellets for ten days. We then administered DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride), a neurotoxin that diminishes norepinephrine levels in the brain. The rats were kept in their home cages for ten more days before being returned to the operant chambers to measure food-seeking behavior. Key findings Despite receiving DSP-4, the PFC neuronal ensembles measured by Fos and food-seeking behavior did not differ between groups, but rather sex. Significance Although both NE and Fos expressing neurons are implicated in food-seeking, they do not seem to be involved in a cue-contextual induced re-exposure response.
Collapse
Affiliation(s)
- L.N. Callan
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.J. Caroland-Williams
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - G. Lee
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.M. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - J.T. Belflower
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - U.A. Modi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - C.V. Kase
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A.D. Patel
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - N.A. Collins
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Datta
- Lincoln Memorial University DeBusk College of Osteopathic Medicine, Harrogate, TN, USA
| | - S. Qasi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| | - A. Gheidi
- Department of Biomedical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA, 31207, USA
| |
Collapse
|
4
|
Fetterly TL, Catalfio AM, Ferrario CR. Effects of junk-food on food-motivated behavior and nucleus accumbens glutamate plasticity; insights into the mechanism of calcium-permeable AMPA receptor recruitment. Neuropharmacology 2024; 242:109772. [PMID: 37898332 PMCID: PMC10883075 DOI: 10.1016/j.neuropharm.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
In rats, eating obesogenic diets increases calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly, these diet-induced alterations in NAc transmission are pronounced and sustained in obesity-prone (OP) male rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying this NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Together results show that diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work helps elucidate how diet interacts with obesity susceptibility to influence food-motivated behavior and extends our fundamental understanding of NAc CP-AMPAR recruitment.
Collapse
Affiliation(s)
- Tracy L Fetterly
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Psychology Department (Biopsychology) University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
5
|
Fetterly TL, Catalfio AM, Ferrario CR. Effects of junk-food on food-motivated behavior and NAc glutamate plasticity; insights into the mechanism of NAc calcium-permeable AMPA receptor recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540977. [PMID: 37292760 PMCID: PMC10245687 DOI: 10.1101/2023.05.16.540977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In rats, eating obesogenic diets increase calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly these diet-induced alterations in NAc transmission are pronounced in obesity-prone (OP) rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Behavioral tests included conditioned reinforcement, instrumental responding, and free consumption. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work improves our understanding of how sugary, fatty food consumption interacts with obesity susceptibility to influence food-motivated behavior. It also extends our fundamental understanding of NAc CP-AMPAR recruitment; this has important implications for motivation in the context of obesity as well as drug addiction.
Collapse
Affiliation(s)
- Tracy L. Fetterly
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda M. Catalfio
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R. Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Zhang K, Guo YC, Wang XD, Zhu YJ, Pan BX, Deng C, Yuan TF. Lateral septum inputs to nucleus accumbens mediates stress induced suppression of natural reward seeking. Pharmacol Res 2022; 184:106463. [PMID: 36162602 DOI: 10.1016/j.phrs.2022.106463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022]
Abstract
Stress alters the level of reward evaluation and seeking. However, the neural circuitry mechanisms underlying stress induced effects on natural reward seeking remain unclear. Here we report a septal-accumbens pathway that mediates the effects of acute stress on reward seeking suppression. We first established the sucrose oral self-administration paradigm and measured the effects of acute stress on reward seeking behavior after 21 days of abstinence. Both forced swimming stress and foot shock stress significantly suppressed the natural reward seeking. Among a variety of brain regions, intermediolateral septum (LSi) appear as a strong stress-responsive area containing abundant c-Fos positive cells; chemogenetic inactivation of LSi reinstated the reward seeking behavior. To elucidate the downstream targets receiving LSi projections, we combined pathway-specific retro-labeling and chemogenetic manipulation to confirm the involvement of LSi-nucleus accumbens (NAc) rather than the Ventral tegmental area (VTA) in mediating the observed behavioral responses. In conclusion, the septal-accumbal projection constitute a discrete circuit dictating the stress evoked alterations on reward seeking and may implicate in treatment of stress induced anhedonia.
Collapse
Affiliation(s)
- Ke Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Chen Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Dong Wang
- Department of Neurobiology and Department of Psychiatry of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Jie Zhu
- Shenzhen Key Lab of Drug Addiction, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bing-Xing Pan
- Institute of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China; Institutes for Systems Genetics, Frontiers Science Centre for Disease-Related Molecular Network, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zegers-Delgado J, Aguilera-Soza A, Calderón F, Davidson H, Verbel-Vergara D, Yarur HE, Novoa J, Blanlot C, Bastias CP, Andrés ME, Gysling K. Type 1 Corticotropin-Releasing Factor Receptor Differentially Modulates Neurotransmitter Levels in the Nucleus Accumbens of Juvenile versus Adult Rats. Int J Mol Sci 2022; 23:ijms231810800. [PMID: 36142716 PMCID: PMC9505341 DOI: 10.3390/ijms231810800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Adversity is particularly pernicious in early life, increasing the likelihood of developing psychiatric disorders in adulthood. Juvenile and adult rats exposed to social isolation show differences in anxiety-like behaviors and significant changes in dopamine (DA) neurotransmission in the nucleus accumbens (NAc). Brain response to stress is partly mediated by the corticotropin-releasing factor (CRF) system, composed of CRF and its two main receptors, CRF-R1 and CRF-R2. In the NAc shell of adult rats, CRF induces anxiety-like behavior and changes local DA balance. However, the role of CRF receptors in the control of neurotransmission in the NAc is not fully understood, nor is it known whether there are differences between life stages. Our previous data showed that infusion of a CRF-R1 antagonist into the NAc of juvenile rats increased DA levels in response to a depolarizing stimulus and decreased basal glutamate levels. To extend this analysis, we now evaluated the effect of a CRF-R1 antagonist infusion in the NAc of adult rats. Here, we describe that the opposite occurred in the NAc of adult compared to juvenile rats. Infusion of a CRF-R1 antagonist decreased DA and increased glutamate levels in response to a depolarizing stimulus. Furthermore, basal levels of DA, glutamate, and γ-Aminobutyric acid (GABA) were similar in juvenile animals compared to adults. CRF-R1 protein levels and localization were not different in juvenile compared to adult rats. Interestingly, we observed differences in the signaling pathways of CRF-R1 in the NAc of juveniles compared to adult rats. We propose that the function of CRF-R1 receptors is differentially modulated in the NAc according to life stage.
Collapse
|
8
|
Morgan C, Sáez-Briones P, Barra R, Reyes A, Zepeda-Morales K, Constandil L, Ríos M, Ramírez P, Burgos H, Hernández A. Prefrontal Cortical Control of Activity in Nucleus Accumbens Core Is Weakened by High-Fat Diet and Prevented by Co-Treatment with N-Acetylcysteine: Implications for the Development of Obesity. Int J Mol Sci 2022; 23:10089. [PMID: 36077493 PMCID: PMC9456091 DOI: 10.3390/ijms231710089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
A loss of neuroplastic control on nucleus accumbens (NAc) neuronal activity exerted by the medial prefrontal cortex (mPFC) through long-term depression (LTD) is involved in triggering drug-seeking behavior and relapse on several substances of abuse due to impaired glutamate homeostasis in tripartite synapses of the nucleus accumbens (NAc) core. To test whether this maladaptive neuroplastic mechanism underlies the addiction-like behavior induced in young mice by a high-fat diet (HFD), we utilized 28-days-old male mice fed HFD ad-libitum over 2 weeks, followed by 5 days of HFD abstinence. Control groups were fed a regular diet. HFD fed mice showed increased ΔFosB levels in the NAc core region, whereas LTD triggered from the mPFC became suppressed. Interestingly, LTD suppression was prevented by an i.p. injection of 100 mg/kg N-acetylcysteine 2.5 h before inducing LTD from the mPFC. In addition, excessive weight gain due to HFD feeding was diminished by adding 2mg/mL N-acetylcysteine in drinking water. Those results show a loss of neuroplastic mPFC control over NAc core activity induced by HFD consumption in young subjects. In conclusion, ad libitum consumption of HFD can lead to neuroplastic changes an addiction-like behavior that can be prevented by N-acetylcysteine, helping to decrease the rate of excessive weight gain.
