1
|
Parise LF, Iñiguez SD, Warren BL, Parise EM, Bachtell RK, Dietz DM, Nestler EJ, Bolaños-Guzmán CA. ERK2 Signaling in the Nucleus Accumbens Facilitates Stress Susceptibility and Cocaine Reinstatement. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100416. [PMID: 39896237 PMCID: PMC11786747 DOI: 10.1016/j.bpsgos.2024.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 02/04/2025] Open
Abstract
Background Second-messenger signaling within the mesolimbic reward circuit plays a key role in the negative effects of stress and the underlying mechanisms that promote drug abuse. Because the nucleus accumbens (NAc) integrates reward valence, we investigated how ERK2 (extracellular signal-regulated protein kinase-2) signaling affects the development of stress-related comorbidities, including negative affect and drug sensitivity. Methods We assessed how chronic unpredictable stress influenced the phosphorylation of ERK2-signaling proteins within the NAc of male Sprague Dawley rats. Using a herpes simplex virus, we either upregulated or downregulated NAc ERK2 activation and evaluated behavioral responses to stress-eliciting stimuli (elevated plus maze, open field, forced swim test) and cocaine-seeking behavior (conditioned place preference, self-administration). We also examined ERK2-mediated modifications in spine morphology of medium spiny neurons within the NAc. Results Chronic unpredictable stress increased the phosphorylation of ERK2-signaling proteins within the NAc. Viral-mediated activation of NAc ERK2 enhanced susceptibility to both depression- and anxiety-related stimuli and increased cocaine-seeking behavior (conditioned place preference and reinstatement). These behavioral changes were associated with an increase in stubby and mushroom spines of NAc medium spiny neurons. Conversely, downregulation of ERK2 activation attenuated affect-related behavioral responses in the forced swim test and blunted cocaine's rewarding effects without influencing NAc spine morphology. Conclusions NAc ERK2 contributes to stress-induced behavioral deficits, including anxiety- and depression-like phenotypes, while promoting cocaine-seeking behavior. These findings suggest that ERK2 signaling in the NAc plays a role in the comorbidity of these related syndromes.
Collapse
Affiliation(s)
- Lyonna F. Parise
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Brandon L. Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Eric M. Parise
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ryan K. Bachtell
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, Buffalo, New York
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
2
|
Garcia-Carachure I, Lira O, Themann A, Rodriguez M, Flores-Ramirez FJ, Lobo MK, Iñiguez SD. Sex-Specific Alterations in Spatial Memory and Hippocampal AKT-mTOR Signaling in Adult Mice Pre-exposed to Ketamine and/or Psychological Stress During Adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:240-251. [PMID: 38298791 PMCID: PMC10829642 DOI: 10.1016/j.bpsgos.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 02/02/2024] Open
Abstract
Background Ketamine (KET) is administered to manage major depression in adolescent patients. However, the long-term effects of juvenile KET exposure on memory-related tasks have not been thoroughly assessed. We examined whether exposure to KET, psychological stress, or both results in long-lasting alterations in spatial memory in C57BL/6 mice. Furthermore, we evaluated how KET and/or psychological stress history influenced hippocampal protein kinase B-mechanistic target of rapamycin (AKT-mTOR)-related signaling. Methods On postnatal day 35, male and female mice underwent vicarious defeat stress (VDS), a form of psychological stress that reduces sociability in both sexes, with or without KET exposure (20 mg/kg/day, postnatal days 35-44). In adulthood (postnatal day 70), mice were assessed for spatial memory performance on a water maze task or euthanized for hippocampal tissue collection. Results Juvenile pre-exposure to KET or VDS individually increased the latency (seconds) to locate the escape platform in adult male, but not female, mice. However, juvenile history of concomitant KET and VDS prevented memory impairment. Furthermore, individual KET or VDS pre-exposure, unlike their combined history, decreased hippocampal AKT-mTOR signaling in adult male mice. Conversely, KET pre-exposure alone increased AKT-mTOR in the hippocampus of adult female mice. Lastly, rapamycin-induced decreases of mTOR in naïve adult female mice induced spatial memory retrieval deficits, mimicking adult male mice with a history of exposure to VDS or KET. Conclusions Our preclinical model shows how KET treatment for the management of adolescent psychological stress-induced sequelae does not impair spatial memory later in life. However, juvenile recreational KET misuse, like psychological stress history, results in long-term spatial memory deficits and hippocampal AKT-mTOR signaling changes in a sex-specific manner.
