1
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
2
|
Bekhbat M. Glycolytic metabolism: Food for immune cells, fuel for depression? Brain Behav Immun Health 2024; 40:100843. [PMID: 39263313 PMCID: PMC11387811 DOI: 10.1016/j.bbih.2024.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
Inflammation is one biological pathway thought to impact the brain to contribute to major depressive disorder (MDD) and is reliably associated with resistance to standard antidepressant treatments. While peripheral immune cells, particularly monocytes, have been associated with aspects of increased inflammation in MDD and symptom severity, significant gaps in knowledge exist regarding the mechanisms by which these cells are activated to contribute to behavioral symptoms in MDD. One concept that has gained recent appreciation is that metabolic rewiring to glycolysis in activated myeloid cells plays a crucial role in facilitating these cells' pro-inflammatory functions, which may underlie myeloid contribution to systemic inflammation and its effects on the brain. Given emerging evidence from translational studies of depression that peripheral monocytes exhibit signs of glycolytic activation, better understanding the immunometabolic phenotypes of monocytes which are known to be elevated in MDD with high inflammation is a critical step toward comprehending and treating the impact of inflammation on the brain. This narrative review examines the extant literature on glycolytic metabolism of circulating monocytes in depression and discusses the functional implications of immunometabolic shifts at both cellular and systemic levels. Additionally, it proposes potential therapeutic applications of existing immunomodulators that target glycolysis and related metabolic pathways in order to reverse the impact of elevated inflammation on the brain and depressive symptoms.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Treadway MT, Etuk SM, Cooper JA, Hossein S, Hahn E, Betters SA, Liu S, Arulpragasam AR, DeVries BAM, Irfan N, Nuutinen MR, Wommack EC, Woolwine BJ, Bekhbat M, Kragel PA, Felger JC, Haroon E, Miller AH. A randomized proof-of-mechanism trial of TNF antagonism for motivational deficits and related corticostriatal circuitry in depressed patients with high inflammation. Mol Psychiatry 2024:10.1038/s41380-024-02751-x. [PMID: 39289477 DOI: 10.1038/s41380-024-02751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
Chronic, low-grade inflammation has been associated with motivational deficits in patients with major depression (MD). In turn, impaired motivation has been linked to poor quality of life across psychiatric disorders. We thus determined effects of the anti-inflammatory drug infliximab-a potent tumor necrosis factor (TNF) antagonist-on behavioral and neural measures of motivation in 42 medically stable, unmedicated MD patients with a C-reactive protein >3 mg/L. All patients underwent a double-blind, placebo-controlled, single-dose, randomized clinical trial with infliximab (5 mg/kg) versus placebo. Behavioral performance on an effort-based decision-making task, self-report questionnaires, and neural responses during event-related functional magnetic resonance imaging were assessed at baseline and 2 weeks following infusion. We found that relative to placebo, patients receiving infliximab were more willing to expend effort for rewards. Moreover, increase in effortful choices was associated with reduced TNF signaling as indexed by decreased soluble TNF receptor type 2 (sTNFR2). Changes in effort-based decision-making and sTNFR2 were also associated with changes in task-related activity in a network of brain areas, including dorsomedial prefrontal cortex (dmPFC), ventral striatum, and putamen, as well as the functional connectivity between these regions. Changes in sTNFR2 also mediated the relationships between drug condition and behavioral and neuroimaging measures. Finally, changes in self-reported anhedonia symptoms and effort-discounting behavior were associated with greater responses of an independently validated whole-brain predictive model (aka "neural signature") sensitive to monetary rewards. Taken together, these data support the use of anti-inflammatory treatment to improve effort-based decision-making and associated brain circuitry in depressed patients with high inflammation.
Collapse
Affiliation(s)
- Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Sarah M Etuk
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | - Jessica A Cooper
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shabnam Hossein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, US
| | - Evan Hahn
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | | | - Shiyin Liu
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | | | | | - Nadia Irfan
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
| | | | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Bobbi J Woolwine
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip A Kragel
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
4
|
Coperchini F, Greco A, Teliti M, Croce L, Chytiris S, Magri F, Gaetano C, Rotondi M. Inflamm-ageing: How cytokines and nutrition shape the trajectory of ageing. Cytokine Growth Factor Rev 2024:S1359-6101(24)00065-0. [PMID: 39237438 DOI: 10.1016/j.cytogfr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Population ageing is increasing in prevalence in most developed countries. Ageing is the decline of functional properties at the cellular, tissue, and organ level. Biochemical changes that occur in all organisms that experience biological ageing are referred to as the "Hallmarks of ageing". Inflammation is a common denominator of the hallmarks of ageing, being mechanistically involved in most age-related health consequences. Inflamm-ageing refers to age-related changes in the inflammatory and immune systems which somehow drive the ageing process towards healthy or unhealthy ageing. Current evidences, support that, reversing the age-related pro-inflammatory status of inflamm-ageing, is able to modulate most hallmarks of ageing. Inflamm-ageing is associated with increased levels of pro-inflammatory molecules (e.g. cytokines, chemokines), ultimately producing a chronic low-grade inflammatory state typically observed in older individuals. It is commonly accepted that, the balance between pro- and anti-inflammatory cytokines/chemokines is one of the factors determining whether healthy or unhealthy ageing occurs. Malnutrition and nutritional imbalances, are highly prevalent in the elderly, playing a role in driving the balance of pro- and anti-inflammatory immunoactive molecules. In particular, malnutrition is a major risk factor for sarcopenia, a phenomenon characterized by loss of muscle mass, which is often referred to as the biological basis for frailty. Given the close relationship between malnutrition and sarcopenia, there is also evidence for a link between malnutrition and frailty. Indeed, changes in cytokine/chemokine levels in elderly patients with malnutrition were demonstrated. The demonstration that specific cytokines play a role in modulating appetite and nutrient sensing and taste reception, provided further evidence for the existence of a link between inflamm-ageing, nutrition and cytokines in shaping the trajectory of ageing. The present review will overview current evidence supporting the role of specific circulating cytokines and chemokines in the relationship between ageing, inflammation, and malnutrition.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy.
| |
Collapse
|
5
|
Hird EJ, Slanina-Davies A, Lewis G, Hamer M, Roiser JP. From movement to motivation: a proposed framework to understand the antidepressant effect of exercise. Transl Psychiatry 2024; 14:273. [PMID: 38961071 PMCID: PMC11222551 DOI: 10.1038/s41398-024-02922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Depression is the leading cause of disability worldwide, exerting a profound negative impact on quality of life in those who experience it. Depression is associated with disruptions to several closely related neural and cognitive processes, including dopamine transmission, fronto-striatal brain activity and connectivity, reward processing and motivation. Physical activity, especially aerobic exercise, reduces depressive symptoms, but the mechanisms driving its antidepressant effects are poorly understood. Here we propose a novel hypothesis for understanding the antidepressant effects of exercise, centred on motivation, across different levels of explanation. There is robust evidence that aerobic exercise decreases systemic inflammation. Inflammation is known to reduce dopamine transmission, which in turn is strongly implicated in effort-based decision making for reward. Drawing on a broad range of research in humans and animals, we propose that by reducing inflammation and boosting dopamine transmission, with consequent effects on effort-based decision making for reward, exercise initially specifically improves 'interest-activity' symptoms of depression-namely anhedonia, fatigue and subjective cognitive impairment - by increasing propensity to exert effort. Extending this framework to the topic of cognitive control, we explain how cognitive impairment in depression may also be conceptualised through an effort-based decision-making framework, which may help to explain the impact of exercise on cognitive impairment. Understanding the mechanisms underlying the antidepressant effects of exercise could inform the development of novel intervention strategies, in particular personalised interventions and boost social prescribing.
Collapse
Affiliation(s)
- E J Hird
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - A Slanina-Davies
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - G Lewis
- Division of Psychiatry, University College London, London, UK
| | - M Hamer
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
6
|
Queirazza F, Cavanagh J, Philiastides MG, Krishnadas R. Mild exogenous inflammation blunts neural signatures of bounded evidence accumulation and reward prediction error processing in healthy male participants. Brain Behav Immun 2024; 119:197-210. [PMID: 38555987 DOI: 10.1016/j.bbi.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Altered neural haemodynamic activity during decision making and learning has been linked to the effects of inflammation on mood and motivated behaviours. So far, it has been reported that blunted mesolimbic dopamine reward signals are associated with inflammation-induced anhedonia and apathy. Nonetheless, it is still unclear whether inflammation impacts neural activity underpinning decision dynamics. The process of decision making involves integration of noisy evidence from the environment until a critical threshold of evidence is reached. There is growing empirical evidence that such process, which is usually referred to as bounded accumulation of decision evidence, is affected in the context of mental illness. METHODS In a randomised, placebo-controlled, crossover study, 19 healthy male participants were allocated to placebo and typhoid vaccination. Three to four hours post-injection, participants performed a probabilistic reversal-learning task during functional magnetic resonance imaging. To capture the hidden neurocognitive operations underpinning decision-making, we devised a hybrid sequential sampling and reinforcement learning computational model. We conducted whole brain analyses informed by the modelling results to investigate the effects of inflammation on the efficiency of decision dynamics and reward learning. RESULTS We found that during the decision phase of the task, typhoid vaccination attenuated neural signatures of bounded evidence accumulation in the dorsomedial prefrontal cortex, only for decisions requiring short integration time. Consistent with prior work, we showed that, in the outcome phase, mild acute inflammation blunted the reward prediction error in the bilateral ventral striatum and amygdala. CONCLUSIONS Our study extends current insights into the effects of inflammation on the neural mechanisms of decision making and shows that exogenous inflammation alters neural activity indexing efficiency of evidence integration, as a function of choice discriminability. Moreover, we replicate previous findings that inflammation blunts striatal reward prediction error signals.
Collapse
Affiliation(s)
- Filippo Queirazza
- School of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK; School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK.
| | - Jonathan Cavanagh
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, UK
| | | | - Rajeev Krishnadas
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Department of Psychiatry, University of Cambridge, Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0AH, UK
| |
Collapse
|
7
|
Nusslock R, Alloy LB, Brody GH, Miller GE. Annual Research Review: Neuroimmune network model of depression: a developmental perspective. J Child Psychol Psychiatry 2024; 65:538-567. [PMID: 38426610 PMCID: PMC11090270 DOI: 10.1111/jcpp.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Depression is a serious public health problem, and adolescence is an 'age of risk' for the onset of Major Depressive Disorder. Recently, we and others have proposed neuroimmune network models that highlight bidirectional communication between the brain and the immune system in both mental and physical health, including depression. These models draw on research indicating that the cellular actors (particularly monocytes) and signaling molecules (particularly cytokines) that orchestrate inflammation in the periphery can directly modulate the structure and function of the brain. In the brain, inflammatory activity heightens sensitivity to threats in the cortico-amygdala circuit, lowers sensitivity to rewards in the cortico-striatal circuit, and alters executive control and emotion regulation in the prefrontal cortex. When dysregulated, and particularly under conditions of chronic stress, inflammation can generate feelings of dysphoria, distress, and anhedonia. This is proposed to initiate unhealthy, self-medicating behaviors (e.g. substance use, poor diet) to manage the dysphoria, which further heighten inflammation. Over time, dysregulation in these brain circuits and the inflammatory response may compound each other to form a positive feedback loop, whereby dysregulation in one organ system exacerbates the other. We and others suggest that this neuroimmune dysregulation is a dynamic joint vulnerability for depression, particularly during adolescence. We have three goals for the present paper. First, we extend neuroimmune network models of mental and physical health to generate a developmental framework of risk for the onset of depression during adolescence. Second, we examine how a neuroimmune network perspective can help explain the high rates of comorbidity between depression and other psychiatric disorders across development, and multimorbidity between depression and stress-related medical illnesses. Finally, we consider how identifying neuroimmune pathways to depression can facilitate a 'next generation' of behavioral and biological interventions that target neuroimmune signaling to treat, and ideally prevent, depression in youth and adolescents.