Collapse
Affiliation(s)
- Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Andrea Reyes
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Katherine Zepeda-Morales
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Miguel Ríos
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Paulina Ramírez
- Bluestone Center for Clinical Research, Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, New York, NY 10010, USA
| | - Héctor Burgos
- Escuela de Psicología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago 7570008, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
9
|
Mayberry HL, Bavley CC, Karbalaei R, Peterson DR, Bongiovanni AR, Ellis AS, Downey SH, Toussaint AB, Wimmer ME. Transcriptomics in the nucleus accumbens shell reveal sex- and reinforcer-specific signatures associated with morphine and sucrose craving. Neuropsychopharmacology 2022; 47:1764-1775. [PMID: 35190706 PMCID: PMC9372067 DOI: 10.1038/s41386-022-01289-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
Incubation of craving is a well-documented phenomenon referring to the intensification of drug craving over extended abstinence. The neural adaptations that occur during forced abstinence following chronic drug taking have been a topic of intense study. However, little is known about the transcriptomic changes occurring throughout this window of time. To define gene expression changes associated with morphine consumption and extended abstinence, male and female rats underwent 10 days of morphine self-administration. Separate drug-naive rats self-administered sucrose in order to compare opioid-induced changes from those associated with natural, non-drug rewards. After one or 30 days of forced abstinence, rats were tested for craving, or nucleus accumbens shell tissue was dissected for RNA sequencing. Morphine consumption was predictive of drug seeking after extended (30 days) but not brief (1 day) abstinence in both sexes. Extended abstinence was also associated with robust sex- and reinforcer-specific changes in gene expression, suggesting sex differences underlying incubation of morphine and sucrose seeking respectively. Importantly, these changes in gene expression occurred without re-exposure to drug-paired cues, indicating that chronic morphine causes long-lasting changes in gene expression that prime the system for increased craving. These findings lay the groundwork for identifying specific therapeutic targets for curbing opioid craving without impacting the natural reward system in males and females.
Collapse
Affiliation(s)
- Hannah L Mayberry
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Charlotte C Bavley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Reza Karbalaei
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Drew R Peterson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Angela R Bongiovanni
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Alexandra S Ellis
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Sara H Downey
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Andre B Toussaint
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Lemon C, Del Arco A. Intermittent social stress produces different short- and long-term effects on effort-based reward-seeking behavior. Behav Brain Res 2022; 417:113613. [PMID: 34600962 PMCID: PMC8670294 DOI: 10.1016/j.bbr.2021.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023]
Abstract
Previous studies show that intermittent social defeat (ISD) stress increases self-administration of psychostimulants, which suggests that ISD promotes reward-seeking behavior and, ultimately, increases vulnerability to develop drug abuse. The present study investigates whether ISD alters cost/benefit evaluations to promote reward-seeking behavior and whether these alterations are time-dependent. Male rats performed two different tasks that assessed their motivation to seek and consume food rewards. An effort-discounting task in which rats chose between less and more effortful options (i.e., 1 lever-press versus 2, 5, 10 or 20 lever-presses) associated with low- and high-reward (i.e., 1 sugar pellet versus 3 sugar pellets), respectively; and a progressive ratio task in which rats had to increase their effort (more lever presses) to obtain a sugar pellet. ISD consisted of exposing animals to social defeat once every three days for ten days (4 stress episodes). Rats were tested 24-48 h after stress episodes, and 1 week and 6 weeks after the last stress episode. In the effort-discounting task, stressed animals showed a decrease in their preference for high rewards associated with more effort (i.e., 10 and 20 lever-presses). These effects were transient and not maintained one week after stress. In the progressive ratio task, stressed animals showed an increase in the number of lever presses to obtain rewards that emerged six weeks after the last stress episode. These results suggest different short- and long-term effects on the motivation for rewards after ISD and indicate temporal dynamic adaptations in the function of the brain reward system.
Collapse
Affiliation(s)
- Christopher Lemon
- HSERM, School of Applied Sciences, University of Mississippi, Oxford, MS
| | - Alberto Del Arco
- HSERM, School of Applied Sciences, University of Mississippi, Oxford, MS,Neurobiology and Anatomical Sciences, Medical School, University of Mississippi Medical Center, Jackson, MS,Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
11
|
Venniro M, Reverte I, Ramsey LA, Papastrat KM, D'Ottavio G, Milella MS, Li X, Grimm JW, Caprioli D. Factors modulating the incubation of drug and non-drug craving and their clinical implications. Neurosci Biobehav Rev 2021; 131:847-864. [PMID: 34597716 PMCID: PMC8931548 DOI: 10.1016/j.neubiorev.2021.09.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022]
Abstract
It was suggested in 1986 that cue-induced cocaine craving increases progressively during early abstinence and remains high during extended periods of time. Clinical evidence now supports this hypothesis and that this increase is not specific to cocaine but rather generalize across several drugs of abuse. Investigators have identified an analogous incubation phenomenon in rodents, in which time-dependent increases in cue-induced drug seeking are observed after abstinence from intravenous drug or palatable food self-administration. Incubation of craving is susceptible to variation in magnitude as a function of biological and/or the environmental circumstances surrounding the individual. During the last decade, the neurobiological correlates of the modulatory role of biological (sex, age, genetic factors) and environmental factors (environmental enrichment and physical exercise, sleep architecture, acute and chronic stress, abstinence reinforcement procedures) on incubation of drug craving has been investigated. In this review, we summarized the behavioral procedures adopted, the key underlying neurobiological correlates and clinical implications of these studies.
Collapse
Affiliation(s)
- Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, USA.
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, Intramural Research Program, Baltimore NIDA, NIH, USA
| | - Kimberly M Papastrat
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, USA
| | - Ginevra D'Ottavio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, USA.
| | - Jeffrey W Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, USA.
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| |
Collapse
|
12
|
Moschak TM, Carelli RM. An opposing role for prelimbic cortical projections to the nucleus accumbens core in incubation of craving for cocaine versus water. Drug Alcohol Depend 2021; 228:109033. [PMID: 34500244 PMCID: PMC8595637 DOI: 10.1016/j.drugalcdep.2021.109033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Both drug and natural reward-seeking have been shown to increase following an extended period of abstinence, a phenomenon termed 'incubation of craving'. Although this phenomenon involves many brain regions, the projections from the prelimbic cortex (PrL) to the nucleus accumbens (NAc) core have been strongly implicated in incubation of cocaine-seeking. However, this circuit has not been investigated in the context of incubation of craving for natural rewards. METHODS Male Long Evans rats were trained to self-administer cocaine or water/saline 6 h/d for 14 days and subsequently entered 1 month of experimenter-imposed abstinence. Rats then underwent an optogenetic stimulation protocol used to induce long term depression in the PrL terminals to the NAc core immediately before beginning an extinction test used to assess incubation of craving. RESULTS Control cocaine rats showed heightened drug-seeking on day 30 when compared to day 1 of abstinence, demonstrating incubation of craving. Notably, optogenetic stimulation of the PrL to NAc core pathway blocked this behavior in cocaine rats. In contrast, optogenetic stimulation of the PrL to NAc core pathway induced incubation of craving in water/saline rats. CONCLUSIONS These findings suggest that neuroadaptations in the PrL to NAc core pathway play opposing roles in the incubation of craving for cocaine versus water.
Collapse
Affiliation(s)
- Travis M. Moschak
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599,Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902
| | - Regina M. Carelli
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Waye SC, Dinesh OC, Hasan SN, Conway JD, Raymond R, Nobrega JN, Blundell J, Bambico FR. Antidepressant action of transcranial direct current stimulation in olfactory bulbectomised adolescent rats. J Psychopharmacol 2021; 35:1003-1016. [PMID: 33908307 DOI: 10.1177/02698811211000765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Antidepressant drugs in adolescent depression are sometimes mired by efficacy issues and paradoxical effects. Transcranial direct current stimulation (tDCS) could represent an alternative. AIMS/METHODS We tested the antidepressant action of prefrontal tDCS and paroxetine (20 mg/kg, intraperitoneal) in olfactory bulbectomised (OBX) adolescent rats. Using enzyme-linked immunosorbent assays and in situ hybridisation, we examined treatment-induced changes in plasma brain-derived neurotrophic factor (BDNF) and brain serotonin transporter (SERT) and 5-HT-1A mRNA. RESULTS OBX-induced anhedonia-like reductions in sucrose preference (SP) correlated with open field (OF) hyperactivity. These were accompanied by decreased zif268 mRNA in the piriform/amygdalopiriform transition area, and increased zif268 mRNA in the hypothalamus. Acute paroxetine (2 days) led to a profound SP reduction, an effect blocked by combined tDCS-paroxetine administration. Chronic (14 days) tDCS attenuated hyperlocomotion and its combination with paroxetine blocked OBX-induced SP reduction. Correlations among BDNF, SP and hyperlocomotion scores were altered by OBX but were normalised by tDCS-paroxetine co-treatment. In the brain, paroxetine increased zif268 mRNA in the hippocampal CA1 subregion and decreased it in the claustrum. This effect was blocked by tDCS co-administration, which also increased zif268 in CA2. tDCS-paroxetine co-treatment had variable effects on 5-HT1A receptors and SERT mRNA. 5-HT1A receptor changes were found exclusively within depression-related parahippocampal/hippocampal subregions, and SERT changes within fear/defensive response-modulating brainstem circuits. CONCLUSION These findings point towards potential synergistic efficacies of tDCS and paroxetine in the OBX model of adolescent depression via mechanisms associated with altered expression of BDNF, 5-HT1A, SERT and zif268 in discrete corticolimbic areas.
