1
|
Wein S, Riebel M, Seidel P, Brunner LM, Wagner V, Nothdurfter C, Rupprecht R, Schwarzbach JV. Local and global effects of sedation in resting-state fMRI: a randomized, placebo-controlled comparison between etifoxine and alprazolam. Neuropsychopharmacology 2024; 49:1738-1748. [PMID: 38822128 PMCID: PMC11399242 DOI: 10.1038/s41386-024-01884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024]
Abstract
TSPO ligands are promising alternatives to benzodiazepines in the treatment of anxiety, as they display less pronounced side effects such as sedation, cognitive impairment, tolerance development and abuse potential. In a randomized double-blind repeated-measures study we compare a benzodiazepine (alprazolam) to a TSPO ligand (etifoxine) by assessing side effects and acquiring resting-state fMRI data from 34 healthy participants after 5 days of taking alprazolam, etifoxine or a placebo. To study the effects of the pharmacological interventions in fMRI in detail and across different scales, we combine in our study complementary analysis strategies related to whole-brain functional network connectivity, local connectivity analysis expressed in regional homogeneity, fluctuations in low-frequency BOLD amplitudes and coherency of independent resting-state networks. Participants reported considerable adverse effects such as fatigue, sleepiness and concentration impairments, related to the administration of alprazolam compared to placebo. In resting-state fMRI we found a significant decrease in functional connection density, network efficiency and a decrease in the networks rich-club coefficient related to alprazolam. While observing a general decrease in regional homogeneity in high-level brain networks in the alprazolam condition, we simultaneously could detect an increase in regional homogeneity and resting-state network coherence in low-level sensory regions. Further we found a general increase in the low-frequency compartment of the BOLD signal. In the etifoxine condition, participants did not report any significant side effects compared to the placebo, and we did not observe any corresponding modulations in our fMRI metrics. Our results are consistent with the idea that sedation globally disconnects low-level functional networks, but simultaneously increases their within-connectivity. Further, our results point towards the potential of TSPO ligands in the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Simon Wein
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Marco Riebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Philipp Seidel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Lisa-Marie Brunner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Viola Wagner
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany
| | - Jens V Schwarzbach
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstrasse 84, Regensburg, 93053, Germany.
| |
Collapse
|
2
|
Tahedl M, Schwarzbach JV. An automated pipeline for obtaining labeled ICA-templates corresponding to functional brain systems. Hum Brain Mapp 2023; 44:5202-5211. [PMID: 37516917 PMCID: PMC10543103 DOI: 10.1002/hbm.26435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
The complexity of our actions and thinking is likely reflected in functional brain networks. Independent component analysis (ICA) is a popular data-driven method to compute group differences between such networks. A common way to investigate network differences is based on ICA maps which are generated from study-specific samples. However, this approach limits the generalizability and reproducibility of the results. Alternatively, network ICA templates can be used, but up to date, few such templates exist and are limited in terms of the functional systems they cover. Here, we propose a simple two-step procedure to obtain ICA-templates corresponding to functional brain systems of the researcher's choice: In step 1, the functional system of interest needs to be defined by means of a statistical parameter map (input), which one can generate with open-source software such as NeuroSynth or BrainMap. In step 2, that map is correlated to group-ICA maps provided by the Human Connectome Project (HCP), which is based on a large sample size and uses high quality and standardized acquisition procedures. The HCP-provided ICA-map with the highest correlation to the input map is then used as an ICA template representing the functional system of interest, for example, for subsequent analyses such as dual regression. We provide a toolbox to complete step 2 of the suggested procedure and demonstrate the usage of our pipeline by producing an ICA templates that corresponds to "motor function" and nine additional brain functional systems resulting in an ICA maps with excellent alignment with the gray matter/white matter boundaries of the brain. Our toolbox generates data in two different file formats: volumetric-based (NIFTI) and combined surface/volumetric files (CIFTI). Compared to 10 existing templates, our procedure output component maps with systematically stronger contribution of gray matter to the ICA z-values compared to white matter voxels in 9/10 cases by at least a factor of 2. The toolbox allows users to investigate functional networks of interest, which will enhance interpretability, reproducibility, and standardization of research investigating functional brain networks.