Collapse
Affiliation(s)
- Robin Nusslock
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| | - Lauren B. Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA. USA
| | - Gene H. Brody
- Center for Family Research, University of Georgia, Athens GA, USA
| | - Gregory E. Miller
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| |
Collapse
|
8
|
Treadway M, Etuk S, Cooper J, Hossein S, Hahn E, Betters S, Liu S, Arulpragasam A, DeVries B, Irfan N, Nuutinen M, Wommack E, Woolwine B, Bekhbat M, Kragel P, Felger J, Haroon E, Miller A. A randomized proof-of-mechanism trial of TNF antagonism for motivational anhedonia and related corticostriatal circuitry in depressed patients with high inflammation. RESEARCH SQUARE 2024:rs.3.rs-3957252. [PMID: 38496406 PMCID: PMC10942546 DOI: 10.21203/rs.3.rs-3957252/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Chronic, low-grade inflammation has been associated with motivational deficits in patients with major depression (MD). In turn, impaired motivation has been linked to poor quality of life across psychiatric disorders. We thus determined effects of the anti-inflammatory drug infliximab-a potent tumor necrosis factor (TNF) antagonist-on behavioral and neural measures of motivation in 42 medically stable, unmedicated MD patients with a C-reactive protein > 3mg/L. All patients underwent a double-blind, placebo-controlled, single-dose, randomized clinical trial with infliximab (5mg/kg) versus placebo. Behavioral performance on an effort-based decision-making task, self-report questionnaires, and neural responses during event-related functional magnetic resonance imaging were assessed at baseline and 2 weeks following infusion. We found that relative to placebo, patients receiving infliximab were more willing to expend effort for rewards. Moreover, increase in effortful choices was associated with reduced TNF signaling as indexed by decreased soluble TNF receptor type 2 (sTNFR2). Changes in effort-based decision-making and sTNFR2 were also associated with changes in task-related activity in a network of brain areas, including dmPFC, ventral striatum, and putamen, as well as the functional connectivity between these regions. Changes in sTNFR2 also mediated the relationships between drug condition and behavioral and neuroimaging measures. Finally, changes in self-reported anhedonia symptoms and effort-discounting behavior were associated with greater responses of an independently validated whole-brain predictive model (aka "neural signature") sensitive to monetary rewards. Taken together, these data support the use of anti-inflammatory treatment to improve effort-based decision-making and associated brain circuitry in depressed patients with high inflammation.
Collapse
|
9
|
Kokkosis AG, Madeira MM, Hage Z, Valais K, Koliatsis D, Resutov E, Tsirka SE. Chronic psychosocial stress triggers microglial-/macrophage-induced inflammatory responses leading to neuronal dysfunction and depressive-related behavior. Glia 2024; 72:111-132. [PMID: 37675659 PMCID: PMC10842267 DOI: 10.1002/glia.24464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
Chronic environmental stress and traumatic social experiences induce maladaptive behavioral changes and is a risk factor for major depressive disorder (MDD) and various anxiety-related psychiatric disorders. Clinical studies and animal models of chronic stress have reported that symptom severity is correlated with innate immune responses and upregulation of neuroinflammatory cytokine signaling in brain areas implicated in mood regulation (mPFC; medial Prefrontal Cortex). Despite increasing evidence implicating impairments of neuroplasticity and synaptic signaling deficits into the pathophysiology of stress-related mental disorders, how microglia may modulate neuronal homeostasis in response to chronic stress has not been defined. Here, using the repeated social defeat stress (RSDS) mouse model we demonstrate that microglial-induced inflammatory responses are regulating neuronal plasticity associated with psychosocial stress. Specifically, we show that chronic stress induces a rapid activation and proliferation of microglia as well as macrophage infiltration in the mPFC, and these processes are spatially related to neuronal activation. Moreover, we report a significant association of microglial inflammatory responses with susceptibility or resilience to chronic stress. In addition, we find that exposure to chronic stress exacerbates phagocytosis of synaptic elements and deficits in neuronal plasticity. Importantly, by utilizing two different CSF1R inhibitors (the brain penetrant PLX5622 and the non-penetrant PLX73086) we highlight a crucial role for microglia (and secondarily macrophages) in catalyzing the pathological manifestations linked to psychosocial stress in the mPFC and the resulting behavioral deficits usually associated with depression.
Collapse
Affiliation(s)
- Alexandros G. Kokkosis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Miguel M. Madeira
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Zachary Hage
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Kimonas Valais
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Dimitris Koliatsis
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Emran Resutov
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| |
Collapse
|
10
|
Lambregts BIHM, Vassena E, Jansen A, Stremmelaar DE, Pickkers P, Kox M, Aarts E, van der Schaaf ME. Fatigue during acute systemic inflammation is associated with reduced mental effort expenditure while task accuracy is preserved. Brain Behav Immun 2023:S0889-1591(23)00131-9. [PMID: 37257522 DOI: 10.1016/j.bbi.2023.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Earlier work within the physical domain showed that acute inflammation changes motivational prioritization and effort allocation rather than physical abilities. It is currently unclear whether a similar motivational framework accounts for the mental fatigue and cognitive symptoms of acute sickness. Accordingly, this study aimed to assess the relationship between fatigue, cytokines and mental effort-based decision making during acute systemic inflammation. METHODS Eighty-five participants (41 males; 18-30 years (M=23.0, SD=2.4)) performed a mental effort-based decision-making task before, 2 hours after, and 5 hours after intravenous administration of 1 ng/kg bacterial lipopolysaccharide (LPS) to induce systemic inflammation. Plasma concentrations of cytokines (interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)) and fatigue levels were assessed at similar timepoints. In the task, participants decided whether they wanted to perform (i.e., 'accepted') arithmetic calculations of varying difficulty (3 levels: easy, medium, hard) in order to obtain rewards (3 levels: 5, 6 or 7 points). Acceptance rates were analyzed using a binomial generalized estimated equation (GEE) approach with effort, reward and time as independent variables. Arithmetic performance was measured per effort level prior to the decisions and included as a covariate. Associations between acceptance rates, fatigue (self-reported) and cytokine concentrations levels were analyzed using partial correlation analyses. RESULTS Plasma cytokine concentrations and fatigue were increased at 2 hours post-LPS compared to baseline and 5 hours post-LPS administration. Acceptance rates decreased for medium, but not for easy or hard effort levels at 2 hours post-LPS versus baseline and 5 hours post-LPS administration, irrespective of reward level. This reduction in acceptance rates occurred despite improved accuracy on the arithmetic calculations itself. Reduced acceptance rates for medium effort were associated with increased fatigue, but not with increased cytokines. CONCLUSION Fatigue during acute systemic inflammation is associated with alterations in mental effort allocation, similarly as observed previously for physical effort-based choice. Specifically, willingness to exert mental effort depended on effort and not reward information, while task accuracy was preserved. These results extend the motivational account of inflammation to the mental domain and suggest that inflammation may not necessarily affect domain-specific mental abilities, but rather affects domain-general effort-allocation processes.
Collapse
Affiliation(s)
- B I H M Lambregts
- Department of Psychiatry, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Postbus 9104, HE Nijmegen, The Netherlands.
| | - E Vassena
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Postbus 9104, HE Nijmegen, The Netherlands; Experimental Psychopathology and Treatment, Behavioural Science Institute Radboud University Nijmegen Postbus 9104, 6500 HE Nijmegen, The Netherlands.
| | - A Jansen
- Department of Intensive Care Medicine, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands.
| | - D E Stremmelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Postbus 9104, HE Nijmegen, The Netherlands.
| | - P Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands.
| | - M Kox
- Department of Intensive Care Medicine, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands.
| | - E Aarts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Postbus 9104, HE Nijmegen, The Netherlands.
| | - M E van der Schaaf
- Department of Psychiatry, Radboud University Medical Center Postbus 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Postbus 9104, HE Nijmegen, The Netherlands; Department of Cognitive Neuropsychology, Tilburg University Postbus 90153, 5000 LE Tilburg, The Netherlands.
| |
Collapse
|
11
|
Effects of an experimentally induced inflammatory stimulus on motivational behavior in remitted depressed patients. J Psychiatr Res 2023; 161:106-111. [PMID: 36917867 DOI: 10.1016/j.jpsychires.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Acute inflammation is associated with sickness behavior characterized by reduced motivation for pleasurable activities in humans. The current study investigated the effect of an experimentally induced inflammatory stimulus on motivational reward in people who remitted from depression. METHODS This randomized, double-blind crossover study involved 12 participants, 5 with remitted major depressive disorder (rMDD) and 7 healthy controls (HC), who received an injection of typhoid vaccine and placebo (or vice-versa) intramuscularly at least one week apart. At baseline and between 4 and 6 h post-injection on both days, participant mood was measured using the profile of mood states (POMS), and injection blood samples were collected for cytokines measurement. All participants completed the Effort Expenditure for Rewards Task (EEfRT), a behavioral paradigm measuring effort-based decision-making before and 4 h post-both injections. Generalized linear mixed modeling was used to evaluate group differences in choosing the hard over easy task to obtain a monetary reward. RESULTS Typhoid vaccine increased IL-6 in all participants. On the EEfRT, a significant interaction between treatment condition (typhoid vs. placebo) and participant group (HC vs. rMDD) was found (p = .004). Analyses of simple effects within treatment conditions found that after placebo, HCs were more likely to choose the harder task than rMDD (OR = 3.21; p = .013). However, after the typhoid vaccine, no differences were found between rMDD and HC (p = .397). Analyses within participant groups found that the probability of choosing a hard task was higher after placebo for HC (OR = 1.37; p = .045), but not different within rMDD (p = .241). For HC at baseline, mood was significantly lower following injection with typhoid vaccine, relative to placebo (b = -1.03, p < .001); however, this effect should be considered coincidental, given that mood rating was taken prior to injection. For rMDD patients 4-6 h post-injection, mood was significantly lower following typhoid vaccine, relative to placebo (b = -0.981, p < .001 b = -0.77, p < .001). Finally, for HC receiving placebo, mood was significantly lower 4-6 h post-injection, relative to baseline (b = -1.76, p < .001). CONCLUSIONS Our preliminary findings suggest persistent deficits in motivational reward processing function despite clinical improvement in remitted depressed patients.
Collapse
|
12
|
Hassan M, Elzehery R, Mosaad YM, Mostafa M, Elkalla IHR, Elwasify M. Clinical characteristics of bipolar 1 disorder in relation to interleukin-6: a cross-sectional study among Egyptian patients. MIDDLE EAST CURRENT PSYCHIATRY 2023. [DOI: 10.1186/s43045-023-00297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Abstract
Background
Strong evidence in the literature points to the role of pro-inflammatory cytokines in bipolar disorder (BD) pathophysiology. Interleukin-6 (IL-6) is a pro and anti-inflammatory cytokine that was repeatedly found higher in bipolar patients than in healthy controls. However, studies on the phasic differences of IL-6 in bipolar type I (BP-I) were limited. This study aims to explore the phasic differences of serum IL-6 levels in BP-I during euthymia, depression, and mania and their association with the disease’s clinical characteristics in a sample of Egyptian BP-I patients. Thirty currently euthymic, 24 currently depressed, 29 currently manic BP-I patients, and 20 healthy subjects were recruited. Serum IL-6 levels were compared among BP-I groups and then between each group and a group of 20 healthy controls. Serum IL-6 levels (pg/ml) were measured with a sandwich enzyme-linked immunosorbent assay (ELISA). Depression and mania symptoms were assessed using the Hamilton Depression Rating Scale (HDRS) and the Young Mania Rating Scale (YMRS), respectively. Clinical characteristics were evaluated through a semi-structured clinical psychiatric interview, and cognitive status was tested using the Montreal Cognitive Assessment (MoCA).
