1
|
Georgiou P, Farmer CA, Medeiros GC, Yuan P, Johnston J, Kadriu B, Gould TD, Zarate CA. Associations between hypothalamic-pituitary-adrenal (HPA) axis hormone levels, major depression features and antidepressant effects of ketamine. J Affect Disord 2024:S0165-0327(24)02022-6. [PMID: 39674325 DOI: 10.1016/j.jad.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Subanesthetic doses of (R,S)-ketamine (ketamine) have demonstrated rapid and robust antidepressant effects in individuals with depression. However, individual variability in response to ketamine exists, and current biomarkers of ketamine treatment response are not entirely understood. Preclinical evidence suggests a link between hypothalamic-pituitary-adrenal (HPA) axis activation, a determinant of the stress response system, and ketamine's efficacy in stressed mice exhibiting enhanced antidepressant responses. Here, we assessed the relationship between HPA axis, major depression features, and antidepressant response to ketamine in humans. METHODS We investigated 42 participants following medication washout with treatment-resistant depression who participated in a randomized, placebo-controlled, crossover trial receiving intravenous ketamine. Plasma levels of corticotropin-releasing factor (CRF), adrenocorticotropic hormone (ACTH), and cortisol were measured at baseline. Ketamine's antidepressant effects were assessed using the Montgomery-Asberg Depression Rating Scale. RESULTS We found that baseline HPA axis hormone levels did not significantly moderate the antidepressant effects of ketamine. However, a negative association was observed between ACTH and CRF levels and the overall duration of depressive episodes, suggesting potential biomarker implications. Also, a negative correlation between baseline depressive scores and age of onset was observed, suggesting that the severity of depression might be greater if it develops at a younger age, indicating more enduring stress on the brain and body. DISCUSSION Although we did not find a moderation effect of the plasma HPA axis hormones on the antidepressant effects of ketamine, moderation effects of the brain HPA axis hormones cannot be precluded and warrants further investigation. Importantly, our results implicate HPA axis components as potential biomarkers for the duration of depressive episodes.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA; Department of Psychology, University of Wisconsin, Milwaukee, WI, USA
| | - Cristan A Farmer
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Gustavo C Medeiros
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Jenessa Johnston
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA; Departments of Pharmacology, Neurobiology School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Witkin JM, Barrett JE. ANXIOLYTICS: Origins, drug discovery, and mechanisms. Pharmacol Biochem Behav 2024; 245:173858. [PMID: 39178918 DOI: 10.1016/j.pbb.2024.173858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Anxiety is a part of the human condition and has been managed by psychoactive substances for centuries. The current medical need and societal demand for anxiolytic medicines has not abated. The present overview provides a brief historical introduction to the discovery of modern age anxiolytics that include the benzodiazepines together with a discussion of the continuing medical need for new antianxiety medications. The paper also discusses the use and impact of behavioral pharmacology in the preclinical development of anxiolytics. The review then highlights the diversity of mechanisms for creating a new generation of anxiolytics through mechanisms beyond the potentiation of GABAA receptors and the blockade of monoamine uptake. A discussion then follows on the behavioral specificity of action of anxiolytics that includes the concept of creating an anxioselective drug, one that targets anxiety without producing untoward effects that include sedation and dependence. The use of anxiolytics in the treatment of other conditions such as substance use disorder is also briefly reviewed. Finally, a brief summary of the current status of anxiolytic drug development is provided. The review concludes with the idea that despite a host of anxiolytic drugs, the lack of efficacy in some patients and the side-effects and safety issues associated with some of these medications demands alternative medicines. Current preclinical and clinical research is ongoing with the goal of identifying such compounds.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA.
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Gilani M, Abak N, Saberian M. Genetic-epigenetic-neuropeptide associations in mood and anxiety disorders: Toward personalized medicine. Pharmacol Biochem Behav 2024; 245:173897. [PMID: 39424200 DOI: 10.1016/j.pbb.2024.173897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Mood and anxiety disorders are complex psychiatric conditions shaped by the multifactorial interplay of genetic, epigenetic, and neuropeptide factors. This review aims to elucidate the intricate interactions among these factors and their potential in advancing personalized medicine. We examine the genetic underpinnings, emphasizing key heritability studies and specific gene associations. The role of epigenetics is discussed, focusing on how environmental factors can modify gene expression and contribute to these disorders. Neuropeptides, including substance P, CRF, AVP, NPY, galanin, and kisspeptin, are evaluated for their involvement in mood regulation and their potential as therapeutic targets. Additionally, we address the emerging role of the gut microbiome in modulating neuropeptide activity and its connection to mood disorders. This review integrates findings from genetic, epigenetic, and neuropeptide research, offering a comprehensive overview of their collective impact on mood and anxiety disorders. By highlighting novel insights and potential clinical applications, we underscore the importance of a multi-omics approach in developing personalized treatment strategies. Future research directions are proposed to address existing knowledge gaps and translate these findings into clinical practice. Our review provides a fresh perspective on the pathophysiology of mood and anxiety disorders, paving the way for more effective and individualized therapies.
Collapse
Affiliation(s)
- Maryam Gilani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Abak
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Campbell HM, Guo JD, Kuhn CM. Applying the Research Domain Criteria to Rodent Studies of Sex Differences in Chronic Stress Susceptibility. Biol Psychiatry 2024; 96:848-857. [PMID: 38821193 DOI: 10.1016/j.biopsych.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Women have a 2-fold increased rate of stress-associated psychiatric disorders such as depression and anxiety, but the mechanisms that underlie this increased susceptibility remain incompletely understood. Historically, female subjects were excluded from preclinical studies and clinical trials. Additionally, chronic stress paradigms used to study psychiatric pathology in animal models were developed for use in males. However, recent changes in National Institutes of Health policy encourage inclusion of female subjects, and considerable work has been performed in recent years to understand biological sex differences that may underlie differences in susceptibility to chronic stress-associated psychiatric conditions. Here, we review the utility as well as current challenges of using the framework of the National Institute of Mental Health's Research Domain Criteria as a transdiagnostic approach to study sex differences in rodent models of chronic stress including recent progress in the study of sex differences in the neurobehavioral domains of negative valence, positive valence, cognition, social processes, and arousal.
Collapse
Affiliation(s)
- Hannah M Campbell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jessica D Guo
- Duke University School of Medicine, Durham, North Carolina
| | - Cynthia M Kuhn
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
5
|
Ma YN, Yang CJ, Zhang CC, Sun YX, Yao XD, Liu X, Li XX, Wang HL, Wang H, Wang T, Wang XD, Zhang C, Su YA, Li JT, Si TM. Prefrontal parvalbumin interneurons mediate CRHR1-dependent early-life stress-induced cognitive deficits in adolescent male mice. Mol Psychiatry 2024:10.1038/s41380-024-02845-6. [PMID: 39578519 DOI: 10.1038/s41380-024-02845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024]
Abstract
Cognitive impairment, a core symptom of psychiatric disorders, is frequently observed in adolescents exposed to early-life stress (ES). However, the underlying neural mechanisms are unclear, and therapeutic efficacy is limited. Targeting parvalbumin-expressing interneurons (PVIs) in the medial prefrontal cortex (mPFC), we report that ES reduces mPFC PVI activity, which causally mediated ES-induced cognitive deficits in adolescent male mice through chemogenetic and optogenetic experiments. To understand the possible causes of PVI activity reduction following ES, we then demonstrated that ES upregulated corticotropin-releasing hormone (CRH) receptor 1 [CRHR1, mainly expressed in pyramidal neurons (PNs)] and reduced activity of local pyramidal neurons (PNs) and their excitatory inputs to PVIs. The subsequent genetic manipulation experiments (CRHR1 knockout, CRH overexpression, and chemogenetics) highlight that ES-induced PVI activity reduction may result from CRHR1 upregulation and PN activity downregulation and that PVIs play indispensable roles in CRHR1- or PN-mediated cognitive deficits induced by ES. These results suggest that ES-induced cognitive deficits could be attributed to the prefrontal CRHR1-PN-PVI pathway. Finally, treatment with antalarmin (a CRHR1 antagonist) and environmental enrichment successfully restored the PVI activity and cognitive deficits induced by ES. These findings reveal the neurobiological mechanisms underlying ES-induced cognitive deficits in adolescent male mice and highlight the therapeutic potentials of PVIs in stress-related cognitive deficits in adolescent individuals.
Collapse
Affiliation(s)
- Yu-Nu Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chao-Juan Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ya-Xin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xing-Duo Yao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xue-Xin Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hong-Li Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Han Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ting Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yun-Ai Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Ji-Tao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Tian-Mei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| |
Collapse
|
6
|
Tillinger A, Zvozilová A, Mach M, Horváthová Ľ, Dziewiczová L, Osacká J. Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model. Int J Mol Sci 2024; 25:11908. [PMID: 39595978 PMCID: PMC11594197 DOI: 10.3390/ijms252211908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a multifactorial psychological disorder that affects different neurotransmitter systems, including the central CRH system. CRH acts via the CRHR1 and CRHR2 receptors, which exert opposite effects, i.e., anxiogenic or anxiolytic. The aim of this work was to investigate how intranasal administration of the CRHR2-specific agonist urocortin 2 (Ucn2) or urocortin 3 (Ucn3) affects manifestations of PTSD in a single prolonged stress (SPS) animal model of PTSD. Elevated plus maze (EPM) and open field (OF) tests were used to assess anxiety-like behavior. Changes in the gene expressions of CRH, CRHR1, CRHR2, glucocorticoid receptor (GR), and FKBP5 were measured in brain regions (BNST, amygdala, and PVN) responsible for modulating the stress response. The SPS animals spent less time in the OF central zone and were less mobile than the controls; however, the Ucn3 treatment reversed this effect. SPS decreased the GR and FKPB5 mRNA levels in the PVN. Ucn3 suppressed the effect of SPS on FKBP5 mRNA expression in the PVN and increased FKBP5 mRNA in the BNST and PVN compared to the stressed animals. We demonstrate that Ucn3 has the potential to ameliorate anxiety-like behavior in SPS animals and also to affect the neuroendocrine system in the BNST and PVN. In addition, we confirm the important role of CRHR2 signaling in mediating the stress response.
