1
|
Lorenzetti V, Gaillard A, McTavish E, Grace S, Rossetti MG, Batalla A, Bellani M, Brambilla P, Chye Y, Conrod P, Cousijn J, Labuschagne I, Clemente A, Mackey S, Rendell P, Solowij N, Suo C, Li CSR, Terrett G, Thompson PM, Yücel M, Garavan H, Roberts CA. Cannabis Dependence is Associated with Reduced Hippocampal Subregion Volumes Independently of Sex: Findings from an ENIGMA Addiction Working Group Multi-Country Study. Cannabis Cannabinoid Res 2024; 9:e1565-e1578. [PMID: 38498015 DOI: 10.1089/can.2023.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background: Males and females who consume cannabis can experience different mental health and cognitive problems. Neuroscientific theories of addiction postulate that dependence is underscored by neuroadaptations, but do not account for the contribution of distinct sexes. Further, there is little evidence for sex differences in the neurobiology of cannabis dependence as most neuroimaging studies have been conducted in largely male samples in which cannabis dependence, as opposed to use, is often not ascertained. Methods: We examined subregional hippocampus and amygdala volumetry in a sample of 206 people recruited from the ENIGMA Addiction Working Group. They included 59 people with cannabis dependence (17 females), 49 cannabis users without cannabis dependence (20 females), and 98 controls (33 females). Results: We found no group-by-sex effect on subregional volumetry. The left hippocampal cornu ammonis subfield 1 (CA1) volumes were lower in dependent cannabis users compared with non-dependent cannabis users (p<0.001, d=0.32) and with controls (p=0.022, d=0.18). Further, the left cornu ammonis subfield 3 (CA3) and left dentate gyrus volumes were lower in dependent versus non-dependent cannabis users but not versus controls (p=0.002, d=0.37, and p=0.002, d=0.31, respectively). All models controlled for age, intelligence quotient (IQ), alcohol and tobacco use, and intracranial volume. Amygdala volumetry was not affected by group or group-by-sex, but was smaller in females than males. Conclusions: Our findings suggest that the relationship between cannabis dependence and subregional volumetry was not moderated by sex. Specifically, dependent (rather than non-dependent) cannabis use may be associated with alterations in selected hippocampus subfields high in cannabinoid type 1 (CB1) receptors and implicated in addictive behavior. As these data are cross-sectional, it is plausible that differences predate cannabis dependence onset and contribute to the initiation of cannabis dependence. Longitudinal neuroimaging work is required to examine the time-course of the onset of subregional hippocampal alterations in cannabis dependence, and their progression as cannabis dependence exacerbates or recovers over time.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Alexandra Gaillard
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- Centre for Mental Health and Department of Health Sciences and Biostatistics, Swinburne University, Hawthorn, Australia
| | - Eugene McTavish
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Sally Grace
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Maria Gloria Rossetti
- UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Albert Batalla
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marcella Bellani
- Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Paolo Brambilla
- UOC Psichiatria, Azienda Ospedaliera Universitaria Integrata (AOUI), Verona, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Canada
| | - Janna Cousijn
- Neuroscience of Addiction Lab, Center for Substance Use and Addiction Research (CESAR), Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Izelle Labuschagne
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Adam Clemente
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, Vermont, USA
| | - Peter Rendell
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Nadia Solowij
- School of Psychology, Faculty of the Arts, Social Sciences and Humanities, University of Wollongong, Wollongong, Australia
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gill Terrett
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Paul M Thompson
- Department of Neurology, Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California, USA
| | - Murat Yücel
- QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Hugh Garavan
- School of Psychology, Faculty of Health and Behavioural Sciences, University of Queensland, St Lucia, Australia
| | - Carl A Roberts
- Department of Psychology, Institute of Population Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Maleki S, Hendrikse J, Richardson K, Segrave RA, Hughes S, Kayayan E, Oldham S, Syeda W, Coxon JP, Caeyenberghs K, Domínguez D JF, Solowij N, Lubman DI, Suo C, Yücel M. White matter alterations associated with chronic cannabis use disorder: a structural network and fixel-based analysis. Transl Psychiatry 2024; 14:429. [PMID: 39389949 PMCID: PMC11467328 DOI: 10.1038/s41398-024-03150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
Cannabis use disorder (CUD) is associated with adverse mental health effects, as well as social and cognitive impairment. Given prevalence rates of CUD are increasing, there is considerable efforts, and need, to identify prognostic markers which may aid in minimising any harm associated with this condition. Previous neuroimaging studies have revealed changes in white matter (WM) organization in people with CUD, though, the findings are mixed. In this study, we applied MRI-based analysis techniques that offer complimentary mechanistic insights, i.e., a connectome approach and fixel-based analysis (FBA) to investigate properties of individual WM fibre populations and their microstructure across the entire brain, providing a highly sensitive approach to detect subtle changes and overcome limitations of previous diffusion models. We compared 56 individuals with CUD (median age 25 years) to a sample of 38 healthy individuals (median age 31.5 years). Compared to controls, those with CUD had significantly increased structural connectivity strength (FDR corrected) across 9 edges between the right parietal cortex and several cortical and subcortical regions, including left orbitofrontal, left temporal pole, and left hippocampus and putamen. Utilizing FBA, WM density was significantly higher in those with CUD (FWE-corrected) across the splenium of the corpus callosum, and lower in the bilateral cingulum and right cerebellum. We observed significant correlation between cannabis use over the past month and connectivity strength of the frontoparietal edge, and between age of regular use and WM density of the bilateral cingulum and right cerebellum. Our findings enhance the understanding of WM architecture alterations associated with CUD.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Karyn Richardson
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Rebecca A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Sam Hughes
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Edouard Kayayan
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Stuart Oldham
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Warda Syeda
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, VIC, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Juan F Domínguez D
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Nadia Solowij
- School of Psychology, University of Wollongong, Wollongong, NSW, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health, Melbourne, VIC, Australia
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Clayton, VIC, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia.
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
3
|
Hoch E, Preuss UW. [Cannabis use and cannabis use disorders]. DER NERVENARZT 2024; 95:781-796. [PMID: 39134752 DOI: 10.1007/s00115-024-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
Cannabis use and cannabis use disorders have taken on a new social significance as a result of partial legalization. In 2021 a total of 4.5 million adults (8.8%) in Germany used the drug. The number of users as well as problematic use have risen in the last decade. Cannabis products with a high delta-9-tetrahydrocannabinol (THC) content and their regular use lead to changes in cannabinoid receptor distribution in the brain and to modifications in the structure and functionality of relevant neuronal networks. The consequences of cannabinoid use are particularly in the psychological functioning and can include intoxication, harmful use, dependence with withdrawal symptoms and cannabis-induced mental disorders. Changes in the diagnostics between ICD-10 and ICD-11 are presented. Interdisciplinary S3 guidelines on cannabis-related disorders are currently being developed and will be finalized shortly.
Collapse
Affiliation(s)
- E Hoch
- Klinik und Polyklinik für Psychiatrie und Psychotherapie, Klinik der Ludwig-Maximilians-Universität München, Nußbaumstr. 7, 80336, München, Deutschland.