Results
Serum IL-6 levels were significantly higher in each bipolar phase than in healthy subjects. In the BP-I patients, IL-6 levels were lower in patients with a current manic episode than in patients with a current depressive episode (P < 0.05) or who were currently euthymic (P < 0.001). Moreover, IL-6 levels correlated inversely with the YMRS score (rs = − 0.29; P < 0.05). Compared to patients without psychotic features, patients with psychotic features had decreased serum IL-6. Moreover, IL-6 levels were lower in inpatients compared to outpatients.
Conclusions
BP-I disorder is associated with an inflammatory state. The decreased levels of IL-6 during manic episodes, affective episodes with psychotic features, and their inverse correlation with the severity of mania symptoms indicate a possible anti-inflammatory role of IL-6 in mania and psychotic symptoms pathogenesis.
Collapse
|
13
|
Xia J, Wang H, Zhang C, Liu B, Li Y, Li K, Li P, Song C. The comparison of sex differences in depression-like behaviors and neuroinflammatory changes in a rat model of depression induced by chronic stress. Front Behav Neurosci 2023; 16:1059594. [PMID: 36703721 PMCID: PMC9872650 DOI: 10.3389/fnbeh.2022.1059594] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
Background Clinical prevalence of major depression is higher in women than men, while the psychoneuroimmunological mechanisms underlying the differences between the two sexes are not fully understood. Methods The present study explored sex differences in the behaviors and depressive pathological mechanisms induced by chronic unpredictable mild stress (CUMS). Depression- and anxiety-like behaviors were assessed by the sucrose preference test (SPT), force swimming test (FST), open field test (OFT), and elevated plus-maze (EPM). The enzyme-linked immunosorbent assay (ELISA) was used to measure cytokine concentrations, high-performance liquid chromatography (HPLC) was used to measure monoamine neurotransmitters and metabolite contents, and real-time quantitative PCR (qPCR) and western blotting (WB) were used to measure glial parameters in the hippocampus. Results Under control conditions, female rats exhibited shorter immobility times in the FST, lower interferon (IFN)-γ, and interleukin (IL)-4 levels in the hippocampus, lower norepinephrine (NE) and homovanillic acid (HVA), and higher p75 and glial-derived neurotrophic factor (GDNF) expression than male rats. CUMS markedly reduced rat body weight gain, sucrose preference, locomotor activity, number of entries into the central zone and rearing in the OFT, as well as the number of entries into and time spent in open arms of the EPM; however, CUMS increased the immobility times of the rats of both sexes in the FST. Interestingly, more pronounced changes in sucrose preference and locomotor activity were observed in female rats than in males. Consistently, CUMS-increased glucocorticoid concentration, M1 microglial marker CD11b, and peripheral IL-1β and IL-4, while decreased hippocampal IL-10, serotonin (5-HT), dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), and norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were more significant in females than in males. Conclusion These data revealed possible mechanisms by which females suffer more depression than males at least in a stressful environment.
Collapse
Affiliation(s)
- Juan Xia
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haoyin Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Baiping Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yuyu Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Kangwei Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China,Marine Medicine Research and Development Center of Shenzhen Institutes, Guangdong Ocean University, Shenzhen, China,*Correspondence: Cai Song,
| |
Collapse
|
14
|
Presby RE, Rotolo RA, Katz S, Sarwat Z, Correa M, Salamone JD. Lipopolysaccharide-induced changes in effort-related motivational function: Interactions with 2-deoxyglucose. Physiol Behav 2023; 258:114005. [PMID: 36283457 DOI: 10.1016/j.physbeh.2022.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Inflammation is linked to motivational deficits seen in depression and other disorders. Lipopolysaccharide (LPS) induces an inflammatory response and impairs motivated behavior in humans and rodents. It has been suggested that inflammation can shift metabolic needs to functions that warrant more response to the perceived threat (e.g., fighting infection), therefore altering aspects of motivation. Animal models have been developed to assess alterations in motivated behavior by giving the animal the option to work (i.e., lever press) for a highly palatable food reward vs. approaching and consuming a freely available, albeit less preferred, food. This model was used to determine if administration of 2-deoxy-D-glucose (2DG), a substance that inhibits glucose uptake and glycolysis, could reverse the motivational deficits induced by LPS in rats. A food preference/intake task was also conducted to see if LPS affected intake of the highly palatable vs. less palatable foods when both are freely available. It was hypothesized that 2-DG would reverse the motivational deficits caused by LPS and there would be no effect on food preference/intake of the highly palatable food. Results showed that 2-DG significantly reversed LPS effects at the lowest dose, while methylphenidate did not. The food intake/preference tests showed that LPS significantly decreased food intake of both foods but did not alter preference for the highly palatable food compared to vehicle. These results suggest that in addition to having effects on exertion of effort during instrumental behavior, LPS also has direct effects on primary food motivation.
Collapse
Affiliation(s)
- Rose E Presby
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States; Sage Thereapeutics, Boston, MA, United States
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States
| | - Sydney Katz
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States
| | - Zoha Sarwat
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States
| | - Merce Correa
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269-1020, United States.
| |
Collapse
|
15
|
Critical review of RDoC approaches to the study of motivation with animal models: effort valuation/willingness to work. Emerg Top Life Sci 2022; 6:515-528. [PMID: 36218385 DOI: 10.1042/etls20220008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
The NIMH research domain criteria (RDoC) approach was instigated to refocus mental health research on the neural circuits that mediate psychological functions, with the idea that this would foster an understanding of the neural basis of specific psychiatric dysfunctions (i.e. 'symptoms and circuits') and ultimately facilitate treatment. As a general idea, this attempt to go beyond traditional diagnostic categories and focus on neural circuit dysfunctions related to specific symptoms spanning multiple disorders has many advantages. For example, motivational dysfunctions are present in multiple disorders, including depression, schizophrenia, Parkinson's disease, and other conditions. A critical aspect of motivation is effort valuation/willingness to work, and several clinical studies have identified alterations in effort-based decision making in various patient groups. In parallel, formal animal models focusing on the exertion of effort and effort-based decision making have been developed. This paper reviews the literature on models of effort-based motivational function in the context of a discussion of the RDoC approach, with an emphasis on the dissociable nature of distinct aspects of motivation. For example, conditions associated with depression and schizophrenia blunt the selection of high-effort activities as measured by several tasks in animal models (e.g. lever pressing, barrier climbing, wheel running). Nevertheless, these manipulations also leave fundamental aspects of hedonic reactivity, food motivation, and reinforcement intact. This pattern of effects demonstrates that the general emphasis of the RDoC on the specificity of the neural circuits mediating behavioral pathologies, and the dissociative nature of these dysfunctions, is a valid concept. Nevertheless, the specific placement of effort-related processes as simply a 'sub-construct' of 'reward processing' is empirically and conceptually problematic. Thus, while the RDoC is an excellent general framework for new ways to approach research and therapeutics, it still needs further refinement.
Collapse
|
16
|
Pechacek KM, Vonder Haar C. Chronic lipopolysaccharide impairs motivation when delivered to the ventricles, but not when delivered peripherally in male rats. Physiol Behav 2022; 257:113998. [PMID: 36257462 PMCID: PMC11305111 DOI: 10.1016/j.physbeh.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Increased neuroinflammation relative to controls is observed in major depression. Moreover, depressive disorders are significantly elevated in conditions which increase neuroinflammation (e.g., brain injury, Parkinson's disease, Alzheimer's disease). To better understand the relationship between neuroinflammation and depression, additional research is needed. The current set of studies made use of the progressive ratio (PR) task in male rats, a stable measure of motivation which can be evaluated daily and thus is ideally suited for examining a potential role for chronic neuroinflammation in depressive-like behavior. Lipopolysaccharide (LPS) was used to induce an inflammatory response. Experiment 1 confirmed prior acute LPS administration experiments for sensitivity of the PR task, with a large effect at 2 mg/kg, a partial effect at 1 mg/kg, and no effect at 0.5 mg/kg. Experiment 2 evaluated a dose-response of continuous s.c. LPS infusion but found no significant elevation in brain cytokines after 14 days at any doses of 0.1, 0.5, 1, or 2 mg/kg/week. Experiment 3 assessed motivation during continuous s.c. infusion of a large 5 mg/kg/week LPS dose and found no significant impairments in motivation, but transient decreases in rates of lever pressing (i.e., only motoric deficits). Experiment 4 measured motivation during continuous ICV infusion of 10.5 μg/kg/week LPS and found significantly decreased motivation without changes to rates of lever pressing (i.e., only motivational deficits). Together these results suggest that the PR task is efficient for evaluating models of chronic inflammation, and that the adaptive response to chronic LPS exposure, even when delivered centrally, may necessitate alternative strategies for generating long-term neuroinflammation.
Collapse
Affiliation(s)
- Kristen M Pechacek
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Cole Vonder Haar
- Injury and Recovery Laboratory, Department of Neuroscience, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Bekhbat M, Li Z, Mehta ND, Treadway MT, Lucido MJ, Woolwine BJ, Haroon E, Miller AH, Felger JC. Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: evidence from a dopamine challenge study. Mol Psychiatry 2022; 27:4113-4121. [PMID: 35927580 PMCID: PMC9718669 DOI: 10.1038/s41380-022-01715-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023]
Abstract
Increased inflammation in major depressive disorder (MDD) has been associated with low functional connectivity (FC) in corticostriatal reward circuits and symptoms of anhedonia, relationships which may involve the impact of inflammation on synthesis and release of dopamine. To test this hypothesis while establishing a platform to examine target engagement of potential therapies in patients with increased inflammation, medically stable unmedicated adult MDD outpatients enrolled to have a range of inflammation (as indexed by plasma C-reactive protein [CRP] levels) were studied at two visits involving acute challenge with the dopamine precursor levodopa (L-DOPA; 250 mg) and placebo (double-blind, randomized order ~1-week apart). The primary outcome of resting-state (rs)FC in a classic ventral striatum to ventromedial prefrontal cortex reward circuit was calculated using a targeted, a priori approach. Data available both pre- and post-challenge (n = 31/40) established stability of rsFC across visits and determined CRP > 2 mg/L as a cut-point for patients exhibiting positive FC responses (post minus pre) to L-DOPA versus placebo (p < 0.01). Higher post-L-DOPA FC in patients with CRP > 2 mg/L was confirmed in all patients (n = 40) where rsFC data were available post-challenge (B = 0.15, p = 0.006), and in those with task-based (tb)FC during reward anticipation (B = 0.15, p = 0.013). While effort-based motivation outside the scanner positively correlated with rsFC independent of treatment or CRP, change in anhedonia scores negatively correlated with rsFC after L-DOPA only in patients with CRP > 2 mg/L (r = -0.56, p = 0.012). FC in reward circuitry should be further validated in larger samples as a biomarker of target engagement for potential treatments including dopaminergic agents in MDD patients with increased inflammation.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Zhihao Li
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- School of Psychology and Sociology, Shenzhen University, Shenzhen, 518060, Guangdong Sheng, China
| | - Namrataa D Mehta
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- Department of Psychology, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Michael J Lucido
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Bobbi J Woolwine
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA.
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Treadway MT, Salamone JD. Vigor, Effort-Related Aspects of Motivation and Anhedonia. Curr Top Behav Neurosci 2022; 58:325-353. [PMID: 35505057 DOI: 10.1007/7854_2022_355] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this chapter we provide an overview of the pharmacological and circuit mechanisms that determine the willingness to expend effort in pursuit of rewards. A particular focus will be on the role of the mesolimbic dopamine system, as well the contributing roles of limbic and cortical brains areas involved in the evaluation, selection, and invigoration of goal-directed actions. We begin with a review of preclinical studies, which have provided key insights into the brain systems that are necessary and sufficient for effort-based decision-making and have characterized novel compounds that enhance selection of high-effort activities. Next, we summarize translational studies identifying and expanding this circuitry in humans. Finally, we discuss the relevance of this work for understanding common motivational impairments as part of the broader anhedonia symptom domain associated with mental illness, and the identification of new treatment targets within this circuitry to improve motivation and effort-expenditure.