Collapse
MESH Headings
- Animals
- Urocortins/genetics
- Urocortins/metabolism
- Urocortins/administration & dosage
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/genetics
- Administration, Intranasal
- Disease Models, Animal
- Male
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/genetics
- Rats
- Tacrolimus Binding Proteins/metabolism
- Tacrolimus Binding Proteins/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Anxiety/drug therapy
- Corticotropin-Releasing Hormone/metabolism
- Corticotropin-Releasing Hormone/genetics
- Behavior, Animal/drug effects
Collapse
Affiliation(s)
- Andrej Tillinger
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| | - Alexandra Zvozilová
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, 841 04 Bratislava, Slovakia
| | - Mojmír Mach
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, 841 04 Bratislava, Slovakia
| | - Ľubica Horváthová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| | - Lila Dziewiczová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Jana Osacká
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| |
Collapse
|
7
|
Holsboer F, Ising M. Precision Psychiatry Approach to Treat Depression and Anxiety Targeting the Stress Hormone System - V1b-antagonists as a Case in Point. PHARMACOPSYCHIATRY 2024; 57:263-274. [PMID: 39159843 DOI: 10.1055/a-2372-3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The future of depression pharmacotherapy lies in a precision medicine approach that recognizes that depression is a disease where different causalities drive symptoms. That approach calls for a departure from current diagnostic categories, which are broad enough to allow adherence to the "one-size-fits-all" paradigm, which is complementary to the routine use of "broad-spectrum" mono-amine antidepressants. Similar to oncology, narrowing the overinclusive diagnostic window by implementing laboratory tests, which guide specifically targeted treatments, will be a major step forward in overcoming the present drug discovery crisis.A substantial subgroup of patients presents with signs and symptoms of hypothalamic-pituitary-adrenocortical (HPA) overactivity. Therefore, this stress hormone system was considered to offer worthwhile targets. Some promising results emerged, but in sum, the results achieved by targeting corticosteroid receptors were mixed.More specific are non-peptidergic drugs that block stress-responsive neuropeptides, corticotropin-releasing hormone (CRH), and arginine vasopressin (AVP) in the brain by antagonizing their cognate CRHR1-and V1b-receptors. If a patient's depressive symptomatology is driven by overactive V1b-signaling then a V1b-receptor antagonist should be first-line treatment. To identify the patient having this V1b-receptor overactivity, a neuroendocrine test, the so-called dex/CRH-test, was developed, which indicates central AVP release but is too complicated to be routinely used. Therefore, this test was transformed into a gene-based "near-patient" test that allows immediate identification if a depressed patient's symptomatology is driven by overactive V1b-receptor signaling. We believe that this precision medicine approach will be the next major innovation in the pharmacotherapy of depression.
Collapse
Affiliation(s)
- Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany
- HMNC Holding GmbH, Munich, Germany
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
8
|
Lawrence S, Scofield RH. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav Immun Health 2024; 41:100849. [PMID: 39280087 PMCID: PMC11401111 DOI: 10.1016/j.bbih.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Conventional human stress responses are mediated by the sympathetic adrenal medullar (SAM) axis and the hypothalamic pituitary adrenal (HPA) axis. The SAM axis mediates the immediate response to stress through norepinephrine and epinephrine while the HPA axis mediates the slow response through corticosteroids, primarily cortisol, to effect systemic changes. Post Traumatic Stress Disorder (PTSD), a psychiatric disorder that develops in a small subset of people exposed to a traumatic event, may dysregulate these systems and result in increased risk of various clinical conditions. These conditions include but are not limited to cardiovascular disease, metabolic conditions, autoimmune diseases, neurocognitive disorders, and women's health complications such as preterm birth, polycystic ovarian syndrome, and endometriosis to name a few. This review focuses on how PTSD dysregulates the HPA axis, and further, how these alterations affect the immune system and physical health outcomes.
Collapse
Affiliation(s)
- Stephanie Lawrence
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - R Hal Scofield
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
9
|
Nipper MA, Helms ML, Finn DA, Ryabinin AE. Stress-enhanced ethanol drinking does not increase sensitivity to the effects of a CRF-R1 antagonist on ethanol intake in male and female mice. Alcohol 2024; 120:73-83. [PMID: 38185336 PMCID: PMC11326135 DOI: 10.1016/j.alcohol.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Research confirms that stress is associated with alcohol drinking and relapse in males and females and that there are sex differences in the alcohol-related adaptations of stress pathways. The predator stress (PS) model of traumatic stress produces an increase in alcohol drinking or self-administration in a subpopulation of rodents, so it is utilized as an animal model of comorbid alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD). Previous work determined that sensitivity to PS-enhanced drinking produced sex differences in proteins related to stress-regulating systems in the medial prefrontal cortex and hippocampus. The present studies examined whether male and female C57BL/6J mice differ in sensitivity to the ability of the corticotropin releasing factor receptor 1 antagonist CP-376395 to decrease PS-enhanced drinking. In control studies, CP-376395 doses of 5, 10, and 20 mg/kg dose-dependently decreased 4-h ethanol drinking. Next, CP-376395 doses of 5 and 10 mg/kg were tested for effects on ethanol drinking in mice with differential sensitivity to PS-enhanced drinking. Subgroups of "Sensitive" and "Resilient" male and female mice were identified based on changes in ethanol intake in an unrestricted-access ethanol-drinking procedure following four exposures to PS (dirty rat bedding). During the first 2 h post-injection of CP-376395, both doses significantly decreased ethanol licks versus vehicle in the females, with no significant interaction between subgroups, whereas the 10 mg/kg dose significantly decreased ethanol licks versus vehicle in the "Resilient" males. Thus, sensitivity to the suppressive effect of CP-376395 on stress-induced ethanol intake was greater in females versus males, whereas sensitivity and resilience to PS-enhanced drinking produced differential sensitivity to the ability of CP-376395 to decrease ethanol drinking only in male mice. Our results argue against greater efficacy of CRF-R1's ability to decrease ethanol intake in subjects with traumatic stress-enhanced ethanol drinking.
Collapse
Affiliation(s)
- Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Melinda L Helms
- Department of Research, VA Portland Health Care System, Portland, OR 97239, United States
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Research, VA Portland Health Care System, Portland, OR 97239, United States
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
10
|
Friedman HR, Gaston LS, Chan LF, Majzoub JA. Absent, but not glucocorticoid-modulated, corticotropin-releasing hormone (Crh) regulates anxiety-like behaviors in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614550. [PMID: 39386648 PMCID: PMC11463484 DOI: 10.1101/2024.09.23.614550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a well characterized endocrine response system. Hypothalamic Crh in the paraventricular nucleus of the hypothalamus (PVH) initiates HPA axis signaling to cause the release of cortisol (or corticosterone in rodents) from the adrenal gland. PVH-specific deletion of Crh reduces anxiety-like behaviors in mice. Here we report that manipulation of PVH Crh expression in primary adrenal insufficiency or by dexamethasone (DEX) treatment do not alter mouse anxiety behaviors. In Experiment 1, we compared wildtype (WT) mice to those with primary adrenal insufficiency ( Mrap KO) or global deletion of Crh ( Crh KO). We analyzed behaviors using open field (OF) and elevated plus maze (EPM), PVH Crh mRNA expression by spatial transcriptomics, and plasma ACTH and corticosterone after a 15-minute restraint test with ELISAs. EPM analysis showed Crh KO mice were less anxious than WT and Mrap KO mice, and Mrap KO mice had no distinguishing behavioral phenotype. In Experiment 2, we evaluated HPA axis habituation to chronically elevated Crh expression by comparing mice treated with 5-8 weeks of DEX with those similarly treated followed by DEX withdrawal for 1 week. All mice regardless of genotype and treatment showed no significant behavioral differences. Our findings suggest that reduced anxiety associated with low Crh expression requires extreme deficiency, perhaps outside of those PVH Crh neurons negatively regulated by glucocorticoids. If these findings extend to humans, they suggest that increases in Crh expression with primary adrenal insufficiency, or decreases with exogenous glucocorticoid therapy, may not alter anxiety behaviors via modulation of Crh expression.
Collapse
|
11
|
Kiritoshi T, Yakhnitsa V, Singh S, Wilson TD, Chaudhry S, Neugebauer B, Torres-Rodriguez JM, Lin JL, Carrasquillo Y, Neugebauer V. Cells and circuits for amygdala neuroplasticity in the transition to chronic pain. Cell Rep 2024; 43:114669. [PMID: 39178115 PMCID: PMC11473139 DOI: 10.1016/j.celrep.2024.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Maladaptive plasticity is linked to the chronification of diseases such as pain, but the transition from acute to chronic pain is not well understood mechanistically. Neuroplasticity in the central nucleus of the amygdala (CeA) has emerged as a mechanism for sensory and emotional-affective aspects of injury-induced pain, although evidence comes from studies conducted almost exclusively in acute pain conditions and agnostic to cell type specificity. Here, we report time-dependent changes in genetically distinct and projection-specific CeA neurons in neuropathic pain. Hyperexcitability of CRF projection neurons and synaptic plasticity of parabrachial (PB) input at the acute stage shifted to hyperexcitability without synaptic plasticity in non-CRF neurons at the chronic phase. Accordingly, chemogenetic inhibition of the PB→CeA pathway mitigated pain-related behaviors in acute, but not chronic, neuropathic pain. Cell-type-specific temporal changes in neuroplasticity provide neurobiological evidence for the clinical observation that chronic pain is not simply the prolonged persistence of acute pain.