Collapse
Affiliation(s)
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| | | | - Mary Kay Lobo
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sergio D. Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas
| |
Collapse
|
3
|
Parise LF, Iñiguez SD, Warren BL, Parise EM, Bachtell RK, Dietz D, Nestler EJ, Bolaños-Guzmán CA. Viral-mediated expression of Erk2 in the nucleus accumbens regulates responses to rewarding and aversive stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560689. [PMID: 37873069 PMCID: PMC10592906 DOI: 10.1101/2023.10.03.560689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Second-messenger signaling within the mesolimbic reward circuit is involved in both the long-lived effects of stress and in the underlying mechanisms that promote drug abuse liability. To determine the direct role of kinase signaling within the nucleus accumbens, specifically mitogen-activated protein kinase 1 (ERK2), in mood- and drug-related behavior, we used a herpes-simplex virus to up- or down-regulate ERK2 in adult male rats. We then exposed rats to a battery of behavioral tasks including the elevated plus-maze, open field test, forced-swim test, conditioned place preference, and finally cocaine self-administration. Herein, we show that viral overexpression or knockdown of ERK2 in the nucleus accumbens induces distinct behavioral phenotypes. Specifically, over expression of ERK2 facilitated depression- and anxiety-like behavior while also increasing sensitivity to cocaine. Conversely, down-regulation of ERK2 attenuated behavioral deficits, while blunting sensitivity to cocaine. Taken together, these data implicate ERK2 signaling, within the nucleus accumbens, in the regulation of affective behaviors and modulating sensitivity to the rewarding properties of cocaine.
Collapse
|
4
|
Effect of early-life stress or fluoxetine exposure on later-life conditioned taste aversion learning in Sprague-Dawley rats. Neurosci Lett 2022; 787:136818. [PMID: 35931277 DOI: 10.1016/j.neulet.2022.136818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/06/2023]
Abstract
In rodents, early-life exposure to environmental stress or antidepressant medication treatment has been shown to induce similar long-term consequences on memory- and depression-related behavior in adulthood. To expand on this line of work, we evaluated how juvenile exposure to chronic variable stress (CVS) or the selective serotonin reuptake inhibitor fluoxetine (FLX) influences conditioned taste aversion (CTA) learning in adulthood. To do this, in Experiment 1, we examined how adolescent CVS alone (postnatal day [PND] 35-48), or with prenatal stress (PNS) history (PNS + CVS), influenced the acquisition and extinction of CTA in adult male Sprague Dawley rats. Specifically, at PND70+ (adulthood), rats were presented with 0.15 % saccharin followed by an intraperitoneal (i.p.) injection of lithium chloride (LiCl) to induce visceral malaise. A total of four saccharin (conditioned stimulus) and LiCl (unconditioned stimulus) pairings occurred across the CTA acquisition phase. Next, saccharin was presented without aversive consequences, and intake was measured across consecutive days of the extinction phase. No differences in body weight gain across the experimental days, rate of CTA acquisition, or extinction of CTA, were observed among the experimental groups (control, n = 7; CVS, n = 12; PNS + CVS, n = 9). In Experiment 2, we evaluated if early-life FLX exposure alters CTA learning in adulthood. Specifically, adolescent stress naïve male and female rats received FLX (0 or 20 mg/kg/i.p) once daily for 15 consecutive days (PND35-49). During antidepressant exposure, FLX decreased body weight gain in both male (n = 7) and female rats (n = 7), when compared to respective controls (male control, n = 8; female control, n = 8). However, juvenile FLX exposure decreased body weight-gain in adult male, but not female, rats. Lastly, adolescent FLX history had no effect on CTA acquisition or extinction in adulthood (PND70), in neither male nor female rats. Together, the data indicate that juvenile FLX exposure results in a long-term decrease of body weight-gain in a male-specific manner. Yet, independent of sex, neither early-life stress nor FLX exposure alters CTA learning in adulthood.