Collapse
Affiliation(s)
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
19
|
Russell B, Hrelja KM, Adams WK, Zeeb FD, Taves MD, Kaur S, Soma KK, Winstanley CA. Differential effects of lipopolysaccharide on cognition, corticosterone and cytokines in socially-housed vs isolated male rats. Behav Brain Res 2022; 433:114000. [PMID: 35817135 DOI: 10.1016/j.bbr.2022.114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Social isolation is an established risk factor for mental illness and impaired immune function. Evidence suggests that neuroinflammatory processes contribute to mental illness, possibly via cytokine-induced modulation of neural activity. We examined the effects of lipopolysaccharide (LPS) administration and social home cage environment on cognitive performance in the 5-Choice Serial Reaction Time Task (5CSRTT), and their effects on corticosterone and cytokines in serum and brain tissue. Male Long-Evans rats were reared in pairs or in isolation before training on the 5CSRTT. The effects of saline and LPS (150 µg/kg i.p.) administration on sickness behaviour and task performance were then assessed. LPS-induced sickness behaviour was augmented in socially-isolated rats, translating to increased omissions and slower response times in the 5CSRTT. Both social isolation and LPS administration reduced impulsive responding, while discriminative accuracy remained unaffected. With the exception of reduced impulsivity in isolated rats, these effects were not observed following a second administration of LPS, revealing behavioural tolerance to repeated LPS injections. In a separate cohort of animals, social isolation potentiated the ability of LPS to increase serum corticosterone and IL-6, which corresponded to increased IL-6 in the orbitofrontal and medial prefrontal cortices and the nucleus accumbens. Basal IL-4 levels in the nucleus accumbens were reduced in socially-isolated rats. These findings are consistent with the adaptive response of reduced motivational drive following immune challenge, and identify social isolation as an exacerbating factor. Enhanced IL-6 signalling may play a role in mediating the potentiated behavioural response to LPS administration in isolated animals.
Collapse
Affiliation(s)
- Brittney Russell
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Fiona D Zeeb
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthew D Taves
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Bekhbat M, Ulukaya GB, Bhasin MK, Felger JC, Miller AH. Cellular and immunometabolic mechanisms of inflammation in depression: Preliminary findings from single cell RNA sequencing and a tribute to Bruce McEwen. Neurobiol Stress 2022; 19:100462. [PMID: 35655933 PMCID: PMC9152104 DOI: 10.1016/j.ynstr.2022.100462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Inflammation is associated with symptoms of anhedonia, a core feature of major depression (MD). We have shown that MD patients with high inflammation as measured by plasma C-reactive protein (CRP) and anhedonia display gene signatures of metabolic reprograming (e.g., shift to glycolysis) necessary to sustain cellular immune activation. To gain preliminary insight into the immune cell subsets and transcriptomic signatures that underlie increased inflammation and its relationship with behavior in MD at the single-cell (sc) level, herein we conducted scRNA-Seq on peripheral blood mononuclear cells from a subset of medically-stable, unmedicated MD outpatients. Three MD patients with high CRP (>3 mg/L) before and two weeks after anti-inflammatory challenge with the tumor necrosis factor antagonist infliximab and three patients with low CRP (≤3 mg/L) were studied. Cell clusters were identified using a Single Cell Wizard pipeline, followed by pathway analysis. CD14+ and CD16+ monocytes were more abundant in MD patients with high CRP and were reduced by 29% and 55% respectively after infliximab treatment. Within CD14+ and CD16+ monocytes, genes upregulated in high CRP patients were enriched for inflammatory (phagocytosis, complement, leukocyte migration) and immunometabolic (hypoxia-inducible factor [HIF]-1, aerobic glycolysis) pathways. Shifts in CD4+ T cell subsets included ∼30% and ∼10% lower abundance of CD4+ central memory (TCM) and naïve cells and ∼50% increase in effector memory-like (TEM-like) cells in high versus low CRP patients. TCM cells of high CRP patients displayed downregulation of the oxidative phosphorylation (OXPHOS) pathway, a main energy source in this cell type. Following infliximab, changes in the number of CD14+ monocytes and CD4+ TEM-like cells predicted improvements in anhedonia scores (r = 1.0, p < 0.001). In sum, monocytes and CD4+ T cells from MD patients with increased inflammation exhibited immunometabolic reprograming in association with symptoms of anhedonia. These findings are the first step toward determining the cellular and molecular immune pathways associated with inflammatory phenotypes in MD, which may lead to novel immunomodulatory treatments of psychiatric illnesses with increased inflammation.
Collapse
|
21
|
Chimeric Structures in Mental Illnesses-"Magic" Molecules Specified for Complex Disorders. Int J Mol Sci 2022; 23:ijms23073739. [PMID: 35409098 PMCID: PMC8998808 DOI: 10.3390/ijms23073739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Mental health problems cover a wide spectrum of diseases, including mild to moderate anxiety, depression, alcohol/drug use disorders, as well as bipolar disorder and schizophrenia. Pharmacological treatment seems to be one of the most effective opportunities to recover function efficiently and satisfactorily. However, such disorders are complex as several target points are involved. This results in a necessity to combine different types of drugs to obtain the necessary therapeutic goals. There is a need to develop safer and more effective drugs. Considering that mental illnesses share multifactorial processes, the paradigm of one treatment with multiple modes of action rather than single-target strategies would be more effective for successful therapies. Therefore, hybrid molecules that combine two pharmacophores in one entity show promise, as they possess the desired therapeutic index with a small off-target risk. This review aims to provide information on chimeric structures designed for mental disorder therapy (i.e., schizophrenia and depression), and new types of drug candidates currently being tested. In addition, a discussion on some benefits and limitations of multifunctional, bivalent drug candidates is also given.
Collapse
|
22
|
Salamone J, Ecevitoglu A, Carratala-Ros C, Presby R, Edelstein G, Fleeher R, Rotolo R, Meka N, Srinath S, Masthay JC, Correa M. Complexities and Paradoxes in Understanding the Role of Dopamine in Incentive Motivation and Instrumental Action: Exertion of Effort vs. Anhedonia. Brain Res Bull 2022; 182:57-66. [DOI: 10.1016/j.brainresbull.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
|
23
|
Bekhbat M, Treadway MT, Felger JC. Inflammation as a Pathophysiologic Pathway to Anhedonia: Mechanisms and Therapeutic Implications. Curr Top Behav Neurosci 2022; 58:397-419. [PMID: 34971449 DOI: 10.1007/7854_2021_294] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Anhedonia, characterized by a lack of motivation, interest, or ability to experience pleasure, is a prominent symptom of depression and other psychiatric disorders and has been associated with poor response to standard therapies. One pathophysiologic pathway receiving increased attention for its potential role in anhedonia is inflammation and its effects on the brain. Exogenous administration of inflammatory stimuli to humans and laboratory animals has reliably been found to affect neurotransmitters and neurocircuits involved in reward processing, including the ventral striatum and ventromedial prefrontal cortex, in association with reduced motivation. Moreover, a rich literature including meta-analyses describes increased inflammation in a significant proportion of patients with depression and other psychiatric illnesses involving anhedonia, as evident by elevated inflammatory cytokines, acute phase proteins, chemokines, and adhesion molecules in both the periphery and central nervous system. This endogenous inflammation may arise from numerous sources including stress, obesity or metabolic dysfunction, genetics, and lifestyle factors, many of which are also risk factors for psychiatric illness. Consistent with laboratory studies involving exogenous administration of peripheral inflammatory stimuli, neuroimaging studies have further confirmed that increased endogenous inflammation in depression is associated with decreased activation of and reduced functional connectivity within reward circuits involving ventral striatum and ventromedial prefrontal cortex in association with anhedonia. Here, we review recent evidence of relationships between inflammation and anhedonia, while highlighting translational and mechanistic work describing the impact of inflammation on synthesis, release, and reuptake of neurotransmitters like dopamine and glutamate that affects circuits to drive motivational deficits. We will then present insight into novel pharmacological strategies that target either inflammation or its downstream effects on the brain and behavior. The meaningful translation of these concepts through appropriately designed trials targeting therapies for psychiatric patients with high inflammation and transdiagnostic symptoms of anhedonia is also discussed.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael T Treadway
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
24
|
Yu Y, Fernandez ID, Meng Y, Zhao W, Groth SW. Gut hormones, adipokines, and pro- and anti-inflammatory cytokines/markers in loss of control eating: A scoping review. Appetite 2021; 166:105442. [PMID: 34111480 PMCID: PMC10683926 DOI: 10.1016/j.appet.2021.105442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022]
Abstract
Loss of control (LOC) eating is the defining feature of binge-eating disorder, and it has particular relevance for bariatric patients. The biomarkers of LOC eating are unclear; however, gut hormones (i.e., ghrelin, cholecystokinin [CCK], peptide YY [PYY], glucagon-like peptide 1 [GLP-1], and pancreatic polypeptide [PP]), adipokines (i.e., leptin, adiponectin), and pro- and anti-inflammatory cytokines/markers (e.g., high-sensitivity C-reactive protein [hsCRP]) are candidates due to their involvement in the psychophysiological mechanisms of LOC eating. This review aimed to synthesize research that has investigated these biomarkers with LOC eating. Because LOC eating is commonly examined within the context of binge-eating disorder, is sometimes used interchangeably with subclinical binge-eating, and is the latent construct underlying disinhibition, uncontrolled eating, and food addiction, these eating behaviors were included in the search. Only studies among individuals with overweight or obesity were included. Among the identified 31 studies, 2 studies directly examined LOC eating and 4 studies were conducted among bariatric patients. Most studies were case-control in design (n = 16) and comprised female-dominant (n = 13) or female-only (n = 13) samples. Studies generally excluded fasting total ghrelin, fasting CCK, fasting PYY, and fasting PP as correlates of the examined eating behaviors. However, there was evidence that the examined eating behaviors were associated with lower levels of fasting acyl ghrelin (the active form of ghrelin) and adiponectin, higher levels of leptin and hsCRP, and altered responses of postprandial ghrelin, CCK, and PYY. The use of GLP-1 analog was able to decrease binge-eating. In conclusion, this review identified potential biomarkers of LOC eating. Future studies would benefit from a direct focus on LOC eating (especially in the bariatric population), using longitudinal designs, exploring potential mediators and moderators, and increased inclusion of the male population.
Collapse
Affiliation(s)
- Yang Yu
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - I Diana Fernandez
- School of Public Health, University of Rochester, 265 Crittenden Blvd, Rochester, NY, 14642, USA.
| | - Ying Meng
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Wenjuan Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, 138 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China.
| | - Susan W Groth
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
25
|
Carratalá-Ros C, López-Cruz L, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. Impact of Fluoxetine on Behavioral Invigoration of Appetitive and Aversively Motivated Responses: Interaction With Dopamine Depletion. Front Behav Neurosci 2021; 15:700182. [PMID: 34305547 PMCID: PMC8298758 DOI: 10.3389/fnbeh.2021.700182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Impaired behavioral activation and effort-related motivational dysfunctions like fatigue and anergia are debilitating treatment-resistant symptoms of depression. Depressed people show a bias towards the selection of low effort activities. To determine if the broadly used antidepressant fluoxetine can improve behavioral activation and reverse dopamine (DA) depletion-induced anergia, male CD1 mice were evaluated for vigorous escape behaviors in an aversive context (forced swim test, FST), and also with an exercise preference choice task [running wheel (RW)-T-maze choice task]. In the FST, fluoxetine increased active behaviors (swimming, climbing) while reducing passive ones (immobility). However, fluoxetine was not effective at reducing anergia induced by the DA-depleting agent tetrabenazine, further decreasing vigorous climbing and increasing immobility. In the T-maze, fluoxetine alone produced the same pattern of effects as tetrabenazine. Moreover, fluoxetine did not reverse tetrabenazine-induced suppression of RW time but it reduced sucrose intake duration. This pattern of effects produced by fluoxetine in DA-depleted mice was dissimilar from devaluing food reinforcement by pre-feeding or making the food bitter since in both cases sucrose intake time was reduced but animals compensated by increasing time in the RW. Thus, fluoxetine improved escape in an aversive context but decreased relative preference for active reinforcement. Moreover, fluoxetine did not reverse the anergic effects of DA depletion. These results have implications for the use of fluoxetine for treating motivational symptoms such as anergia in depressed patients.