Collapse
Affiliation(s)
- Shannon C Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Sm Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Joshua D Conway
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Francis Rodriguez Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada.,Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| |
Collapse
|
14
|
Sex specific effects of "junk-food" diet on calcium permeable AMPA receptors and silent synapses in the nucleus accumbens core. Neuropsychopharmacology 2021; 46:569-578. [PMID: 32731252 PMCID: PMC8027187 DOI: 10.1038/s41386-020-0781-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022]
Abstract
CP-AMPARs in the nucleus accumbens (NAc) mediate cue-triggered motivation for food and cocaine. In addition, increases in NAc CP-AMPAR expression and function can be induced by cocaine or sugary, fatty junk-foods. However, the precise nature of these alterations and the degree to which they rely on the same underlying mechanisms is not well understood. This has important implications for understanding adaptive vs. maladaptive plasticity that drives food- and drug-seeking behaviors. Furthermore, effects of junk-foods on glutamatergic plasticity in females are unknown. Here, we use a combination of protein biochemistry and whole-cell patch clamping to determine effects of diet manipulation on glutamatergic plasticity within the NAc of males and females. We found that junk-food consumption increases silent synapses and subsequently increases CP-AMPAR levels in males in the NAc of male rats. In addition, a brief period of junk-food deprivation is needed for the synaptic insertion of CP-AMPARs and the maturation of silent synapses in males. In contrast, junk-food did not induce AMPAR plasticity in females but may instead alter NMDAR-mediated transmission. Thus, these studies reveal sex differences in the effects of junk-food on NAc synaptic plasticity. In addition, they provide novel insights into how essential food rewards alter NAc function.
Collapse
|
15
|
Alonso-Caraballo Y, Guha SK, Chartoff EH. The neurobiology of abstinence-induced reward-seeking in males and females. Pharmacol Biochem Behav 2020; 200:173088. [PMID: 33333134 DOI: 10.1016/j.pbb.2020.173088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Drugs of abuse and highly palatable foods (e.g. high fat or sweet foods) have powerful reinforcing effects, which can lead to compulsive and addictive drives to ingest these substances to the point of psychopathology and self-harm--specifically the development of Substance Use Disorder (SUD) and obesity. Both SUD and binge-like overeating can be defined as disorders in which the salience of the reward (food or drug) becomes exaggerated relative to, and at the expense of, other rewards that promote well-being. A major roadblock in the treatment of these disorders is high rates of relapse after periods of abstinence. It is common, although not universal, for cue-induced craving to increase over time with abstinence, often triggered by cues previously paired with the reinforcing substance. Accumulating evidence suggests that similar neural circuits and cellular mechanisms contribute to abstinence-induced and cue-triggered seeking of drugs and palatable food. Although much research has focused on the important role of corticolimbic circuitry in drug-seeking, our goal is to expand focus to the more recently explored hypothalamic-thalamic-striatal circuitry. Specifically, we review how connections, and neurotransmitters therein, among the lateral hypothalamus, paraventricular nucleus of the thalamus, and the nucleus accumbens contribute to abstinence-induced opioid- and (high fat or sweet) food-seeking. Given that biological sex and gonadal hormones have been implicated in addictive behavior across species, another layer to this review is to compare behaviors and neural circuit-based mechanisms of abstinence-induced opioid- or food-seeking between males and females when such data is available.
Collapse
Affiliation(s)
| | - Suman K Guha
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
16
|
Effects of Saccharin Consumption on Operant Responding for Sugar Reward and Incubation of Sugar Craving in Rats. Foods 2020; 9:foods9121823. [PMID: 33302497 PMCID: PMC7763677 DOI: 10.3390/foods9121823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
Repeated experience with artificial sweeteners increases food consumption and body weight gain in rats. Saccharin consumption may reduce the conditioned satiety response to sweet-tasting food. Rats were trained to press a lever to obtain sucrose for five days. A compound cue (tone + light) was presented with every sucrose delivery. On the following day, each lever press produced only the compound cue (cue-reactivity test). Subjects were then provided with yogurt for three weeks in their home cages. The rats were divided into two groups. Rats in the saccharin group received yogurt sweetened with saccharin on some days and unsweetened yogurt on others. For the plain group, only unsweetened plain yogurt was provided. Subsequently, the cue-reactivity test was conducted again. On the following day, the rats underwent a consumption test in which each lever press was reinforced with sucrose. Chow consumption and body weight gain were larger in the saccharin group than in the plain group. Lever responses increased from the first to the second cue-reactivity tests (incubation of craving) in both groups. During the consumption test, lever responses were higher in the saccharin group than in the plain group, suggesting that the conditioned satiety response was impaired in the saccharin group.
Collapse
|
17
|
Roura‐Martínez D, Ucha M, Orihuel J, Ballesteros‐Yáñez I, Castillo CA, Marcos A, Ambrosio E, Higuera‐Matas A. Central nucleus of the amygdala as a common substrate of the incubation of drug and natural reinforcer seeking. Addict Biol 2020; 25:e12706. [PMID: 30623520 DOI: 10.1111/adb.12706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023]
Abstract
Relapse into drug use is a major problem faced by recovering addicts. In humans, an intensification of the desire for the drug induced by environmental cues-incubation of drug craving-has been observed. In rodents, this phenomenon has been modeled by studying drug seeking under extinction after different times of drug withdrawal (or using a natural reinforcer). Although much progress has been made, an integrated approach simultaneously studying different drug classes and natural reward and examining different brain regions is lacking. Lewis rats were used to study the effects of cocaine, heroin, and sucrose seeking incubation on six key brain regions: the nucleus accumbens shell/core, central/basolateral amygdala, and dorsomedial/ventromedial prefrontal cortex. We analyzed PSD95 and gephyrin protein levels, gene expression of glutamatergic, GABAergic and endocannabinoid elements, and amino acid transmitter levels. The relationships between the areas studied were examined by Structural Equation Modelling. Pathways from medial prefrontal cortex and basolateral complex of the amygdala to central nucleus of the amygdala, but not to the nucleus accumbens, were identified as common elements involved in the incubation phenomenon for different substances. These results suggest a key role for the central nucleus of amygdala and its cortical and amygdalar afferences in the incubation phenomenon, and we suggest that by virtue of its regulatory effects on glutamatergic and GABAergic dynamics within amygdalar circuits, the endocannabinoid system might be a potential target to develop medications that are effective in the context of relapse.
Collapse
Affiliation(s)
| | - Marcos Ucha
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | - Javier Orihuel
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | | | - Carlos Alberto Castillo
- School of Occupational TherapySpeech Therapy and Nursing, University of Castilla‐La Mancha Talavera de la Reina Spain
| | - Alberto Marcos
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | - Emilio Ambrosio
- Department of PsychobiologySchool of Psychology, UNED Madrid Spain
| | | |
Collapse
|
18
|
Role of nucleus accumbens core but not shell in incubation of methamphetamine craving after voluntary abstinence. Neuropsychopharmacology 2020; 45:256-265. [PMID: 31422417 PMCID: PMC6901530 DOI: 10.1038/s41386-019-0479-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
We recently introduced an animal model to study incubation of drug craving after prolonged voluntary abstinence, mimicking the human condition of relapse after successful contingency management treatment. Here we studied the role of the nucleus accumbens (NAc) in this model. We trained rats to self-administer a palatable solution (sucrose 1% + maltodextrin 1%, 6 h/day, 6 days) and methamphetamine (6 h/day, 12 days). We then evaluated relapse to methamphetamine seeking after 1 and 15 days of voluntary abstinence, achieved via a discrete choice procedure between the palatable solution and methamphetamine (14 days). We used RNAscope in-situ hybridization to quantify the colabeling of the neuronal activity marker Fos, and dopamine Drd1- and Drd2-expressing medium spiny neurons (MSNs) in NAc core and shell during the incubation tests. Next, we determined the effect of pharmacological inactivation of NAc core and shell by either GABAA and GABAB agonists (muscimol + baclofen, 50 + 50 ng/side), Drd1-Drd2 antagonist (flupenthixol, 10 µg/side), or the selective Drd1 or Drd2 antagonists (SCH39166, 1.0 µg/side or raclopride, 1.0 µg/side) during the relapse tests. Incubated methamphetamine seeking after voluntary abstinence was associated with a selective increase of Fos expression in the NAc core, but not shell, and Fos was colabeled with both Drd1- and Drd2-MSNs. NAc core, but not shell, injections of muscimol + baclofen, flupenthixol, SCH39166, and raclopride reduced methamphetamine seeking after 15 days of abstinence. Together, our results suggest that dopamine transmission through Drd1 and Drd2 in NAc core is critical to the incubation of methamphetamine craving after voluntary abstinence.
Collapse
|
19
|
Different periods of forced abstinence after instrumental learning for food reward of different macronutrient value on responding for conditioned cues and AMPAr subunit levels. Behav Brain Res 2019; 375:112141. [PMID: 31394143 DOI: 10.1016/j.bbr.2019.112141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Food craving can be viewed as an intense desire for a specific food that propagates seeking and consuming behavior. Prolonged forced abstinence from rewarding foods can result in escalated food-seeking behavior as measured via elevated responding for food-paired cues in the absence of the primary reward. Palatable food consumption and food-seeking is associated with changes in the abundance and composition of AMPA receptors in the nucleus accumbens (NAc) but differing results have been reported. The present study examined whether different food types could produce escalated food-seeking behavior after various abstinence periods and whether this was associated with changes in AMPA receptor protein levels. Rats were trained for 10 days to bar press for purified, sucrose, or chocolate-flavored sucrose pellets. Rats were tested at 24 hrs, 7 d or 14 d whereby bar pressing resulted in presentation of cues paired with food but no food reward was delivered. Western blotting was used to determine protein levels of GluR1, GluR1pSer845, and GluR2 in the NAc. Three separate groups were assessed: 1) a group that was trained on the operant task and tested for conditioned responding (tested group); 2) a group that was trained on the operant task but not tested (non-tested group); 3) a group that was neither trained nor tested (control). The purified food group showed a time-dependent elevation in conditioned bar pressing over the 3 abstinence periods. GluR1 AMPAr subunit levels were higher in the purified and sucrose groups tested at 24 hours compared to the non-tested and control values. GluR1 levels subsequently declined at the 7- and 14-day abstinence periods in the purified and sucrose tested and non-tested groups compared to control values. GluR2 and pSer845 Glur1 levels were similar across all groups and abstinence periods. These results show that food-seeking behavior associated with forced abstinence from different food rewards may depend on the macronutrient composition of the food reward or the food type given during the abstinence period. A clear link with AMPAr subunit levels in this model was not established.