- IFT Institut für Therapieforschung, München, Deutschland.
- Charlotte-Fresenius University, München, Deutschland.
| | - U W Preuss
- Universitätsklinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther Universität Halle-Wittenberg, Halle, Deutschland
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Klinikum Ludwigsburg, Ludwigsburg, Deutschland
| |
Collapse
|
4
|
Lorenzetti V, Kowalczyk M, Duehlmeyer L, Greenwood LM, Chye Y, Yücel M, Whittle S, Roberts CA. Brain Anatomical Alterations in Young Cannabis Users: Is it All Hype? A Meta-Analysis of Structural Neuroimaging Studies. Cannabis Cannabinoid Res 2023; 8:184-196. [PMID: 35443799 DOI: 10.1089/can.2021.0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: Cannabis use has a high prevalence in young youth and is associated with poor psychosocial outcomes. Such outcomes have been ascribed to the impact of cannabis exposure on the developing brain. However, findings from individual studies of volumetry in youth cannabis users are equivocal. Objectives: Our primary objective was to systematically review the evidence on brain volume differences between young cannabis users and nonusers aged 12-26 where profound neuromaturation occurs, accounting for the role of global brain volumes (GBVs). Our secondary objective was to systematically integrate the findings on the association between youth age and volumetry in youth cannabis users. Finally, we aimed to evaluate the quality of the evidence. Materials and Methods: A systematic search was run in three databases (PubMed, Scopus, and PsycINFO) and was reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We run meta-analyses (with and without controlling for GBV) of brain volume differences between young cannabis users and nonusers. We conducted metaregressions to explore the role of age on volumetric differences. Results: Sixteen studies were included. The reviewed samples included 830 people with mean age 22.5 years (range 14-26 years). Of these, 386 were cannabis users (with cannabis use onset at 15-19 years) and 444 were controls. We found no detectable group differences in any of the GBVs (intracranium, total brain, total white matter, and total gray matter) and regional brain volumes (i.e., hippocampus, amygdala, orbitofrontal cortex, and total cerebellum). Age and cannabis use level did not predict (standardized mean) volume group differences in metaregression. We found little evidence of publication bias (Egger's test p>0.1). Conclusions: Contrary to evidence in adult samples (or in samples mixing adults and youth), previous single studies in young cannabis users, and meta-analyses of brain function in young cannabis users, this early evidence suggests nonsignificant volume differences between young cannabis users and nonusers. While prolonged and long-term exposure to heavy cannabis use may be required to detect gross volume alterations, more studies in young cannabis users are needed to map in detail cannabis-related neuroanatomical changes.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Australia
| | - Magdalena Kowalczyk
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Australia
| | - Leonie Duehlmeyer
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Australia
| | - Lisa-Marie Greenwood
- Research School of Psychology, The Australian National University, Canberra, Australia
| | - Yann Chye
- BrainPark, The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Clayton, Australia
| | - Murat Yücel
- BrainPark, The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Clayton, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton, Australia
| | - Carl A Roberts
- Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Hirjak D, Schmitgen MM, Werler F, Wittemann M, Kubera KM, Wolf ND, Sambataro F, Calhoun VD, Reith W, Wolf RC. Multimodal MRI data fusion reveals distinct structural, functional and neurochemical correlates of heavy cannabis use. Addict Biol 2022; 27:e13113. [PMID: 34808703 DOI: 10.1111/adb.13113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Heavy cannabis use (HCU) is frequently associated with a plethora of cognitive, psychopathological and sensorimotor phenomena. Although HCU is frequent, specific patterns of abnormal brain structure and function underlying HCU in individuals presenting without cannabis-use disorder or other current and life-time major mental disorders are unclear at present. This multimodal magnetic resonance imaging (MRI) study examined resting-state functional MRI (rs-fMRI) and structural MRI (sMRI) data from 24 persons with HCU and 16 controls. Parallel independent component analysis (p-ICA) was used to examine covarying components among grey matter volume (GMV) maps computed from sMRI and intrinsic neural activity (INA), as derived from amplitude of low-frequency fluctuations (ALFF) maps computed from rs-fMRI data. Further, we used JuSpace toolbox for cross-modal correlations between MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying HCU. We identified two transmodal components, which significantly differed between the HCU and controls (GMV: p = 0.01, ALFF p = 0.03, respectively). The GMV component comprised predominantly cerebello-temporo-thalamic regions, whereas the INA component included fronto-parietal regions. Across HCU, loading parameters of both components were significantly associated with distinct HCU behavior. Finally, significant associations between GMV and the serotonergic system as well as between INA and the serotonergic, dopaminergic and μ-opioid receptor system were detected. This study provides novel multimodal neuromechanistic insights into HCU suggesting co-altered structure/function-interactions in neural systems subserving cognitive and sensorimotor functions.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Mike M. Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy Saarland University Saarbrücken Germany
| | - Katharina M. Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Nadine D. Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| | - Fabio Sambataro
- Department of Neurosciences, Padua Neuroscience Center University of Padua Padua Italy
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology Emory University Atlanta Georgia USA
| | - Wolfgang Reith
- Department of Neuroradiology Saarland University Saarbrücken Germany
| | - Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Mannheim Germany
| |
Collapse
|
6
|
Watson KK, Bryan AD, Thayer RE, Ellingson JM, Skrzynski CJ, Hutchison KE. Cannabis Use and Resting State Functional Connectivity in the Aging Brain. Front Aging Neurosci 2022; 14:804890. [PMID: 35221994 PMCID: PMC8868145 DOI: 10.3389/fnagi.2022.804890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Several lines of evidence suggest that older adults (aged 65+) sharply increased their cannabis use over the last decade, highlighting a need to understand the effects of cannabis in this age group. Pre-clinical models suggest that cannabinoids affect the brain and cognition in an age-dependent fashion, having generally beneficial effects on older animals and deleterious effects on younger ones. However, there is little research on how cannabis affects the brains of older adults or how older adults differ from younger adults who use cannabis. Resting state functional connectivity (rsFC) measures provide sensitive metrics of age-related cognitive decline. Here we compared rsFC in older adults who are either regular users of cannabis or non-users. We found stronger connectivity between sources in the hippocampus and parahippocampal cortex, and targets in the anterior lobes of the cerebellum in older adult cannabis users relative to non-users. A similar pattern of strengthened connectivity between hippocampal and cerebellar structures was also present in 25-35 year old non-users in comparison to 60-88 year old non-users. These findings suggest that future studies should examine both the potential risks of cannabinoids, as well as a potential benefits, on cognition and brain health for older adults.