Collapse
Affiliation(s)
| | | | | | | | - John D Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| |
Collapse
|
26
|
Presby RE, Rotolo RA, Hurley EM, Ferrigno SM, Murphy CE, McMullen HP, Desai PA, Zorda EM, Kuperwasser FB, Carratala-Ros C, Correa M, Salamone JD. Sex differences in lever pressing and running wheel tasks of effort-based choice behavior in rats: Suppression of high effort activity by the serotonin transport inhibitor fluoxetine. Pharmacol Biochem Behav 2021; 202:173115. [PMID: 33493546 DOI: 10.1016/j.pbb.2021.173115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Selective serotonin transport (SERT) inhibitors such as fluoxetine are the most commonly prescribed treatments for depression. Although efficacious for many symptoms of depression, motivational impairments such as psychomotor retardation, anergia, fatigue and amotivation are relatively resistant to treatment with SERT inhibitors, and these drugs have been reported to exacerbate motivational deficits in some people. In order to study motivational dysfunctions in animal models, procedures have been developed to measure effort-related decision making, which offer animals a choice between high effort actions leading to highly valued reinforcers, or low effort/low reward options. In the present studies, male and female rats were tested on two different tests of effort-based choice: a fixed ratio 5 (FR5)/chow feeding choice procedure and a running wheel (RW)/chow feeding choice task. The baseline pattern of choice differed across tasks for males and females, with males pressing the lever more than females on the operant task, and females running more than males on the RW task. Administration of the SERT inhibitor and antidepressant fluoxetine suppressed the higher effort activity on each task (lever pressing and wheel running) in both males and females. The serotonin receptor mediating the suppressive effects of fluoxetine is uncertain, because serotonin antagonists with different patterns of receptor selectivity failed to reverse the effects of fluoxetine. Nevertheless, these studies uncovered important sex differences, and demonstrated that the suppressive effects of fluoxetine on high effort activities are not limited to tasks involving food reinforced behavior or appetite suppressive effects. It is possible that this line of research will contribute to an understanding of the neurochemical factors regulating selection of voluntary physical activity vs. sedentary behaviors, which could be relevant for understanding the role of physical activity in psychiatric disorders.
Collapse
Affiliation(s)
- Rose E Presby
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Erin M Hurley
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Sarah M Ferrigno
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Cayla E Murphy
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Haley P McMullen
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Pranally A Desai
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Emma M Zorda
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Felicita B Kuperwasser
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA
| | - Carla Carratala-Ros
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Merce Correa
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269-1020, USA.
| |
Collapse
|
27
|
Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Arias-Sandoval E, Salamone JD, Correa M. Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology (Berl) 2021; 238:3357-3373. [PMID: 34498115 PMCID: PMC8629809 DOI: 10.1007/s00213-021-05950-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022]
Abstract
Motivational symptoms such as anergia, fatigue, and reduced exertion of effort are seen in depressed people. To model this, nucleus accumbens (Nacb) dopamine (DA) depletions are used to induce a low-effort bias in rodents tested on effort-based decision-making. We evaluated the effect of the catecholamine uptake blocker bupropion on its own, and after administration of tetrabenazine (TBZ), which blocks vesicular storage, depletes DA, and induces depressive symptoms in humans. Male CD1 mice were tested on a 3-choice-T-maze task that assessed preference between a reinforcer involving voluntary physical activity (running wheel, RW) vs. sedentary activities (sweet food pellet intake or a neutral non-social odor). Mice also were tested on the forced swim test (FST), two anxiety-related measures (dark-light box (DL), and elevated plus maze (EPM)). Expression of phosphorylated DARPP-32 (Thr34 and Thr75) was evaluated by immunohistochemistry as a marker of DA-related signal transduction. Bupropion increased selection of RW activity on the T-maze. TBZ reduced time running, but increased time-consuming sucrose, indicating an induction of a low-effort bias, but not an effect on primary sucrose motivation. In the FST, bupropion reduced immobility, increasing swimming and climbing, and TBZ produced the opposite effects. Bupropion reversed the effects of TBZ on the T-maze and the FST, and also on pDARPP32-Thr34 expression in Nacb core. None of these manipulations affected anxiety-related parameters. Thus, bupropion improved active behaviors, which were negatively motivated in the FST, and active behaviors that were positively motivated in the T-maze task, which has implications for using catecholamine uptake inhibitors for treating anergia and fatigue-like symptoms.
Collapse
Affiliation(s)
- Carla Carratalá-Ros
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | - Andrea Martínez-Verdú
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - Edgar Arias-Sandoval
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269-1020 USA
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, 12071, Castelló, Spain.
| |
Collapse
|
28
|
Mehta ND, Stevens JS, Li Z, Gillespie CF, Fani N, Michopoulos V, Felger JC. Inflammation, reward circuitry and symptoms of anhedonia and PTSD in trauma-exposed women. Soc Cogn Affect Neurosci 2020; 15:1046-1055. [PMID: 32291455 PMCID: PMC7657453 DOI: 10.1093/scan/nsz100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/06/2019] [Accepted: 11/27/2019] [Indexed: 01/24/2023] Open
Abstract
Trauma exposure is associated with increased inflammatory biomarkers (e.g. C-reactive protein [CRP] and cytokines), and inflammation has been shown to impact corticostriatal reward circuitry and increase anhedonia-related symptoms. We examined resting-state functional MRI in a high-trauma inner-city population of African-American women (n = 56), who reported on average five different types of trauma exposures, to investigate whether inflammation correlated with functional connectivity (FC) in corticostriatal reward circuitry in association with symptoms of anhedonia and PTSD. Plasma CRP negatively correlated with bilateral ventral striatum (VS) to ventromedial prefrontal cortex (vmPFC) FC (P < 0.01). In participants where plasma was available to also measure cytokines and their soluble receptors, left (L)VS-vmPFC FC negatively correlated with an inflammatory composite score (previously shown to be increased in plasma and cerebrospinal fluid of depressed patients with high CRP) only in women with significant PTSD symptoms (n = 14; r = -0.582, P = 0.029) and those who experienced moderate-severe childhood trauma (r = -0.595, P = 0.009). Exploratory analyses indicated that LVS-vmPFC FC correlated with anhedonia-related subscales from the Beck Depression Inventory (r = -0.691, P = 0.004) and PTSD Symptom Scale (avoidance/numbness; r = -0.514, P = 0.042) in participants with an inflammatory score over the median (n = 16). Results suggest that inflammation contributes to compromised reward circuitry and symptoms of anhedonia and PTSD in trauma-exposed women.
Collapse
Affiliation(s)
- Neeti D Mehta
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhihao Li
- School of Psychology and Sociology, Shenzhen University, Shenzhen, Guangdong Sheng 518060, China
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, Guangdong Sheng 518060, China
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Yerkes National Primate Research Center, Atlanta, GA 30322, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Rotolo RA, Kalaba P, Dragacevic V, Presby RE, Neri J, Robertson E, Yang JH, Correa M, Bakulev V, Volkova NN, Pifl C, Lubec G, Salamone JD. Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology (Berl) 2020; 237:3459-3470. [PMID: 32770257 PMCID: PMC7572767 DOI: 10.1007/s00213-020-05625-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Atypical dopamine (DA) transport blockers such as modafinil and its analogs may be useful for treating motivational symptoms of depression and other disorders. Previous research has shown that the DA depleting agent tetrabenazine can reliably induce motivational deficits in rats, as evidenced by a shift towards a low-effort bias in effort-based choice tasks. This is consistent with human studies showing that people with major depression show a bias towards low-effort activities. OBJECTIVES Recent studies demonstrated that the atypical DA transport (DAT) inhibitor (S)-CE-123 reversed tetrabenazine-induced motivational deficits, increased progressive ratio (PROG) lever pressing, and increased extracellular DA in the nucleus accumbens. In the present studies, a recently synthesized modafinil analog, (S, S)-CE-158, was assessed in a series of neurochemical and behavioral studies in rats. RESULTS (S, S)-CE-158 demonstrated the ability to reverse the effort-related effects of tetrabenazine and increase selection of high-effort PROG lever pressing in rats tested on PROG/chow feeding choice task. (S, S)-CE-158 showed a high selectivity for inhibiting DAT compared with other monoamine transporters, and systemic administration of (S, S)-CE-158 increased extracellular DA in the nucleus accumbens during the behaviorally active time course, which is consistent with the effects of (S)-CE-123 and other DAT inhibitors that enhance high-effort responding. CONCLUSIONS These studies provide an initial neurochemical characterization of a novel atypical DAT inhibitor, and demonstrate that this compound is active in models of effort-related choice. This research could contribute to the development of novel compounds for the treatment of motivational dysfunctions in humans.
Collapse
Affiliation(s)
- Renee A. Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria,Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Rose E. Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Julia Neri
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Emily Robertson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Vasiliy Bakulev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Natalia N. Volkova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Christian Pifl
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria.
| | - John D. Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA,Corresponding authors: John D. Salamone () and Gert Lubec ()
| |
Collapse
|
30
|
Rotolo RA, Presby RE, Tracy O, Asar S, Yang JH, Correa M, Murray F, Salamone JD. The novel atypical dopamine transport inhibitor CT-005404 has pro-motivational effects in neurochemical and inflammatory models of effort-based dysfunctions related to psychopathology. Neuropharmacology 2020; 183:108325. [PMID: 32956676 DOI: 10.1016/j.neuropharm.2020.108325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023]
Abstract
Depressed individuals suffer from effort-related motivational symptoms such as anergia and fatigue, which are resistant to treatment with many common antidepressants. While drugs that block dopamine transport (DAT) reportedly have positive motivational effects, DAT inhibitors such as cocaine and amphetamines produce undesirable side effects. Thus, there is a need to develop and characterize novel atypical DAT inhibitors with unique and selective binding profiles. Rodent effort-based choice tasks provide useful models of motivational dysfunctions. With these tasks, animals choose between a high-effort instrumental action leading to highly valued reinforcement vs. a low effort/low reward option. The present studies focused on the initial characterization of a novel atypical DAT inhibitor, CT-005404, which binds to DAT with high selectivity relative to serotonin and norepinephrine transport, and produces long-term elevations of extracellular DA. CT-005404 was assessed for its ability to attenuate the effort-related motivational effects of the DA depleting agent tetrabenazine and the pro-inflammatory cytokine interleukin-1β (IL-1β) using a fixed ratio 5/chow feeding choice test. Tetrabenazine (1.0 mg/kg i.p.) shifted choice behavior, decreasing lever pressing and increasing chow intake. IL-1β (4.0 μg/kg i.p.) also decreased lever pressing. CT-005404 was co-administered (7.5-30.0 mg/kg p.o.) with either tetrabenazine or IL-1β, and the 15.0 and 30.0 mg/kg doses significantly reversed the effects of tetrabenazine and IL-1β. CT-005404 administered alone produced a dose-related increase in lever pressing in rats tested on a progressive ratio/chow feeding choice task. Atypical DAT inhibitors such as CT-005404 offer potential as a new avenue for drug treatment of motivational dysfunctions in humans.