Collapse
Affiliation(s)
- Marlene Tahedl
- Department of Neuroradiology, School of MedicineTechnical University of MunichMunichGermany
| | - Jens V. Schwarzbach
- Department of Psychiatry and PsychotherapyUniversity of RegensburgRegensburgGermany
| |
Collapse
|
3
|
Pujol J, Pujol N, Mané A, Martínez-Vilavella G, Deus J, Pérez-Sola V, Blanco-Hinojo L. Mapping alterations in the local synchrony of the cerebral cortex in schizophrenia. Eur Psychiatry 2023; 66:e84. [PMID: 37848404 PMCID: PMC10755567 DOI: 10.1192/j.eurpsy.2023.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Observations from different fields of research coincide in indicating that a defective gamma-aminobutyric acid (GABA) interneuron system may be among the primary factors accounting for the varied clinical expression of schizophrenia. GABA interneuron deficiency is locally expressed in the form of neural activity desynchronization. We mapped the functional anatomy of local synchrony in the cerebral cortex in schizophrenia using functional connectivity MRI. METHODS Data from 86 patients with schizophrenia and 137 control subjects were obtained from publicly available repositories. Resting-state functional connectivity maps based on Iso-Distant Average Correlation measures across three distances were estimated detailing the local functional structure of the cerebral cortex. RESULTS Patients with schizophrenia showed weaker local functional connectivity (i.e., lower MRI signal synchrony) in (i) prefrontal lobe areas, (ii) somatosensory, auditory, visual, and motor cortices, (iii) paralimbic system at the anterior insula and anterior cingulate cortex, and (iv) hippocampus. The distribution of the defect in cortical area synchrony largely coincided with the synchronization effect of the GABA agonist alprazolam previously observed using identical functional connectivity measures. There was also a notable resemblance between the anatomy of our findings and cortical areas showing higher density of parvalbumin (prefrontal lobe and sensory cortices) and somatostatin (anterior insula and anterior cingulate cortex) GABA interneurons in humans. CONCLUSIONS Our results thus provide detail of the functional anatomy of synchrony changes in the cerebral cortex in schizophrenia and suggest which elements of the interneuron system are affected. Such information could ultimately be relevant in the search for specific treatments.
Collapse
Affiliation(s)
- Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
| | - Nuria Pujol
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Institute of Neuropsychiatry and Addictions, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anna Mané
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Institute of Neuropsychiatry and Addictions, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Joan Deus
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Department of Clinical and Health Psychology, Autonomous University of Barcelona, Barcelona, Spain
| | - Víctor Pérez-Sola
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Institute of Neuropsychiatry and Addictions, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
| | - Laura Blanco-Hinojo
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Barcelona, Spain
- Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
4
|
Gonzalez-Burgos I, Bainier M, Gross S, Schoenenberger P, Ochoa JA, Valencia M, Redondo RL. Glutamatergic and GABAergic Receptor Modulation Present Unique Electrophysiological Fingerprints in a Concentration-Dependent and Region-Specific Manner. eNeuro 2023; 10:ENEURO.0406-22.2023. [PMID: 36931729 PMCID: PMC10124153 DOI: 10.1523/eneuro.0406-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
Brain function depends on complex circuit interactions between excitatory and inhibitory neurons embedded in local and long-range networks. Systemic GABAA-receptor (GABAAR) or NMDA-receptor (NMDAR) modulation alters the excitatory-inhibitory balance (EIB), measurable with electroencephalography (EEG). However, EEG signatures are complex in localization and spectral composition. We developed and applied analytical tools to investigate the effects of two EIB modulators, MK801 (NMDAR antagonist) and diazepam (GABAAR modulator), on periodic and aperiodic EEG features in freely-moving male Sprague Dawley rats. We investigated how, across three brain regions, EEG features are correlated with EIB modulation. We found that the periodic component was composed of seven frequency bands that presented region-dependent and compound-dependent changes. The aperiodic component was also different between compounds