1
|
Onisiforou A, Charalambous EG, Zanos P. Shattering the Amyloid Illusion: The Microbial Enigma of Alzheimer's Disease Pathogenesis-From Gut Microbiota and Viruses to Brain Biofilms. Microorganisms 2025; 13:90. [PMID: 39858858 PMCID: PMC11767882 DOI: 10.3390/microorganisms13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
For decades, Alzheimer's Disease (AD) research has focused on the amyloid cascade hypothesis, which identifies amyloid-beta (Aβ) as the primary driver of the disease. However, the consistent failure of Aβ-targeted therapies to demonstrate efficacy, coupled with significant safety concerns, underscores the need to rethink our approach to AD treatment. Emerging evidence points to microbial infections as environmental factors in AD pathoetiology. Although a definitive causal link remains unestablished, the collective evidence is compelling. This review explores unconventional perspectives and emerging paradigms regarding microbial involvement in AD pathogenesis, emphasizing the gut-brain axis, brain biofilms, the oral microbiome, and viral infections. Transgenic mouse models show that gut microbiota dysregulation precedes brain Aβ accumulation, emphasizing gut-brain signaling pathways. Viral infections like Herpes Simplex Virus Type 1 (HSV-1) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) may lead to AD by modulating host processes like the immune system. Aβ peptide's antimicrobial function as a response to microbial infection might inadvertently promote AD. We discuss potential microbiome-based therapies as promising strategies for managing and potentially preventing AD progression. Fecal microbiota transplantation (FMT) restores gut microbial balance, reduces Aβ accumulation, and improves cognition in preclinical models. Probiotics and prebiotics reduce neuroinflammation and Aβ plaques, while antiviral therapies targeting HSV-1 and vaccines like the shingles vaccine show potential to mitigate AD pathology. Developing effective treatments requires standardized methods to identify and measure microbial infections in AD patients, enabling personalized therapies that address individual microbial contributions to AD pathogenesis. Further research is needed to clarify the interactions between microbes and Aβ, explore bacterial and viral interplay, and understand their broader effects on host processes to translate these insights into clinical interventions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| | - Eleftheria G. Charalambous
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 1–2, Ellernholzstr., 17489 Greifswald, Germany
| | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus;
- Center of Applied Neuroscience, 75 Kallipoleos Avenue, 1678 Nicosia, Cyprus
| |
Collapse
|
2
|
Sezen S, Karadayi M, Yesilyurt F, Burul F, Gulsahin Y, Ozkaraca M, Okkay U, Gulluce M. Acyclovir provides protection against 6-OHDA-induced neurotoxicity in SH-SY5Y cells through the kynurenine pathway. Neurotoxicology 2025; 106:1-9. [PMID: 39617346 DOI: 10.1016/j.neuro.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Parkinson's disease is one of the most prevalent neurodegenerative disorders worldwide. The kynurenine pathway associated with oxidative stress and neuroinflammation is recognized to contribute to its pathophysiology, although the exact mechanism is not fully elucidated. In neuroinflammation, IDO-1 catalyzes the conversion of tryptophan to neurotoxic QUIN through the kynurenine pathway. Consequently, QUIN increases oxidative stress via nNOS and NMDA, which causes neurodegeneration. Few studies have reported on the effect of different antiviral drugs in Parkinson's disease; the exact mechanism is still unknown. The antiviral acyclovir has been shown to have neuroprotective properties and can cross the blood-brain barrier. We examined acyclovir's effects and potential mechanisms in the 6-OHDA-induced in vitro model of Parkinson's disease in SH-SY5Y cells using biochemical, immunocytochemical, and in silico methods. MTT assay demonstrated that acyclovir significantly decreased cell mortality induced by the neurotoxic 6-OHDA at dosages of 3.2 µM, 6.4 µM, 12.8 µM, 25.6 µM, and 51.2 µM. In immunocytochemical analysis, acyclovir treatment decreased α-synuclein and TNF-α expressions in cells. In biochemical analyses, while IL-17A and TOS levels decreased depending on varying doses (1.6 µM, 3.2 µM, 6.4 µM, 12.8 µM), TAC levels increased. Using in silico analyses to investigate the mechanism showed that acyclovir docked with TNF-α, IL-17A, IDO-1, nNOS, α-synuclein, and NMDA. The findings demonstrated that acyclovir had neuroprotective effects by modulating the kynurenine pathway and decreasing neurodegeneration via QUIN inhibition in an in vitro Parkinson's disease model. Although the mechanisms of acyclovir's effects in Parkinson's disease are unclear, the results obtained from the experiments are encouraging.