Collapse
|
20
|
Projection-Specific Potentiation of Ventral Pallidal Glutamatergic Outputs after Abstinence from Cocaine. J Neurosci 2019; 40:1276-1285. [PMID: 31836662 DOI: 10.1523/jneurosci.0929-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
The ventral pallidum (VP) is a central node in the reward system that is strongly implicated in reward and addiction. Although the majority of VP neurons are GABAergic and encode reward, recent studies revealed a novel glutamatergic neuronal population in the VP [VP neurons expressing the vesicular glutamate transporter 2 (VPVGluT2)], whose activation generates aversion. Withdrawal from drugs has been shown to induce drastic synaptic changes in neuronal populations associated with reward, such as the ventral tegmental area (VTA) or nucleus accumbens neurons, but less is known about cocaine-induced synaptic changes in neurons classically linked with aversion. Here, we demonstrate that VPVGluT2 neurons contact different targets with different intensities, and that cocaine conditioned place preference (CPP) training followed by abstinence selectively potentiates their synapses on targets that encode aversion. Using whole-cell patch-clamp recordings combined with optogenetics in male and female transgenic mice, we show that VPVGluT2 neurons preferentially contact aversion-related neurons, such as lateral habenula neurons and VTA GABAergic neurons, with minor input to reward-related neurons, such as VTA dopamine and VP GABA neurons. Moreover, after cocaine CPP and abstinence, the VPVGluT2 input to the aversion-related structures is potentiated, whereas the input to the reward-related structures is depressed. Thus, cocaine CPP followed by abstinence may allow VPVGluT2 neurons to recruit aversion-related targets more readily and therefore be part of the mechanism underlying the aversive symptoms seen after withdrawal.SIGNIFICANCE STATEMENT The biggest problem in drug addiction is the high propensity to relapse. One central driver for relapse events is the negative aversive symptoms experienced by addicts during withdrawal. In this work, we propose a possible mechanism for the intensification of aversive feelings after withdrawal that involves the glutamatergic neurons of the ventral pallidum. We show not only that these neurons are most strongly connected to aversive targets, such as the lateral habenula, but also that, after abstinence, their synapses on aversive targets are strengthened, whereas the synapses on other rewarding targets are weakened. These data illustrate how after abstinence from cocaine, aversive pathways change in a manner that may contribute to relapse.
Collapse
|
21
|
Grimm JW. Incubation of food craving in rats: A review. J Exp Anal Behav 2019; 113:37-47. [PMID: 31709556 DOI: 10.1002/jeab.561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Incubation of food craving is an abstinence-dependent increase in responding for reward-paired cues. Incubation of craving was first reported for rats responding for cocaine-paired cues, and later generalized to several drugs of abuse and for food. Incubation of drug and food craving has been reported in clinical studies as well. Incubation of food craving by rats has been reported for standard chow as well as for high fat and sucrose reinforcers. Parametric and other evaluations of the incubation of food craving reveal manipulations that reduce incubation, including environmental enrichment and pharmacological manipulation of dopamine, glutamate, and endogenous opiates. Several brain regions are likely involved in the effect, including mesolimbic terminals and the central nucleus of the amygdala. Further study of the incubation of food craving could facilitate development of treatments for cravings that precede relapse characteristic of drug and food addictions.
Collapse
|
22
|
Reward Devaluation Attenuates Cue-Evoked Sucrose Seeking and Is Associated with the Elimination of Excitability Differences between Ensemble and Non-ensemble Neurons in the Nucleus Accumbens. eNeuro 2019; 6:ENEURO.0338-19.2019. [PMID: 31699890 PMCID: PMC6905639 DOI: 10.1523/eneuro.0338-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/21/2022] Open
Abstract
Animals must learn relationships between foods and the environmental cues that predict their availability for survival. Such cue–food associations are encoded in sparse sets of neurons or “neuronal ensembles” in the nucleus accumbens (NAc). For these ensemble-encoded, cue-controlled appetitive responses to remain adaptive, they must allow for their dynamic updating depending on acute changes in internal states such as physiological hunger or the perceived desirability of food. However, how these neuronal ensembles are recruited and physiologically modified following the update of such learned associations is unclear. To investigate this, we examined the effects of devaluation on ensemble plasticity at the levels of recruitment, intrinsic excitability, and synaptic physiology in sucrose-conditioned Fos-GFP mice that express green fluorescent protein (GFP) in recently activated neurons. Neuronal ensemble activation patterns and their physiology were examined using immunohistochemistry and slice electrophysiology, respectively. Reward-specific devaluation following 4 d of ad libitum sucrose consumption, but not general caloric devaluation, attenuated cue-evoked sucrose seeking. This suggests that changes in the hedonic and/or incentive value of sucrose, and not caloric need, drove this behavior. Moreover, devaluation attenuated the size of the neuronal ensemble recruited by the cue in the NAc shell. Finally, it eliminated the relative enhanced excitability of ensemble (GFP+) neurons against non-ensemble (GFP−) neurons observed under non-devalued conditions, and did not induce any ensemble-specific changes in excitatory synaptic physiology. Our findings provide new insights into neuronal ensemble mechanisms that underlie the changes in the incentive and/or hedonic impact of cues that support adaptive food seeking.
Collapse
|
23
|
Liu S, Borgland SL. Insulin actions in the mesolimbic dopamine system. Exp Neurol 2019; 320:113006. [DOI: 10.1016/j.expneurol.2019.113006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
|
24
|
Intermittent intake of rapid cocaine injections promotes the risk of relapse and increases mesocorticolimbic BDNF levels during abstinence. Neuropsychopharmacology 2019; 44:1027-1035. [PMID: 30405186 PMCID: PMC6461788 DOI: 10.1038/s41386-018-0249-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023]
Abstract
Cocaine is thought to be more addictive when it reaches the brain rapidly. We predicted that variation in the speed of cocaine delivery influences the likelihood of addiction in part by determining the risk of relapse after abstinence. Under an intermittent-access schedule, rats pressed a lever for rapid (injected over 5 s) or slower (90 s) intravenous cocaine injections (0.5 mg/kg/injection). Control rats self-administered food pellets. A tone-light cue accompanied each self-administered reward. The 5s- and 90s-rats took a similar average amount of cocaine. One or 45 days after withdrawal from cocaine/forced abstinence, lever-pressing behaviour was extinguished during a 6-h session. Immediately thereafter, cue- or cocaine (10 mg/kg, i.p.)-induced reinstatement was assessed for 1 h. One or 45 days after withdrawal, only 5s-rats showed significant cocaine-induced reinstatement of reward-seeking behaviour. In both cocaine groups, cue-induced reinstatement behaviour was more pronounced after 45 days than after 1 day of withdrawal from cocaine, indicating incubation of conditioned drug craving. However, cue-induced reinstatement after extended abstinence was greatest in the 5s-rats. Brain-derived neurotrophic factor (BDNF) activity in the brain regulates reinstatement behaviour. Thus, 24 h after reinstatement tests, we measured BDNF protein concentrations in mesocorticolimbic regions. Only 5s-rats showed time-dependent increases in BDNF concentrations in the prelimbic cortex, nucleus accumbens core and ventral tegmental area after withdrawal from cocaine (day 45 > day 1). Thus, rapidly rising brain cocaine levels might facilitate addiction by evoking changes in the brain that intensify drug craving after abstinence, and these changes persist long after the last bout of cocaine use.
Collapse
|
25
|
Alonso-Caraballo Y, Jorgensen ET, Brown T, Ferrario CR. Functional and structural plasticity contributing to obesity: roles for sex, diet, and individual susceptibility. Curr Opin Behav Sci 2018; 23:160-170. [PMID: 31058203 DOI: 10.1016/j.cobeha.2018.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of cortico-striatal pathways in cue-triggered motivational processes have been extensively studied. However, recent work has begun to examine the potential contribution of plasticity in these circuits to obesity. Despite the inclusion of women in human obesity studies examining neurobehavioral alterations in cue-triggered motivation, preclinical studies have focused mainly on male subjects. This lack of female subjects in preclinical research had led to a gap in the basic understanding of the neural mechanisms underlying over-eating in females. In this review, we highlight recent work from our lab and others that has begun to elucidate how diet, obesity, and individual susceptibility to weight gain influence functional and structural plasticity within the nucleus accumbens and prefrontal cortex in adult rats. As is the case throughout neuroscience, studies of females or sex differences are largely lacking in this area. Thus, below we describe preliminary neurobehavioral results from female studies in our labs and point out areas for future investigation.