Collapse
Affiliation(s)
- Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sudhuman Singh
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Torri D Wilson
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Neugebauer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeitzel M Torres-Rodriguez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny L Lin
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA.
| |
Collapse
|
12
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
13
|
Islam MR, Markatos C, Pirmettis I, Papadopoulos M, Karageorgos V, Liapakis G, Fahmy H. Design, Synthesis, and Biological Evaluations of Novel Thiazolo[4,5-d]pyrimidine Corticotropin Releasing Factor (CRF) Receptor Antagonists as Potential Treatments for Stress Related Disorders and Congenital Adrenal Hyperplasia (CAH). Molecules 2024; 29:3647. [PMID: 39125051 PMCID: PMC11314199 DOI: 10.3390/molecules29153647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Corticotropin-releasing factor (CRF) is a key neuropeptide hormone that is secreted from the hypothalamus. It is the master hormone of the HPA axis, which orchestrates the physiological and behavioral responses to stress. Many disorders, including anxiety, depression, addiction relapse, and others, are related to over-activation of this system. Thus, new molecules that may interfere with CRF receptor binding may be of value to treat neuropsychiatric stress-related disorders. Also, CRF1R antagonists have recently emerged as potential treatment options for congenital adrenal hyperplasia. Previously, several series of CRF1 receptor antagonists were developed by our group. In continuation of our efforts in this direction, herein we report the synthesis and biological evaluation of a new series of CRF1R antagonists. Representative compounds were evaluated for their binding affinities compared to antalarmin. Four compounds (2, 5, 20, and 21) showed log IC50 values of -8.22, -7.95, -8.04, and -7.88, respectively, compared to -7.78 for antalarmin. This result indicates that these four compounds are superior to antalarmin by 2.5, 1.4, 1.7, and 1.25 times, respectively. It is worth mentioning that compound 2, in terms of IC50, is among the best CRF1R antagonists ever developed in the last 40 years. The in silico physicochemical properties of the lead compounds showed good drug-like properties. Thus, further research in this direction may lead to better and safer CRF receptor antagonists that may have clinical applications, particularly for stress-related disorders and the treatment of congenital adrenal hyperplasia.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| | - Christos Markatos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Minas Papadopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece; (I.P.); (M.P.)
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003 Crete, Greece; (C.M.); (V.K.); (G.L.)
| | - Hesham Fahmy
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
14
|
Mueller LE, Wexler RS, Lovejoy DA, Stein RB, Slee AM. Teneurin C-terminal associated peptide (TCAP)-1 attenuates the development and expression of naloxone-precipitated morphine withdrawal in male Swiss Webster mice. Psychopharmacology (Berl) 2024; 241:1565-1575. [PMID: 38630316 PMCID: PMC11269454 DOI: 10.1007/s00213-024-06582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/26/2024] [Indexed: 07/25/2024]
Abstract
RATIONALE Corticotropin-releasing factor (CRF), the apical stress-inducing hormone, exacerbates stress and addictive behaviors. TCAP-1 is a peptide that directly inhibits both CRF-mediated stress and addiction-related behaviors; however, the direct action of TCAP-1 on morphine withdrawal-associated behaviors has not previously been examined. OBJECTIVE To determine whether TCAP-1 administration attenuates behavioral and physiological consequences of morphine withdrawal in mice. METHODS Mice were administered via subcutaneous route TCAP-1 either before or after initial morphine exposure, after which jumping behavior was quantified to assess the effects of TCAP-1 on naloxone-precipitated morphine withdrawal. As a comparison, mice were treated with nonpeptide CRF1 receptor antagonist CP-154,526. In one experiment, plasma corticosterone (CORT) was also measured as a physiological stress indicator. RESULTS Pretreatment with TCAP-1 (10-250 nmol/kg) before morphine treatment significantly inhibited the development of naloxone-precipitated withdrawal. TCAP-1 (250-500 nmol/kg) treatment administered after morphine treatment attenuated the behavioral expression of naloxone-precipitated withdrawal. TCAP-1 (250 nmol/kg) treatment during morphine treatment was more effective than the optimal dosing of CP-154,526 (20 mg/kg) at suppressing the behavioral expression of naloxone-precipitated withdrawal, despite similar reduction of withdrawal-induced plasma CORT level increases. CONCLUSIONS These findings establish TCAP-1 as a potential therapeutic candidate for the prevention and treatment of morphine withdrawal.
Collapse
Affiliation(s)
| | | | - David A Lovejoy
- Protagenic Therapeutics, Inc., New York, NY, USA
- Department of Cell and Systems Biology, University of Toronto, Toronto, CA, Canada
| | | | | |
Collapse
|
15
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. Depression clinical trials worldwide: a systematic analysis of the ICTRP and comparison with ClinicalTrials.gov. Transl Psychiatry 2024; 14:315. [PMID: 39085220 PMCID: PMC11291508 DOI: 10.1038/s41398-024-03031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Major depressive disorder (MDD), commonly known as depression, affects over 300 million people worldwide as of 2018 and presents a wide range of clinical symptoms. The international clinical trials registry platform (ICTRP) introduced by WHO includes aggregated data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform. Here we analysed data in ICTRP with the aim of providing comprehensive insights into clinical trials on depression. Applying a novel hidden duplicate identification method, 10,606 depression trials were identified in ICTRP, with ANZCTR being the largest non- ClinicalTrials.gov database at 1031 trials, followed by IRCT with 576 trials, ISRCTN with 501 trials, CHiCTR with 489 trials, and EUCTR with 351 trials. The top four most studied drugs, ketamine, sertraline, duloxetine, and fluoxetine, were consistent in both groups, but ClinicalTrials.gov had more trials for each drug compared to the non-ClinicalTrials.gov group. Out of 9229 interventional trials, 663 unique agents were identified, including approved drugs (74.5%), investigational drugs (23.2%), withdrawn drugs (1.8%), nutraceuticals (0.3%), and illicit substances (0.2%). Both ClinicalTrials.gov and non-ClinicalTrials.gov databases revealed that the largest categories were antidepressive agents (1172 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov) and nutrients, amino acids, and chemical elements (250 in ClinicalTrials.gov and 659 in non-ClinicalTrials.gov), indicating a focus on alternative treatments involving dietary supplements and nutrients. Additionally, 26 investigational antidepressive agents targeting 16 different drug targets were identified, with buprenorphine (opioid agonist), saredutant (NK2 antagonist), and seltorexant (OX2 antagonist) being the most frequently studied. This analysis addresses 40 approved drugs for depression treatment including new drug classes like GABA modulators and NMDA antagonists that are offering new prospects for treating MDD, including drug-resistant depression and postpartum depression subtypes.
Collapse
Affiliation(s)
- Eugenia D Namiot
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Aleksandr V Sokolov
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow, Russia
| | - Helgi B Schiöth
- Department of Surgical Science, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
16
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
17
|
Chan II, Wu AM. Assessing the Role of Cortisol in Anxiety, Major Depression, and Neuroticism: A Mendelian Randomization Study Using SERPINA6/ SERPINA1 Variants. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100294. [PMID: 38525495 PMCID: PMC10959652 DOI: 10.1016/j.bpsgos.2024.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/26/2024] Open
Abstract
Background Previous evidence informed by the toxic stress model suggests that higher cortisol causes anxiety and major depression, but clinical success is lacking. To clarify the role of cortisol, we used Mendelian randomization to estimate its associations with anxiety, major depression, and neuroticism, leveraging the largest available genome-wide association studies including from the Psychiatric Genomics Consortium, the UK Biobank, and FinnGen. Methods After meta-analyzing 2 genome-wide association studies on morning plasma cortisol (n = 32,981), we selected single nucleotide polymorphisms (SNPs) at p < 5 × 10-8 and r2 < 0.3 in the SERPINA6/SERPINA1 gene region encoding proteins that influence cortisol bioavailability. We applied these SNPs to summary genetic associations with the outcomes considered (n = 17,310-449,484), and systolic blood pressure as a positive outcome, using inverse-variance weighted meta-analysis accounting for correlation. Sensitivity analyses addressing SNP correlation and confounding by childhood maltreatment and follow-up analyses using only SNPs that colocalized with SERPINA6 expression were conducted. Results Cortisol was associated with anxiety (pooled odds ratio [OR] 1.16 per cortisol z score; 95% CI, 1.04 to 1.31), but not major depression (pooled OR 1.02, 95% CI, 0.95 to 1.10) or neuroticism (β -0.025; 95% CI, -0.071 to 0.022). Sensitivity analyses yielded similar estimates. Cortisol was positively associated with systolic blood pressure, as expected. Using rs9989237 and rs2736898, selected using colocalization, cortisol was associated with anxiety in the UK Biobank (OR 1.32; 95% CI, 1.01 to 1.74) but not with major depression in FinnGen (OR 1.14; 95% CI, 0.95 to 1.37). Conclusions Cortisol was associated with anxiety and may be a potential target for prevention. Other targets may be more relevant to major depression and neuroticism.
Collapse
Affiliation(s)
- Io Ieong Chan
- Department of Public Health and Medicinal Administration, Faculty of Health Science, University of Macau, Macao, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, China
| | - Anise M.S. Wu
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, China
| |
Collapse
|
18
|
Menke A. The HPA Axis as Target for Depression. Curr Neuropharmacol 2024; 22:904-915. [PMID: 37581323 PMCID: PMC10845091 DOI: 10.2174/1570159x21666230811141557] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 08/16/2023] Open
Abstract
Major depressive disorder (MDD) is a stress-related mental disorder with a lifetime prevalence of 20% and, thus, is one of the most prevalent mental health disorders worldwide. Many studies with a large number of patients support the notion that abnormalities of the hypothalamus-pituitaryadrenal (HPA) axis are crucial for the development of MDD. Therefore, a number of strategies and drugs have been investigated to target different components of the HPA axis: 1) corticotrophinreleasing hormone (CRH) 1 receptor antagonists; 2) vasopressin V1B receptor antagonists, 3) glucocorticoid receptor antagonists, and 4) FKBP5 antagonists. Until now, V1B receptor antagonists and GR antagonists have provided the most promising results. Preclinical data also support antagonists of FKBP5, which seem to be partly responsible for the effects exerted by ketamine. However, as HPA axis alterations occur only in a subset of patients, specific treatment approaches that target only single components of the HPA axis will be effective only in this subset of patients. Companion tests that measure the function of the HPA axis and identify patients with an impaired HPA axis, such as the dexamethasone-corticotrophin-releasing hormone (dex-CRH) test or the molecular dexamethasonesuppression (mDST) test, may match the patient with an effective treatment to enable patient-tailored treatments in terms of a precision medicine approach.