Collapse
Affiliation(s)
- Selma Sezen
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Mehmet Karadayi
- Department of Biology, Ataturk University, Faculty of Science, Erzurum, Turkey.
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Feyza Burul
- Department of Medical Pharmacology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey.
| | - Yusuf Gulsahin
- Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey.
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey.
| | - Medine Gulluce
- Department of Biology, Ataturk University, Faculty of Science, Erzurum, Turkey.
| |
Collapse
|
3
|
Chauhan P, Begum MY, Narapureddy BR, Gupta S, Wadhwa K, Singh G, Kumawat R, Sharma N, Ballal S, Jha SK, Abomughaid MM, B D, Ojha S, Jha NK. Unveiling the Involvement of Herpes Simplex Virus-1 in Alzheimer's Disease: Possible Mechanisms and Therapeutic Implications. Mol Neurobiol 2024:10.1007/s12035-024-04535-4. [PMID: 39648189 DOI: 10.1007/s12035-024-04535-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Viruses pose a significant challenge and threat to human health, as demonstrated by the current COVID-19 pandemic. Neurodegeneration, particularly in the case of Alzheimer's disease (AD), is significantly influenced by viral infections. AD is a neurodegenerative disease that affects people of all ages and poses a significant threat to millions of individuals worldwide. The precise mechanism behind its development is not yet fully understood; however, the emergence and advancement of AD can be hastened by various environmental factors, such as bacterial and viral infections. There has been a longstanding suspicion that the herpes simplex virus-1 (HSV-1) may have a role to play in the development or advancement of AD. Reactivation of HSV-1 could potentially lead to damage to neurons, either by direct means or indirectly by triggering inflammation. This article provides an overview of the connection between HSV-1 infections and immune cells (astrocytes, microglia, and oligodendrocytes) in the progression of AD. It summarizes recent scientific research on how HSV-1 affects neurons, which could potentially shed light on the clinical features and treatment options for AD. In addition, the paper has explored the impact of HSV-1 on neurons and its role in various aspects of AD, such as Aβ secretion, tau hyperphosphorylation, metabolic dysregulation, oxidative damage, apoptosis, and autophagy. It is believed that the immune response triggered by HSV-1 reactivation plays a role in the development of neurodegeneration in AD. Despite the lack of a cure for AD, researchers have made significant efforts to study the clinical and pathological aspects of the disease, identify biomarkers, and gain insight into its underlying causes. The goal is to achieve early diagnosis and develop treatments that can modify the progression of the disease. The current article discusses the most promising therapy for combating the viral impacts, which provides additional evidence for the frequent reactivations of latent HSV-1 in the AD brain. However, further research is still required to establish the molecular and cellular mechanisms underlying the development of AD through the reactivation of HSV-1. This could potentially lead to new insights in drug development aimed at preventing HSV-1 reactivation and the subsequent development and progression of AD.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Bayapa Reddy Narapureddy
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Rohit Kumawat
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajsthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Suhas Ballal
- Departmant of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Dheepak B
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences & Technology, Galgotias University, Greater Noida, India.
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
4
|
AmeliMojarad M, AmeliMojarad M, Cui X. An overview on the impact of viral pathogens on Alzheimer's disease. Ageing Res Rev 2024; 104:102615. [PMID: 39631533 DOI: 10.1016/j.arr.2024.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) is the most common type of dementia which affects over than 60 million cases worldwide with higher incidence in low and middle-income countries by 2030. Based on the multifactorial nature of AD different risk factors are linked to the condition considering the brain's β-amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) as its primary hallmarks. Lately, viral photogenes specially after recent SARS-CoV-2 pandemic has gained a lot of attention in promoting the neurodegenerative disorder such as AD based on their capacity to increase the permeability of the blood-brain barrier, dysregulation of immune responses, and the impact on Aβ processing and phosphorylation of tau proteins. Therefore, in this review, we summarized the important association of viral pathogens and their mechanism by which they contribute with AD formation and development. AN OVERVIEW OF THE ROLES OF VIRAL PATHOGENS IN AD: According to this figure, viruses can infect neurons directly by modulating the BBB, transferring from endothelial cells to glial cells and then to neurons, increasing the Aβ deposition, and affecting the tau protein phosphorylation or indirectly through the virus's entrance and pathogenicity that can be accelerated by genetic and epigenetic factors, as well as chronic neuroinflammation caused by activated microglia and astrocytes.