and brain regions. Importantly, the parametrization into periodic and aperiodic components unveiled correlations between quantitative EEG and plasma concentrations of pharmacological compounds. MK-801 exposures were positively correlated with the slope of the aperiodic component. Concerning the periodic component, MK-801 exposures correlated negatively with the peak frequency of low-γ oscillations but positively with those of high-γ and high-frequency oscillations (HFOs). As for the power, θ and low-γ oscillations correlated negatively with MK-801, whereas mid-γ correlated positively. Diazepam correlated negatively with the knee of the aperiodic component, positively to β and negatively to low-γ oscillatory power, and positively to the modal frequency of θ, low-γ, mid-γ, and high-γ. In conclusion, correlations between exposures and pharmacodynamic effects can be better-understood thanks to the parametrization of EEG into periodic and aperiodic components. Such parametrization could be key in functional biomarker discovery.
Collapse
Affiliation(s)
- Irene Gonzalez-Burgos
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - José A Ochoa
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Miguel Valencia
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
5
|
Schiwy LC, Forlim CG, Fischer DJ, Kühn S, Becker M, Gallinat J. Aberrant functional connectivity within the salience network is related to cognitive deficits and disorganization in psychosis. Schizophr Res 2022; 246:103-111. [PMID: 35753120 DOI: 10.1016/j.schres.2022.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/10/2022] [Accepted: 06/11/2022] [Indexed: 01/09/2023]
Abstract
In schizophrenia and schizoaffective disorder cognitive deficits are a reliable characteristic predicting a poor functional outcome. It has been theorized that both the default mode network (DMN) and the salience network (SN) play a crucial role in cognitive processes and aberrant functional connectivity within these networks in psychotic patients has been reported. The goal of this study was to reveal potential links between aberrant functional connectivity within these networks and impaired cognitive performance in psychosis. We chose two approaches for cognitive assessment, first the MATRICS Consensus Cognitive Battery (MCCB) combined into a global score and second the disorganization factor derived from a five-factor model of the Positive and Negative Syndrome Scale (PANSS) known to be relevant for cognitive performance. DMN and SN were identified using independent component analysis on resting-state functional magnetic resonance imaging data. We found significantly decreased connectivity within the right supplementary motor area (SMA) and bilateral putamen in patients with psychosis (n = 70; 27F/43M) compared to healthy controls (n = 72; 28F/44M). Within patients, linear regression analysis revealed that aberrant SMA connectivity was associated with impaired global cognition, while dysfunctional bilateral putamen connectivity predicted disorganization. There were no significant changes in connectivity within the DMN. Results support the hypothesis that SN dysfunctional connectivity is important in the pathobiology of cognitive deficits in psychosis. For the first time we were able to show the involvement of dysfunctional SMA connectivity in this context. We interpret the decreased SN connectivity as evidence of reduced functionality in recruiting brain areas necessary for cognitive processing.
Collapse
Affiliation(s)
- Lennart Christopher Schiwy
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany.
| | - Caroline Garcia Forlim
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Djo Juliette Fischer
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Simone Kühn
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany; Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany
| | - Maxi Becker
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| | - Jürgen Gallinat
- University Medical Centre Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Zhang R, Wiers CE, Manza P, Tomasi D, Shokri-Kojori E, Kerich M, Almira E, Schwandt M, Diazgranados N, Momenan R, Volkow ND. Severity of alcohol use disorder influences sex differences in sleep, mood and brain functional connectivity impairments. Brain Commun 2022; 4:fcac127. [DOI: 10.1093/braincomms/fcac127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Growing evidence suggests greater vulnerability of women than men to the adverse effects of alcohol on mood and sleep. However, the underlying neurobiological mechanisms are still poorly understood.