Collapse
Affiliation(s)
- Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Olivia Tracy
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Sokaina Asar
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA; Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071, Castelló, Spain
| | - Fraser Murray
- Chronos Therapeutics, The Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA.
| |
Collapse
|
31
|
Milaneschi Y, Lamers F, Berk M, Penninx BWJH. Depression Heterogeneity and Its Biological Underpinnings: Toward Immunometabolic Depression. Biol Psychiatry 2020; 88:369-380. [PMID: 32247527 DOI: 10.1016/j.biopsych.2020.01.014] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/03/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
Epidemiological evidence indicates the presence of dysregulated homeostatic biological pathways in depressed patients, such as increased inflammation and disrupted energy-regulating neuroendocrine signaling (e.g., leptin, insulin). Alterations in these biological pathways may explain the considerable comorbidity between depression and cardiometabolic conditions (e.g., obesity, metabolic syndrome, diabetes) and represent a promising target for intervention. This review describes how immunometabolic dysregulations vary as a function of depression heterogeneity by illustrating that such biological dysregulations map more consistently to atypical behavioral symptoms reflecting altered energy intake/expenditure balance (hyperphagia, weight gain, hypersomnia, fatigue, and leaden paralysis) and may moderate the antidepressant effects of standard or novel (e.g., anti-inflammatory) therapeutic approaches. These lines of evidence are integrated in a conceptual model of immunometabolic depression emerging from the clustering of immunometabolic biological dysregulations and specific behavioral symptoms. The review finally elicits questions to be answered by future research and describes how the immunometabolic depression dimension could be used to dissect the heterogeneity of depression and potentially to match subgroups of patients to specific treatments with higher likelihood of clinical success.
Collapse
Affiliation(s)
- Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam University Medical Center/Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands.
| | - Femke Lamers
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam University Medical Center/Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Treatment, School of Medicine, Deakin University and Barwon Health, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam University Medical Center/Vrije Universiteit & GGZinGeest, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Aguiar AS, Speck AE, Canas PM, Cunha RA. Neuronal adenosine A 2A receptors signal ergogenic effects of caffeine. Sci Rep 2020; 10:13414. [PMID: 32770138 PMCID: PMC7415152 DOI: 10.1038/s41598-020-69660-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Caffeine is one of the most used ergogenic aid for physical exercise and sports. However, its mechanism of action is still controversial. The adenosinergic hypothesis is promising due to the pharmacology of caffeine, a nonselective antagonist of adenosine A1 and A2A receptors. We now investigated A2AR as a possible ergogenic mechanism through pharmacological and genetic inactivation. Forty-two adult females (20.0 ± 0.2 g) and 40 male mice (23.9 ± 0.4 g) from a global and forebrain A2AR knockout (KO) colony ran an incremental exercise test with indirect calorimetry (V̇O2 and RER). We administered caffeine (15 mg/kg, i.p., nonselective) and SCH 58261 (1 mg/kg, i.p., selective A2AR antagonist) 15 min before the open field and exercise tests. We also evaluated the estrous cycle and infrared temperature immediately at the end of the exercise test. Caffeine and SCH 58621 were psychostimulant. Moreover, Caffeine and SCH 58621 were ergogenic, that is, they increased V̇O2max, running power, and critical power, showing that A2AR antagonism is ergogenic. Furthermore, the ergogenic effects of caffeine were abrogated in global and forebrain A2AR KO mice, showing that the antagonism of A2AR in forebrain neurons is responsible for the ergogenic action of caffeine. Furthermore, caffeine modified the exercising metabolism in an A2AR-dependent manner, and A2AR was paramount for exercise thermoregulation.
Collapse
Affiliation(s)
- Aderbal S Aguiar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, 88905-120, Brazil.
| | - Ana Elisa Speck
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Biology of Exercise Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, 88905-120, Brazil
| | - Paula M Canas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- FMUC - Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| |
Collapse
|
33
|
Goldsmith DR, Bekhbat M, Le NA, Chen X, Woolwine BJ, Li Z, Haroon E, Felger JC. Protein and gene markers of metabolic dysfunction and inflammation together associate with functional connectivity in reward and motor circuits in depression. Brain Behav Immun 2020; 88:193-202. [PMID: 32387344 PMCID: PMC7415617 DOI: 10.1016/j.bbi.2020.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Bidirectional relationships between inflammation and metabolic dysfunction may contribute to the pathophysiology of psychiatric illnesses like depression. Metabolic disturbances drive inflammation, which in turn exacerbate metabolic outcomes including insulin resistance. Both inflammatory (e.g. endotoxin, vaccination) and metabolic challenges (e.g. glucose ingestion) have been shown to affect activity and functional connectivity (FC) in brain regions that subserve reward and motor processing. We previously reported relationships between elevated concentrations of endogenous inflammatory markers including C-reactive protein (CRP) and low corticostriatal FC, which correlated with symptoms of anhedonia and motor slowing in major depression (MD). Herein, we examined whether similar relationships were observed between plasma markers related to glucose metabolism (non-fasting concentrations of glucose, insulin, leptin, adiponectin and resistin) in 42 medically-stable, unmedicated MD outpatients who underwent fMRI. A targeted, hypothesis-driven approach was used to assess FC between seeds in subdivisions of the ventral and dorsal striatum and a region in ventromedial prefrontal cortex (VS-vmPFC), which was previously found to correlate with both inflammation and symptoms of anhedonia and motor slowing. Associations between FC and gene expression signatures were also explored. A composite score of all 5 glucose-related markers (with increasing values reflecting higher concentrations) was negatively correlated with both ventral striatum (VS)-vmPFC (r = -0.33, p < 0.05) and dorsal caudal putamen (dcP)-vmPFC (r = -0.51, p < 0.01) FC, and remained significant after adjusting for covariates including body mass index (p < 0.05). Moreover, an interaction between the glucose-related composite score and CRP was observed for these relationships (F[2,33] = 4.3, p < 0.05) whereby significant correlations between the glucose-related metabolic markers and FC was found only in patients with high plasma CRP (>3 mg/L; r = -0.61 to -0.81, p < 0.05). Insulin and resistin were the individual markers most predictive of VS-vmPFC and dcP-mPFC FC, respectively, and insulin, resistin and CRP clustered together and in association with both LV-vmPFC and dcP-vmPFC in principal component analyses. Exploratory whole blood gene expression analyses also confirmed that gene probes negatively associated with FC were enriched for both inflammatory and metabolic pathways (FDR p < 0.05). These results provide preliminary evidence that inflammation and metabolic dysfunction contribute jointly to deficits in reward and motor circuits in MD. Future studies using fasting samples and longitudinal and interventional approaches are required to further elucidate the respective contributions of inflammation and metabolic dysfunction to circuits and symptoms relevant to motivation and motor activity, which may have treatment implications for patients with psychiatric illnesses like depression.
Collapse
Affiliation(s)
- David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Ngoc-Anh Le
- Biomarker Core Laboratory, Foundation for Atlanta Veterans Education and Research, Atlanta VAHSC, Decatur, GA 30033, United States
| | - Xiangchuan Chen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Bobbi J Woolwine
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States
| | - Zhihao Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong 518060, China; Center for Brain Disorders and Cognitive Neuroscience, Shenzhen University, Shenzhen, Guangdong 518060, China.
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, United States; The Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
34
|
Godfrey JR, Pincus M, Kovacs-Balint Z, Feczko E, Earl E, Miranda-Dominguez O, Fair DA, Jones SR, Locke J, Sanchez MM, Wilson ME, Michopoulos V. Obesogenic diet-associated C-reactive protein predicts reduced central dopamine and corticostriatal functional connectivity in female rhesus monkeys. Brain Behav Immun 2020; 88:166-173. [PMID: 32240763 PMCID: PMC7416544 DOI: 10.1016/j.bbi.2020.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022] Open
Abstract
Alterations in dopamine (DA) signaling and reductions in functional connectivity (FC; a measure of temporal correlations of activity between different brain regions) within dopaminergic reward pathways are implicated in the etiology of psychopathology and have been associated with increased concentrations of inflammatory markers, including C-reactive protein. Peripheral and central inflammatory cytokines that have been shown to disrupt DA signaling and corticostriatal FC are associated with C-reactive protein, an acute phase reactant that is used translationally as a marker of systemic inflammation. One factor that can significantly increase systemic inflammation to produce neuroadaptations in reward pathways is a diet that results in fat mass accumulation (e.g. obesogenic diet). The current study in female rhesus monkeys maintained in a standard laboratory chow (n = 18) or on obesogenic diet (n = 16) for 12-months tested the hypothesis that an obesogenic diet would alter central DA and homovanillic acid (HVA) concentrations, and be associated with increased CRP concentrations and decreased FC between corticostriatal regions at 12-months following dietary intervention. We specifically assessed FC between the nucleus accumbens (NAcc) and two sub-regions of the prefrontal cortex (PFC) previously associated with CRP concentrations, the ventromedial PFC (vmPFC) and the orbitofrontal cortex (OFC), which are also involved in emotional and motivational salience assessment, and in goal-directed behavior, impulse control and the salience/value of food, respectively. Results showed that CSF DA concentrations were decreased (p = 0.002), HVA:DA ratios were increased (p = 0.016), and body mass index was increased (p = 0.047) over the 12-months of consuming an obesogenic diet. At 12-months, females maintained in the obesogenic diet exhibited higher CRP concentrations than females consuming chow-only (p = 0.008). Linear regression analyses revealed significant CRP by dietary condition interactions on DA concentrations (β = -5.10; p = 0.017) and HVA:DA ratios (β = 5.14; p = 0.029). Higher CRP concentrations were associated with lower CSF DA concentrations (r = -0.69; p = 0.004) and greater HVA:DA ratios only in females maintained in the obesogenic dietary condition (r = 0.58; p = 0.024). Resting-state magnetic resonance neuroimaging (rs-fMRI) in a subset of females from each diet condition (n = 8) at 12-months showed that higher CRP concentrations were associated decreased FC between the NAcc and subregions of the prefrontal cortex (PFC; p's < 0.05). Decreased FC between the NAcc and PFC subregions were also associated with lower concentrations of DA and greater HVA:DA ratios (p's < 0.05). Overall, these data suggest that increased inflammatory signaling driving heightened CRP levels may mediate the adverse consequences of obesogenic diets on DA neurochemistry and corticostriatal connectivity.
Collapse
Affiliation(s)
| | | | | | - Eric Feczko
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Eric Earl
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | | | - Damien A. Fair
- Department Of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jason Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Mar M. Sanchez
- Yerkes National Primate Research Center, Atlanta, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Mark E. Wilson
- Yerkes National Primate Research Center, Atlanta, GA,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Vasiliki Michopoulos
- Yerkes National Primate Research Center, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
35
|
Kokkosis AG, Tsirka SE. Neuroimmune Mechanisms and Sex/Gender-Dependent Effects in the Pathophysiology of Mental Disorders. J Pharmacol Exp Ther 2020; 375:175-192. [PMID: 32661057 DOI: 10.1124/jpet.120.266163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Innate and adaptive immune mechanisms have emerged as critical regulators of CNS homeostasis and mental health. A plethora of immunologic factors have been reported to interact with emotion- and behavior-related neuronal circuits, modulating susceptibility and resilience to mental disorders. However, it remains unclear whether immune dysregulation is a cardinal causal factor or an outcome of the pathologies associated with mental disorders. Emerging variations in immune regulatory pathways based on sex differences provide an additional framework for discussion in these psychiatric disorders. In this review, we present the current literature pertaining to the effects that disrupted immune pathways have in mental disorder pathophysiology, including immune dysregulation in CNS and periphery, microglial activation, and disturbances of the blood-brain barrier. In addition, we present the suggested origins of such immune dysregulation and discuss the gender and sex influence of the neuroimmune substrates that contribute to mental disorders. The findings challenge the conventional view of these disorders and open the window to a diverse spectrum of innovative therapeutic targets that focus on the immune-specific pathophenotypes in neuronal circuits and behavior. SIGNIFICANCE STATEMENT: The involvement of gender-dependent inflammatory mechanisms on the development of mental pathologies is gaining momentum. This review addresses these novel factors and presents the accumulating evidence introducing microglia and proinflammatory elements as critical components and potential targets for the treatment of mental disorders.