Collapse
Affiliation(s)
- Melika AmeliMojarad
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| | - Mandana AmeliMojarad
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| | - Xiaonan Cui
- Department of Oncology, The First Affiliate Hospital of Dalian Medical University, Zhongshan Road, Dalian, Liaoning 116011, China.
| |
Collapse
|
5
|
Zhai Y, Li N, Zhang Y, Li H, Wu L, Wei C, Ji J, Zheng D. Identification of JAZF1, KNOP1, and PLEKHA1 as causally associated genes and drug targets for Alzheimer's disease: a summary data-based Mendelian randomization study. Inflammopharmacology 2024; 32:3913-3923. [PMID: 39455528 DOI: 10.1007/s10787-024-01583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND There is a growing body of evidence indicating the significant role of the immune system and immune cells in the progression of Alzheimer's disease (AD). However, the exact role of genes from various immune cell types in AD remains unclear. We aimed to utilize summary data-based Mendelian randomization (SMR) to explore the potential causal relationships between genes in specific immune cells and the risk of AD. METHODS By utilizing data sets of expression quantitative trait loci (eQTL) for 14 different immune cell types and large-scale AD genome-wide association study (GWAS), we employed SMR to identify key genes associated with AD within specific immune cells. Sensitivity analyses, including F-statistic, colocalization, and assessment of horizontal pleiotropy, were further conducted to validate the discovered genes. In addition, replication analyses were performed in AD GWAS from the FinnGen consortium. Finally, we further identified existing drugs that target or interact with the druggable genes and reviewed the studies about the associations between these drugs and AD. RESULTS SMR analysis revealed 342 genes associated with AD across 14 immune cell types. Further sensitivity analyses identified nine genes, CTSH, FCER1G, FNBP4, HLA-E, JAZF1, KNOP1, PLEKHA1, RP11-960L18.1, and ZNF638 that had significant associations with AD across nine specific immune cell types. JAZF1, KNOP1 and PLEKHA1 were replicated in an independent analysis using the GWAS data. The review on gene-related drugs also supported these findings. CONCLUSIONS Our research suggests that the expression of the genes JAZF1, KNOP1, and PLEKHA1 in specific immune cell types is related to the risk of AD.
Collapse
Affiliation(s)
- Yuhan Zhai
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Ning Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Yujie Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Haibin Li
- Department of Cardiac Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Cuibai Wei
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianguang Ji
- Faculty of Health Science, University of Macau, Taipa, Macao SAR, China.
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
7
|
Ruan H, Long M, Li J, Zhang D, Feng N, Zhang Y. Sustained-Release Hydrogen-Powered Bilateral Microneedles Integrating CD-MOFs for In Situ Treating Allergic Rhinitis. Adv Healthc Mater 2024; 13:e2400637. [PMID: 38749484 DOI: 10.1002/adhm.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Indexed: 05/23/2024]
Abstract
Glucocorticoids are widely used for treating allergic rhinitis, but conventional intranasal administration encounters unfavorable nasal cilia clearance and nasal mucosal barrier. Herein, a bilateral microneedle patch is fabricated for delivering cyclodextrin-based metal-organic frameworks (CD-MOF) encapsulating dexamethasone (DXMS) and paeonol (Pae), while NaH particles are mounted on the basal part of each microneedle. By intranasal administration, the microneedles are propelled into the nasal mucosa by NaH-generated hydrogen and then swell to form a hydrogel for sustainedly releasing drugs. The DXMS/Pae combination is demonstrated to be superior to more than the twofold dose of DXMS alone for improving allergic rhinitis in rats. It involves reducing mast cell degranulation and modulating Treg/Th17 cell homeostasis, whereas inhibiting Th1 to Th2 differentiation is associated with regulating the GATA3/T-bet pathway, as well as repairing epithelial barrier function by increasing MUC1 and downregulating periostin. In addition, this delivery system modulates the lipid metabolism of the nasal mucosa. Notably, the newly designed device significantly enhances the drug's therapeutic effect, and NaH-generated hydrogen may have the potential adjunctive therapeutic effect. Collectively, such an emerging microneedle-mediated nasal drug delivery creates a new form for alleviating immune inflammation and contributes a promising solution to reduce clinical glucocorticoid abuse.