Collapse
|
5
|
Themann A, Rodriguez M, Garcia-Carachure I, Lira O, Iñiguez SD. Adolescent fluoxetine exposure increases ERK-related signaling within the prefrontal cortex of adult male Sprague-Dawley rats. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac015. [PMID: 36776564 PMCID: PMC9918101 DOI: 10.1093/oons/kvac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There has been a disproportionate increase in fluoxetine (FLX) prescription rates within the juvenile population. Thus, we evaluated how adolescent FLX exposure alters expression/phosphorylation of proteins from the extracellular signal regulated kinase (ERK)-1/2 cascade within the adult prefrontal cortex (PFC). Male Sprague-Dawley rats were exposed to FLX (20 mg/kg) for 15 consecutive days (postnatal-day [PD] 35-49). At PD70 (adulthood), we examined protein markers for ERK1/2, ribosomal S6 kinase (RSK), and mammalian target of rapamycin (mTOR). FLX-pretreatment decreased body weight, while increasing PFC phosphorylation of ERK1/2 and RSK, as well as total mTOR protein expression in adulthood. We provide first-line evidence that juvenile FLX-pretreatment induces long-term decreases in body weight-gain, along with neurobiological changes in the adult PFC - highlighting that early-life antidepressant exposure increases ERK-related signaling markers in later life.
Collapse
Affiliation(s)
| | | | | | | | - Sergio D. Iñiguez
- Corresponding Author: Sergio D. Iñiguez, Ph.D., Department of Psychology, 500 University Ave, The University of Texas at El Paso, El Paso, TX, 79968. Tel: 915-747-5769. Fax: 915-747-6553.
| |
Collapse
|
6
|
Evsiukova VS, Bazovkina D, Bazhenova E, Kulikova EA, Kulikov AV. Tryptophan Hydroxylase 2 Deficiency Modifies the Effects of Fluoxetine and Pargyline on the Behavior, 5-HT- and BDNF-Systems in the Brain of Zebrafish ( Danio rerio). Int J Mol Sci 2021; 22:ijms222312851. [PMID: 34884655 PMCID: PMC8657639 DOI: 10.3390/ijms222312851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
The mechanisms of resistance to antidepressant drugs is a key and still unresolved problem of psychopharmacology. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) play a key role in the therapeutic effect of many antidepressants. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT synthesis in the brain. We used zebrafish (Danio rerio) as a promising model organism in order to elucidate the effect of TPH2 deficiency caused by p-chlorophenylalanine (pCPA) on the alterations in behavior and expression of 5-HT-related (Tph2, Slc6a4b, Mao, Htr1aa, Htr2aa) and BDNF-related (Creb, Bdnf, Ntrk2a, Ngfra) genes in the brain after prolonged treatment with two antidepressants, inhibitors of 5-HT reuptake (fluoxetine) and oxidation (pargyline). In one experiment, zebrafish were treated for 72 h with 0.2 mg/L fluoxetine, 2 mg/L pCPA, or the drugs combination. In another experiment, zebrafish were treated for 72 h with 0.5 mg/L pargyline, 2 mg/L pCPA, or the drugs combination. Behavior was studied in the novel tank diving test, mRNA levels were assayed by qPCR, 5-HT and its metabolite concentrations were measured by HPLC. The effects of interaction between pCPA and the drugs on zebrafish behavior were observed: pCPA attenuated “surface dwelling” induced by the drugs. Fluoxetine decreased mRNA levels of Tph2 and Htr2aa genes, while pargyline decreased mRNA levels of Slc6a4b and Htr1aa genes. Pargyline reduced Creb, Bdnf and Ntrk2a genes mRNA concentration only in the zebrafish treated with pCPA. The results show that the disruption of the TPH2 function can cause a refractory to antidepressant treatment.