Here we examined sex difference in resting state functional connectivity in alcohol use disorder using a whole-brain data driven approach and tested for relationships with mood and self-reported sleep. To examine whether sex effects vary by severity of alcohol use disorder, we studied two cohorts: non-treatment seeking n = 141 participants with alcohol use disorder (low severity; 58 females) from the Human Connectome project, and recently detoxified n = 102 treatment seeking participants with alcohol use disorder (high severity; 34 females) at the National Institute on Alcohol Abuse and Alcoholism.
For both cohorts, participants with alcohol use disorder had greater sleep and mood problems than HC, whereas sex by alcohol use effect varied by severity. Non-treatment seeking females with alcohol use disorder showed significant greater impairments in sleep but not mood compared to non-treatment seeking males with alcohol use disorder, whereas treatment-seeking females with alcohol use disorder reported greater negative mood but not sleep than treatment-seeking males with alcohol use disorder. Greater sleep problems in non-treatment seeking females with alcohol use disorder were associated with lower cerebello-parahippocampal functional connectivity, while greater mood problems in treatment-seeking females with alcohol use disorder were associated with lower fronto-occipital functional connectivity during rest.
The current study suggests that changes in resting state functional connectivity may account for sleep and mood impairments in females with alcohol use disorder. The effect of severity on sex differences might reflect neuroadaptive processes with progression of alcohol use disorder and needs to be tested with longitudinal data in the future.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA
| | - Mike Kerich
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1108, USA
| | - Erika Almira
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1108, USA
| | - Melanie Schwandt
- Office of Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1108, USA
| | - Nancy Diazgranados
- Office of Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1108, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1108, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-1013, USA
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892-1013, USA
| |
Collapse
|
7
|
Smart K, Worhunsky PD, Scheinost D, Angarita GA, Esterlis I, Carson RE, Krystal JH, O'Malley SS, Cosgrove KP, Hillmer AT. Multimodal neuroimaging of metabotropic glutamate 5 receptors and functional connectivity in alcohol use disorder. Alcohol Clin Exp Res 2022; 46:770-782. [PMID: 35342968 PMCID: PMC9117461 DOI: 10.1111/acer.14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND People recovering from alcohol use disorder (AUD) show altered resting brain connectivity. The metabotropic glutamate 5 (mGlu5) receptor is an important regulator of synaptic plasticity potentially linked with synchronized brain activity and a target of interest in treating AUD. The goal of this work was to assess potential relationships of brain connectivity at rest with mGlu5 receptor availability in people with AUD at two time points early in abstinence. METHODS Forty-eight image data sets were acquired with a multimodal neuroimaging battery that included resting-state functional magnetic resonance imaging (fMRI) and mGlu5 receptor positron emission tomography (PET) with the radiotracer [18 F]FPEB. Participants with AUD (n = 14) were scanned twice, at approximately 1 and 4 weeks after beginning supervised abstinence. [18 F]FPEB PET results were published previously. Primary comparisons of fMRI outcomes were performed between the AUD group and healthy controls (HCs; n = 23) and assessed changes over time within the AUD group. Relationships between resting-state connectivity measures and mGlu5 receptor availability were explored within groups. RESULTS Compared to HCs, global functional connectivity of the orbitofrontal cortex was higher in the AUD group at 4 weeks of abstinence (p = 0.003), while network-level functional connectivity within the default mode network (DMN) was lower (p < 0.04). Exploratory multimodal analyses showed that mGlu5 receptor availability was correlated with global connectivity across all brain regions (HCs, r = 0.41; AUD group at 1 week of abstinence, r = 0.50 and at 4 weeks, r = 0.46; all p < 0.0001). Furthermore, a component of cortical and striatal mGlu5 availability was correlated with connectivity between the DMN and salience networks in HCs (r = 0.60, p = 0.003) but not in the AUD group (p > 0.3). CONCLUSIONS These preliminary findings of altered global and network connectivity during the first month of abstinence from drinking may reflect the loss of efficient network function, while exploratory relationships with mGlu5 receptor availability suggest a potential glutamatergic relationship with network coherence.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - Gustavo A Angarita