Collapse
Affiliation(s)
- Karli K. Watson
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Angela D. Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Rachel E. Thayer
- Department of Psychology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Jarrod M. Ellingson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Carillon J. Skrzynski
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kent E. Hutchison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
7
|
Francis AM, Bissonnette JN, MacNeil SE, Crocker CE, Tibbo PG, Fisher DJ. Interaction of sex and cannabis in adult in vivo brain imaging studies: A systematic review. Brain Neurosci Adv 2022; 6:23982128211073431. [PMID: 35097219 PMCID: PMC8793398 DOI: 10.1177/23982128211073431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Cannabis has been shown to cause structural and functional neurocognitive changes in heavy users. Cannabis use initiation aligns with brain development trajectories; therefore, it is imperative that the potential neurological implications of cannabis use are understood. Males and females reach neurodevelopmental milestones at different rates making it necessary to consider biological sex in all cannabis and brain-based research. Through use of a systamatic review in accordance with PRISMA guidelines, we aimed to understand the interaction between biological sex and cannabis use on brain-based markers. In total, 18 articles containing a sex-based analysis of cannabis users were identified. While the majority of studies (n = 11) reported no sex by cannabis use interactions on brain-based markers, those that reported findings (n = 8) suggest females may be more susceptible to cannabis' neurotoxic effects. Unfortunately, a large portion of the literature was excluded due to no sex-based analysis. In addition, studies that reported no sex differences often contained a reduced number of females which may result in some studies being underpowered for sex-based analyses, making it difficult to draw firm conclusions. Suggestions to improve cannabis and sex-based reseach are proposed.
Collapse
Affiliation(s)
- Ashley M. Francis
- Department of Psychology, Saint Mary’s University, Halifax, NS, Canada
| | - Jenna N. Bissonnette
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | - Sarah E. MacNeil
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| | - Candice E. Crocker
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Philip G. Tibbo
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Derek J. Fisher
- Department of Psychology, Saint Mary’s University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Psychology, Mount Saint Vincent University, Halifax, NS, Canada
| |
Collapse
|
8
|
Harper J, Wilson S, Malone SM, Hunt RH, Thomas KM, Iacono WG. Orbitofrontal cortex thickness and substance use disorders in emerging adulthood: causal inferences from a co-twin control/discordant twin study. Addiction 2021; 116:2548-2558. [PMID: 33620763 PMCID: PMC8328872 DOI: 10.1111/add.15447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Research linking orbitofrontal cortex (OFC) structure and substance use disorders (SUDs) is largely correlational and often implies a causal effect of addiction/substance exposure on the brain, but familial risk factors (e.g. genetic liability) may confound these associations. We tested whether associations between alcohol, cannabis and tobacco use disorders and OFC thickness reflected the potential causal effects of familial risk or SUDs-related consequences (e.g. substance exposure). DESIGN A co-twin control/discordant twin design separated familial risk confounding from SUD-related consequences. SETTING/PARTICIPANTS A population-based sample of 436 24-year-old twins (62% monozygotic) from the Minnesota Twin Family Study, USA. MEASUREMENTS Alcohol, cannabis and tobacco use disorders were assessed using the Composite International Diagnostic Interview-Substance Abuse Module. Cortical thickness of the medial and lateral OFC (mOFC and lOFC, respectively) was assessed using magnetic resonance imaging (MRI). FINDINGS Lower mOFC (P-values ≤ 0.006) but not lOFC (P-values ≥ 0.190) thickness was observed in diagnosed individuals (n = 185) relative to non-SUD controls (n = 251). Co-twin control analyses offered evidence that mOFC associations were consistent with familial risk across SUDs (between-pair effect: P-values ≤ 0.047) and the independent consequences of having an alcohol or cannabis use disorder (within-pair effect: P-values ≤ 0.024). That is, within alcohol/cannabis discordant twin pairs, affected twins had significantly lower mOFC thickness compared with their unaffected co-twins. CONCLUSIONS A confounder-adjusted analysis of the Minnesota Twin Family Study appeared to indicate that, beyond a substance use disorders general familial risk effect, the experience of an alcohol or cannabis use disorder in emerging adulthood reduces the thickness of the medial orbitofrontal cortex, a region associated with value-guided decision-making.
Collapse
Affiliation(s)
- Jeremy Harper
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Twin Cities
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities
| | | | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota, Twin Cities
| | | | | |
Collapse
|
9
|
Els K, Warton C, Gunston G, Henry BM, Keet K. Structural variations in the sulco-gyral pattern of the orbitofrontal cortex. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Rossetti MG, Mackey S, Patalay P, Allen NB, Batalla A, Bellani M, Chye Y, Conrod P, Cousijn J, Garavan H, Goudriaan AE, Hester R, Martin-Santos R, Solowij N, Suo C, Thompson PM, Yücel M, Brambilla P, Lorenzetti V. Sex and dependence related neuroanatomical differences in regular cannabis users: findings from the ENIGMA Addiction Working Group. Transl Psychiatry 2021; 11:272. [PMID: 33958576 PMCID: PMC8102553 DOI: 10.1038/s41398-021-01382-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
Males and females show different patterns of cannabis use and related psychosocial outcomes. However, the neuroanatomical substrates underlying such differences are poorly understood. The aim of this study was to map sex differences in the neurobiology (as indexed by brain volumes) of dependent and recreational cannabis use. We compared the volume of a priori regions of interest (i.e., amygdala, hippocampus, nucleus accumbens, insula, orbitofrontal cortex (OFC), anterior cingulate cortex and cerebellum) between 129 regular cannabis users (of whom 70 were recreational users and 59 cannabis dependent) and 114 controls recruited from the ENIGMA Addiction Working Group, accounting for intracranial volume, age, IQ, and alcohol and tobacco use. Dependent cannabis users, particularly females, had (marginally significant) smaller volumes of the lateral OFC and cerebellar white matter than recreational users and controls. In dependent (but not recreational) cannabis users, there was a significant association between female sex and smaller volumes of the cerebellar white matter and OFC. Volume of the OFC was also predicted by monthly standard drinks. No significant effects emerged the other brain regions of interest. Our findings warrant future multimodal studies that examine if sex and cannabis dependence are specific key drivers of neurobiological alterations in cannabis users. This, in turn, could help to identify neural pathways specifically involved in vulnerable cannabis users (e.g., females with cannabis dependence) and inform individually tailored neurobiological targets for treatment.
Collapse
Affiliation(s)
- Maria Gloria Rossetti
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Praveetha Patalay
- Centre for Longitudinal Studies and MRC Unit for Lifelong Health and Ageing, IOE and Population Health Sciences, UCL, London, UK
| | | | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Melbourne, VIC, Australia
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, QC, Canada
| | - Janna Cousijn
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, Netherlands
| | - Robert Hester
- School of Psychological Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rocio Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Melbourne, VIC, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences & Monash Biomedical Imaging Facility, Monash University, Melbourne, VIC, Australia
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Valentina Lorenzetti
- Neuroscience of Addiction & Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Rinehart L, Spencer S. Which came first: Cannabis use or deficits in impulse control? Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110066. [PMID: 32795592 PMCID: PMC7750254 DOI: 10.1016/j.pnpbp.2020.110066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Impulse control deficits are often found to co-occur with substance use disorders (SUDs). On the one hand, it is well known that chronic intake of drugs of abuse remodels the brain with significant consequences for a range of cognitive behaviors. On the other hand, individual variation in impulse control may contribute to differences in susceptibility to SUDs. Both of these relationships have been described, thus leading to a "chicken or the egg" debate which remains to be fully resolved. Does impulsivity precede drug use or does it manifest as a function of problematic drug usage? The link between impulsivity and SUDs has been most strongly established for cocaine and alcohol use disorders using both preclinical models and clinical data. Much less is known about the potential link between impulsivity and cannabis use disorder (CUD) or the directionality of this relationship. The initiation of cannabis use occurs most often during adolescence prior to the brain's maturation, which is recognized as a critical period of development. The long-term effects of chronic cannabis use on the brain and behavior have started to be explored. In this review we will summarize these observations, especially as they pertain to the relationship between impulsivity and CUD, from both a psychological and biological perspective. We will discuss impulsivity as a multi-dimensional construct and attempt to reconcile the results obtained across modalities. Finally, we will discuss possible avenues for future research with emerging longitudinal data.