Collapse
Affiliation(s)
- Valentina S. Evsiukova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.E.); (E.A.K.)
| | - Daria Bazovkina
- Department of Behavioral Neurogenomics, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ekaterina Bazhenova
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Elizabeth A. Kulikova
- Department of Psychoneuropharmacology, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.E.); (E.A.K.)
| | - Alexander V. Kulikov
- Department of Genetic Collections of Neural Disorders, Federal Research Center Institute of Cytology and Genetic Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-3833636187
| |
Collapse
|
7
|
Iñiguez SD, Flores-Ramirez FJ, Themann A, Lira O. Adolescent Fluoxetine Exposure Induces Persistent Gene Expression Changes in the Hippocampus of Adult Male C57BL/6 Mice. Mol Neurobiol 2021; 58:1683-1694. [PMID: 33241493 PMCID: PMC7933079 DOI: 10.1007/s12035-020-02221-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Mood-related disorders have a high prevalence among children and adolescents, posing a public health challenge, given their adverse impact on these young populations. Treatment with the selective serotonin reuptake inhibitor fluoxetine (FLX) is the first line of pharmacological intervention in pediatric patients suffering from affect-related illnesses. Although the use of this antidepressant has been deemed efficacious in the juvenile population, the enduring neurobiological consequences of adolescent FLX exposure are not well understood. Therefore, we explored for persistent molecular adaptations, in the adult hippocampus, as a function of adolescent FLX pretreatment. To do this, we administered FLX (20 mg/kg/day) to male C57BL/6 mice during adolescence (postnatal day [PD] 35-49). After a 21-day washout period (PD70), whole hippocampal tissue was dissected. We then used qPCR analysis to assess changes in the expression of genes associated with major intracellular signal transduction pathways, including the extracellular signal-regulated kinase (ERK), the phosphatidylinositide-3-kinase (PI3K)/AKT pathway, and the wingless (Wnt)-dishevelled-GSK3β signaling cascade. Our results show that FLX treatment results in long-term dysregulation of mRNA levels across numerous genes from the ERK, PI3K/AKT, and Wnt intracellular signaling pathways, along with increases of the transcription factors CREB, ΔFosB, and Zif268. Lastly, FLX treatment resulted in persistent increases of transcripts associated with cytoskeletal integrity (β-actin) and caspase activation (DIABLO), while decreasing genes associated with metabolism (fucose kinase) and overall neuronal activation (c-Fos). Collectively, these data indicate that adolescent FLX exposure mediates persistent alterations in hippocampal gene expression in adulthood, thus questioning the safety of early-life exposure to this antidepressant medication.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
| | - Francisco J Flores-Ramirez
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| |
Collapse
|
8
|
Huang G, Thompson SL, Taylor JR. MPEP Lowers Binge Drinking in Male and Female C57BL/6 Mice: Relationship with mGlu5/Homer2/Erk2 Signaling. Alcohol Clin Exp Res 2021; 45:732-742. [PMID: 33587295 PMCID: PMC8076072 DOI: 10.1111/acer.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Metabotropic glutamate receptor 5 (mGlu5) plays an important role in excessive alcohol use and the mGlu5/Homer2/Erk2 signaling pathway has been implicated in binge drinking. The mGlu5 negative allosteric modulator (NAM) 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) has been shown to reduce binge drinking in male mice, but less is known about its effect on female mice. Here, we sought to determine whether sex differences exists in the effects of MPEP on binge drinking and whether they relate to changes in the MPEP mGlu5/Homer2/Erk2 signaling. METHODS We measured the dose-response effect of MPEP on alcohol consumption in male and female mice using the Drinking in the Dark (DID) paradigm to assess potential sex differences. To rule out possible confounds of MPEP on locomotion, we measured the effects of MPEP on locomotor activity and drinking simultaneously during DID. Lastly, to test whether MPEP-induced changes in alcohol consumption were related to changes in Homer2 or Erk2 expression, we performed qPCR using brain tissue acquired from mice that had undergone 7 days of DID. RESULTS 30 mg/kg MPEP reduced binge alcohol consumption across female and male mice, with no sex differences in the dose-response relationship. Locomotor activity did not mediate the effects of MPEP on alcohol intake, but activity correlated with alcohol intake independent of MPEP. MPEP did not change the expression of Homer2 and Erk2 mRNA in the bed nucleus of the stria terminalis (BNST) or nucleus accumbens in mice whose drinking was reduced by MPEP, relative to saline. There was a positive relationship between alcohol intake and Homer2 expression in the BNST. CONCLUSIONS MPEP reduced alcohol consumption during DID in male and female C57BL/6 mice but did not change Homer2/Erk2 expression. Locomotor activity did not mediate the effects of MPEP on alcohol intake, though it correlated with alcohol intake. Alcohol intake during DID predicted BNST Homer2 expression. These data provide support for the regulation of alcohol consumption by mGlu5 across sexes.