Collapse
Affiliation(s)
- Andreas Menke
- Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Rasthausstr, 25, 83233 Bernau am Chiemsee, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
19
|
Weera MM, Gilpin NW. Central amygdala CRF1 cells control nociception and anxiety-like behavior. Neuropsychopharmacology 2024; 49:341-342. [PMID: 37543709 PMCID: PMC10700576 DOI: 10.1038/s41386-023-01693-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Affiliation(s)
- Marcus M Weera
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Southeast Louisiana VA Healthcare System, New Orleans, LA, 70119, USA
| |
Collapse
|
20
|
Palamarchuk IS, Slavich GM, Vaillancourt T, Rajji TK. Stress-related cellular pathophysiology as a crosstalk risk factor for neurocognitive and psychiatric disorders. BMC Neurosci 2023; 24:65. [PMID: 38087196 PMCID: PMC10714507 DOI: 10.1186/s12868-023-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
In this narrative review, we examine biological processes linking psychological stress and cognition, with a focus on how psychological stress can activate multiple neurobiological mechanisms that drive cognitive decline and behavioral change. First, we describe the general neurobiology of the stress response to define neurocognitive stress reactivity. Second, we review aspects of epigenetic regulation, synaptic transmission, sex hormones, photoperiodic plasticity, and psychoneuroimmunological processes that can contribute to cognitive decline and neuropsychiatric conditions. Third, we explain mechanistic processes linking the stress response and neuropathology. Fourth, we discuss molecular nuances such as an interplay between kinases and proteins, as well as differential role of sex hormones, that can increase vulnerability to cognitive and emotional dysregulation following stress. Finally, we explicate several testable hypotheses for stress, neurocognitive, and neuropsychiatric research. Together, this work highlights how stress processes alter neurophysiology on multiple levels to increase individuals' risk for neurocognitive and psychiatric disorders, and points toward novel therapeutic targets for mitigating these effects. The resulting models can thus advance dementia and mental health research, and translational neuroscience, with an eye toward clinical application in cognitive and behavioral neurology, and psychiatry.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Sunnybrook Health Sciences Centre, Division of Neurology, Toronto, ON, Canada.
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada.
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, 1001 Queen Street West, Toronto, ON, M6J1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Finn DA. Stress and gonadal steroid influences on alcohol drinking and withdrawal, with focus on animal models in females. Front Neuroendocrinol 2023; 71:101094. [PMID: 37558184 PMCID: PMC10840953 DOI: 10.1016/j.yfrne.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Sexually dimorphic effects of alcohol, following binge drinking, chronic intoxication, and withdrawal, are documented at the level of the transcriptome and in behavioral and physiological responses. The purpose of the current review is to update and to expand upon contributions of the endocrine system to alcohol drinking and withdrawal in females, with a focus on animal models. Steroids important in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, the reciprocal interactions between these axes, the effects of chronic alcohol use on steroid levels, and the genomic and rapid membrane-associated effects of steroids and neurosteroids in models of alcohol drinking and withdrawal are described. Importantly, comparison between males and females highlight some divergent effects of sex- and stress-steroids on alcohol drinking- and withdrawal-related behaviors, and the distinct differences in response emphasize the importance of considering sex in the development of novel pharmacotherapies for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Department of Research, VA Portland Health Care System, Portland, OR, United States.
| |
Collapse
|
22
|
Bagosi Z, Megyesi K, Ayman J, Rudersdorf H, Ayaz MK, Csabafi K. The Role of Corticotropin-Releasing Factor (CRF) and CRF-Related Peptides in the Social Behavior of Rodents. Biomedicines 2023; 11:2217. [PMID: 37626714 PMCID: PMC10452353 DOI: 10.3390/biomedicines11082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Since the corticotropin-releasing factor (CRF) was isolated from an ovine brain, a growing family of CRF-related peptides has been discovered. Today, the mammalian CRF system consists of four ligands (CRF, urocortin 1 (Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3)); two receptors (CRF receptor type 1 (CRF1) and CRF receptor type 2 (CRF2)); and a CRF-binding protein (CRF-BP). Besides the regulation of the neuroendocrine, autonomic, and behavioral responses to stress, CRF and CRF-related peptides are also involved in different aspects of social behavior. In the present study, we review the experiments that investigated the role of CRF and the urocortins involved in the social behavior of rats, mice, and voles, with a special focus on sociability and preference for social novelty, as well as the ability for social recognition, discrimination, and memory. In general, these experiments demonstrate that CRF, Ucn1, Ucn2, and Ucn3 play important, but distinct roles in the social behavior of rodents, and that they are mediated by CRF1 and/or CRF2. In addition, we suggest the possible brain regions and pathways that express CRF and CRF-related peptides and that might be involved in social interactions. Furthermore, we also emphasize the differences between the species, strains, and sexes that make translation of these roles from rodents to humans difficult.
Collapse
Affiliation(s)
- Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Kíra Megyesi
- Interdisciplinary Center for Excellence, Clinical Research Competence Center, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Albert School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Hanna Rudersdorf
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Maieda Khan Ayaz
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| |
Collapse
|
23
|
Kim HC, Kaplan CM, Islam S, Anderson AS, Piper ME, Bradford DE, Curtin JJ, DeYoung KA, Smith JF, Fox AS, Shackman AJ. Acute nicotine abstinence amplifies subjective withdrawal symptoms and threat-evoked fear and anxiety, but not extended amygdala reactivity. PLoS One 2023; 18:e0288544. [PMID: 37471317 PMCID: PMC10358993 DOI: 10.1371/journal.pone.0288544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Tobacco smoking imposes a staggering burden on public health, underscoring the urgency of developing a deeper understanding of the processes that maintain addiction. Clinical and experience-sampling data highlight the importance of anxious withdrawal symptoms, but the underlying neurobiology has remained elusive. Mechanistic work in animals implicates the central extended amygdala (EAc)-including the central nucleus of the amygdala and the neighboring bed nucleus of the stria terminalis-but the translational relevance of these discoveries remains unexplored. Here we leveraged a randomized trial design, well-established threat-anticipation paradigm, and multidimensional battery of assessments to understand the consequences of 24-hour nicotine abstinence. The threat-anticipation paradigm had the expected consequences, amplifying subjective distress and arousal, and recruiting the canonical threat-anticipation network. Abstinence increased smoking urges and withdrawal symptoms, and potentiated threat-evoked distress, but had negligible consequences for EAc threat reactivity, raising questions about the translational relevance of prominent animal and human models of addiction. These observations provide a framework for conceptualizing nicotine abstinence and withdrawal, with implications for basic, translational, and clinical science.
Collapse
Affiliation(s)
- Hyung Cho Kim
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
| | - Claire M. Kaplan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samiha Islam
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allegra S. Anderson
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Megan E. Piper
- Center for Tobacco Research and Intervention and Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Daniel E. Bradford
- School of Psychological Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - John J. Curtin
- Department of Psychology, University of Wisconsin—Madison, Madison, Wisconsin, United States of America
| | - Kathryn A. DeYoung
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Jason F. Smith
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Alexander J. Shackman
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, United States of America
- Maryland Neuroimaging Center, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
24
|
Fagan HA, Baldwin DS. Pharmacological Treatment of Generalised Anxiety Disorder: Current Practice and Future Directions. Expert Rev Neurother 2023:1-14. [PMID: 37183813 DOI: 10.1080/14737175.2023.2211767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
INTRODUCTION Generalized Anxiety Disorder (GAD) is a common psychiatric condition, characterized by the presence of general apprehensiveness and excessive worry. Current management consists of a range of pharmacological and psychological treatments. However, many patients do not respond to first-line pharmacological treatments and novel anxiolytic drugs are being developed. AREAS COVERED In this review, the authors first discuss the diagnostic criteria and epidemiology of GAD. The effective pharmacological treatments for GAD and their tolerability are addressed. Current consensus guidelines for treatment of GAD are discussed, and maintenance treatment, the management of treatment resistance, and specific management of older adults and children/adolescents are considered. Finally, novel anxiolytics under development are discussed, with a focus on those which have entered clinical trials. EXPERT OPINION A range of effective treatments for GAD are available, particularly duloxetine, escitalopram, pregabalin, quetiapine, and venlafaxine. There is a limited evidence base to support the further pharmacological management of patients with GAD who have not responded to initial treatment. Although many novel anxiolytics have progressed to clinical trials, translation from animal models has been mostly unsuccessful. However, the potential of several compounds including certain psychedelics, ketamine, oxytocin, and agents modulating the orexin, endocannabinoid, and immune systems merits further study.
Collapse
Affiliation(s)
- Harry A Fagan
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- College Keep, Southern Health NHS Foundation Trust, Southampton, UK
| | - David S Baldwin
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- College Keep, Southern Health NHS Foundation Trust, Southampton, UK
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Foilb AR, Taylor-Yeremeeva EM, Fritsch EL, Ravichandran C, Lezak KR, Missig G, McCullough KM, Carlezon WA. Differential effects of the stress peptides PACAP and CRF on sleep architecture in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533872. [PMID: 36993188 PMCID: PMC10055371 DOI: 10.1101/2023.03.22.533872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stress produces profound effects on behavior, including persistent alterations in sleep patterns. Here we examined the effects of two prototypical stress peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and corticotropin-releasing factor (CRF), on sleep architecture and other translationally-relevant endpoints. Male and female mice were implanted with subcutaneous transmitters enabling continuous measurement of electroencephalography (EEG) and electromyography (EMG), as well as body temperature and locomotor activity, without tethering that restricts free movement, body posture, or head orientation during sleep. At baseline, females spent more time awake (AW) and less time in slow wave sleep (SWS) than males. Mice then received intracerebral infusions of PACAP or CRF at doses producing equivalent increases in anxiety-like behavior. The effects of PACAP on sleep architecture were similar in both sexes and resembled those reported in male mice after chronic stress exposure. Compared to vehicle infusions, PACAP infusions decreased time in AW, increased time in SWS, and increased rapid eye movement sleep (REM) time and bouts on the day following treatment. In addition, PACAP effects on REM time remained detectable a week after treatment. PACAP infusions also reduced body temperature and locomotor activity. Under the same experimental conditions, CRF infusions had minimal effects on sleep architecture in either sex, causing only transient increases in SWS during the dark phase, with no effects on temperature or activity. These findings suggest that PACAP and CRF have fundamentally different effects on sleep-related metrics, and provide new insights into the mechanisms by which stress disrupts sleep.