Collapse
Affiliation(s)
- Hang Ruan
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Meng Long
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Jiaqi Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Di Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Nianping Feng
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| | - Yongtai Zhang
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Pudong New Area, Shanghai, 201203, China
| |
Collapse
|
8
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
9
|
Uğurlu G. FT-IR, FT-raman and UV spectra and ab initio HF and DFT study of conformational analysis, molecular structure and properties of ortho- meta- and para-chlorophenylboronic acid isomers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124111. [PMID: 38457874 DOI: 10.1016/j.saa.2024.124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
In this study, the FT-IR, FT-Raman, and UV-Vis spectroscopic properties of three monosubstituted phenylboronic acid derivatives: ortho-chlorophenylboronic acid (o-ClPhBA), meta-chlorophenylboronic acid (m-ClPhBA) and para-chlorophenylboronic acid (p-ClPhBA) molecules are investigated both experimentally and theoretically using Density Functional Theory (B3LYP) and Hartree Fock (HF). In order to find the stable possible conformations of the compounds, the conformational analysis was carried out by running potential energy surface (PES) scan by means of rotation of two structural parameters, the dihedral angles indicated as φ2 (C6-B-O1-H1A) and φ3 (C6-B-O2-H2A), varying from -180° to 180° with an increment of 10° using B3LYP/6-31G level of theory. Also, to determinate the most stable conformer for all the molecules, potential energy curve (PEC) the stable possible conformations on PES scan were investigated as a function of φ1 (C1-C6-B-O1) dihedral angle from 0° up to 180° with an increment of 10° using B3LYP/6-311++G(d,p) and HF/6-311++G(d,p) level of theory. For all the studied compounds, two conformational structures (conformer anti-anti, syn-syn) that did not have imaginary frequency values outside the equilibrium state (conformer anti-syn) were detected theoretically at the both methods. Due to their conformational flexibility, the relative stabilities of the anti-syn, anti-anti, and syn-syn conformers of o-ClPhBA, m-ClPhBA, and p-ClPhBA are 0.0, 4.66, and 6.76 kcal/mol, respectively, at the B3LYP/6-311++G(d,p) level of theory. For the HF/6-311++G(d,p) level of theory, the relative stabilities are 0.00, 4.54, and 6.11 kcal/mol for o-ClPhBA; 0.00, 3.98, and 1.51 kcal/mol for m-ClPhBA; and 0.00, 4.10, and 1.44 kcal/mol for p-ClPhBA, respectively. Some of the determined stable conformations of these molecules are different in symmetry groups. It was observed that the increase in the symmetry was effective in the of molecular properties, especially for vibrational frequencies. The structural parameter, dipole moments (μ), vibrational frequencies, polarizability (α), hyperpolarizability (β), the highest occupied molecular orbital (HOMO), and the lowest unoccupied molecular orbital (LUMO) of the stable conformers were calculated by using Ab initio HF/6-311++G(d,p) and DFT/B3LYP/6-311++G(d,p) level of theory. The assignments of fundamental vibrational modes of the studied molecule were performed based on total energy distribution (TED) analysis.