Collapse
Affiliation(s)
- Gan Huang
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Summer L. Thompson
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jane R. Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University Graduate School of Arts and Sciences, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Parise LF, Sial OK, Warren BL, Sattler CR, Duperrouzel JC, Parise EM, Bolaños-Guzmán CA. Nicotine treatment buffers negative behavioral consequences induced by exposure to physical and emotional stress in adolescent male mice. Psychopharmacology (Berl) 2020; 237:3125-3137. [PMID: 32594187 PMCID: PMC7819755 DOI: 10.1007/s00213-020-05598-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
Abstract
Early life stress influences adult psychopathology and is associated with an increase in the propensity for drug use/seeking throughout the lifespan. Animal models corroborate that stress exposure exacerbates maladaptive reactivity to stressful stimuli while also shifting the rewarding properties of many drugs of abuse, including nicotine (NIC), a stimulant commonly misused by adolescents. Interestingly, NIC treatment can also normalize some stress-induced behavioral deficits in adult rodents; however, little is known about NIC's therapeutic efficacy following stress experienced during adolescence. The goal of the following experiments was to elucidate NIC's ability to buffer the negative consequences of stress exposure, and to further assess behavioral responsivity while on the drug. Given that stress often occurs in both physical and non-physical forms, we employed the vicarious social defeat stress (VSDS) model which allows for investigation of both physical (PS) and emotional stress (ES) exposure. After 10 days, exposure to PS and ES decreased interaction with a social target in the social interaction test (SIT), confirming social avoidance. Groups were further divided and given NIC (0.0 or 160 mg/L) in their drinking water. After 1 month of NIC consumption, the mice were exposed to the SIT, elevated plus maze (EPM), and the forced swim test (FST), respectively. NIC-treated mice showed a reversal of stress-induced deficits in the EPM and FST. Surprisingly, the mice did not show improvement in the SIT regardless of treatment condition. Together, these data confirm NIC's ability to normalize some stress-induced behavioral deficits; however, NIC's effects on social behavior need further investigation.