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kelly P Cosgrove
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Tibon R, Tsvetanov KA. The "Neural Shift" of Sleep Quality and Cognitive Aging: A Resting-State MEG Study of Transient Neural Dynamics. Front Aging Neurosci 2022; 13:746236. [PMID: 35173599 PMCID: PMC8842663 DOI: 10.3389/fnagi.2021.746236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Sleep quality changes dramatically from young to old age, but its effects on brain dynamics and cognitive functions are not yet fully understood. We tested the hypothesis that a shift in brain networks dynamics relates to sleep quality and cognitive performance across the lifespan. Network dynamics were assessed using Hidden Markov Models (HMMs) in resting-state MEG data from a large cohort of population-based adults (N = 564, aged 18-88). Using multivariate analyses of brain-sleep profiles and brain-cognition profiles, we found an age-related "neural shift," expressed as decreased occurrence of "lower-order" brain networks coupled with increased occurrence of "higher-order" networks. This "neural shift" was associated with both increased sleep dysfunction and decreased fluid intelligence, and this relationship was not explained by age, sex or other covariates. These results establish the link between poor sleep quality, as evident in aging, and a behavior-related shift in neural dynamics.
Collapse
Affiliation(s)
- Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Frölich MA, White DM, Kraguljac NV, Lahti AC. Baseline Functional Connectivity Predicts Connectivity Changes Due to a Small Dose of Midazolam in Older Adults. Anesth Analg 2020; 130:224-232. [PMID: 31498189 DOI: 10.1213/ane.0000000000004385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND In the perioperative context, benzodiazepines are widely used as anxiolytics. They affect cognition in general, but it is unclear whether the effects of a small dose of the short-acting benzodiazepine midazolam can be assessed objectively. To address this scientific question, we conducted a prospective observational study in adults 55-73 years of age. Using both validated psychometric and functional imaging techniques, we determined whether a 2-mg intravenous (IV) dose of midazolam affects cognitive function. METHODS We measured the effect of 2 mg IV of midazolam with both the well-established Repeatable Battery for the Assessment of Neuropsychological Status test and resting-state functional magnetic imaging (rs-fMRI) in older adults. RESULTS Midazolam reduces immediate and delayed memory and has a profound and robust effect on rs-fMRI. Baseline resting-state connectivity predicts memory decline after midazolam administration. CONCLUSIONS Observed effects of midazolam on brain networks were statistically significant even in a small group of volunteers. If validated by other investigators, resting-state brain connectivity may have utility as a measure to predict sensitivity to midazolam in older adults.
Collapse
Affiliation(s)
| | - David M White
- Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nina V Kraguljac
- Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adrienne C Lahti
- Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Campabadal A, Abos A, Segura B, Serradell M, Uribe C, Baggio HC, Gaig C, Santamaria J, Compta Y, Bargallo N, Junque C, Iranzo A. Disruption of posterior brain functional connectivity and its relation to cognitive impairment in idiopathic REM sleep behavior disorder. NEUROIMAGE-CLINICAL 2019; 25:102138. [PMID: 31911344 PMCID: PMC6948254 DOI: 10.1016/j.nicl.2019.102138] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
There is a reduced brain posterior functional connectivity in IRBD patients. Reduced temporo-parietal connectivity correlates with mental processing slowness. Left superior parietal lobule has reduced centrality in IRBD patients.