Collapse
Affiliation(s)
| | | | - Travis Brown
- Neuroscience Program, University of Wyoming, Laramie, WY.,Pharmaceutical Science, University of Wyoming, Laramie, WY
| | - Carrie R Ferrario
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
26
|
Modi ME, Brooks JM, Guilmette ER, Beyna M, Graf R, Reim D, Schmeisser MJ, Boeckers TM, O'Donnell P, Buhl DL. Hyperactivity and Hypermotivation Associated With Increased Striatal mGluR1 Signaling in a Shank2 Rat Model of Autism. Front Mol Neurosci 2018; 11:107. [PMID: 29970986 PMCID: PMC6018399 DOI: 10.3389/fnmol.2018.00107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/19/2018] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SHANK family of genes have been consistently identified in genetic and genomic screens of autism spectrum disorder (ASD). The functional overlap of SHANK with several other ASD-associated genes suggests synaptic dysfunction as a convergent mechanism of pathophysiology in ASD. Although many ASD-related mutations result in alterations to synaptic function, the nature of those dysfunctions and the consequential behavioral manifestations are highly variable when expressed in genetic mouse models. To investigate the phylogenetic conservation of phenotypes resultant of Shank2 loss-of-function in a translationally relevant animal model, we generated and characterized a novel transgenic rat with a targeted mutation of the Shank2 gene, enabling an evaluation of gene-associated phenotypes, the elucidation of complex behavioral phenotypes, and the characterization of potential translational biomarkers. The Shank2 loss-of-function mutation resulted in a notable phenotype of hyperactivity encompassing hypermotivation, increased locomotion, and repetitive behaviors. Mutant rats also expressed deficits in social behavior throughout development and in the acquisition of operant tasks. The hyperactive phenotype was associated with an upregulation of mGluR1 expression, increased dendritic branching, and enhanced long-term depression (LTD) in the striatum but opposing morphological and cellular alterations in the hippocampus (HP). Administration of the mGluR1 antagonist JNJ16259685 selectively normalized the expression of striatally mediated repetitive behaviors and physiology but had no effect on social deficits. Finally, Shank2 mutant animals also exhibited alterations in electroencephalography (EEG) spectral power and event-related potentials, which may serve as translatable EEG biomarkers of synaptopathic alterations. Our results show a novel hypermotivation phenotype that is unique to the rat model of Shank2 dysfunction, in addition to the traditional hyperactive and repetitive behaviors observed in mouse models. The hypermotivated and hyperactive phenotype is associated with striatal dysfunction, which should be explored further as a targetable mechanism for impairment in ASD.
Collapse
Affiliation(s)
- Meera E Modi
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Julie M Brooks
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Edward R Guilmette
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Mercedes Beyna
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Radka Graf
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Dominik Reim
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Patricio O'Donnell
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| | - Derek L Buhl
- Pfizer Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
27
|
Derman RC, Ferrario CR. Junk-food enhances conditioned food cup approach to a previously established food cue, but does not alter cue potentiated feeding; implications for the effects of palatable diets on incentive motivation. Physiol Behav 2018; 192:145-157. [PMID: 29555195 DOI: 10.1016/j.physbeh.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/11/2018] [Accepted: 03/11/2018] [Indexed: 01/04/2023]
Abstract
Efforts to stem the global rise in obesity have been minimally effective, perhaps in part because our understanding of the psychological and behavioral drivers of obesity is limited. It is well established that stimuli that are paired with palatable foods can powerfully influence food-seeking and feeding behaviors. However, how consumption of sugary, fatty "junk-foods" affects these motivational responses to food cues is poorly understood. Here, we determined the effects of short- and long-term "junk-food" consumption on the expression of cue potentiated feeding and conditioned food cup approach to Pavlovian conditioned stimuli (CS). Further, to determine the degree to which effects of "junk-food" were selective to Pavlovian motivational processes, we varied the predictive validity of the CS by including training groups conditioned with unique CS-US contingencies ranging from -1.0 to +1.0. "Junk-food" did not enhance cue potentiated feeding in any group, but expression of this potentiation effect varied with the CS-US contingency independent of diet. In contrast, "junk-food" consistently enhanced conditioned approach to the food cup; this effect was dependent on the previously established CS-US contingency. That is, consumption of "junk-food" following training enhanced approach to the food cup only in response to CSs with previously positive CS-US contingencies. This was accompanied by reduced motivation for the US itself. Together these data show that "junk-food" consumption selectively enhances incentive motivational responses to previously established food CSs, without altering cue potentiated feeding induced by these same CSs, and in the absence of enhanced motivation for food itself.
Collapse
Affiliation(s)
- Rifka C Derman
- University of Michigan, Department of Pharmacology, United States
| | - Carrie R Ferrario
- University of Michigan, Department of Pharmacology, United States; Neuroscience Graduate Program, University of Michigan, United States.
| |
Collapse
|
28
|
Hankosky ER, Westbrook SR, Haake RM, Marinelli M, Gulley JM. Reduced sensitivity to reinforcement in adolescent compared to adult Sprague-Dawley rats of both sexes. Psychopharmacology (Berl) 2018; 235:861-871. [PMID: 29197983 PMCID: PMC5963930 DOI: 10.1007/s00213-017-4804-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
RATIONALE Adolescence is a period of considerable development of brain and behavior and is the time during which most drug use is initiated. OBJECTIVE Age-dependent differences in motivated behaviors may be one of the factors that contribute to heightened vulnerability to developing substance use disorders, so we sought to compare age differences in methamphetamine (METH) and saccharin seeking. METHODS Beginning during adolescence or adulthood, male and female Sprague-Dawley rats were trained to self-administer 0.1% saccharin (via liquid dipper cup) or intravenous METH at one of three doses (0.02, 0.05, 0.08 mg/kg/inf) under increasing fixed ratio schedules of reinforcement. Subsequently, responding for METH (0.02, 0.05, 0.08, or 0.1 mg/kg/inf) under progressive ratio response requirements was assessed in rats that acquired METH self-administration at the highest dose (0.08 mg/kg/inf). RESULTS We found that adult-onset rats acquired METH self-administration more readily and exhibited higher motivation compared to adolescent-onset rats, although there were no differences in METH intake during acquisition. Adult rats also acquired saccharin self-administration more readily, but in contrast to METH, there were age and sex differences in saccharin intake driven by high levels of responding in adult females. CONCLUSIONS These findings challenge the prevailing notion that adolescents are hypersensitive to reward and instead raise questions about the potential role of methodological factors on which rodent studies often differ.
Collapse
Affiliation(s)
- Emily R. Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA
| | - Sara R. Westbrook
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA
| | - Rachel M. Haake
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA
| | - Michela Marinelli
- College of Pharmacy, University of Texas at Austin, 107 W. Dean Keeton Street Stop C0800, Austin, TX, 78712
| | - Joshua M. Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign, 603 E. Daniel St., Champaign, IL, 61820, USA,Neuroscience Program, University of Illinois, Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
29
|
Derman RC, Ferrario CR. Enhanced incentive motivation in obesity-prone rats is mediated by NAc core CP-AMPARs. Neuropharmacology 2017; 131:326-336. [PMID: 29291424 PMCID: PMC6010194 DOI: 10.1016/j.neuropharm.2017.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/07/2022]
Abstract
Studies in humans suggest that stronger incentive motivational responses to Pavlovian food cues may drive over-consumption leading to and maintaining obesity, particularly in susceptible individuals. However, whether this enhanced incentive motivation emerges as a consequence of obesity or rather precedes obesity is unknown. Moreover, while human imaging studies have provided important information about differences in striatal responsiveness between susceptible and non-susceptible individuals, the neural mechanisms mediating these behavioral differences are unknown. The Nucleus Accumbens (NAc) mediates cue-triggered reward seeking and activity in the NAc is enhanced in obesity-susceptible populations. Therefore here, we used selectively-bred obesity-prone and obesity-resistant rats to examine intrinsic differences in incentive motivation, and the role of NAc AMPARs in the expression of these behaviors prior to obesity. We found that obesity-prone rats exhibit robust cue-triggered food-seeking (Pavlovian-to-instrumental transfer, PIT). Using intra-NAc infusion of AMPAR antagonists, we show that this behavior is selectively mediated by CP-AMPARs in the NAc core. Additionally, biochemical data suggest that this is due in part to experience-induced increases in CP-AMPAR surface expression in the NAc of obesity-prone rats. In contrast, in obesity-resistant rats PIT was weak and unreliable and training did not increase NAc AMPAR surface expression. Collectively, these data show that food cues acquire greater incentive motivational control in obesity-susceptible populations prior to the development of obesity. This provides support to the idea that enhanced intrinsic incentive motivation may be a contributing factor, rather than a consequence of obesity. In addition, these data demonstrate a novel role for experience-induced up-regulation of NAc CP-AMPARs in PIT, pointing to potential mechanistic parallels between the processes leading to addiction and to obesity.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Pharmacology, University of Michigan, United States
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, United States; Neuroscience Graduate Program, University of Michigan, United States.