Collapse
Affiliation(s)
- Lyonna F Parise
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai. 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Omar K Sial
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
| | - Brandon L Warren
- Department of Pharmacodynamics, Department of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Carley R Sattler
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA
| | - Jacqueline C Duperrouzel
- Department of Psychology, Florida International University, 11200 S.W. 8th St., Miami, FL, 33199, USA
| | - Eric M Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai. 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Texas A&M University, 4325 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Garcia-Carachure I, Flores-Ramirez FJ, Castillo SA, Themann A, Arenivar MA, Preciado-Piña J, Zavala AR, Lobo MK, Iñiguez SD. Enduring effects of adolescent ketamine exposure on cocaine- and sucrose-induced reward in male and female C57BL/6 mice. Neuropsychopharmacology 2020; 45:1536-1544. [PMID: 32165718 PMCID: PMC7360558 DOI: 10.1038/s41386-020-0654-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 12/21/2022]
Abstract
Ketamine has shown promising antidepressant efficacy for adolescent treatment-resistant depression. However, the potential enduring consequences of ketamine exposure have not been thoroughly evaluated. Thus, we examined if juvenile ketamine treatment results in long-lasting changes for the rewarding properties of sucrose and cocaine in adulthood, across three separate experiments. In Experiment 1, adolescent male and female C57BL/6 mice received ketamine (20 mg/kg) for 15 consecutive days (Postnatal Day [PD] 35-49). Twenty-one days later (PD70; adulthood) we examined their behavioral responsivity to sucrose (1%) on a two-bottle choice design, or cocaine (0, 5, 10 mg/kg) using the conditioned place preference (CPP) test. We found that juvenile ketamine-pretreatment increased preference for sucrose and environments paired with cocaine in male, but not female, adult mice. This long-term outcome was not observed when male and female mice received ketamine as adults (PD70-84) and tested for sucrose and cocaine preference 21-days later (Experiment 2). Similarly, in Experiment 3, no long-lasting differences in these measures were observed when adolescent male mice were exposed to concomitant ketamine and social stressors (PD35-44), namely the social defeat or vicarious defeat stress paradigms-procedures that mediated a depression-related phenotype (along with a ketamine antidepressant-like response). Collectively, we demonstrate that in the absence of physical or psychological stress, adolescent ketamine exposure increases later life preference for the rewarding properties of sucrose and cocaine in a sex- and age-specific manner. As such, this preclinical work provides awareness for the potential long-term behavioral consequences associated with juvenile ketamine exposure.
Collapse
Affiliation(s)
- Israel Garcia-Carachure
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, El Paso, TX USA
| | - Francisco J. Flores-Ramirez
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, El Paso, TX USA
| | - Samuel A. Castillo
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, El Paso, TX USA
| | - Anapaula Themann
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, El Paso, TX USA
| | - Miguel A. Arenivar
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, El Paso, TX USA
| | - Joshua Preciado-Piña
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, El Paso, TX USA
| | - Arturo R. Zavala
- 0000 0000 9093 6830grid.213902.bDepartment of Psychology, California State University, Long Beach, CA USA
| | - Mary Kay Lobo
- 0000 0001 2175 4264grid.411024.2Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Sergio D. Iñiguez
- 0000 0001 0668 0420grid.267324.6Department of Psychology, The University of Texas at El Paso, El Paso, TX USA
| |
Collapse
|
11
|
Bowman MA, Daws LC. Targeting Serotonin Transporters in the Treatment of Juvenile and Adolescent Depression. Front Neurosci 2019; 13:156. [PMID: 30872996 PMCID: PMC6401641 DOI: 10.3389/fnins.2019.00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Depression is a serious public health concern. Many patients are not effectively treated, but in children and adolescents this problem is compounded by limited pharmaceutical options. Currently, the Food and Drug Administration approves only two antidepressants for use in these young populations. Both are selective serotonin reuptake inhibitors (SSRIs). Compounding matters further, they are therapeutically less efficacious in children and adolescents than in adults. Here, we review clinical and preclinical literature describing the antidepressant efficacy of SSRIs in juveniles and adolescents. Since the high-affinity serotonin transporter (SERT) is the primary target of SSRIs, we then synthesize these reports with studies of SERT expression/function during juvenile and adolescent periods. Preclinical literature reveals some striking parallels with clinical studies, primary among them is that, like humans, juvenile and adolescent rodents show reduced antidepressant-like responses to SSRIs. These findings underscore the utility of preclinical assays designed to screen drugs for antidepressant efficacy across ages. There is general agreement that SERT expression/function is lower in juveniles and adolescents than in adults. It is well established that chronic SSRI treatment decreases SERT expression/function in adults, but strikingly, SERT expression/function in adolescents is increased following chronic treatment with SSRIs. Finally, we discuss a putative role for organic cation transporters and/or plasma membrane monoamine transporter in serotonergic homeostasis in juveniles and adolescents. Taken together, fundamental differences in SERT, and putatively in other transporters capable of serotonin clearance, may provide a mechanistic basis for the relative inefficiency of SSRIs to treat pediatric depression, relative to adults.