Collapse
Affiliation(s)
- Linda Rinehart
- University of Minnesota, Department of Psychiatry and Behavioral Sciences
| | - Sade Spencer
- University of Minnesota, Department of Pharmacology, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Deconstructing the neurobiology of cannabis use disorder. Nat Neurosci 2020; 23:600-610. [PMID: 32251385 DOI: 10.1038/s41593-020-0611-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
There have been dramatic changes worldwide in the attitudes toward and consumption of recreational and medical cannabis. Cannabinoid receptors, which mediate the actions of cannabis, are abundantly expressed in brain regions known to mediate neural processes underlying reward, cognition, emotional regulation and stress responsivity relevant to addiction vulnerability. Despite debates regarding potential pathological consequences of cannabis use, cannabis use disorder is a clinical diagnosis with high prevalence in the general population and that often has its genesis in adolescence and in vulnerable individuals associated with psychiatric comorbidity, genetic and environmental factors. Integrated information from human and animal studies is beginning to expand insights regarding neurobiological systems associated with cannabis use disorder, which often share common neural characteristics with other substance use disorders, that could inform prevention and treatment strategies.
Collapse
|
13
|
Rakesh D, Allen NB, Whittle S. Balancing act: Neural correlates of affect dysregulation in youth depression and substance use - A systematic review of functional neuroimaging studies. Dev Cogn Neurosci 2020; 42:100775. [PMID: 32452461 PMCID: PMC7139159 DOI: 10.1016/j.dcn.2020.100775] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Both depression and substance use problems have their highest incidence during youth (i.e., adolescence and emerging adulthood), and are characterized by emotion regulation deficits. Influential neurodevelopmental theories suggest that alterations in the function of limbic and frontal regions render youth susceptible to these deficits. However, whether depression and substance use in youth are associated with similar alterations in emotion regulation neural circuitry is unknown. In this systematic review we synthesized the results of functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of emotion regulation in youth depression and substance use. Resting-state fMRI studies focusing on limbic connectivity were also reviewed. While findings were largely inconsistent within and between studies of depression and substance use, some patterns emerged. First, youth depression appears to be associated with exaggerated amygdala activity in response to negative stimuli; second, both depression and substance use appear to be associated with lower functional connectivity between the amygdala and prefrontal cortex during rest. Findings are discussed in relation to support for existing neurodevelopmental models, and avenues for future work are suggested, including studying neurodevelopmental trajectories from a network perspective.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Lorenzetti V, Chye Y, Suo C, Walterfang M, Lubman DI, Takagi M, Whittle S, Verdejo-Garcia A, Cousijn J, Pantelis C, Seal M, Fornito A, Yücel M, Solowij N. Neuroanatomical alterations in people with high and low cannabis dependence. Aust N Z J Psychiatry 2020; 54:68-75. [PMID: 31298035 DOI: 10.1177/0004867419859077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES We aimed to investigate whether severity of cannabis dependence is associated with the neuroanatomy of key brain regions of the stress and reward brain circuits. METHODS To examine dependence-specific regional brain alterations, we compared the volumes of regions relevant to reward and stress, between high-dependence cannabis users (CD+, n = 25), low-dependence cannabis users (CD-, n = 20) and controls (n = 37). RESULTS Compared to CD- and/or controls, the CD+ group had lower cerebellar white matter and hippocampal volumes, and deflation of the right hippocampus head and tail. CONCLUSION These findings provide initial support for neuroadaptations involving stress and reward circuits that are specific to high-dependence cannabis users.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia.,Department of Psychological Sciences, Institute of Psychology Health and Society, University of Liverpool, Liverpool, UK
| | - Yann Chye
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Chao Suo
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Mark Walterfang
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne.,Neuropsychiatry Unit, Royal Melbourne Hospital, Australia
| | - Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Melbourne, VIC Australia
| | - Michael Takagi
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Antonio Verdejo-Garcia
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Janna Cousijn
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne
| | - Marc Seal
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Alex Fornito
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Murat Yücel
- Brain Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
15
|
Chye Y, Suo C, Lorenzetti V, Batalla A, Cousijn J, Goudriaan AE, Martin-Santos R, Whittle S, Solowij N, Yücel M. Cortical surface morphology in long-term cannabis users: A multi-site MRI study. Eur Neuropsychopharmacol 2019; 29:257-265. [PMID: 30558823 DOI: 10.1016/j.euroneuro.2018.11.1110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/09/2018] [Indexed: 11/29/2022]
Abstract
Cannabis exerts its psychoactive effect through cannabinoid receptors that are widely distributed across the cortical surface of the human brain. It is suggested that cannabis use may contribute to structural alterations across the cortical surface. In a large, multisite dataset of 120 controls and 141 cannabis users, we examined whether differences in key characteristics of the cortical surface - including cortical thickness, surface area, and gyrification index were related to cannabis use characteristics, including (i) cannabis use vs. non-use, (ii) cannabis dependence vs. non-dependence vs. non-use, and (iii) early adolescent vs. late adolescent onset of cannabis use vs. non-use. Our results revealed that cortical morphology was not associated with cannabis use, dependence, or onset age. The lack of effect of regular cannabis use, including problematic use, on cortical structure in our study is contrary to previous evidence of cortical morphological alterations (particularly in relation to cannabis dependence and cannabis onset age) in cannabis users. Careful reevaluation of the evidence on cannabis-related harm will be necessary to address concerns surrounding the long-term effects of cannabis use and inform policies in a changing cannabis regulation climate.