| |
Collapse
|
30
|
Szumlinski KK, Shin CB. Kinase interest you in treating incubated cocaine-craving? A hypothetical model for treatment intervention during protracted withdrawal from cocaine. GENES BRAIN AND BEHAVIOR 2017; 17:e12440. [PMID: 29152855 DOI: 10.1111/gbb.12440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/22/2022]
Abstract
A diagnostic criterion for drug addiction, persistent drug-craving continues to be the most treatment-resistant aspect of addiction that maintains the chronic, relapsing, nature of this disease. Despite the high prevalence of psychomotor stimulant addiction, there currently exists no FDA-approved medication for craving reduction. In good part, this reflects our lack of understanding of the neurobiological underpinnings of drug-craving. In humans, cue-elicited drug-craving is associated with the hyperexcitability of prefrontal cortical regions. Rodent models of cocaine addiction indicate that a history of excessive cocaine-taking impacts excitatory glutamate signaling within the prefrontal cortex to drive drug-seeking behavior during protracted withdrawal. This review summarizes evidence that the capacity of cocaine-associated cues to augment craving in highly drug-experienced rats relates to a withdrawal-dependent incubation of glutamate release within prelimbic cortex. We discuss how stimulation of mGlu1/5 receptors increases the activational state of both canonical and noncanonical intracellular signaling pathways and present a theoretical molecular model in which the activation of several kinase effectors, including protein kinase C, extracellular signal-regulated kinase and phosphoinositide 3-kinase (PI3K) might lead to receptor desensitization to account for persistent cocaine-craving during protracted withdrawal. Finally, this review discusses the potential for existing, FDA-approved, pharmacotherapeutic agents that target kinase function as a novel approach to craving intervention in cocaine addiction.
Collapse
Affiliation(s)
- K K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California.,Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California
| | - C B Shin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
31
|
Dingess PM, Darling RA, Derman RC, Wulff SS, Hunter ML, Ferrario CR, Brown TE. Structural and Functional Plasticity within the Nucleus Accumbens and Prefrontal Cortex Associated with Time-Dependent Increases in Food Cue-Seeking Behavior. Neuropsychopharmacology 2017; 42:2354-2364. [PMID: 28294131 PMCID: PMC5645745 DOI: 10.1038/npp.2017.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/18/2023]
Abstract
Urges to consume food can be driven by stimuli in the environment that are associated with previous food experience. Identifying adaptations within brain reward circuits that facilitate cue-induced food seeking is critical for understanding and preventing the overconsumption of food and subsequent weight gain. Utilizing electrophysiological, biochemical, and DiI labeling, we examined functional and structural changes in the nucleus accumbens (NAc) and prefrontal cortex (PFC) associated with time-dependent increases in food craving ('incubation of craving'). Rats self-administered 60% high fat or chow 45 mg pellets and were then tested for incubation of craving either 1 or 30 days after training. High fat was chosen for comparison to determine whether palatability differentially affected incubation and/or plasticity. Rats showed robust incubation of craving for both food rewards, although responding for cues previously associated with high fat was greater than chow at both 1 and 30 days. In addition, previous experience with high-fat consumption reduced dendritic spine density in the PFC at both time points. In contrast, incubation was associated with an increase in NAc spine density and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated transmission at 30 days in both groups. Finally, incubation of craving for chow and high fat was accompanied by an increase in calcium-permeable and calcium-impermeable AMPARs, respectively. Our results suggest that incubation of food craving alters brain reward circuitry and macronutrient composition specifically induces cortical changes in a way that may facilitate maladaptive food-seeking behaviors.
Collapse
Affiliation(s)
- Paige M Dingess
- Neuroscience Program, University of Wyoming, Laramie, WY, USA
| | | | - Rifka C Derman
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Shaun S Wulff
- Department of Statistics, University of Wyoming, Laramie, WY, USA
| | | | - Carrie R Ferrario
- Neuroscience Program, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Travis E Brown
- Neuroscience Program, University of Wyoming, Laramie, WY, USA,Department of Statistics, University of Wyoming, Laramie, WY, USA,School of Pharmacy, Neuroscience Program, University of Wyoming, 1000 E. University Avenue, Department 3375, Laramie, WY 82071, USA, Tel: 307 766 6129, Fax: 307 766 2953, E-mail:
| |
Collapse
|
32
|
Accumbens Mechanisms for Cued Sucrose Seeking. Neuropsychopharmacology 2017; 42:2377-2386. [PMID: 28726801 PMCID: PMC5645741 DOI: 10.1038/npp.2017.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022]
Abstract
Many studies support a perspective that addictive drugs usurp brain circuits used by natural rewards, especially for the dopamine-dependent reinforcing qualities of both drugs and natural rewards. Reinstated drug seeking in animal models of relapse relies on glutamate spillover from cortical terminals synapsing in the nucleus accumbens core (NAcore) to stimulate metabotropic glutamate receptor5 (mGluR5) on neuronal nitric oxide synthase (nNOS) interneurons. Contrasting the release of dopamine that is shared by sucrose and drugs of abuse, reinstated sucrose seeking does not induce glutamate spillover. We hypothesized that pharmacologically promoting glutamate spillover in the NAcore would mimic cocaine-induced adaptations and potentiate cued reinstatement of sucrose seeking. Inducing glutamate spillover by blocking astroglial glutamate transporters (GLT-1) had no effect on reinstated sucrose seeking. However, glutamate release probability is negatively regulated by presynaptic mGluR2/3, and sucrose reinstatement was potentiated following mGluR2/3 blockade. Potentiated sucrose reinstatement by mGluR2/3 blockade was reversed by antagonizing mGluR5, but reinstated sucrose seeking in the absence of mGluR2/3 blockade was not affected by blocking mGluR5. In cocaine-trained rodents mGluR5 stimulation reinstates drug seeking by activating nNOS, but activating mGluR5 did not promote reinstated sucrose seeking, nor was potentiated reinstatement after mGluR2/3 blockade reduced by blocking nNOS. However, chemogenetic activation of nNOS interneurons in the NAcore reinstated sucrose seeking. These data indicate that dysregulated presynaptic mGluR2/3 signaling is a possible site of shared signaling in drug seeking and potentiated reinstated sucrose seeking, but that downregulated glutamate transport and subsequent activation of nNOS by synaptic glutamate spillover is not shared.
Collapse
|
33
|
Incubation of cue-induced reinstatement of cocaine, but not sucrose, seeking in C57BL/6J mice. Pharmacol Biochem Behav 2017; 159:12-17. [PMID: 28669705 DOI: 10.1016/j.pbb.2017.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
Prior studies have shown that drug-seeking behaviors increase, rather than dissipate, over weeks to months after withdrawal from drug self-administration. This phenomenon - termed incubation - suggests that drug-craving responses elicited by conditioned environmental or discrete cues may intensify over pronged abstinence. While most of this work is conducted in rats with intravenous drug self-administration models, there is less evidence for incubation in mice that have greater utility for molecular genetic analysis and perturbation. We tested whether incubation of cocaine-seeking behavior is evident in C57BL/6J mice following 3weeks (5days/week) of cocaine self-administration in 2h self-administration sessions. We compared cocaine-seeking (drug-paired lever) responses 1, 7, or 28days after withdrawal from cocaine self-administration, and over similar times following sucrose pellet self-administration. We found that the initial re-exposure to the self-administration test chambers elicited increased reward-seeking behavior in both sucrose and cocaine self-administering mice, with maximal responses found at 7days compared to 1 or 28days after self-administration with either reinforcer. However, following extinction training, reinstatement of cocaine seeking reinforced by response-contingent presentation of reward-associated cues (tone/light) was significantly higher after 28days compared to 1 or 7days following cocaine self-administration. In contrast, cue-induced reinstatement of sucrose-paired lever pressing did not increase over this time frame, demonstrating a drug-specific incubation effect not seen with a natural reward. Thus, C57BL/6J mice display incubation of cue-induced reinstatement of cocaine seeking similar to findings with rats, but only show a transient incubation of context-induced cocaine seeking.
Collapse
|
34
|
Eating 'Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction. Neuropsychopharmacology 2016; 41:2977-2986. [PMID: 27383008 PMCID: PMC5101548 DOI: 10.1038/npp.2016.111] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022]
Abstract
Urges to eat are influenced by stimuli in the environment that are associated with food (food cues). Obese people are more sensitive to food cues, reporting stronger craving and consuming larger portions after food cue exposure. The nucleus accumbens (NAc) mediates cue-triggered motivational responses, and activations in the NAc triggered by food cues are stronger in people who are susceptible to obesity. This has led to the idea that alterations in NAc function similar to those underlying drug addiction may contribute to obesity, particularly in obesity-susceptible individuals. Motivational responses are mediated in part by NAc AMPA receptor (AMPAR) transmission, and recent work shows that cue-triggered motivation is enhanced in obesity-susceptible rats after 'junk-food' diet consumption. Therefore, here we determined whether NAc AMPAR expression and function is increased by 'junk-food' diet consumption in obesity-susceptible vs -resistant populations using both outbred and selectively bred models of susceptibility. In addition, cocaine-induced locomotor activity was used as a general 'read out' of mesolimbic function after 'junk-food' consumption. We found a sensitized locomotor response to cocaine in rats that gained weight on a 'junk-food' diet, consistent with greater responsivity of mesolimbic circuits in obesity-susceptible groups. In addition, eating 'junk-food' increased NAc calcium-permeable-AMPAR (CP-AMPAR) function only in obesity-susceptible rats. This increase occurred rapidly, persisted for weeks after 'junk-food' consumption ceased, and preceded the development of obesity. These data are considered in light of enhanced cue-triggered motivation and striatal function in obesity-susceptible rats and the role of NAc CP-AMPARs in enhanced motivation and addiction.