Collapse
Affiliation(s)
- Melodi A Bowman
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Flores-Ramirez FJ, Garcia-Carachure I, Sanchez DO, Gonzalez C, Castillo SA, Arenivar MA, Themann A, Lira O, Rodriguez M, Preciado-Piña J, Iñiguez SD. Fluoxetine exposure in adolescent and adult female mice decreases cocaine and sucrose preference later in life. J Psychopharmacol 2018; 33:269881118805488. [PMID: 30334670 PMCID: PMC6472984 DOI: 10.1177/0269881118805488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Preclinical evidence from male subjects indicates that exposure to psychotropic medications, during early development, results in long-lasting altered responses to reward-related stimuli. However, it is not known if exposure to the antidepressant fluoxetine, in female subjects specifically, changes sensitivity to natural and drug rewards, later in life. AIMS The aim of this work was to investigate if exposure to fluoxetine mediates enduring changes in sensitivity to the rewarding properties of cocaine and sucrose, using female mice as a model system. METHODS We exposed C57BL/6 female mice to fluoxetine (250 mg/L in their drinking water) for 15 consecutive days, either during adolescence (postnatal day 35-49) or adulthood (postnatal day 70-84). Twenty-one days later, mice were examined on their behavioral reactivity to cocaine (0, 2.5, 5, 7.5 mg/kg) using the conditioned place preference paradigm, or assessed on the two-bottle sucrose (1%) test. RESULTS We found that regardless of age of antidepressant exposure, female mice pre-exposed to fluoxetine displayed reliable conditioning to the cocaine-paired compartment. However, when compared to respective age-matched controls, antidepressant pre-exposure decreased the magnitude of conditioning at the 5 and 7.5 mg/kg cocaine doses. Furthermore, fluoxetine pre-exposure reduced sucrose preference without altering total liquid intake. CONCLUSIONS The data suggest that pre-exposure to fluoxetine, during adolescence or adulthood, results in a prolonged decrease in sensitivity to the rewarding properties of both natural and drug rewards in female C57BL/6 mice.
Collapse
Affiliation(s)
| | | | - David O Sanchez
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
- Department of Psychology, California State University, San Bernardino, USA
| | - Celene Gonzalez
- Department of Psychology, California State University, San Bernardino, USA
| | - Samuel A Castillo
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Miguel A Arenivar
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Anapaula Themann
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Omar Lira
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | - Minerva Rodriguez
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
| | | | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, USA
- Department of Psychology, California State University, San Bernardino, USA
| |
Collapse
|
13
|
Memantine rescues prenatal citalopram exposure-induced striatal and social abnormalities in mice. Exp Neurol 2018; 307:145-154. [PMID: 29913137 DOI: 10.1016/j.expneurol.2018.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/02/2018] [Accepted: 06/04/2018] [Indexed: 01/21/2023]
Abstract
Prenatal exposure to citalopram (CTM), an antidepressant drug, has been associated with altered behavior, including autism-like symptoms in both human and rodent offspring. However, the neurological basis underlying these abnormal behaviors is not well understood. Here, we examined behavioral, morphological, and biochemical alterations in the male and female offspring of C57BL/6 mouse mothers that had been exposed to CTM during the last trimester of gestation. We observed abnormal behavior such as anxiety, altered locomotion and disordered social interactions in 2-5 months old offspring with prenatal CTM exposure. Using Golgi-Cox staining, we found that CTM caused significantly reduced dendritic length and number of dendritic branches in striatal neurons, as well as altered subunit levels of N-methyl-d-aspartate receptors (NMDARs) and calcium/calmodulin-dependent protein kinase II (CaMKII). Memantine, a selective NMDAR antagonist, improved prenatal CTM-induced abnormal protein levels and social interaction deficits. These results highlight potential mechanisms underlying the abnormal behavior observed in children who are prenatally exposed to CTM.