Collapse
Affiliation(s)
- Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Chao Suo
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Valentina Lorenzetti
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia; School of Psychology, Faculty of Health Sciences, Australian Catholic University
| | - Albert Batalla
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands; Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Janna Cousijn
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna E Goudriaan
- Amsterdam UMC, Department of Psychiatry, Amsterdam Institute for Addiction Research, University of Amsterdam, Amsterdam, The Netherlands; Arkin Mental Health Care, Amsterdam, The Netherlands
| | - Rocio Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia; The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, Australia
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
16
|
Wade NE, Bagot KS, Cota CI, Fotros A, Squeglia LM, Meredith LR, Jacobus J. Orbitofrontal cortex volume prospectively predicts cannabis and other substance use onset in adolescents. J Psychopharmacol 2019; 33:1124-1131. [PMID: 31215833 PMCID: PMC6864237 DOI: 10.1177/0269881119855971] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Identifying neural characteristics that predict cannabis initiation is important for prevention efforts. The orbitofrontal cortex is critical for reward response and may be vulnerable to substance-induced alterations. AIMS We measured orbitofrontal cortex thickness, surface area, and volume prior to the onset of use to predict cannabis involvement during an average nine-year follow-up. METHODS Adolescents (n=118) aged 12-15 years completed baseline behavioral assessment and magnetic resonance imaging scans, then were followed up to 13 years with annual substance use interviews. Logistic regression examined baseline (pre-substance use) bilateral medial and lateral orbitofrontal cortex characteristics (volume, surface area, or cortex thickness) as predictors of regular cannabis use by follow-up. Post-hoc multinomial logistic regression assessed whether orbitofrontal cortex characteristics significantly predicted either alcohol use alone or cannabis+alcohol co-use. Brain-behavior relationships were assessed through follow-up correlations of baseline relationships between orbitofrontal cortex and executive functioning, reward responsiveness, and behavioral approach traits. RESULTS Larger left lateral orbitofrontal cortex volume predicted classification as cannabis user by follow-up (p=0.025, odds ratio=1.808). Lateral orbitofrontal cortex volume also predicted cannabis+alcohol co-user status (p=0.008, odds ratio=2.588), but not alcohol only status. Larger lateral orbitofrontal cortex volume positively correlated with greater baseline reward responsiveness (p=0.030, r=0.348). There were no significant results by surface area or cortex thickness (ps>0.05). CONCLUSIONS Larger left lateral orbitofrontal cortex measured from ages 12-15 years and prior to initiation of substance use was related to greater reward responsiveness at baseline and predicted classification as a cannabis user and cannabis+alcohol co-user by final follow-up. Larger lateral orbitofrontal cortex volume may represent aberrant orbitofrontal cortex maturation and increasing vulnerability for later substance use.
Collapse
Affiliation(s)
- Natasha E. Wade
- Department of Psychiatry, University of California, San Diego
| | - Kara S. Bagot
- Department of Psychiatry, University of California, San Diego
| | - Claudia I. Cota
- Department of Psychiatry, University of California, San Diego
| | - Aryandokht Fotros
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsay M. Squeglia
- Medical University of South Carolina, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Charleston, SC, USA
| | - Lindsay R. Meredith
- Medical University of South Carolina, Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Charleston, SC, USA
| | - Joanna Jacobus
- Department of Psychiatry, University of California, San Diego,Correspondence and reprint requests to: Joanna Jacobus, Ph.D., Assistant Professor, Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA 92093, Office: 858.534.3479,
| |
Collapse
|
17
|
Sullivan EV, Pfefferbaum A. Brain-behavior relations and effects of aging and common comorbidities in alcohol use disorder: A review. Neuropsychology 2019; 33:760-780. [PMID: 31448945 PMCID: PMC7461729 DOI: 10.1037/neu0000557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Alcohol use disorder (AUD) is a complex, dynamic condition that waxes and wanes with unhealthy drinking episodes and varies in drinking patterns and effects on brain structure and function with age. Its excessive use renders chronically heavy drinkers vulnerable to direct alcohol toxicity and a variety of comorbidities attributable to nonalcohol drug misuse, viral infections, and accelerated or premature aging. AUD affects widespread brain systems, commonly, frontolimbic, frontostriatal, and frontocerebellar networks. METHOD AND RESULTS Multimodal assessment using selective neuropsychological testing and whole-brain neuroimaging provides evidence for AUD-related specific brain structure-function relations established with double dissociations. Longitudinal study using noninvasive imaging provides evidence for brain structural and functional improvement with sustained sobriety and further decline with relapse. Functional imaging suggests the possibility that some alcoholics in recovery can compensate for impairment by invoking brain systems typically not used for a target task but that can enable normal-level performance. CONCLUSIONS Evidence for AUD-aging interactions, indicative of accelerated aging, together with increasing alcohol consumption in middle-age and older adults, put aging drinkers at special risk for developing cognitive decline and possibly dementia. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Edith V. Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Adolf Pfefferbaum
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
- Center for Health Sciences, SRI International, Menlo Park, CA
| |
Collapse
|
18
|
Chye Y, Lorenzetti V, Suo C, Batalla A, Cousijn J, Goudriaan AE, Jenkinson M, Martin‐Santos R, Whittle S, Yücel M, Solowij N. Alteration to hippocampal volume and shape confined to cannabis dependence: a multi-site study. Addict Biol 2019; 24:822-834. [PMID: 30022573 DOI: 10.1111/adb.12652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/13/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
Cannabis use is highly prevalent and often considered to be relatively harmless. Nonetheless, a subset of regular cannabis users may develop dependence, experiencing poorer quality of life and greater mental health problems relative to non-dependent users. The neuroanatomy characterizing cannabis use versus dependence is poorly understood. We aimed to delineate the contributing role of cannabis use and dependence on morphology of the hippocampus, one of the most consistently altered brain regions in cannabis users, in a large multi-site dataset aggregated across four research sites. We compared hippocampal volume and vertex-level hippocampal shape differences (1) between 121 non-using controls and 140 cannabis users; (2) between 106 controls, 50 non-dependent users and 70 dependent users; and (3) between a subset of 41 controls, 41 non-dependent users and 41 dependent users, matched on sample characteristics and cannabis use pattern (onset age and dosage). Cannabis users did not differ from controls in hippocampal volume or shape. However, cannabis-dependent users had significantly smaller right and left hippocampi relative to controls and non-dependent users, irrespective of cannabis dosage. Shape analysis indicated localized deflations in the superior-medial body of the hippocampus. Our findings support neuroscientific theories postulating dependence-specific neuroadaptations in cannabis users. Future efforts should uncover the neurobiological risk and liabilities separating dependent and non-dependent use of cannabis.
Collapse
Affiliation(s)
- Yann Chye
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
| | - Valentina Lorenzetti
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
- Melbourne Neuropsychiatry Centre with School of PsychologyFaculty of Health, Australian Catholic University Australia
- Department of Psychological Sciences, Institute of Psychology, Health and SocietyThe University of Liverpool UK
| | - Chao Suo
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
| | - Albert Batalla
- Department of Psychiatry, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical Centre The Netherlands
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of NeuroscienceUniversity of Barcelona Spain
| | - Janna Cousijn
- Department of Developmental PsychologyUniversity of Amsterdam The Netherlands
| | - Anna E. Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Academic Medical CentreUniversity of Amsterdam The Netherlands
- Arkin Mental Health Care The Netherlands
| | - Mark Jenkinson
- FMRIB Centre, John Radcliffe HospitalUniversity of Oxford UK
| | - Rocio Martin‐Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM and Institute of NeuroscienceUniversity of Barcelona Spain
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of Melbourne Australia
| | - Murat Yücel
- Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash University Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research InstituteUniversity of Wollongong Australia
- The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE) Australia
| |
Collapse
|
19
|
Maple KE, Thomas AM, Kangiser MM, Lisdahl KM. Anterior cingulate volume reductions in abstinent adolescent and young adult cannabis users: Association with affective processing deficits. Psychiatry Res Neuroimaging 2019; 288:51-59. [PMID: 31079000 PMCID: PMC6548454 DOI: 10.1016/j.pscychresns.2019.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Kristin E Maple
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI, United States
| | - Alicia M Thomas
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI, United States
| | - Megan M Kangiser
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI, United States
| | - Krista M Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave., Milwaukee, WI, United States.