Background Resting-state functional MRI has been proposed as a new biomarker of prodromal neurodegenerative disorders, but it has been poorly investigated in the idiopathic form of rapid-eye-movement sleep behavior disorder (IRBD), a clinical harbinger of subsequent synucleinopathy. Particularly, a complex-network approach has not been tested to study brain functional connectivity in IRBD patients. Objectives The aim of the current work is to characterize resting-state functional connectivity in IRBD patients using a complex-network approach and to determine its possible relation to cognitive impairment. Method Twenty patients with IRBD and 27 matched healthy controls (HC) underwent resting-state functional MRI with a 3T scanner and a comprehensive neuropsychological battery. The functional connectome was studied using threshold-free network-based statistics. Global and local network parameters were calculated based on graph theory and compared between groups. Head motion, age and sex were introduced as covariates in all analyses. Results IRBD patients showed reduced cortico-cortical functional connectivity strength in comparison with HC in edges located in posterior regions (p <0.05, FWE corrected). This regional pattern was also shown in an independent analysis comprising posterior areas where a decreased connectivity in 51 edges was found, whereas no significant results were detected when an anterior network was considered (p <0.05, FWE corrected). In the posterior network, the left superior parietal lobule had reduced centrality in IRBD. Functional connectivity strength between left inferior temporal lobe and right superior parietal lobule positively correlated with mental processing speed in IRBD (r = .633; p = .003). No significant correlations were found in the HC group. Conclusion : Our findings support the presence of disrupted posterior functional brain connectivity of IRBD patients similar to that found in synucleinopathies. Moreover, connectivity reductions in IRBD were associated with lower performance in mental processing speed domain.
Collapse
Affiliation(s)
- A Campabadal
- Medical Psychology Unit, Department of Medicine. Institute of Neuroscience, University of Barcelona. Barcelona, Catalonia, Spain
| | - A Abos
- Medical Psychology Unit, Department of Medicine. Institute of Neuroscience, University of Barcelona. Barcelona, Catalonia, Spain
| | - B Segura
- Medical Psychology Unit, Department of Medicine. Institute of Neuroscience, University of Barcelona. Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII) Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain
| | - M Serradell
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII) Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain.; Multidisciplinary Sleep Unit, Neurology Service, Hospital Clínic, Barcelona, Catalonia, Spain
| | - C Uribe
- Medical Psychology Unit, Department of Medicine. Institute of Neuroscience, University of Barcelona. Barcelona, Catalonia, Spain
| | - H C Baggio
- Medical Psychology Unit, Department of Medicine. Institute of Neuroscience, University of Barcelona. Barcelona, Catalonia, Spain
| | - C Gaig
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII) Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain.; Multidisciplinary Sleep Unit, Neurology Service, Hospital Clínic, Barcelona, Catalonia, Spain
| | - J Santamaria
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII) Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain.; Multidisciplinary Sleep Unit, Neurology Service, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Y Compta
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII) Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain.; Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona. Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
| | - N Bargallo
- Centre de Diagnòstic per la Imatge, Hospital Clínic, Barcelona, Catalonia, Spain
| | - C Junque
- Medical Psychology Unit, Department of Medicine. Institute of Neuroscience, University of Barcelona. Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII) Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain..