Collapse
Affiliation(s)
- Allison R Foilb
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elisa M Taylor-Yeremeeva
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Emma L Fritsch
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Caitlin Ravichandran
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kimberly R Lezak
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Galen Missig
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - William A Carlezon
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
26
|
Robbins MT, DeWitte C, Ness TJ. Stress-induced bladder hypersensitivity: Effect of corticotropin releasing factor receptors assessed by spinal neurophysiology and neurochemistry. Neuropharmacology 2023; 224:109369. [PMID: 36493859 PMCID: PMC9790032 DOI: 10.1016/j.neuropharm.2022.109369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/09/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Corticotropin releasing factor (CRF) receptors have been implicated in stress-induced hyperalgesia. The present study examined the role of CRF receptors Type 1&2 (CRFR1, CRFR2) in stress-induced bladder hyperalgesia in female rats by quantifying changes in receptor and agonist content following chronic (CFS, 7 daily episodes), acute (AFS, single episode) and control (NFS, no episodes) footshock protocols. ELISAs demonstrated that CFS lead to an increase in spinal thoracolumbar and lumbosacral spinal cord CRFR2 content and a decrease in lumbosacral spinal cord CRFR1 content. Content of the endogenous CRFR2 agonist, urocortin 2, was also increased in lumbosacral spinal cord and bladder tissues of CFS-pretreated rats, but urocortin 3 was decreased. Correlative single unit studies of lumbosacral dorsal horn neurons excited by bladder distension, in anesthetized rats that had undergone CFS, AFS or NFS protocols, used a before-after methodology with administration of a CRFR1 antagonist (antalarmin, 24 μg), CRFR2 antagonist (aSVG30, 12 μg) or normal saline topically to the exposed spinal cord following primary characterization. aSVG30 produced a reduction of neuronal responses evoked by bladder distension in CFS-pretreated rats but no statistically significant effects of aSVG30, antalarmin or vehicle were noted in other groups tested with the exception that antalarmin had an inhibitory effect on spontaneous activity in NFS-pretreated rats. The present findings are consistent with previous experiments using reflex responses to bladder distension as endpoints and further support a role for CRFR2-related mechanisms in stress-induced bladder hypersensitivity. This suggests CRFR2 antagonists may have efficacy in the treatment of bladder pain.
Collapse
Affiliation(s)
- Meredith T Robbins
- University of Alabama at Birmingham, Department of Anesthesiolology and Perioperative Medicine, Birmingham, AL, 35205, USA
| | - Cary DeWitte
- University of Alabama at Birmingham, Department of Anesthesiolology and Perioperative Medicine, Birmingham, AL, 35205, USA
| | - Timothy J Ness
- University of Alabama at Birmingham, Department of Anesthesiolology and Perioperative Medicine, Birmingham, AL, 35205, USA.
| |
Collapse
|
27
|
Abstract
Ethanol (EtOH) has effects on numerous cellular molecular targets, and alterations in synaptic function are prominent among these effects. Acute exposure to EtOH activates or inhibits the function of proteins involved in synaptic transmission, while chronic exposure often produces opposing and/or compensatory/homeostatic effects on the expression, localization, and function of these proteins. Interactions between different neurotransmitters (e.g., neuropeptide effects on release of small molecule transmitters) can also influence both acute and chronic EtOH actions. Studies in intact animals indicate that the proteins affected by EtOH also play roles in the neural actions of the drug, including acute intoxication, tolerance, dependence, and the seeking and drinking of EtOH. The present chapter is an update of our previous Lovinger and Roberto (Curr Top Behav Neurosci 13:31-86, 2013) chapter and reviews the literature describing these acute and chronic synaptic effects of EtOH with a focus on adult animals and their relevance for synaptic transmission, plasticity, and behavior.
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), Rockville, MD, USA
| | - Marisa Roberto
- Molecular Medicine Department, Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
Burning down the house: reinventing drug discovery in psychiatry for the development of targeted therapies. Mol Psychiatry 2023; 28:68-75. [PMID: 36460725 DOI: 10.1038/s41380-022-01887-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022]
Abstract
Despite advances in neuroscience, limited progress has been made in developing new and better medications for psychiatric disorders. Available treatments in psychiatry rely on a few classes of drugs that have a broad spectrum of activity across disorders with limited understanding of mechanism of action. While the added value of more targeted therapies is apparent, a dearth of pathophysiologic mechanisms exists to support targeted treatments, and where mechanisms have been identified and drugs developed, results have been disappointing. Based on serendipity and early successes that led to the current drug armamentarium, a haunting legacy endures that new drugs should align with outdated and overinclusive diagnostic categories, consistent with the idea that "one size fits all". This legacy has fostered clinical trial designs focused on heterogenous populations of patients with a single diagnosis and non-specific outcome variables. Disturbingly, this approach likely contributed to missed opportunities for drugs targeting the hypothalamic-pituitary-adrenal axis and now inflammation. Indeed, cause-and-effect data support the role of inflammatory processes in neurotransmitter alterations that disrupt specific neurocircuits and related behaviors. This pathway to pathology occurs across disorders and warrants clinical trial designs that enrich for patients with increased inflammation and use primary outcome variables associated with specific effects of inflammation on brain and behavior. Nevertheless, such trial designs have not been routinely employed, and results of anti-inflammatory treatments have been underwhelming. Thus, to accelerate development of targeted therapeutics including in the area of inflammation, regulatory agencies and the pharmaceutical industry must embrace treatments and trials focused on pathophysiologic pathways that impact specific symptom domains in subsets of patients, agnostic to diagnosis. Moreover, closer collaboration among basic and clinical investigators is needed to apply neuroscience knowledge to reveal disease mechanisms that drive psychiatric symptoms. Together, these efforts will support targeted treatments, ultimately leading to new and better therapeutics in psychiatry.
Collapse
|
29
|
Corticotropin-Releasing Hormone: Biology and Therapeutic Opportunities. BIOLOGY 2022; 11:biology11121785. [PMID: 36552294 PMCID: PMC9775501 DOI: 10.3390/biology11121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
In 1981, Wylie Vale, Joachim Spiess, Catherine Rivier, and Jean Rivier reported on the characterization of a 41-amino-acid peptide from ovine hypothalamic extracts with high potency and intrinsic activity stimulating the secretion of adrenocorticotropic hormone and β-endorphin by cultured anterior pituitary cells. With its sequence known, this neuropeptide was determined to be a hormone and consequently named corticotropin-releasing hormone (CRH), although the term corticotropin-releasing factor (CRF) is still used and preferred in some circumstances. Several decades have passed since this seminal contribution that opened a new research era, expanding the understanding of the coding of stress-related processes. The characterization of CRH receptors, the availability of CRH agonists and antagonists, and advanced immunocytochemical staining techniques have provided evidence that CRH plays a role in the regulation of several biological systems. The purpose of this review is to summarize the present knowledge of this 41-amino-acid peptide.
Collapse
|
30
|
Haass-Koffler CL, Francis TC, Gandhi P, Patel R, Naemuddin M, Nielsen CK, Bartlett SE, Bonci A, Vasile S, Hood BL, Suyama E, Hedrick MP, Smith LH, Limpert AS, Roberto M, Cosford NDP, Sheffler DJ. Development and use of a high-throughput screen to identify novel modulators of the corticotropin releasing factor binding protein. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:448-459. [PMID: 36210051 PMCID: PMC9762412 DOI: 10.1016/j.slasd.2022.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF1 and CRF2), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF1, the role of CRF2 in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF2, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity. However, the mechanism by which CRF interacts with CRFBP(10kD) and CRF2 has not been fully elucidated due to the lack of useful chemical tools to probe CRFBP. METHODS We miniaturized a cell-based assay, where CRFBP(10kD) is fused as a chimera with CRF2, and performed a high-throughput screen (HTS) of 350,000 small molecules to find negative allosteric modulators (NAMs) of the CRFBP(10kD)-CRF2 complex. Hits were confirmed by evaluating activity toward parental HEK293 cells, toward CRF2 in the absence of CRFBP(10kD), and toward CRF1 in vitro. Hits were further characterized in ex vivo electrophysiology assays that target: 1) the CRF1+ neurons in the central nucleus of the amygdala (CeA) of CRF1:GFP mice that express GFP under the CRF1 promoter, and 2) the CRF-induced potentiation of N-methyl-D-aspartic acid receptor (NMDAR)-mediated synaptic transmission in dopamine neurons in the ventral tegmental area (VTA). RESULTS We found that CRFBP(10kD) potentiates CRF-intracellular Ca2+ release specifically via CRF2, indicating that CRFBP may possess excitatory roles in addition to the inhibitory role established by the N-terminal fragment of CRFBP, CRFBP(27kD). We identified novel small molecule CRFBP-CRF2 NAMs that do not alter the CRF1-mediated effects of exogenous CRF but blunt CRF-induced potentiation of NMDAR-mediated synaptic transmission in dopamine neurons in the VTA, an effect mediated by CRF2 and CRFBP. CONCLUSION These results provide the first evidence of specific roles for CRF2 and CRFBP(10kD) in the modulation of neuronal activity and suggest that CRFBP(10kD)-CRF2 NAMs can be further developed for the treatment of stress-related disorders including alcohol and substance use disorders.
Collapse
Affiliation(s)
- Carolina L Haass-Koffler
- Department of Psychiatry and Human Behavior, Alpert Medical School; Department of Behavioral and Social Sciences, School of Public Health; Center for Alcohol and Addiction Studies; Carney Institute for Brain Science, Brown University, Providence RI, United States.
| | - T Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States; Intramural Research Program, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Baltimore, MD, United States
| | - Pauravi Gandhi
- The Scripps Research Institute, La Jolla, CA, United States
| | - Reesha Patel
- The Scripps Research Institute, La Jolla, CA, United States
| | - Mohammad Naemuddin
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Carsten K Nielsen
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Selena E Bartlett
- Translational Research Institute, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia
| | | | - Stefan Vasile
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Becky L Hood
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Eigo Suyama
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Layton H Smith
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Allison S Limpert
- NCI Designated Cancer Center, La Jolla, CA, United States; Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States
| | - Nicholas D P Cosford
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States; NCI Designated Cancer Center, La Jolla, CA, United States; Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Douglas J Sheffler
- NCI Designated Cancer Center, La Jolla, CA, United States; Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
| |
Collapse
|
31
|
Rouzer SK, Diaz MR. Moderate prenatal alcohol exposure modifies sex-specific CRFR1 activity in the central amygdala and anxiety-like behavior in adolescent offspring. Neuropsychopharmacology 2022; 47:2140-2149. [PMID: 35478009 PMCID: PMC9556708 DOI: 10.1038/s41386-022-01327-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/08/2023]
Abstract
Anxiety disorders are highly prevalent among individuals with a history of prenatal alcohol exposure (PAE), and adolescent rodents demonstrate anxiety-like behavior following moderate PAE on Gestational Day (G) 12. A likely systemic target of PAE is the stress peptide corticotropin-releasing factor (CRF), as activation of CRF receptor 1 (CRFR1) in the medial nucleus of the central amygdala (CeM) is known to increase anxiety-like behavior in adults. To determine if CRF-CRFR1 interactions underly PAE-induced anxiety, functional changes in CRF system activity were investigated in adolescent male and female Sprague Dawley rats following G12 PAE. Compared to air-exposed controls, PAE increased basal spontaneous (s) inhibitory postsynaptic current (IPSC) frequency in the CeM of males, but not females. Furthermore, PAE blunted CRFR1-regulated miniature (m) IPSCs in a sex- and concentration-specific manner, and only PAE males demonstrated tonic CRFR1 activity in the CeM. It was further determined that G12 PAE decreased CRFR1 mRNA in the CeM of males while increasing regional expression in females. Finally, infusion of a CRFR1 agonist into the CeM of adolescents produced a blunted expression of CRFR1-induced anxiety-like behavior exclusively in PAE males, mirroring the blunted physiology demonstrated by PAE males. Cumulatively, these data suggest that CRFR1 function within the CeM is age- and sex-specific, and PAE not only increases the expression of anxiety-like behavior, but may reduce the efficacy of treatment for PAE-induced anxiety through CRFR1-associated mechanisms. Therefore, future research will be necessary to develop targeted treatment of anxiety disorders in individuals with a history of PAE.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, USA.