| |
Collapse
|
20
|
Zhou X, Zimmermann K, Xin F, Zhao W, Derckx RT, Sassmannshausen A, Scheele D, Hurlemann R, Weber B, Kendrick KM, Becker B. Cue Reactivity in the Ventral Striatum Characterizes Heavy Cannabis Use, Whereas Reactivity in the Dorsal Striatum Mediates Dependent Use. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:751-762. [PMID: 31204249 DOI: 10.1016/j.bpsc.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Animal models of addiction suggest that the transition from incentive-driven drug use to habitual and ultimately compulsive drug use is mediated by a shift from ventral to dorsal striatal cue control over drug seeking. Previous studies in human cannabis users reported elevated trait impulsivity and neural cue reactivity in striatal circuits; however, these studies were not able to separate addiction-related from exposure-related adaptations. METHODS To differentiate the adaptive changes, the current functional magnetic resonance imaging study examined behavioral and neural cue reactivity in dependent (n = 18) and nondependent (n = 20) heavy cannabis users and a nonusing reference group (n = 44). RESULTS Irrespective of dependence status, cannabis users demonstrated elevated trait impulsivity as well as increased ventral striatal reactivity and striatal frontal coupling in response to drug cues. Dependent users selectively exhibited dorsal striatal reactivity and decreased striatal limbic coupling during cue exposure. An exploratory analysis revealed that higher ventral caudate neural cue reactivity was associated with stronger cue-induced arousal and craving in dependent users, whereas this pattern was reversed in nondependent users. CONCLUSIONS Taken together, the current findings suggest that exaggerated responses of the ventral striatal reward system may promote excessive drug use in humans, whereas adaptations in dorsal striatal systems engaged in habit formation may promote the transition to addictive use.
Collapse
Affiliation(s)
- Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaeli Zimmermann
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Fei Xin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Roelinka T Derckx
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Anja Sassmannshausen
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Dirk Scheele
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Bernd Weber
- Center for Economics and Neuroscience, Department of Epileptology, University of Bonn, Bonn, Germany; Department of Neurocognition, Life & Brain Center, Bonn, Germany
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Thayer RE, YorkWilliams SL, Hutchison KE, Bryan AD. Preliminary results from a pilot study examining brain structure in older adult cannabis users and nonusers. Psychiatry Res Neuroimaging 2019; 285:58-63. [PMID: 30785022 PMCID: PMC6450383 DOI: 10.1016/j.pscychresns.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/22/2022]
Abstract
Exploring associations among cannabis use, brain structure, and cognitive function in older adults offers an opportunity to observe potential harm or benefit of cannabis. This pilot study assessed structural magnetic resonance imaging in older adults who were either current cannabis users (n = 28; mean age 69.8 years, 36% female) or nonusers (n = 28; mean age 66.8 years, 61% female). Recruitment targeted users who reported at least weekly use for at least the last year, although users had 23.55 years of regular cannabis use on average (SD=19.89, range 1.5-50 years). Groups were not significantly different in terms of sex, years of education, alcohol use, or anxiety symptoms, but were significantly different in age and depression symptoms. Users and nonusers did not differ in terms of total gray or white matter volumes controlling for age and depression symptoms, but users showed greater regional volume of left putamen, lingual cortex, and rostral middle frontal cortex. No significant differences between groups were observed in performance on a brief computerized cognitive battery. These results suggest that cannabis use likely does not have a widespread impact on overall cortical volume while controlling for age.
Collapse
Affiliation(s)
- Rachel E Thayer
- Department of Psychology & Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO, United States.
| | - Sophie L YorkWilliams
- Department of Psychology & Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO, United States
| | - Kent E Hutchison
- Department of Psychology & Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO, United States
| | - Angela D Bryan
- Department of Psychology & Neuroscience, University of Colorado Boulder, 345 UCB, Boulder, CO, United States
| |
Collapse
|
22
|
Lorenzetti V, Chye Y, Silva P, Solowij N, Roberts CA. Does regular cannabis use affect neuroanatomy? An updated systematic review and meta-analysis of structural neuroimaging studies. Eur Arch Psychiatry Clin Neurosci 2019; 269:59-71. [PMID: 30706169 DOI: 10.1007/s00406-019-00979-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Regular cannabis use is associated with adverse cognitive and mental health outcomes that have been ascribed to aberrant neuroanatomy in brain regions densely innervated with cannabinoid receptors. Neuroanatomical differences between cannabis users and controls have been assessed in multiple structural magnetic resonance imaging (sMRI) studies. However, there is heterogeneity in the results leading to cautious interpretation of the data so far. We examined the sMRI evidence to date in human cannabis users, to establish more definitely whether neuroanatomical alterations are associated with regular cannabis use. The regional specificity and association with cannabis use indices (i.e. cumulative dosage, duration) were also explored. We systematically reviewed and meta-analysed published sMRI studies investigating regional brain volumes (cortical, subcortical and global) in cannabis users and non-user controls. Three electronic databases were searched (PubMed, Scopus, and PsycINFO). A total of 17 meta-analyses were conducted (one for each cortical, subcortical and global volume) using the generic inverse variance method, whereby standardised mean difference in volume was calculated between users and non-users. Exploratory meta-regressions were conducted to investigate the association between cannabis use indices and regional brain volumes. A total of 30 articles were eligible for inclusion, contributing 106 effect sizes across 17 meta-analyses. Regular cannabis users had significantly smaller volumes of the hippocampus (SMD = 0.14, 95% CIs [0.02, 0.27]; Z = 2.29, p = 0.02, I2 = 74%) and orbitofrontal cortex {medial (SMD = 0.30, 95% CIs [0.15, 0.45]; Z = 3.89, p = 0.0001, I2 = 51%), lateral (SMD = 0.19, 95% CIs [0.07, 0.32]; Z = 3.10, p = 0.002, I2 = 26%)} relative to controls. The volumes of the hippocampus and orbitofrontal cortex were not significantly associated with cannabis duration and dosage. Our findings are consistent with evidence of aberrance in brain regions involved in reward, learning and memory, and motivation circuits in the regular use of substances other than cannabis, pointing to commonality in neurobiological abnormalities between regular users of cannabis and of other substances.