| | - A Iranzo
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED:CB06/05/0018-ISCIII) Barcelona, Spain; Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain.; Multidisciplinary Sleep Unit, Neurology Service, Hospital Clínic, Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Bonhomme V, Staquet C, Montupil J, Defresne A, Kirsch M, Martial C, Vanhaudenhuyse A, Chatelle C, Larroque SK, Raimondo F, Demertzi A, Bodart O, Laureys S, Gosseries O. General Anesthesia: A Probe to Explore Consciousness. Front Syst Neurosci 2019; 13:36. [PMID: 31474839 PMCID: PMC6703193 DOI: 10.3389/fnsys.2019.00036] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
General anesthesia reversibly alters consciousness, without shutting down the brain globally. Depending on the anesthetic agent and dose, it may produce different consciousness states including a complete absence of subjective experience (unconsciousness), a conscious experience without perception of the environment (disconnected consciousness, like during dreaming), or episodes of oriented consciousness with awareness of the environment (connected consciousness). Each consciousness state may potentially be followed by explicit or implicit memories after the procedure. In this respect, anesthesia can be considered as a proxy to explore consciousness. During the recent years, progress in the exploration of brain function has allowed a better understanding of the neural correlates of consciousness, and of their alterations during anesthesia. Several changes in functional and effective between-region brain connectivity, consciousness network topology, and spatio-temporal dynamics of between-region interactions have been evidenced during anesthesia. Despite a set of effects that are common to many anesthetic agents, it is still uneasy to draw a comprehensive picture of the precise cascades during general anesthesia. Several questions remain unsolved, including the exact identification of the neural substrate of consciousness and its components, the detection of specific consciousness states in unresponsive patients and their associated memory processes, the processing of sensory information during anesthesia, the pharmacodynamic interactions between anesthetic agents, the direction-dependent hysteresis phenomenon during the transitions between consciousness states, the mechanisms of cognitive alterations that follow an anesthetic procedure, the identification of an eventual unitary mechanism of anesthesia-induced alteration of consciousness, the relationship between network effects and the biochemical or sleep-wake cycle targets of anesthetic agents, as well as the vast between-studies variations in dose and administration mode, leading to difficulties in between-studies comparisons. In this narrative review, we draw the picture of the current state of knowledge in anesthesia-induced unconsciousness, from insights gathered on propofol, halogenated vapors, ketamine, dexmedetomidine, benzodiazepines and xenon. We also describe how anesthesia can help understanding consciousness, we develop the above-mentioned unresolved questions, and propose tracks for future research.
Collapse
Affiliation(s)
- Vincent Bonhomme
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Cécile Staquet
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Javier Montupil
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Aline Defresne
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,University Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Régional de la Citadelle (CHR Citadelle), Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Murielle Kirsch
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium.,Department of Anesthesia and Intensive Care Medicine, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Sensation & Perception Research Group, GIGA-Consciousness, Department of Algology, GIGA Institute, University of Liege, Centre Hospitalier Universitaire de Liège (CHU Lièege), Liege, Belgium
| | - Camille Chatelle
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Federico Raimondo
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Olivier Bodart
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liege, Liege, Belgium
| |
Collapse
|
12
|
Wu GR, De Raedt R, Van Schuerbeek P, Baeken C. Opposite subgenual cingulate cortical functional connectivity and metabolic activity patterns in refractory melancholic major depression. Brain Imaging Behav 2018; 14:426-435. [DOI: 10.1007/s11682-018-0011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Salinas FS, Szabó CÁ. Resting-state functional connectivity changes due to acute and short-term valproic acid administration in the baboon model of GGE. NEUROIMAGE-CLINICAL 2017; 16:132-141. [PMID: 28794974 PMCID: PMC5537408 DOI: 10.1016/j.nicl.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/14/2022]
Abstract