Collapse
Affiliation(s)
- Alexandros G Kokkosis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
36
|
Lorenz TK. Interactions between inflammation and female sexual desire and arousal function. CURRENT SEXUAL HEALTH REPORTS 2019; 11:287-299. [PMID: 33312080 PMCID: PMC7731354 DOI: 10.1007/s11930-019-00218-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW To describe the current state of research on interactions between inflammation and female sexual function. RECENT FINDINGS Inflammation may interfere with female sexual desire and arousal via direct (neural) and indirect (endocrine, vascular, social/behavioral) pathways. There are significant sex differences in the effect of inflammation on sexual function, arising from different evolutionary selection pressures on regulation of reproduction. A variety of inflammation-related conditions are associated with risk of female sexual dysfunction, including cardiovascular disease, metabolic syndrome, and chronic pain. SUMMARY Clinical implications include the need for routine assessment for sexual dysfunction in patients with inflammation-related conditions, the potential for anti-inflammatory diets to improve sexual desire and arousal function, and consideration of chronic inflammation as moderator of sexual effects of hormonal treatments. Although the evidence points to a role for inflammation in the development and maintenance of female sexual dysfunction, the precise nature of these associations remains unclear.
Collapse
Affiliation(s)
- Tierney K Lorenz
- Department of Psychology and Center for Brain, Biology and Behavior, University of Nebraska at Lincoln
| |
Collapse
|
37
|
Zielinski MR, Systrom DM, Rose NR. Fatigue, Sleep, and Autoimmune and Related Disorders. Front Immunol 2019; 10:1827. [PMID: 31447842 PMCID: PMC6691096 DOI: 10.3389/fimmu.2019.01827] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Profound and debilitating fatigue is the most common complaint reported among individuals with autoimmune disease, such as systemic lupus erythematosus, multiple sclerosis, type 1 diabetes, celiac disease, chronic fatigue syndrome, and rheumatoid arthritis. Fatigue is multi-faceted and broadly defined, which makes understanding the cause of its manifestations especially difficult in conditions with diverse pathology including autoimmune diseases. In general, fatigue is defined by debilitating periods of exhaustion that interfere with normal activities. The severity and duration of fatigue episodes vary, but fatigue can cause difficulty for even simple tasks like climbing stairs or crossing the room. The exact mechanisms of fatigue are not well-understood, perhaps due to its broad definition. Nevertheless, physiological processes known to play a role in fatigue include oxygen/nutrient supply, metabolism, mood, motivation, and sleepiness-all which are affected by inflammation. Additionally, an important contributing element to fatigue is the central nervous system-a region impacted either directly or indirectly in numerous autoimmune and related disorders. This review describes how inflammation and the central nervous system contribute to fatigue and suggests potential mechanisms involved in fatigue that are likely exhibited in autoimmune and related diseases.
Collapse
Affiliation(s)
- Mark R Zielinski
- Veterans Affairs Boston Healthcare System, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David M Systrom
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
38
|
Rotolo RA, Dragacevic V, Kalaba P, Urban E, Zehl M, Roller A, Wackerlig J, Langer T, Pistis M, De Luca MA, Caria F, Schwartz R, Presby RE, Yang JH, Samels S, Correa M, Lubec G, Salamone JD. The Novel Atypical Dopamine Uptake Inhibitor (S)-CE-123 Partially Reverses the Effort-Related Effects of the Dopamine Depleting Agent Tetrabenazine and Increases Progressive Ratio Responding. Front Pharmacol 2019; 10:682. [PMID: 31316379 PMCID: PMC6611521 DOI: 10.3389/fphar.2019.00682] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Animal studies of effort-based choice behavior are being used to model effort-related motivational dysfunctions in humans. With these procedures, animals are offered a choice between high-effort instrumental actions leading to highly valued reinforcers vs. low effort/low reward options. Several previous studies have shown that dopamine (DA) uptake inhibitors, including GBR12909, lisdexamfetamine, methylphenidate, and PRX-14040, can reverse the effort-related effects of the vesicular monoamine transport blocker tetrabenazine, which inhibits DA storage. Because many drugs that block DA transport act as major stimulants that also release DA, and produce a number of undesirable side effects, there is a need to develop and characterize novel atypical DA transport inhibitors. (S)-CE-123 ((S)-5-((benzhydrylsulfinyl) methyl)thiazole) is a recently developed analog of modafinil with the biochemical characteristics of an atypical DA transport blocker. The present paper describes the enantioselective synthesis and initial chemical characterization of (S)-CE-123, as well as behavioral experiments involving effort-based choice and microdialysis studies of extracellular DA. Rats were assessed using the fixed ratio 5/chow feeding choice test. Tetrabenazine (1.0 mg/kg) shifted choice behavior, decreasing lever pressing and increasing chow intake. (S)-CE-123 was coadministered at doses ranging from 6.0 to 24.0 mg/kg, and the highest dose partially but significantly reversed the effects of tetrabenazine, although this dose had no effect on fixed ratio responding when administered alone. Additional experiments showed that (S)-CE-123 significantly increased lever pressing on a progressive ratio/chow feeding choice task and that the effective dose (24.0 mg/kg) increased extracellular DA in nucleus accumbens core. In summary, (S)-CE-123 has the behavioral and neurochemical profile of a compound that can block DA transport, reverse the effort-related effects of tetrabenazine, and increase selection of high-effort progressive ratio responding. This suggests that (S)-CE-123 or a similar compound could be useful as a treatment for effort-related motivational dysfunction in humans.
Collapse
Affiliation(s)
- Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Alexander Roller
- X-ray Structure Analysis Centre, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Judith Wackerlig
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, National Institute of Neuroscience (INN), Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, National Institute of Neuroscience (INN), Cagliari, Italy
| | - Francesca Caria
- Department of Biomedical Sciences, University of Cagliari, National Institute of Neuroscience (INN), Cagliari, Italy
| | - Rebecca Schwartz
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Shanna Samels
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Merce Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States.,Àrea de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, Salzburg, Austria
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
39
|
Can't or Won't? Immunometabolic Constraints on Dopaminergic Drive. Trends Cogn Sci 2019; 23:435-448. [PMID: 30948204 DOI: 10.1016/j.tics.2019.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Inflammatory cytokines have been shown to have a direct effect on mesolimbic dopamine (DA) that is associated with a reduced willingness to expend effort for reward. To date, however, the broader implications of this communication between inflammation and mesolimbic DA have yet to be explored. Here, we suggest that the metabolic demands of chronic low-grade inflammation induce a reduction of striatal DA that in turn leads to a steeper effort-discounting curve because of reduced perceived ability (can't) versus preference (won't) for reward. This theoretical framework can inform how the mesolimbic DA system responds to increased immunometabolic demands during chronic inflammation, ultimately contributing to motivational impairments in psychiatric and other medical disorders.
Collapse
|
40
|
Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE. The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation. Pharmacol Rev 2019; 70:747-762. [PMID: 30209181 DOI: 10.1124/pr.117.015107] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Effort-based decision making is studied using tasks that offer choices between high-effort options leading to more highly valued reinforcers versus low-effort/low-reward options. These tasks have been used to study the involvement of neural systems, including mesolimbic dopamine and related circuits, in effort-related aspects of motivation. Moreover, such tasks are useful as animal models of some of the motivational symptoms that are seen in people with depression, schizophrenia, Parkinson's disease, and other disorders. The present review will discuss the pharmacology of effort-related decision making and will focus on the use of these tasks for the development of drug treatments for motivational dysfunction. Research has identified pharmacological conditions that can alter effort-based choice and serve as models for depression-related symptoms (e.g., the vesicular monoamine transport-2 inhibitor tetrabenazine and proinflammatory cytokines). Furthermore, tests of effort-based choice have identified compounds that are particularly useful for stimulating high-effort work output and reversing the deficits induced by tetrabenazine and cytokines. These studies indicate that drugs that act by facilitating dopamine transmission, as well as adenosine A2A antagonists, are relatively effective at reversing effort-related impairments. Studies of effort-based choice may lead to the identification of drug targets that could be useful for treating motivational treatments that are resistant to commonly used antidepressants such as serotonin transport inhibitors.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Mercè Correa
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Sarah Ferrigno
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Jen-Hau Yang
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut (J.D.S., S.F., J.-H.Y., R.A.R., R.E.P.); and Area de Psicobiologia, Universitat de Jaume I, Castelló, Spain (M.C.)
| |
Collapse
|
41
|
Vichaya EG, Laumet G, Christian DL, Grossberg AJ, Estrada DJ, Heijnen CJ, Kavelaars A, Dantzer R. Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacology 2019; 44:364-371. [PMID: 29760410 PMCID: PMC6300560 DOI: 10.1038/s41386-018-0075-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/18/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Despite years of research, our understanding of the mechanisms by which inflammation induces depression is still limited. As clinical data points to a strong association between depression and motivational alterations, we sought to (1) characterize the motivational changes that are associated with inflammation in mice, and (2) determine if they depend on inflammation-induced activation of indoleamine 2,3 dioxygenase-1 (IDO1). Lipopolysaccharide (LPS)-treated or spared nerve injured (SNI) wild type (WT) and Ido1-/- mice underwent behavioral tests of antidepressant activity (e.g., forced swim test) and motivated behavior, including assessment of (1) reward expectancy using a food-related anticipatory activity task, (2) willingness to work for reward using a progressive ratio schedule of food reinforcement, (3) effort allocation using a concurrent choice task, and (4) ability to associate environmental cues with reward using conditioned place preference. LPS- and SNI-induced deficits in behavioral tests of antidepressant activity in WT but not Ido1-/- mice. Further, LPS decreased food related-anticipatory activity, reduced performance in the progressive ratio task, and shifted effort toward the preferred reward in the concurrent choice task. These effects were observed in both WT and Ido1-/- mice. Finally, SNI mice developed a conditioned place preference based on relief from pain in an IDO1-independent manner. These findings demonstrate that the motivational effects of inflammation do not require IDO1. Further, they indicate that the motivational component of inflammation-induced depression is mechanistically distinct from that measured by behavioral tests of antidepressant activity.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Geoffroy Laumet
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Diana L. Christian
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Aaron J. Grossberg
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Darlene J. Estrada
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Cobi J. Heijnen
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Annemieke Kavelaars
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Robert Dantzer
- 0000 0001 2291 4776grid.240145.6Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
42
|
Ferré S, Díaz-Ríos M, Salamone JD, Prediger RD. New Developments on the Adenosine Mechanisms of the Central Effects of Caffeine and Their Implications for Neuropsychiatric Disorders. J Caffeine Adenosine Res 2018; 8:121-131. [PMID: 30596206 PMCID: PMC6306650 DOI: 10.1089/caff.2018.0017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies on interactions between striatal adenosine and dopamine and one of its main targets, the adenosine A2A receptor–dopamine D2 receptor (A2AR–D2R) heteromer, have provided a better understanding of the mechanisms involved in the psychostimulant effects of caffeine and have brought forward new data on the mechanisms of operation of classical orthosteric ligands within G protein-coupled receptor heteromers. The striatal A2AR–D2R heteromer has a tetrameric structure and forms part of a signaling complex that includes a Gs and a Gi protein and the effector adenyl cyclase (subtype AC5). Another target of caffeine, the adenosine A1 receptor–dopamine D1 receptor (A1R–D1R) heteromer, seems to have a very similar structure. Initially suggested to be localized in the striatum, the A1R–D1R heteromer has now been identified in the spinal motoneuron and shown to mediate the spinally generated caffeine-induced locomotion. In this study, we review the recently discovered properties of A2AR–D2R and A1R–D1R heteromers. Our studies demonstrate that these complexes are a necessary condition to sustain the canonical antagonistic interaction between a Gs-coupled receptor (A2AR or D1R) and a Gi-coupled receptor (D2R or A1R) at the adenylyl cyclase level, which constitutes a new concept in the field of G protein-coupled receptor physiology and pharmacology. A2AR antagonists targeting the striatal A2AR–D2R heteromer are already being considered as therapeutic agents in Parkinson's disease. In this study, we review the preclinical evidence that indicates that caffeine and A2AR antagonists could be used to treat the motivational symptoms of depression and attention-deficit/hyperactivity disorder, while A1R antagonists selectively targeting the spinal A1R–D1R heteromer could be used in the recovery of spinal cord injury.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology, Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| | - Rui Daniel Prediger
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
43
|
Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2018; 42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/13/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
Converging evidence across species highlights the contribution of environmental stress to anhedonia (loss of pleasure and/or motivation). However, despite a clear link between stress and the emergence of anhedonic-like behavior in both human and animal models, the underlying biological pathways remain elusive. Here, we synthesize recent findings across multiple levels, from molecular signaling pathways through whole-brain networks, to discuss mechanisms through which stress may influence anhedonia. Recent work suggests the involvement of diverse systems that converge on the mesolimbic reward pathway, including medial-prefrontal cortical circuitry, neuroendocrine stress responses, homeostatic energy regulation systems, and inflammation. We conclude by emphasizing the need to disentangle the influences of key dimensions of stress on specific aspects of reward processing, taking into account individual differences that could moderate this relationship.