Collapse
|
10
|
Li J, Haj Ebrahimi A, Ali AB. Advances in Therapeutics to Alleviate Cognitive Decline and Neuropsychiatric Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:5169. [PMID: 38791206 PMCID: PMC11121252 DOI: 10.3390/ijms25105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Dementia exists as a 'progressive clinical syndrome of deteriorating mental function significant enough to interfere with activities of daily living', with the most prevalent type of dementia being Alzheimer's disease (AD), accounting for about 80% of diagnosed cases. AD is associated with an increased risk of comorbidity with other clinical conditions such as hypertension, diabetes, and neuropsychiatric symptoms (NPS) including, agitation, anxiety, and depression as well as increased mortality in late life. For example, up to 70% of patients diagnosed with AD are affected by anxiety. As aging is the major risk factor for AD, this represents a huge global burden in ageing populations. Over the last 10 years, significant efforts have been made to recognize the complexity of AD and understand the aetiology and pathophysiology of the disease as well as biomarkers for early detection. Yet, earlier treatment options, including acetylcholinesterase inhibitors and glutamate receptor regulators, have been limited as they work by targeting the symptoms, with only the more recent FDA-approved drugs being designed to target amyloid-β protein with the aim of slowing down the progression of the disease. However, these drugs may only help temporarily, cannot stop or reverse the disease, and do not act by reducing NPS associated with AD. The first-line treatment options for the management of NPS are selective serotonin reuptake inhibitors/selective noradrenaline reuptake inhibitors (SSRIs/SNRIs) targeting the monoaminergic system; however, they are not rational drug choices for the management of anxiety disorders since the GABAergic system has a prominent role in their development. Considering the overall treatment failures and side effects of currently available medication, there is an unmet clinical need for rationally designed therapies for anxiety disorders associated with AD. In this review, we summarize the current status of the therapy of AD and aim to highlight novel angles for future drug therapy in our ongoing efforts to alleviate the cognitive deficits and NPS associated with this devastating disease.
Collapse
Affiliation(s)
| | | | - Afia B. Ali
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (A.H.E.)
| |
Collapse
|
11
|
Li Z, Wang H, Yin Y. Peripheral inflammation is a potential etiological factor in Alzheimer's disease. Rev Neurosci 2024; 35:99-120. [PMID: 37602685 DOI: 10.1515/revneuro-2023-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Peripheral inflammation could constitute a risk factor for AD. This review summarizes the research related to peripheral inflammation that appears to have a relationship with Alzheimer's disease. We find there are significant associations between AD and peripheral infection induced by various pathogens, including herpes simplex virus type 1, cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, Porphyromonas gingivalis, Helicobacter pylori, and Toxoplasma gondii. Chronic inflammatory diseases are also reported to contribute to the pathophysiology of AD. The mechanisms by which peripheral inflammation affects the pathophysiology of AD are complex. Pathogen-derived neurotoxic molecule composition, disrupted BBB, and dysfunctional neurogenesis may all play a role in peripheral inflammation, promoting the development of AD. Anti-pathogenic medications and anti-inflammatory treatments are reported to decrease the risk of AD. Studies that could improve understanding the associations between AD and peripheral inflammation are needed. If our assumption is correct, early intervention against inflammation may be a potential method of preventing and treating AD.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665, Yangpu District, Shanghai 200092, China
| |
Collapse
|
12
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
13
|
Phuna ZX, Madhavan P. A reappraisal on amyloid cascade hypothesis: the role of chronic infection in Alzheimer's disease. Int J Neurosci 2023; 133:1071-1089. [PMID: 35282779 DOI: 10.1080/00207454.2022.2045290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Alzheimer disease (AD) is a progressive neurological disorder that accounted for the most common cause of dementia in the elderly population. Lately, 'infection hypothesis' has been proposed where the infection of microbes can lead to the pathogenesis of AD. Among different types of microbes, human immunodeficiency virus-1 (HIV-1), herpes simplex virus-1 (HSV-1), Chlamydia pneumonia, Spirochetes and Candida albicans are frequently detected in the brain of AD patients. Amyloid-beta protein has demonstrated to exhibit antimicrobial properties upon encountering these pathogens. It can bind to microglial cells and astrocytes to activate immune response and neuroinflammation. Nevertheless, HIV-1 and HSV-1 can develop into latency whereas Chlamydia pneumonia, Spirochetes and Candida albicans can cause chronic infections. At this stage, the DNA of microbes remains undetectable yet active. This can act as the prolonged pathogenic stimulus that over-triggers the expression of Aβ-related genes, which subsequently lead to overproduction and deposition of Aβ plaque. This review will highlight the pathogenesis of each of the stated microbial infection, their association in AD pathogenesis as well as the effect of chronic infection in AD progression. Potential therapies for AD by modulating the microbiome have also been suggested. This review will aid in understanding the infectious manifestations of AD.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