Resting-state functional connectivity (FC) is altered in baboons with genetic generalized epilepsy (GGE) compared to healthy controls (CTL). We compared FC changes between GGE and CTL groups after intravenous injection of valproic acid (VPA) and following one-week of orally administered VPA. Seven epileptic (2 females) and six CTL (3 females) baboons underwent resting-state fMRI (rs-fMRI) at 1) baseline, 2) after intravenous acute VPA administration (20 mg/kg), and 3) following seven-day oral, subacute VPA therapy (20–80 mg/kg/day). FC was evaluated using a data-driven approach, while regressing out the group-wise effects of age, gender and VPA levels. Sixteen networks were identified by independent component analysis (ICA). Each network mask was thresholded (z > 4.00; p < 0.001), and used to compare group-wise FC differences between baseline, intravenous and oral VPA treatment states between GGE and CTL groups. At baseline, FC was increased in most cortical networks of the GGE group but decreased in the thalamic network. After intravenous acute VPA, FC increased in the basal ganglia network and decreased in the parietal network of epileptic baboons to presumed nodes associated with the epileptic network. After oral VPA therapy, FC was decreased in GGE baboons only the orbitofrontal networks connections to the primary somatosensory cortices, reflecting a reversal from baseline comparisons. VPA therapy affects FC in the baboon model of GGE after a single intravenous dose—possibly by facilitating subcortical modulation of the epileptic network and suppressing seizure generation—and after short-term oral VPA treatment, reversing the abnormal baseline increases in FC in the orbitofrontal network. While there is a need to correlate these FC changes with simultaneous EEG recording and seizure outcomes, this study demonstrates the feasibility of evaluating rs-fMRI effects of antiepileptic medications even after short-term exposure. This resting-state fMRI study evaluates treatment-related functional connectivity (FC) changes in the baboon model of GGE. Pre-treatment FC is mostly increased in cortical networks, but decreased for the thalamic network in epileptic baboons. Treatment-related FC changes were noted both after single intravenous dose of VPA and short-term oral VPA treatment. FC studies may provide a novel approach to evaluate antiepileptic medication effects.
Collapse
Affiliation(s)
- Felipe S Salinas
- Research Imaging Institute, UT Health, San Antonio, United States.,South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Charles Ákos Szabó
- Department of Neurology, UT Health, San Antonio, United States.,South Texas Comprehensive Epilepsy Center, UT Health, San Antonio, United States
| |
Collapse
|
14
|
Syan SK, Minuzzi L, Smith M, Allega OR, Hall GB, Frey BN. Resting state functional connectivity in women with bipolar disorder during clinical remission. Bipolar Disord 2017; 19:97-106. [PMID: 28258639 DOI: 10.1111/bdi.12469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/14/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Periods of euthymia in bipolar disorder (BD) serve as a valuable time to study trait-based pathophysiology. The use of resting state functional connectivity (Rs-FC) can aid in the understanding of BD pathophysiology free of task or mood state biases. The present study investigated two unexplored areas of Rs-FC research in bipolar remission: (i) Rs-FC in women, controlling for the potential influence of premenstrual symptoms, and (ii) the use of both independent component analysis (ICA) and seed-based analysis (SBA) to investigate Rs-FC. METHODS We investigated Rs-FC of the default mode network, meso-paralimbic network and fronto-parietal network in a sample of 32 euthymic women with BD and 36 age-matched controls during the mid-follicular phase of their menstrual cycle. Rs-FC was assessed with ICA and SBA using the posterior cingulate cortex (PCC), amygdala and dorsolateral prefrontal cortex (dlPFC) as seed points for their respective resting state networks. RESULTS In BD, compared to controls, SBAs revealed increased coupling between the PCC and the angular gyrus (P=.002, false discovery rate [FDR]-corrected) and between the right dlPFC and the brainstem (P=.03, FDR-corrected). In BD only, PCC-angular gyrus coupling was correlated with anxiety symptoms. Group differences in Rs-FC using ICA did not survive multiple comparisons. CONCLUSIONS Negative findings from whole-brain ICA Rs-FC may reflect a state of clinical remission in BD. Heightened activation between the PCC and the angular gyrus and between the dlPFC and the brainstem may reflect (i) an abnormal trait integration of affective information during clinical remission and/or (ii) an adaptive compensatory mechanism required for clinical stabilization.
Collapse
Affiliation(s)
- Sabrina K Syan
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada
| | - Luciano Minuzzi
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada.,Mood Disorders Program, St. Joseph's Healthcare Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Mara Smith
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Olivia R Allega
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada
| | - Geoffrey Bc Hall
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Benicio N Frey
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada.,Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, ON, Canada.,Mood Disorders Program, St. Joseph's Healthcare Hamilton, ON, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|