Collapse
Affiliation(s)
- Colin H Stanton
- Department of Psychology, Yale University, New Haven, CT 06511, USA.
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
44
|
Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci 2018; 22:128-135. [PMID: 29503842 DOI: 10.1016/j.cobeha.2018.01.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Anhedonia is a severe condition that describes a near-complete absence of enjoyment, motivation, and interest. A core feature of depression, clinical manifestations of anhedonia can include deficits in experiencing pleasure, approach-related motivated behavior, and learning how to match expectations to the environment. To date, the precise neurobiological mechanisms of anhedonia in major depression are still poorly understood. We have previously argued that contradictory findings and the inability to identify specific neurobiological substrates for anhedonic symptoms may result from sample heterogeneity, suboptimal methods of assessment, and the challenge of dissociating between different components of anhedonia. Recently, however, computational advances to the operationalization of psychiatric symptoms have enhanced the ability to evaluate the neurobiology of constituent elements of this symptom domain. In this paper, we review (1) advances in behavioral and computational methods of assessing reward processing and motivation and (2) the development of new self-report, neurological, and biological methods of subtyping that may be useful in future pursuits to expand our understanding of the neurobiology of anhedonia in depression.
Collapse
Affiliation(s)
| | | | - Michael T Treadway
- Department of Psychology, Emory University, Atlanta, GA 30322.,Department of Psychiatry, Emory School of Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
45
|
Neurobiology and pharmacology of activational and effort-related aspects of motivation: rodent studies. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
46
|
Vichaya EG, Dantzer R. Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Curr Opin Behav Sci 2018; 22:90-95. [PMID: 29888301 PMCID: PMC5987547 DOI: 10.1016/j.cobeha.2018.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammation can profoundly impact motivated behavior, as is the case with inflammation-induced depression. By evaluating objectively measurable basic neurobehavioral processes involved in motivation, recent research indicates that inflammation generally reduces approach motivation and enhances avoidance motivation. Increased effort valuation largely mediates the effects of inflammation on approach motivation. Changes in reward valuation are not uniformly observed in approach motivation. However, inflammation increases the averseness of negative stimuli. Within the context of both approach and avoidance motivation, inflammation appears to enhance the contrast between concurrently presented stimuli. While changes in both approach and avoidance motivation appear to be mediated by midbrain dopaminergic neurotransmission to the ventral striatum, it is unclear if the enhanced contrast is mediated by the same system.
Collapse
Affiliation(s)
- Elisabeth G. Vichaya
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| | - Robert Dantzer
- Division of Internal Medicine, Department of Symptom Research,
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384,
Houston, TX 77030, USA
| |
Collapse
|
47
|
López-Cruz L, San Miguel N, Carratalá-Ros C, Monferrer L, Salamone JD, Correa M. Dopamine depletion shifts behavior from activity based reinforcers to more sedentary ones and adenosine receptor antagonism reverses that shift: Relation to ventral striatum DARPP32 phosphorylation patterns. Neuropharmacology 2018; 138:349-359. [PMID: 29408363 DOI: 10.1016/j.neuropharm.2018.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 01/18/2023]
Abstract
The mesolimbic dopamine (DA) system plays a critical role in behavioral activation and effort-based decision-making. DA depletion produces anergia (shifts to low effort options) in animals tested on effort-based decision-making tasks. Caffeine, the most consumed stimulant in the world, acts as an adenosine A1/A2A receptor antagonist, and in striatal areas DA D1 and D2 receptors are co-localized with adenosine A1 and A2A receptors respectively. In the present work, we evaluated the effect of caffeine on anergia induced by the VMAT-2 inhibitor tetrabenazine (TBZ), which depletes DA. Anergia was evaluated in a three-chamber T-maze task in which animals can chose between running on a wheel (RW) vs. sedentary activities such as consuming sucrose or sniffing a neutral odor. TBZ-caffeine interactions in ventral striatum were evaluated using DARPP-32 phosphorylation patterns as an intracellular marker of DA-adenosine receptor interaction. In the T-maze, control mice spent more time running and much less consuming sucrose or sniffing. TBZ (4.0 mg/kg) reduced ventral striatal DA tissue levels as measured by HPLC, and also shifted preferences in the T-maze, reducing selection of the reinforcer that involved vigorous activity (RW), but increasing consumption of a reinforcer that required little effort (sucrose), at doses that had no effect on independent measures of appetite or locomotion in a RW. Caffeine at doses that had no effect on their own reversed the effects of TBZ on T-maze performance, and also suppressed TBZ-induced pDARPP-32(Thr34) expression as measured by western blot, suggesting a role for D2-A2A interactions. These results support the idea that DA depletion produces anergia, but does not affect the primary motivational effects of sucrose. Caffeine, possibly by acting on A2A receptors in ventral striatum, reversed the DA depletion effects. It is possible that caffeine, like selective adenosine A2A antagonists, could have some therapeutic benefit for treating effort-related symptoms.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Noemí San Miguel
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Carla Carratalá-Ros
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - Lidón Monferrer
- Àrea de Didàctica Ciències Experimentals, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Div., University of Connecticut, Storrs, 06269-1020 CT, USA
| | - Mercè Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071 Castelló, Spain; Behavioral Neuroscience Div., University of Connecticut, Storrs, 06269-1020 CT, USA.
| |
Collapse
|
48
|
López-Cruz L, Salamone JD, Correa M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front Pharmacol 2018; 9:526. [PMID: 29910727 PMCID: PMC5992708 DOI: 10.3389/fphar.2018.00526] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
49
|
Lacourt TE, Vichaya EG, Chiu GS, Dantzer R, Heijnen CJ. The High Costs of Low-Grade Inflammation: Persistent Fatigue as a Consequence of Reduced Cellular-Energy Availability and Non-adaptive Energy Expenditure. Front Behav Neurosci 2018; 12:78. [PMID: 29755330 PMCID: PMC5932180 DOI: 10.3389/fnbeh.2018.00078] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/09/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic or persistent fatigue is a common, debilitating symptom of several diseases. Persistent fatigue has been associated with low-grade inflammation in several models of fatigue, including cancer-related fatigue and chronic fatigue syndrome. However, it is unclear how low-grade inflammation leads to the experience of fatigue. We here propose a model of an imbalance in energy availability and energy expenditure as a consequence of low-grade inflammation. In this narrative review, we discuss how chronic low-grade inflammation can lead to reduced cellular-energy availability. Low-grade inflammation induces a metabolic switch from energy-efficient oxidative phosphorylation to fast-acting, but less efficient, aerobic glycolytic energy production; increases reactive oxygen species; and reduces insulin sensitivity. These effects result in reduced glucose availability and, thereby, reduced cellular energy. In addition, emerging evidence suggests that chronic low-grade inflammation is associated with increased willingness to exert effort under specific circumstances. Circadian-rhythm changes and sleep disturbances might mediate the effects of inflammation on cellular-energy availability and non-adaptive energy expenditure. In the second part of the review, we present evidence for these metabolic pathways in models of persistent fatigue, focusing on chronic fatigue syndrome and cancer-related fatigue. Most evidence for reduced cellular-energy availability in relation to fatigue comes from studies on chronic fatigue syndrome. While the mechanistic evidence from the cancer-related fatigue literature is still limited, the sparse results point to reduced cellular-energy availability as well. There is also mounting evidence that behavioral-energy expenditure exceeds the reduced cellular-energy availability in patients with persistent fatigue. This suggests that an inability to adjust energy expenditure to available resources might be one mechanism underlying persistent fatigue.
Collapse
|
50
|
Draper A, Koch RM, van der Meer JW, Aj Apps M, Pickkers P, Husain M, van der Schaaf ME. Effort but not Reward Sensitivity is Altered by Acute Sickness Induced by Experimental Endotoxemia in Humans. Neuropsychopharmacology 2018; 43:1107-1118. [PMID: 28948979 PMCID: PMC5854801 DOI: 10.1038/npp.2017.231] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022]
Abstract
Sickness behavior in humans is characterized by low mood and fatigue, which have been suggested to reflect changes in motivation involving reorganization of priorities. However, it is unclear which specific processes underlying motivation are altered. We tested whether bacterial endotoxin E. coli lipopolysaccharide (LPS) affected two dissociable constructs of motivational behavior, ie, effort and reward sensitivity. After familiarization with 5 effort levels, participants made a series of accept/reject decisions on whether the stake offered (1, 4, 8, 12, or 15 apples) was 'worth the effort' (10%, 27.5%, 45%, 62.5%, and 80% of maximal voluntary contraction in a hand-held dynamometer). Effort and reward levels were parametrically modulated to dissociate their influence on choice. Overall, 29 healthy young males were administered LPS (2 ng/kg; n=14) or placebo (0.9% saline; n=15). The effort-stake task, and self-reported depression and fatigue were assessed prior to LPS/placebo injection, 2 and 5 h post injection. Cytokines and sickness symptoms were assessed hourly till 8 h after LPS injection. LPS transiently increased interleukin-6 and tumor necrosis factor-α, sickness symptoms, body temperature and self-reported fatigue, and depression post injection relative to baseline and placebo. These changes were accompanied by LPS-induced decreases in acceptance rates of high-effort options, without significantly affecting reward sensitivity 2 h post injection, which were partially recovered 5 h post injection. We suggest that LPS-induced changes in motivation may be due to alterations to mesolimbic dopamine. Our behavioral paradigm could be used to further investigate effects of inflammation on motivational behavior in psychiatric and chronic illnesses.
Collapse
Affiliation(s)
- Amelia Draper
- Department of Experimental Psychology University of Oxford, Oxford, UK
| | - Rebecca M Koch
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jos Wm van der Meer
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Matthew Aj Apps
- Department of Experimental Psychology University of Oxford, Oxford, UK
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Masud Husain
- Department of Experimental Psychology University of Oxford, Oxford, UK
| | - Marieke E van der Schaaf
- Donders Institute for Brain, Centre for Cognitive Neuroimaging, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|