Collapse
|
35
|
Ferrario CR, Labouèbe G, Liu S, Nieh EH, Routh VH, Xu S, O'Connor EC. Homeostasis Meets Motivation in the Battle to Control Food Intake. J Neurosci 2016; 36:11469-11481. [PMID: 27911750 PMCID: PMC5125214 DOI: 10.1523/jneurosci.2338-16.2016] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 01/09/2023] Open
Abstract
Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity.
Collapse
Affiliation(s)
- Carrie R Ferrario
- University of Michigan Medical School, Department of Pharmacology, Ann Arbor, Michigan 48109-5632
| | - Gwenaël Labouèbe
- University of Lausanne, Center for Integrative Genomics, Lausanne, CH1015, Switzerland
| | - Shuai Liu
- University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Edward H Nieh
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - Shengjin Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, and
| | - Eoin C O'Connor
- University of Geneva, Department of Basic Neuroscience, Geneva, CH1211, Switzerland
| |
Collapse
|
36
|
Reichelt AC. Adolescent Maturational Transitions in the Prefrontal Cortex and Dopamine Signaling as a Risk Factor for the Development of Obesity and High Fat/High Sugar Diet Induced Cognitive Deficits. Front Behav Neurosci 2016; 10:189. [PMID: 27790098 PMCID: PMC5061823 DOI: 10.3389/fnbeh.2016.00189] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Adolescence poses as both a transitional period in neurodevelopment and lifestyle practices. In particular, the developmental trajectory of the prefrontal cortex (PFC), a critical region for behavioral control and self-regulation, is enduring, not reaching functional maturity until the early 20 s in humans. Furthermore, the neurotransmitter dopamine is particularly abundant during adolescence, tuning the brain to rapidly learn about rewards and regulating aspects of neuroplasticity. Thus, adolescence is proposed to represent a period of vulnerability towards reward-driven behaviors such as the consumption of palatable high fat and high sugar diets. This is reflected in the increasing prevalence of obesity in children and adolescents as they are the greatest consumers of “junk foods”. Excessive consumption of diets laden in saturated fat and refined sugars not only leads to weight gain and the development of obesity, but experimental studies with rodents indicate they evoke cognitive deficits in learning and memory process by disrupting neuroplasticity and altering reward processing neurocircuitry. Consumption of these high fat and high sugar diets have been reported to have a particularly pronounced impact on cognition when consumed during adolescence, demonstrating a susceptibility of the adolescent brain to enduring cognitive deficits. The adolescent brain, with heightened reward sensitivity and diminished behavioral control compared to the mature adult brain, appears to be a risk for aberrant eating behaviors that may underpin the development of obesity. This review explores the neurodevelopmental changes in the PFC and mesocortical dopamine signaling that occur during adolescence, and how these potentially underpin the overconsumption of palatable food and development of obesogenic diet-induced cognitive deficits.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Health and Biomedical Sciences, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
37
|
Murray S, Tulloch A, Criscitelli K, Avena NM. Recent studies of the effects of sugars on brain systems involved in energy balance and reward: Relevance to low calorie sweeteners. Physiol Behav 2016; 164:504-508. [PMID: 27068180 PMCID: PMC5003688 DOI: 10.1016/j.physbeh.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/29/2022]
Abstract
The alarmingly high rates of overweight and obesity pose a serious global health threat. Numerous factors can result in weight gain, one of which is excess consumption of caloric sweeteners. In an effort to aid weight loss efforts, many people have switched from caloric sweeteners to low calorie sweeteners, which provide sweet taste without the accompanying calories. In this review, we present an overview of the animal literature produced in the last 5years highlighting the effects of sugar consumption on neural pathways involved in energy balance regulation and reward processing. We also examine the latest evidence that is beginning to elucidate the effects of low calorie sweeteners on these neural pathways, as well as how homeostatic and hedonic systems interact in response to, or to influence, sugar consumption.
Collapse
Affiliation(s)
- Susan Murray
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| | - Alastair Tulloch
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| | - Kristen Criscitelli
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10025, United States
| |
Collapse
|
38
|
Funk D, Coen K, Tamadon S, Hope BT, Shaham Y, Lê AD. Role of Central Amygdala Neuronal Ensembles in Incubation of Nicotine Craving. J Neurosci 2016; 36:8612-23. [PMID: 27535909 PMCID: PMC4987435 DOI: 10.1523/jneurosci.1505-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. Here, we further characterized incubation of nicotine craving in the rat model by determining whether this incubation is observed after adolescent-onset nicotine self-administration. We also used the neuronal activity marker Fos and the Daun02 chemogenetic inactivation procedure to identify cue-activated neuronal ensembles that mediate incubation of nicotine craving. We trained adolescent and adult male rats to self-administer nicotine (2 h/d for 12 d) and assessed cue-induced nicotine seeking in extinction tests (1 h) after 1, 7, 14, or 28 withdrawal days. In both adult and adolescent rats, nicotine seeking in the relapse tests followed an inverted U-shaped curve, with maximal responding on withdrawal day 14. Independent of the withdrawal day, nicotine seeking in the relapse tests was higher in adult than in adolescent rats. Analysis of Fos expression in different brain areas of adolescent and adult rats on withdrawal days 1 and 14 showed time-dependent increases in the number of Fos-positive neurons in central and basolateral amygdala, orbitofrontal cortex, ventral and dorsal medial prefrontal cortex, and nucleus accumbens core and shell. In adult Fos-lacZ transgenic rats, selective inactivation of nicotine-cue-activated Fos neurons in central amygdala, but not orbitofrontal cortex, decreased "incubated" nicotine seeking on withdrawal day 14. Our results demonstrate that incubation of nicotine craving occurs after adolescent-onset nicotine self-administration and that neuronal ensembles in central amygdala play a critical role in this incubation. SIGNIFICANCE STATEMENT The craving response to smoking-associated cues in humans or to intravenous nicotine-associated cues in adult rats progressively increases or incubates after withdrawal. It is currently unknown whether incubation of craving also occurs after adolescent-onset nicotine self-administration. The brain areas that mediate such incubation are also unknown. Here, we used a rat model of incubation of drug craving, the neuronal activity marker Fos, and the Daun02 chemogenetic inactivation method to demonstrate that incubation of nicotine craving is also observed after adolescent-onset nicotine self-administration and that neuronal ensembles in the central nucleus of the amygdala play a critical role in this incubation in adult rats.
Collapse
Affiliation(s)
- Douglas Funk
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada M5S 2S1,
| | - Kathleen Coen
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada M5S 2S1
| | - Sahar Tamadon
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada M5S 2S1
| | - Bruce T Hope
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, Baltimore, Maryland 21224
| | - Yavin Shaham
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse-National Institutes of Health, Baltimore, Maryland 21224
| | - A D Lê
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada M5S 2S1, Departments of Pharmacology and Toxicology and Department of Psychiatry, University of Toronto, Toronto, Canada M5S 1A8, and
| |
Collapse
|
39
|
Darling RA, Dingess PM, Schlidt KC, Smith EM, Brown TE. Incubation of food craving is independent of macronutrient composition. Sci Rep 2016; 6:30900. [PMID: 27485660 PMCID: PMC4971517 DOI: 10.1038/srep30900] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/10/2016] [Indexed: 02/04/2023] Open
Abstract
Cues previously paired with rewarding stimuli induce a time-dependent increase in the motivational craving state (incubation of craving). Whether there is an increase in craving for high-fat (HF) food over time, which may contribute to overeating and obesity, has not been determined. We hypothesized that cues paired with HF pellets would elicit a greater incubation of craving effect than those paired with standard chow (SC) pellets. Rats exposed to cues associated with either HF or SC pellets demonstrated equivalent levels of craving over an abstinence period of 30 days. Diet preference tests between SC pellets and LabDiet revealed that SC pellets were preferred over LabDiet. Rats reared on SC pellets exclusively, did not display incubation of craving for SC pellets, suggesting that prior history with the food plays an important role in cue-induced seeking behavior. Results identified cues previously associated with food undergo a comparable magnitude of incubation of craving. When ingestive behavior was measured after 30 days of abstinence, rats significantly increased their consumption of HF pellets. Our results indicate that food cues gain importance over time, trigger increased approach behaviors, and increased consumption of HF food following abstinence. This may contribute to overeating and the development of obesity.