Collapse
Affiliation(s)
- Valentina Lorenzetti
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Daniel Mannix building, Fitzroy, VIC, 3065, Australia.
| | - Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Pedro Silva
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Carl A Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
23
|
Bloomfield MAP, Hindocha C, Green SF, Wall MB, Lees R, Petrilli K, Costello H, Ogunbiyi MO, Bossong MG, Freeman TP. The neuropsychopharmacology of cannabis: A review of human imaging studies. Pharmacol Ther 2018; 195:132-161. [PMID: 30347211 PMCID: PMC6416743 DOI: 10.1016/j.pharmthera.2018.10.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The laws governing cannabis are evolving worldwide and associated with changing patterns of use. The main psychoactive drug in cannabis is Δ9-tetrahydrocannabinol (THC), a partial agonist at the endocannabinoid CB1 receptor. Acutely, cannabis and THC produce a range of effects on several neurocognitive and pharmacological systems. These include effects on executive, emotional, reward and memory processing via direct interactions with the endocannabinoid system and indirect effects on the glutamatergic, GABAergic and dopaminergic systems. Cannabidiol, a non-intoxicating cannabinoid found in some forms of cannabis, may offset some of these acute effects. Heavy repeated cannabis use, particularly during adolescence, has been associated with adverse effects on these systems, which increase the risk of mental illnesses including addiction and psychosis. Here, we provide a comprehensive state of the art review on the acute and chronic neuropsychopharmacology of cannabis by synthesizing the available neuroimaging research in humans. We describe the effects of drug exposure during development, implications for understanding psychosis and cannabis use disorder, and methodological considerations. Greater understanding of the precise mechanisms underlying the effects of cannabis may also give rise to new treatment targets.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, United Kingdom.
| | - Chandni Hindocha
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, University College Hospital, London, United Kingdom
| | - Sebastian F Green
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Centre for Neuropsychopharmacology, Division of Brain Sciences, Faculty of Medicine, Imperial College London, United Kingdom; Invicro UK, Hammersmith Hospital, London, United Kingdom
| | - Rachel Lees
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Katherine Petrilli
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, United Kingdom
| | - Harry Costello
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - M Olabisi Ogunbiyi
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom
| | - Matthijs G Bossong
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, the Netherlands
| | - Tom P Freeman
- Translational Psychiatry Research Group, Research Department of Mental Health Neuroscience, Division of Psychiatry, Faculty of Brain Sciences, University College London, United Kingdom; Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, Faculty of Brain Sciences, University College London, United Kingdom; Department of Psychology, University of Bath, United Kingdom; National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| |
Collapse
|
24
|
Moser DA, Doucet GE, Lee WH, Rasgon A, Krinsky H, Leibu E, Ing A, Schumann G, Rasgon N, Frangou S. Multivariate Associations Among Behavioral, Clinical, and Multimodal Imaging Phenotypes in Patients With Psychosis. JAMA Psychiatry 2018; 75. [PMID: 29516092 PMCID: PMC5875357 DOI: 10.1001/jamapsychiatry.2017.4741] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
IMPORTANCE Alterations in multiple neuroimaging phenotypes have been reported in psychotic disorders. However, neuroimaging measures can be influenced by factors that are not directly related to psychosis and may confound the interpretation of case-control differences. Therefore, a detailed characterization of the contribution of these factors to neuroimaging phenotypes in psychosis is warranted. OBJECTIVE To quantify the association between neuroimaging measures and behavioral, health, and demographic variables in psychosis using an integrated multivariate approach. DESIGN, SETTING, AND PARTICIPANTS This imaging study was conducted at a university research hospital from June 26, 2014, to March 9, 2017. High-resolution multimodal magnetic resonance imaging data were obtained from 100 patients with schizophrenia, 40 patients with bipolar disorder, and 50 healthy volunteers; computed were cortical thickness, subcortical volumes, white matter fractional anisotropy, task-related brain activation (during working memory and emotional recognition), and resting-state functional connectivity. Ascertained in all participants were nonimaging measures pertaining to clinical features, cognition, substance use, psychological trauma, physical activity, and body mass index. The association between imaging and nonimaging measures was modeled using sparse canonical correlation analysis with robust reliability testing. MAIN OUTCOMES AND MEASURES Multivariate patterns of the association between nonimaging and neuroimaging measures in patients with psychosis and healthy volunteers. RESULTS The analyses were performed in 92 patients with schizophrenia (23 female [25.0%]; mean [SD] age, 27.0 [7.6] years), 37 patients with bipolar disorder (12 female [32.4%]; mean [SD] age, 27.5 [8.1] years), and 48 healthy volunteers (20 female [41.7%]; mean [SD] age, 29.8 [8.5] years). The imaging and nonimaging data sets showed significant covariation (r = 0.63, P < .001), which was independent of diagnosis. Among the nonimaging variables examined, age (r = -0.53), IQ (r = 0.36), and body mass index (r = -0.25) were associated with multiple imaging phenotypes; cannabis use (r = 0.23) and other substance use (r = 0.33) were associated with subcortical volumes, and alcohol use was associated with white matter integrity (r = -0.15). Within the multivariate models, positive symptoms retained associations with the global neuroimaging (r = -0.13), the cortical thickness (r = -0.22), and the task-related activation variates (r = -0.18); negative symptoms were mostly associated with measures of subcortical volume (r = 0.23), and depression/anxiety was associated with measures of white matter integrity (r = 0.12). CONCLUSIONS AND RELEVANCE Multivariate analyses provide a more accurate characterization of the association between brain alterations and psychosis because they enable the modeling of other key factors that influence neuroimaging phenotypes.
Collapse
Affiliation(s)
- Dominik A. Moser
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gaelle E. Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Won Hee Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Rasgon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hannah Krinsky
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Evan Leibu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alex Ing
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Gunter Schumann
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California,Center for Neuroscience in Women’s Health, Stanford University, Palo Alto, California
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
25
|
Altered orbitofrontal activity and dorsal striatal connectivity during emotion processing in dependent marijuana users after 28 days of abstinence. Psychopharmacology (Berl) 2018; 235:849-859. [PMID: 29197984 DOI: 10.1007/s00213-017-4803-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/26/2017] [Indexed: 12/28/2022]
Abstract
RATIONALE Intact cognitive and emotional functioning is vital for the long-term success of addiction treatment strategies. Accumulating evidence suggests an association between chronic marijuana use and lasting alterations in cognitive brain function. Despite initial evidence for altered emotion processing in dependent marijuana users after short abstinence periods, adaptations in the domain of emotion processing after longer abstinence remain to be determined. OBJECTIVE AND METHODS Using task-based and resting state fMRI, the present study investigated emotion processing in 19 dependent marijuana users and 18 matched non-using controls after an abstinence period of > 28 days. RESULTS Relative to the control subjects, negative emotional stimuli elicited increased medial orbitofrontal cortex (mOFC) activity and stronger mOFC-dorsal striatal and mOFC-amygdala functional coupling in dependent marijuana users (p < 0.022, FWE-corrected). Furthermore, mOFC-dorsal striatal functional connectivity was increased at rest in marijuana users (p < 0.03, FWE-corrected). Yet, processing of positive stimuli and subjective ratings of valence and arousal were comparable in both groups. CONCLUSIONS Together, the present findings provide the first evidence for persisting emotion processing alterations in dependent marijuana users. Alterations might reflect long-term neural adaptations as a consequence of chronic marijuana use or predisposing risk factors for the development of marijuana dependence.