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
32
|
Larauche M, Erchegyi J, Miller C, Sim MS, Rivier J, Behan D, Taché Y. Peripheral CRF-R1/CRF-R2 antagonist, astressin C, induces a long-lasting blockade of acute stress-related visceral pain in male and female rats. Peptides 2022; 157:170881. [PMID: 36185037 PMCID: PMC10389693 DOI: 10.1016/j.peptides.2022.170881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
Abstract
Peptide CRF antagonists injected peripherally alleviate stress-induced visceral hypersensitivity (SIVH) to colorectal distension (CRD) in rodents. Here we further evaluated the dose and time-dependent inhibitory activity of several long-acting peptide CRF receptor antagonists related to astressin on SIVH, focusing on astressin C (AstC), which previously showed high efficacy on stress-related alterations of HPA axis and gut secretomotor functions. Male and female Sprague-Dawley rats pretreated subcutaneously (SC) with AstC were injected intraperitoneally (IP) with CRF 15 min later. The visceromotor responses (VMR) to graded phasic CRD (10, 20, 40 and 60 mmHg) were monitored at basal, 15 min and up to 1-8 days after pretreatment. Two other astressin analogs, hexanoyl-astressin D (Hex-AstD) and [CαMeVal19,32]-AstC, were also tested. The response to IP CRF was sex-dependent with female rats requiring a higher dose to exhibit visceral hyperalgesia. Pretreatment with AstC (30-1000 µg/kg) resulted in a dose-related inhibition of IP CRF-induced SIVH and diarrhea in both sexes. The highest dose prevented SIVH and diarrhea up to 5-7 days after a single SC injection and was lost on day 7 (females) and day 8 (males) but reinstated after a second injection of AstC on day 8 or 9 respectively. [CαMeVal19,32]-AstC and Hex-AstD (1000 µg/kg in males) also prevented SIVH. These data show the potent long-lasting anti-hyperalgesic effect of AstC in an acute model of SIVH in both male and female rats. This highlights the potential of long-acting peripheral CRF antagonists to treat stress-sensitive irritable bowel syndrome.
Collapse
Affiliation(s)
- Muriel Larauche
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles, CA, USA.
| | | | | | - Myung Shin Sim
- Department of Medicine, Statistic Core, UCLA, Los Angeles, CA, USA
| | - Jean Rivier
- Sentia Medical Sciences, Inc., San Diego, CA, USA
| | | | - Yvette Taché
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles, CA, USA
| |
Collapse
|
33
|
Watanabe Y, Suzuki Y, Emi A, Murakawa T, Hishiki T, Kato F, Sakaguchi S, Wu H, Yano T, Lim CK, Takasaki T, Nakano T. Identification of the corticotropin-releasing factor receptor 1 antagonists as inhibitors of Chikungunya virus replication using a Gaussia luciferase–expressing subgenomic replicon. Biochem Biophys Res Commun 2022; 637:181-188. [DOI: 10.1016/j.bbrc.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
34
|
Curley DE, Vasaturo-Kolodner TR, Cannella N, Ciccocioppo R, Haass-Koffler CL. Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies. Neuropsychopharmacology 2022; 47:2111-2122. [PMID: 35760866 PMCID: PMC9556614 DOI: 10.1038/s41386-022-01363-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Alcohol use disorder (AUD) is a significant public health concern, contributing to a myriad of social, psychological, and physiological issues. Despite substantial efforts within the alcohol research field, promising preclinical findings have failed to translate to clinical use, highlighting the necessity to develop safe and effective pharmacological probes with the ability to be used in preclinical and clinical research. Yohimbine, an α2 adrenergic receptor antagonist, is a well-validated pharmacological tool that has been widely employed in alcohol studies to evaluate noradrenergic activation. This scoping systematic review examines published literature in rodent and human studies involving the use of yohimbine relevant to alcohol research. We conducted a systematic literature review of MEDLINE, Embase, Web of Science Core Collection, CINAHL, PsycInfo, and Cochrane Central Register of Controlled Trials to identify: (1) Experimental Characteristics and Methodology, (2) Sex Differences, (3) Neurochemical Systems and Brain Regions, and (4) Discussion of Applications for Medication Development. Sixty-seven (62 preclinical and 5 clinical) studies were identified meeting the stated criteria, comprising extensive evidence supporting the use of yohimbine as a safe, titratable pharmacological agent for translational alcohol research. Support for the use of yohimbine as a fully translational tool, however, is hindered by limited available findings from human laboratory studies, as well as a dearth of studies examining sex differences in yohimbine's mechanistic actions. Additional consideration should be given to further translational modeling, ideally allowing for parallel preclinical and clinical assessment of yohimbine, methodological assessment of neurochemical systems and brain regions.
Collapse
Affiliation(s)
- Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, USA
| | - Talia R Vasaturo-Kolodner
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA.
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Ness TJ, DeWitte C, Randich A. Neonatal cystitis leads to alterations in spinal corticotropin releasing factor receptor-type 2 content and function in adult rats following bladder re-inflammation. Brain Res 2022; 1788:147927. [PMID: 35477003 PMCID: PMC11062479 DOI: 10.1016/j.brainres.2022.147927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 01/01/2023]
Abstract
Spinal mechanisms associated with visceral hypersensitivity are poorly understood. One model of bladder hypersensitivity with phenotypic features similar to the disorder interstitial cystitis/bladder pain syndrome is the neonatal bladder inflammation (NBI) model. In this model, rat pup bladders are infused with zymosan solutions on post-partum days 14-16 and then rats are retested as adults. Studies of other sites of deep tissue hypersensitivity have suggested a role for corticotropin-releasing factor (CRF) receptors type 1 and 2 (CRFR1 and CRFR2). Using neurochemical measures, pharmacological manipulations and both reflex and neuronal responses to urinary bladder distension as endpoints, the present study probed the role of CRFR2s in bladder hyperalgesia secondary to NBI and acute bladder re-inflammation as an adult (ABI). ELISA measures of the lumbosacral spinal cord demonstrated increased CRFR1s and CRFR2s following pretreatment with both NBI + ABI as well as NBI-related increases in the CRFR2 agonist urocortin 2. Intrathecal CRFR2 antagonists, but not a CRFR1 antagonist, blocked the augmentation of visceromotor responses to distension following pretreatment with both NBI + ABI. Lumbosacral dorsal horn neuronal responses to distension in rats pretreated with NBI + ABI were attenuated by the spinal topical administration of a CRFR2 antagonist. These studies suggest therapeutic value of CRFR2 antagonists in the treatment of painful bladder disorders.
Collapse
Affiliation(s)
- Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Cary DeWitte
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alan Randich
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
37
|
Alavi M, Ryabinin AE, Helms ML, Nipper MA, Devaud LL, Finn DA. Sensitivity and Resilience to Predator Stress-Enhanced Ethanol Drinking Is Associated With Sex-Dependent Differences in Stress-Regulating Systems. Front Behav Neurosci 2022; 16:834880. [PMID: 35645747 PMCID: PMC9132579 DOI: 10.3389/fnbeh.2022.834880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Stress can increase ethanol drinking, and evidence confirms an association between post-traumatic stress disorder (PTSD) and the development of alcohol use disorder (AUD). Exposure to predator odor is considered a traumatic stressor, and predator stress (PS) has been used extensively as an animal model of PTSD. Our prior work determined that repeated exposure to intermittent PS significantly increased anxiety-related behavior, corticosterone levels, and neuronal activation in the hippocampus and prefrontal cortex in naïve male and female C57BL/6J mice. Intermittent PS exposure also increased subsequent ethanol drinking in a subgroup of animals, with heterogeneity of responses as seen with comorbid PTSD and AUD. The present studies built upon this prior work and began to characterize “sensitivity” and “resilience” to PS-enhanced drinking. Ethanol drinking was measured during baseline, intermittent PS exposure, and post-stress; mice were euthanized after 24-h abstinence. Calculation of median and interquartile ranges identified “sensitive” (>20% increase in drinking over baseline) and “resilient” (no change or decrease in drinking from baseline) subgroups. Intermittent PS significantly increased subsequent ethanol intake in 24% of male (↑60%) and in 20% of female (↑71%) C57BL/6J mice in the “sensitive” subgroup. Plasma corticosterone levels were increased significantly after PS in both sexes, but levels were lower in the “sensitive” vs. “resilient” subgroups. In representative mice from “sensitive” and “resilient” subgroups, prefrontal cortex and hippocampus were analyzed by Western Blotting for levels of corticotropin releasing factor (CRF) receptor 1, CRF receptor 2, CRF binding protein, and glucocorticoid receptor, vs. separate naïve age-matched mice. In prefrontal cortex, CRF receptor 1, CRF receptor 2, CRF binding protein, and glucocorticoid receptor levels were significantly higher in “sensitive” vs. naïve and “resilient” mice only in females. In hippocampus, CRF receptor 1, CRF receptor 2 and glucocorticoid receptor levels were significantly lower in “resilient” vs. naïve and “sensitive” mice across both sexes. These results indicate that sex strongly influences the effects of ethanol drinking and stress on proteins regulating stress and anxiety responses. They further suggest that targeting the CRF system and glucocorticoid receptors in AUD needs to consider the comorbidity of PTSD with AUD and sex of treated individuals.