Collapse
Affiliation(s)
| | - Paige M Dingess
- University of Wyoming, Neuroscience Program, Laramie, WY 82071, USA
| | - Kevin C Schlidt
- University of Wyoming, Neuroscience Program, Laramie, WY 82071, USA
| | - Erin M Smith
- University of Wyoming, School of Pharmacy, Laramie, WY 82071, USA
| | - Travis E Brown
- University of Wyoming, Neuroscience Program, Laramie, WY 82071, USA.,University of Wyoming, School of Pharmacy, Laramie, WY 82071, USA
| |
Collapse
|
40
|
|
41
|
Swinford-Jackson SE, Anastasio NC, Fox RG, Stutz SJ, Cunningham KA. Incubation of cocaine cue reactivity associates with neuroadaptations in the cortical serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system. Neuroscience 2016; 324:50-61. [PMID: 26926963 DOI: 10.1016/j.neuroscience.2016.02.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Abstract
Intensification of craving elicited by drug-associated cues during abstinence occurs over time in human cocaine users while elevation of cue reactivity ("incubation") is observed in rats exposed to extended forced abstinence from cocaine self-administration. Incubation in rodents has been linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is accompanied by lower potency and/or efficacy of the selective serotonin (5-HT) 5-HT2C receptor (5-HT2CR) agonist WAY163909 to suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to incubation of cocaine cue reactivity.
Collapse
Affiliation(s)
- S E Swinford-Jackson
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - N C Anastasio
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - R G Fox
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - S J Stutz
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - K A Cunningham
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
42
|
Reichelt AC, Abbott KN, Westbrook RF, Morris MJ. Differential motivational profiles following adolescent sucrose access in male and female rats. Physiol Behav 2016; 157:13-9. [PMID: 26826605 DOI: 10.1016/j.physbeh.2016.01.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 01/22/2023]
Abstract
Adolescents are the highest consumers of sugar sweetened drinks. Excessive consumption of such drinks is a likely contributor to the development of obesity and may be associated with enduring changes in the systems involved in reward and motivation. We examined the impact of daily sucrose consumption in young male and female rats (N=12 per group) across the adolescent period on the motivation to perform instrumental responses to gain food rewards as adults. Rats were or were not exposed to a sucrose solution for 2 h each day for 28 days across adolescence [postnatal days (P) 28-56]. They were then trained as adults (P70 onward) to lever press for a palatable 15% cherry flavored sucrose reward and tested on a progressive ratio (PR) schedule to assess motivation to respond for reinforcement. Female rats exposed to sucrose had higher breakpoints on the PR schedule than controls, whereas male rats exposed to sucrose had lower breakpoints than controls. These results show that consumption of sucrose during adolescence produced sex-specific behavioral changes in responding for sucrose as adults.
Collapse
|
43
|
Nucleus accumbens deep brain stimulation in a rat model of binge eating. Transl Psychiatry 2015; 5:e695. [PMID: 26670280 PMCID: PMC5068592 DOI: 10.1038/tp.2015.197] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
Binge eating (BE) is a difficult-to-treat behavior with high relapse rates, thus complicating several disorders including obesity. In this study, we tested the effects of high-frequency deep brain stimulation (DBS) in a rodent model of BE. We hypothesized that BE rats receiving high-frequency DBS in the nucleus accumbens (NAc) core would have reduced binge sizes compared with sham stimulation in both a 'chronic BE' model as well as in a 'relapse to chronic BE' model. Male Sprague-Dawley rats (N=18) were implanted with stimulating electrodes in bilateral NAc core, and they received either active stimulation (N=12) or sham stimulation (N=6) for the initial chronic BE experiments. After testing in the chronic BE state, rats did not engage in binge sessions for 1 month, and then resumed binge sessions (relapse to chronic BE) with active or sham stimulation (N=5-7 per group). A significant effect of intervention group was observed on binge size in the chronic BE state, but no significant difference between intervention groups was observed in the relapse to chronic BE experiments. This research, making use of both a chronic BE model as well as a relapse to chronic BE model, provides data supporting the hypothesis that DBS of the NAc core can decrease BE. Further research will be needed to learn how to increase the effect size and decrease deep brain stimulation-treatment outcome variability across the continuum of BE behavior.
Collapse
|
44
|
Myal S, O'Donnell P, Counotte DS. Nucleus accumbens injections of the mGluR2/3 agonist LY379268 increase cue-induced sucrose seeking following adult, but not adolescent sucrose self-administration. Neuroscience 2015; 305:309-15. [PMID: 26241341 PMCID: PMC4559755 DOI: 10.1016/j.neuroscience.2015.07.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/02/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023]
Abstract
Adolescence is often portrayed as a period of enhanced sensitivity to reward, with long-lasting neurobiological changes upon reward exposure. However, we previously found that time-dependent increases in cue-induced sucrose seeking were more pronounced in rats trained to self-administer sucrose as adults than as adolescents. In addition, adult, but not adolescent sucrose self-administration led to a decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-Methyl-D-aspartate (AMPA/NMDA) ratio in the nucleus accumbens core, suggesting that long-lasting changes in glutamatergic transmission may affect adult processing of natural rewards. Here we tested whether altering glutamatergic transmission in the nucleus accumbens core via local injection of an mGluR2/3 agonist and antagonist affects cue-induced sucrose seeking following abstinence and whether this is different in the two age groups. Rats began oral sucrose self-administration training (10 days) on postnatal day (P) 35 (adolescents) or P70 (adults). Following 21 days of abstinence, rats received microinjections of the mGluR2/3 agonist LY379268 (0.3 or 1.0 μg/side) or vehicle into the nucleus accumbens core, and 15 min later cue-induced sucrose seeking was assessed. An additional group of rats trained as adults received nucleus accumbens core microinjections of the mGluR2/3 antagonist (RS)-α-Methyl-4-phosphonophenylglycine (MPPG) (0.12 or 0.5 μg/side). Confirming our previous results, adult rats earned more sucrose reinforcers, while sucrose intake per body weight was similar across ages. On abstinence day 22, local injection of the mGluR2/3 agonist LY379268 increased cue-induced sucrose seeking only in adult rats, and had no effect in adolescents. Local injections of the mGluR2/3 antagonist MPPG had no effect on sucrose seeking in adult rats. These data suggest an important developmental difference in the neural substrates of natural reward, specifically a difference in glutamatergic transmission in the accumbens in cue-induced responding for sucrose between adolescent and adult rats.
Collapse
Affiliation(s)
- S Myal
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P O'Donnell
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - D S Counotte
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Li X, Caprioli D, Marchant NJ. Recent updates on incubation of drug craving: a mini-review. Addict Biol 2015; 20:872-6. [PMID: 25440081 DOI: 10.1111/adb.12205] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cue-induced drug craving progressively increases after prolonged withdrawal from drug self-administration in laboratory animals, a behavioral phenomenon termed 'incubation of drug craving.' Studies over the years have revealed several important neural mechanisms contributing to incubation of drug craving. In this mini-review, we first discuss three excellent Addiction Biology publications on incubation of drug craving in both human and laboratory animals. We then review several key publications from the past year on behavioral and mechanistic findings related to incubation of drug craving.
Collapse
Affiliation(s)
- Xuan Li
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
| | - Daniele Caprioli
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
| | - Nathan J. Marchant
- Behavioral Neuroscience Research Branch; Intramural Research Program; NIDA, NIH, DHHS; Baltimore MD USA
- Florey Institute of Neuroscience and Mental Health; University of Melbourne; Australia
| |
Collapse
|
46
|
The central amygdala nucleus is critical for incubation of methamphetamine craving. Neuropsychopharmacology 2015; 40:1297-306. [PMID: 25475163 PMCID: PMC4367476 DOI: 10.1038/npp.2014.320] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/11/2022]
Abstract
Cue-induced methamphetamine seeking progressively increases after withdrawal but mechanisms underlying this 'incubation of methamphetamine craving' are unknown. Here we studied the role of central amygdala (CeA), ventral medial prefrontal cortex (vmPFC), and orbitofrontal cortex (OFC), brain regions implicated in incubation of cocaine and heroin craving, in incubation of methamphetamine craving. We also assessed the role of basolateral amygdala (BLA) and dorsal medial prefrontal cortex (dmPFC). We trained rats to self-administer methamphetamine (10 days; 9 h/day, 0.1 mg/kg/infusion) and tested them for cue-induced methamphetamine seeking under extinction conditions during early (2 days) or late (4-5 weeks) withdrawal. We first confirmed that 'incubation of methamphetamine craving' occurs under our experimental conditions. Next, we assessed the effect of reversible inactivation of CeA or BLA by GABAA+GABAB receptor agonists (muscimol+baclofen, 0.03+0.3 nmol) on cue-induced methamphetamine seeking during early and late withdrawal. We also assessed the effect of muscimol+baclofen reversible inactivation of vmPFC, dmPFC, and OFC on 'incubated' cue-induced methamphetamine seeking during late withdrawal. Lever presses in the cue-induced methamphetamine extinction tests were higher during late withdrawal than during early withdrawal (incubation of methamphetamine craving). Muscimol+baclofen injections into CeA but not BLA decreased cue-induced methamphetamine seeking during late but not early withdrawal. Muscimol+baclofen injections into dmPFC, vmPFC, or OFC during late withdrawal had no effect on incubated cue-induced methamphetamine seeking. Together with previous studies, results indicate that the CeA has a critical role in incubation of both drug and non-drug reward craving and demonstrate an unexpected dissociation in mechanisms of incubation of methamphetamine vs cocaine craving.
Collapse
|
47
|
Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 2014; 509:459-64. [DOI: 10.1038/nature13257] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
|