Collapse
|
14
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
15
|
Iñiguez SD, Riggs LM, Nieto SJ, Wright KN, Zamora NN, Cruz B, Zavala AR, Robison AJ, Mazei-Robison MS. Fluoxetine exposure during adolescence increases preference for cocaine in adulthood. Sci Rep 2015; 5:15009. [PMID: 26449406 PMCID: PMC4598853 DOI: 10.1038/srep15009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023] Open
Abstract
Currently, there is a high prevalence of antidepressant prescription rates within juvenile populations, yet little is known about the potential long-lasting consequences of such treatments, particularly on subsequent responses to drugs of abuse. To address this issue at the preclinical level, we examined whether adolescent exposure to fluoxetine (FLX), a selective serotonin reuptake inhibitor, results in changes to the sensitivity of the rewarding properties of cocaine in adulthood. Separate groups of male c57bl/6 mice were exposed to FLX (0 or 20 mg/kg) for 15 consecutive days either during adolescence (postnatal days [PD] 35–49) or adulthood (PD 65–79). Twenty-one days after FLX treatment, behavioral responsivity to cocaine (0, 2.5, 5, 10, or 20 mg/kg) conditioned place preference was assessed. Our data shows that mice pretreated with FLX during adolescence, but not during adulthood, display an enhanced dose-dependent preference to the environment paired with cocaine (5 or 10 mg/kg) when compared to age-matched saline pretreated controls. Taken together, our findings suggest that adolescent exposure to FLX increases sensitivity to the rewarding properties of cocaine, later in life.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA.,Department of Psychology, California State University, San Bernardino, CA, USA
| | - Lace M Riggs
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Steven J Nieto
- Department of Psychology, California State University, San Bernardino, CA, USA
| | | | - Norma N Zamora
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Bryan Cruz
- Department of Psychology, The University of Texas at El Paso, El Paso, TX, USA
| | - Arturo R Zavala
- Department of Psychology, California State University, Long Beach, CA, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, Michigan, MI, USA
| | | |
Collapse
|
16
|
Functional Upregulation of α4* Nicotinic Acetylcholine Receptors in VTA GABAergic Neurons Increases Sensitivity to Nicotine Reward. J Neurosci 2015; 35:8570-8. [PMID: 26041923 DOI: 10.1523/jneurosci.4453-14.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic nicotine exposure increases sensitivity to nicotine reward during a withdrawal period, which may facilitate relapse in abstinent smokers, yet the molecular neuroadaptation(s) that contribute to this phenomenon are unknown. Interestingly, chronic nicotine use induces functional upregulation of nicotinic acetylcholine receptors (nAChRs) in the mesocorticolimbic reward pathway potentially linking upregulation to increased drug sensitivity. In the ventral tegmental area (VTA), functional upregulation of nAChRs containing the α4 subunit (α4* nAChRs) is restricted to GABAergic neurons. To test the hypothesis that increased functional expression of α4* nAChRs in these neurons modulates nicotine reward behaviors, we engineered a Cre recombinase-dependent gene expression system to selectively express α4 nAChR subunits harboring a "gain-of-function" mutation [a leucine mutated to a serine residue at the 9' position (Leu9'Ser)] in VTA GABAergic neurons of adult mice. In mice expressing Leu9'Ser α4 nAChR subunits in VTA GABAergic neurons (Gad2(VTA):Leu9'Ser mice), subreward threshold doses of nicotine were sufficient to selectively activate VTA GABAergic neurons and elicit acute hypolocomotion, with subsequent nicotine exposures eliciting tolerance to this effect, compared to control animals. In the conditioned place preference procedure, nicotine was sufficient to condition a significant place preference in Gad2(VTA):Leu9'Ser mice at low nicotine doses that failed to condition control animals. Together, these data indicate that functional upregulation of α4* nAChRs in VTA GABAergic neurons confers increased sensitivity to nicotine reward and points to nAChR subtypes specifically expressed in GABAergic VTA neurons as molecular targets for smoking cessation therapeutics.
Collapse
|