Collapse
Affiliation(s)
- Mehrdad Alavi
- School of Pharmacy, Pacific University, Hillsboro, OR, United States
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Melinda L. Helms
- Department of Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A. Nipper
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Leslie L. Devaud
- School of Pharmacy, Pacific University, Hillsboro, OR, United States
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Department of Research, VA Portland Health Care System, Portland, OR, United States
- *Correspondence: Deborah A. Finn,
| |
Collapse
|
38
|
Kreifeldt M, Herman MA, Sidhu H, Okhuarobo A, Macedo GC, Shahryari R, Gandhi PJ, Roberto M, Contet C. Central amygdala corticotropin-releasing factor neurons promote hyponeophagia but do not control alcohol drinking in mice. Mol Psychiatry 2022; 27:2502-2513. [PMID: 35264727 PMCID: PMC9149056 DOI: 10.1038/s41380-022-01496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression (NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had no effect on voluntary alcohol consumption, following either acute or chronic manipulation. Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The latter result contrasts with previous findings in rats and demonstrates species specificity of CRF circuit engagement in alcohol dependence.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Melissa A Herman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Giovana C Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Roxana Shahryari
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
39
|
Pagán-Busigó JE, López-Carrasquillo J, Appleyard CB, Torres-Reverón A. Beyond depression and anxiety; a systematic review about the role of corticotropin-releasing hormone antagonists in diseases of the pelvic and abdominal organs. PLoS One 2022; 17:e0264909. [PMID: 35275963 PMCID: PMC8916623 DOI: 10.1371/journal.pone.0264909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Evidence for beneficial effects of corticotropin releasing hormone (CRH) antagonists in abdominal and pelvic organs is emerging in preclinical studies. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement a compilation of preclinical studies using CRH receptor antagonists as a treatment for abdominal and pelvic disease was carried out. The Animal Research: Reporting of In Vivo Experiments (ARRIVE) essential 10 guidelines were used to determine quality of the included studies. A total of 40 studies from the last 15 years studying irritable bowel syndrome, inflammatory bowel disease, endometriosis, enteritis, stress impact on gastrointestinal processes and exogenous CRH administration effects were included. Blockage of the CRH receptor 1 was mainly associated with beneficial effects while that of CRH receptor 2 worsened studied effects. However, time of administration, route of administration and the animal model used, all had an impact on the beneficial outcomes. Frequency of drugs administered indicated that astressin-2B, astressin and antalarmin were among the most utilized antagonists. Of concern, studies included were predominantly carried out in male models only, representing a gender discrepancy in preclinical studies compared to the clinical scenario. The ARRIVE score average was 13 with ~60% of the studies failing to randomize or blind the experimental units. Despite the failure to date of the CRH antagonists in moving across the clinical trials pipeline, there is evidence for their beneficial effects beyond mood disorders. Future pre-clinical studies should be tailored towards effectively predicting the clinical scenario, including reduction of bias and randomization.
Collapse
Affiliation(s)
- Joshua E. Pagán-Busigó
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Jonathan López-Carrasquillo
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
| | - Annelyn Torres-Reverón
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- Sur180 Therapeutics, LLC, McAllen, Texas, United States of America
- * E-mail: ,
| |
Collapse
|
40
|
Salim C, Kan AK, Batsaikhan E, Patterson EC, Jee C. Neuropeptidergic regulation of compulsive ethanol seeking in C. elegans. Sci Rep 2022; 12:1804. [PMID: 35110557 PMCID: PMC8810865 DOI: 10.1038/s41598-022-05256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the catastrophic consequences of alcohol abuse, alcohol use disorders (AUD) and comorbidities continue to strain the healthcare system, largely due to the effects of alcohol-seeking behavior. An improved understanding of the molecular basis of alcohol seeking will lead to enriched treatments for these disorders. Compulsive alcohol seeking is characterized by an imbalance between the superior drive to consume alcohol and the disruption or erosion in control of alcohol use. To model the development of compulsive engagement in alcohol seeking, we simultaneously exploited two distinct and conflicting Caenorhabditis elegans behavioral programs, ethanol preference and avoidance of aversive stimulus. We demonstrate that the C. elegans model recapitulated the pivotal features of compulsive alcohol seeking in mammals, specifically repeated attempts, endurance, and finally aversion-resistant alcohol seeking. We found that neuropeptide signaling via SEB-3, a CRF receptor-like GPCR, facilitates the development of ethanol preference and compels animals to seek ethanol compulsively. Furthermore, our functional genomic approach and behavioral elucidation suggest that the SEB-3 regulates another neuropeptidergic signaling, the neurokinin receptor orthologue TKR-1, to facilitate compulsive ethanol-seeking behavior.
Collapse
Affiliation(s)
- Chinnu Salim
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Ann Ke Kan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Enkhzul Batsaikhan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - E Clare Patterson
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA.
| |
Collapse
|
41
|
Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022; 290:1986-2010. [PMID: 35108458 DOI: 10.1111/febs.16380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Ischaemic neurovascular stroke represents a leading cause of death in the developed world. Preclinical and human epidemiological evidence implicates the corticotropin-releasing factor (CRF) family of neuropeptides as mediators of acute neurovascular injury pathology. Preclinical investigations of the role of CRF, CRF receptors and CRF-dependent activation of the hypothalamic-pituitary-adrenal (HPA) axis have pointed toward a tissue-specific and temporal relationship between activation of these pathways and physiological outcomes. Based on the literature, the major phases of ischaemic stroke aetiology may be separated into an acute phase in which CRF and anti-inflammatory stress signalling are beneficial and a chronic phase in which these contribute to neural degeneration, toxicity and apoptotic signalling. Significant gaps in knowledge remain regarding the pathway, temporality and systemic impact of CRF signalling and stress biology in neurovascular injury progression. Heterogeneity among experimental designs poses a challenge to defining the apparent reciprocal relationship between neurological injury and stress metabolism. Despite these challenges, it is our opinion that the elucidated temporality may be best matched with an antibody against CRF with a half-life of days to weeks as opposed to minutes to hours as with small-molecule CRF receptor antagonists. This state-of-the-art review will take a multipronged approach to explore the expected potential benefit of a CRF antibody by modulating CRF and corticotropin-releasing factor receptor 1 signalling, glucocorticoids and autonomic nervous system activity. Additionally, this review compares the modulation of CRF and HPA axis activity in neuropsychiatric diseases and their counterpart outcomes post-stroke and assess lessons learned from antibody therapies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel A Lichlyter
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Zachary A Krumm
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Todd A Golde
- Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.,Departments of Neurology, Psychiatry, Pharmaceutics, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
42
|
The imidazodiazepine, KRM-II-81: An example of a newly emerging generation of GABAkines for neurological and psychiatric disorders. Pharmacol Biochem Behav 2022; 213:173321. [PMID: 35041859 DOI: 10.1016/j.pbb.2021.173321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
GABAkines, or positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors, are used for the treatment of anxiety, epilepsy, sleep, and other disorders. The search for improved GABAkines, with reduced safety liabilities (e.g., dependence) or side-effect profiles (e.g., sedation) constituted multiple discovery and development campaigns that involved a multitude of strategies over the past century. Due to the general lack of success in the development of new GABAkines, there had been a decades-long draught in bringing new GABAkines to market. Recently, however, there has been a resurgence of efforts to bring GABAkines to patients, the FDA approval of the neuroactive steroid brexanolone for post-partum depression in 2019 being the first. Other neuroactive steroids are in various stages of clinical development (ganaxolone, zuranolone, LYT-300, Sage-324, PRAX 114, and ETX-155). These GABAkines and non-steroid compounds (GRX-917, a TSPO binding site ligand), darigabat (CVL-865), an α2/3/5-preferring GABAkine, SAN711, an α3-preferring GABAkine, and the α2/3-preferring GABAkine, KRM-II-81, bring new therapeutic promise to this highly utilized medicinal target in neurology and psychiatry. Herein, we also discuss possible conditions that have enabled the transition to a new age of GABAkines. We highlight the pharmacology of KRM-II-81 that has the most preclinical data reported. KRM-II-81 is the lead compound in a new series of orally bioavailable imidazodiazepines entering IND-enabling safety studies. KRM-II-81 has a preclinical profile predicting efficacy against pharmacoresistant epilepsies, traumatic brain injury, and neuropathic pain. KRM-II-81 also produces anxiolytic- and antidepressant-like effects in rodent models. Other key features of the pharmacology of this compound are its low sedation rate, lack of tolerance development, and the ability to prevent the development of seizure sensitization.
Collapse
|
43
|
Henry SS, Ross RA, Rasgon N. Relevance of Sex-Specific Metabolic Phenotypes in Diagnosis and Treatment of Mood Disorders and PTSD. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20211221-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Miczek KA, DiLeo A, Newman EL, Akdilek N, Covington HE. Neurobiological Bases of Alcohol Consumption After Social Stress. Curr Top Behav Neurosci 2022; 54:245-281. [PMID: 34964935 PMCID: PMC9698769 DOI: 10.1007/7854_2021_273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The urge to seek and consume excessive alcohol is intensified by prior experiences with social stress, and this cascade can be modeled under systematically controlled laboratory conditions in rodents and non-human primates. Adaptive coping with intermittent episodes of social defeat stress often transitions to maladaptive responses to traumatic continuous stress, and alcohol consumption may become part of coping responses. At the circuit level, the neural pathways subserving stress coping intersect with those for alcohol consumption. Increasingly discrete regions and connections within the prefrontal cortex, the ventral and dorsal striatum, thalamic and hypothalamic nuclei, tegmental areas as well as brain stem structures begin to be identified as critical for reacting to and coping with social stress while seeking and consuming alcohol. Several candidate molecules that modulate signals within these neural connections have been targeted in order to reduce excessive drinking and relapse. In spite of some early clinical failures, neuropeptides such as CRF, opioids, or oxytocin continue to be examined for their role in attenuating stress-escalated drinking. Recent work has focused on neural sites of action for peptides and steroids, most likely in neuroinflammatory processes as a result of interactive effects of episodic social stress and excessive alcohol seeking and drinking.