Collapse
|
26
|
Moreno-Alcázar A, Gonzalvo B, Canales-Rodríguez EJ, Blanco L, Bachiller D, Romaguera A, Monté-Rubio GC, Roncero C, McKenna PJ, Pomarol-Clotet E. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis. Front Psychiatry 2018; 9:175. [PMID: 29773998 PMCID: PMC5943550 DOI: 10.3389/fpsyt.2018.00175] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001) of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001) and pallidum (p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05) and nucleus accumbens (p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does, however, provide evidence of basal ganglia volume increases.
Collapse
Affiliation(s)
- Ana Moreno-Alcázar
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Centre Fòrum Research Unit, Institut de Neuropsiquiatria i Addiccions, Parc de Salut Mar, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Begoña Gonzalvo
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura Blanco
- Benito Menni Complex Assistencial en Salut Mental, Barcelona, Spain
| | - Diana Bachiller
- Addictions and Dual Diagnosis Unit, Vall d'Hebron University Hospital-Public Health Agency of Barcelona (ASPB), Barcelona, Spain
| | - Anna Romaguera
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Gemma C Monté-Rubio
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Carlos Roncero
- Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain.,Addictions and Dual Diagnosis Unit, Vall d'Hebron University Hospital-Public Health Agency of Barcelona (ASPB), Barcelona, Spain.,Department of Psychiatry, Vall d'Hebron University Hospital, Barcelona, Spain.,Psychiatric Service, University of Salamanca Health Care Complex, Salamanca, Spain.,Institute of Biomedicine of Salamanca, University of Salamanca, Salamanca, Spain
| | - Peter J McKenna
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| |
Collapse
|
27
|
Smith JL, De Blasio FM, Iredale JM, Matthews AJ, Bruno R, Dwyer M, Batt T, Fox AM, Solowij N, Mattick RP. Verbal Learning and Memory in Cannabis and Alcohol Users: An Event-Related Potential Investigation. Front Psychol 2017; 8:2129. [PMID: 29276495 PMCID: PMC5727079 DOI: 10.3389/fpsyg.2017.02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023] Open
Abstract
Aims: Long-term heavy use of cannabis and alcohol are known to be associated with memory impairments. In this study, we used event-related potentials to examine verbal learning and memory processing in a commonly used behavioral task. Method: We conducted two studies: first, a small pilot study of adolescent males, comprising 13 Drug-Naive Controls (DNC), 12 heavy drinkers (HD) and 8 cannabis users (CU). Second, a larger study of young adults, comprising 45 DNC (20 female), 39 HD (16 female), and 20 CU (9 female). In both studies, participants completed a modified verbal learning task (the Rey Auditory Verbal Learning Test, RAVLT) while brain electrical activity was recorded. ERPs were calculated for words which were subsequently remembered vs. those which were not remembered, and for presentations of learnt words, previously seen words, and new words in a subsequent recognition test. Pre-planned principal components analyses (PCA) were used to quantify the ERP components in these recall and recognition phases separately for each study. Results: Memory performance overall was slightly lower than published norms using the standardized RAVLT delivery, but was generally similar and showed the expected changes over trials. Few differences in performance were observed between groups; a notable exception was markedly poorer delayed recall in HD relative to DNC (Study 2). PCA identified components expected from prior research using other memory tasks. At encoding, there were no between-group differences in the usual P2 recall effect (larger for recalled than not-recalled words). However, alcohol-related differences were observed in a larger P540 (indexing recollection) in HD than DNC, and cannabis-related differences were observed in a smaller N340 (indexing familiarity) and a lack of previously seen > new words effect for P540 in Study 2. Conclusions: This study is the first examination of ERPs in the RAVLT in healthy control participants, as well as substance-using individuals, and represents an important advance in methodology. The results indicate alterations in recognition memory processing, which even if not manifesting in overt behavioral impairment, underline the potential for brain dysfunction with early exposure to alcohol and cannabis.
Collapse
Affiliation(s)
- Janette L Smith
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Frances M De Blasio
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jaimi M Iredale
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| | | | - Raimondo Bruno
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michelle Dwyer
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Tessa Batt
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Allison M Fox
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Nadia Solowij
- School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Richard P Mattick
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
28
|
Abstract
Purpose of the Review Cannabis is the most commonly used illicit substance worldwide. In recent decades, highly concentrated products have flooded the market, and prevalence rates have increased. Gender differences exist in cannabis use, as men have higher prevalence of both cannabis use and cannabis use disorder (CUD), while women progress more rapidly from first use to CUD. This paper reviews findings from preclinical and human studies examining the sex-specific neurobiological underpinnings of cannabis use and CUD, and associations with psychiatric symptoms. Recent Findings Sex differences exist in the endocannabinoid system, in cannabis exposure effects on brain structure and function, and in the co-occurrence of cannabis use with symptoms of anxiety, depression and schizophrenia. In female cannabis users, anxiety symptoms correlate with larger amygdala volume and social anxiety disorder symptoms correlate with CUD symptoms. Female cannabis users are reported to be especially vulnerable to earlier onset of schizophrenia, and mixed trends emerge in the correlation of depressive symptoms with cannabis exposure in females and males. Summary As prevalence of cannabis use may continue to increase given the shifting policy landscape regarding marijuana laws, understanding the neurobiological mechanisms of cannabis exposure in females and males is key. Examining these mechanisms may help inform future research on sex-specific pharmacological and behavioral interventions for women and men with high-risk cannabis use, comorbid psychiatric disease, and CUD.
Collapse
|
29
|
Cannabis-related hippocampal volumetric abnormalities specific to subregions in dependent users. Psychopharmacology (Berl) 2017; 234:2149-2157. [PMID: 28424833 DOI: 10.1007/s00213-017-4620-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022]
Abstract
RATIONALE Cannabis use is associated with neuroanatomical alterations in the hippocampus. While the hippocampus is composed of multiple subregions, their differential vulnerability to cannabis dependence remains unknown. OBJECTIVES The objective of the study is to investigate gray matter alteration in each of the hippocampal subregions (presubiculum, subiculum, cornu ammonis (CA) subfields CA1-4, and dentate gyrus (DG)) as associated with cannabis use and dependence. METHODS A total of 35 healthy controls (HC), 22 non-dependent (CB-nondep), and 39 dependent (CB-dep) cannabis users were recruited. We investigated group differences in hippocampal subregion volumes between HC, CB-nondep, and CB-dep users. We further explored the association between CB use variables (age of onset of regular use, monthly use, lifetime use) and hippocampal subregions in CB-nondep and CB-dep users separately. RESULTS The CA1, CA2/3, CA4/DG, as well as total hippocampal gray matter were reduced in volume in CB-dep but not in CB-nondep users, relative to HC. The right CA2/3 and CA4/DG volumes were also negatively associated with lifetime cannabis use in CB-dep users. CONCLUSIONS Our results suggest a regionally and dependence-specific influence of cannabis use on the hippocampus. Hippocampal alteration in cannabis users was specific to the CA and DG regions and confined to dependent users.
Collapse
|