Collapse
Affiliation(s)
- Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, MA, USA,Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alyssa DiLeo
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Naz Akdilek
- Department of Psychology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
45
|
Agoglia AE, Zhu M, Quadir SG, Bluitt MN, Douglass E, Hanback T, Tella J, Ying R, Hodge CW, Herman MA. Sex-specific plasticity in CRF regulation of inhibitory control in central amygdala CRF1 neurons after chronic voluntary alcohol drinking. Addict Biol 2022; 27:e13067. [PMID: 34075665 PMCID: PMC8636550 DOI: 10.1111/adb.13067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/01/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023]
Abstract
Despite strong preclinical evidence for the ability of corticotropin releasing factor 1 (CRF1) antagonists to regulate alcohol consumption, clinical trials have not yet demonstrated therapeutic effects of these compounds in alcohol use disorder (AUD) patients. Several confounding factors may limit the translation of preclinical CRF1 research to patients, including reliance on experimenter-administered alcohol instead of voluntary consumption, a preponderance of evidence collected in male subjects only and an inability to assess the effects of alcohol on specific brain circuits. A population of particular interest is the CRF1-containing neurons of the central amygdala (CeA). CRF1 CeA neurons are sensitive to ethanol, but the effects of alcohol drinking on CRF signalling within this population are unknown. In the present study, we assessed the effects of voluntary alcohol drinking on inhibitory control of CRF1+ CeA neurons from male and female CRF1:GFP mice using ex vivo electrophysiology and determined the contributions of CRF1 signalling to inhibitory control and voluntary alcohol drinking. Chronic alcohol drinking produced neuroadaptations in CRF1+ neurons that increased the sensitivity of GABAA receptor-mediated sIPSCs to the acute effects of alcohol, CRF and the CRF1 antagonist R121919, but these adaptations were more pronounced in male versus female mice. The CRF1 antagonist CP-154,526 reduced voluntary alcohol drinking in both sexes and abolished sex differences in alcohol drinking. The lack of alcohol-induced adaptation in the female CRF1 system may be related to the elevated alcohol intake exhibited by female mice and could contribute to the ineffectiveness of CRF1 antagonists in female AUD patients.
Collapse
Affiliation(s)
- AE Agoglia
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M Zhu
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - SG Quadir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - MN Bluitt
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - E Douglass
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - T Hanback
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J Tella
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - R Ying
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - CW Hodge
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - MA Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
46
|
Curley DE, Webb AE, Sheffler DJ, Haass-Koffler CL. Corticotropin Releasing Factor Binding Protein as a Novel Target to Restore Brain Homeostasis: Lessons Learned From Alcohol Use Disorder Research. Front Behav Neurosci 2021; 15:786855. [PMID: 34912198 PMCID: PMC8667027 DOI: 10.3389/fnbeh.2021.786855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Stress is well-known to contribute to the development of many psychiatric illnesses including alcohol and substance use disorder (AUD and SUD). The deleterious effects of stress have also been implicated in the acceleration of biological age, and age-related neurodegenerative disease. The physio-pathology of stress is regulated by the corticotropin-releasing factor (CRF) system, the upstream component of the hypothalamic-pituitary-adrenal (HPA) axis. Extensive literature has shown that dysregulation of the CRF neuroendocrine system contributes to escalation of alcohol consumption and, similarly, chronic alcohol consumption contributes to disruption of the stress system. The CRF system also represents the central switchboard for regulating homeostasis, and more recent studies have found that stress and aberrations in the CRF pathway are implicated in accelerated aging and age-related neurodegenerative disease. Corticotropin releasing factor binding protein (CRFBP) is a secreted glycoprotein distributed in peripheral tissues and in specific brain regions. It neutralizes the effects of CRF by sequestering free CRF, but may also possess excitatory function by interacting with CRF receptors. CRFBP’s dual role in influencing CRF bioavailability and CRF receptor signaling has been shown to have a major part in the HPA axis response. Therefore, CRFBP may represent a valuable target to treat stress-related illness, including: development of novel medications to treat AUD and restore homeostasis in the aging brain. This narrative review focuses on molecular mechanisms related to the role of CRFBP in the progression of addictive and psychiatric disorders, biological aging, and age-related neurodegenerative disease. We provide an overview of recent studies investigating modulation of this pathway as a potential therapeutic target for AUD and age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Dallece E Curley
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.,Neuroscience Graduate Program, Department of Neuroscience, Brown University, Providence, RI, United States
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.,Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Douglas J Sheffler
- Cell and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.,Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.,Carney Institute for Brain Science, Brown University, Providence, RI, United States.,Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, United States.,Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, United States
| |
Collapse
|
47
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
48
|
Ibarguen-Vargas Y, Leman S, Palme R, Belzung C, Surget A. CRF-R1 Antagonist Treatment Exacerbates Circadian Corticosterone Secretion under Chronic Stress, but Preserves HPA Feedback Sensitivity. Pharmaceutics 2021; 13:pharmaceutics13122114. [PMID: 34959395 PMCID: PMC8707167 DOI: 10.3390/pharmaceutics13122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022] Open
Abstract
Despite promising initial reports, corticotropin-releasing factor receptor type-1 (CRF-R1) antagonists have mostly failed to display efficacy in clinical trials for anxiety or depression. Rather than broad-spectrum antidepressant/anxiolytic-like drugs, they may represent an ‘antistress’ solution for single stressful situations or for patients with chronic stress conditions. However, the impact of prolonged CRF-R1 antagonist treatments on the hypothalamic–pituitary–adrenal (HPA) axis under chronic stress conditions remained to be characterized. Hence, our study investigated whether a chronic CRF-R1 antagonist (crinecerfont, formerly known as SSR125543, 20 mg·kg−1·day−1 ip, 5 weeks) would alter HPA axis basal circadian activity and negative feedback sensitivity in mice exposed to either control or chronic stress conditions (unpredictable chronic mild stress, UCMS, 7 weeks), through measures of fecal corticosterone metabolites, plasma corticosterone, and dexamethasone suppression test. Despite preserving HPA axis parameters in control non-stressed mice, the 5-week crinercerfont treatment improved the negative feedback sensitivity in chronically stressed mice, but paradoxically exacerbated their basal corticosterone secretion nearly all along the circadian cycle. The capacity of chronic CRF-R1 antagonists to improve the HPA negative feedback in UCMS argues in favor of a potential therapeutic benefit against stress-related conditions. However, the treatment-related overactivation of HPA circadian activity in UCMS raise questions about possible physiological outcomes with long-standing treatments under ongoing chronic stress.
Collapse
Affiliation(s)
- Yadira Ibarguen-Vargas
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- EUK-CVL, Université d’Orléans, 45100 Orléans, France
| | - Samuel Leman
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
| | - Rupert Palme
- Department of Biomedical Sciences/Biochemistry, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Catherine Belzung
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- Correspondence: (C.B.); (A.S.); Tel.: +33-2-47366994 (C.B.); +33-2-47367305 (A.S.)
| | - Alexandre Surget
- UMR1253, iBrain, Université de Tours, Inserm, 37200 Tours, France; (Y.I.-V.); (S.L.)
- Correspondence: (C.B.); (A.S.); Tel.: +33-2-47366994 (C.B.); +33-2-47367305 (A.S.)
| |
Collapse
|
49
|
Design, synthesis, structural optimization, SAR, in silico prediction of physicochemical properties and pharmacological evaluation of novel & potent thiazolo[4,5-d]pyrimidine corticotropin releasing factor (CRF) receptor antagonists. Eur J Pharm Sci 2021; 169:106084. [PMID: 34856350 DOI: 10.1016/j.ejps.2021.106084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino-acid neuropeptide secreted from the hypothalamus and is the main regulator of the hypothalamus-pituitary-adrenocortical (HPA) axis. CRF is the master hormone which modulates physiological and behavioral responses to stress. Many disorders including anxiety, depression, addictive disorders and others are related to over activation of the CRF system. This suggests that new molecules which can interfere with CRF binding to its receptors may be potential candidates for neuropsychiatric drugs to treat stress-related disorders. Previously, three series of pyrimidine and fused pyrimidine CRF1 receptor antagonists were synthesized by our group and specific binding assays, competitive binding studies and determination of the ability to antagonize the agonist-stimulated accumulation of cAMP (the second messenger for CRF receptors) were reported. In continuation of our efforts in this direction, in the current manuscript, we report the synthesis & biological evaluation of a new series of CRF1 receptor antagonists. Seven compounds showed promising binding affinity with the best two compounds (compounds 6 & 43) displaying a superior binding affinity to all of our previous compounds. Compounds 6 & 43 have only 4 times and 2 times less binding affinity than the standard CRF antagonist antalarmin, respectively. Thus, our two best lead compounds (compound 6 & 43) can be considered potent CRF receptor antagonists with binding affinity of 41.0 & 19.2 nM versus 9.7 nM for antalarmin.
Collapse
|
50
|
Tschetter KE, Callahan LB, Flynn SA, Rahman S, Beresford TP, Ronan PJ. Early life stress and susceptibility to addiction in adolescence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:277-302. [PMID: 34801172 DOI: 10.1016/bs.irn.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Early life stress (ELS) is a risk factor for developing a host of psychiatric disorders. Adolescence is a particularly vulnerable period for the onset of these disorders and substance use disorders (SUDs). Here we discuss ELS and its effects in adolescence, especially SUDs, and their correlates with molecular changes to signaling systems in reward and stress neurocircuits. Using a maternal separation (MS) model of neonatal ELS, we studied a range of behaviors that comprise a "drug-seeking" phenotype. We then investigated potential mechanisms underlying the development of this phenotype. Corticotropin releasing factor (CRF) and serotonin (5-HT) are widely believed to be involved in "stress-induced" disorders, including addiction. Here, we show that ELS leads to the development of a drug-seeking phenotype indicative of increased susceptibility to addiction and concomitant sex-dependent upregulation of CRF and 5-HT system components throughout extended brain reward/stress neurocircuits.
Collapse
Affiliation(s)
- K E Tschetter
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - L B Callahan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S A Flynn
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - T P Beresford
- Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - P J Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States.
| |
Collapse
|