14
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Li J, Chen L, Liu S, Sun Y, Zhen L, Zhu Z, Wang G, Li X. Hydrocortisone Mitigates Alzheimer's-Related Cognitive Decline through Modulating Oxidative Stress and Neuroinflammation. Cells 2023; 12:2348. [PMID: 37830561 PMCID: PMC10571890 DOI: 10.3390/cells12192348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
Alzheimer's disease (AD), an age-related degenerative disorder, is characterized by β-amyloid deposition, abnormal phosphorylation of tau proteins, synaptic dysfunction, neuroinflammation, and oxidative stress. Despite extensive research, there are no medications or therapeutic interventions to completely treat and reverse AD. Herein, we explore the potential of hydrocortisone (HC), a natural and endogenous glucocorticoid known to have potent anti-inflammatory properties, in an Aβ1-42-induced AD mouse model. Our investigation highlights the beneficial effects of HC administration on cognitive impairment, synaptic function enhancement, and neuronal protection in Aβ1-42-induced AD mice. Notably, HC treatment effectively suppresses the hyperactivation of microglia and astrocytes, leading to a reduction in proinflammatory factors and alleviation of neuroinflammation. Furthermore, HC intervention demonstrates the capacity to mitigate the generation of ROS and oxidative stress. These compelling findings underscore the potential therapeutic application of HC in AD and present promising opportunities for its utilization in AD prevention and treatment. The implications drawn from our findings indicate that hydrocortisone holds promise as a viable candidate for adjunctive use with other anti-AD drugs for the clinical management of patients presenting with moderate to severe AD.
Collapse
Affiliation(s)
- Jinran Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Long Chen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Sai Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Yuan Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Le Zhen
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| | - Xinuo Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
16
|
Melchiorri D, Merlo S, Micallef B, Borg JJ, Dráfi F. Alzheimer's disease and neuroinflammation: will new drugs in clinical trials pave the way to a multi-target therapy? Front Pharmacol 2023; 14:1196413. [PMID: 37332353 PMCID: PMC10272781 DOI: 10.3389/fphar.2023.1196413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Despite extensive research, no disease-modifying therapeutic option, able to prevent, cure or halt the progression of Alzheimer's disease [AD], is currently available. AD, a devastating neurodegenerative pathology leading to dementia and death, is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of neurofibrillary tangles (NFTs) consisting of altered hyperphosphorylated tau protein. Both have been widely studied and pharmacologically targeted for many years, without significant therapeutic results. In 2022, positive data on two monoclonal antibodies targeting Aβ, donanemab and lecanemab, followed by the 2023 FDA accelerated approval of lecanemab and the publication of the final results of the phase III Clarity AD study, have strengthened the hypothesis of a causal role of Aβ in the pathogenesis of AD. However, the magnitude of the clinical effect elicited by the two drugs is limited, suggesting that additional pathological mechanisms may contribute to the disease. Cumulative studies have shown inflammation as one of the main contributors to the pathogenesis of AD, leading to the recognition of a specific role of neuroinflammation synergic with the Aβ and NFTs cascades. The present review provides an overview of the investigational drugs targeting neuroinflammation that are currently in clinical trials. Moreover, their mechanisms of action, their positioning in the pathological cascade of events that occur in the brain throughout AD disease and their potential benefit/limitation in the therapeutic strategy in AD are discussed and highlighted as well. In addition, the latest patent requests for inflammation-targeting therapeutics to be developed in AD will also be discussed.
Collapse
Affiliation(s)
- Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | | | - John-Joseph Borg
- Malta Medicines Authority, San Ġwann, Malta
- School of Pharmacy, Department of Biology, University of Tor Vergata, Rome, Italy
| | - František Dráfi
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine SAS Bratislava, Bratislava, Slovakia
- State Institute for Drug Control, Bratislava, Slovakia
| |
Collapse
|
17
|
Dyulgerov V, Sbirkova-Dimitrova H, Iliev K, Shivachev B. The Co-Crystallization of 4-Halophenylboronic Acid with Aciclovir, Caffeine, Nitrofurazone, Theophylline, and Proline in Function of Weak Interactions. CRYSTALS 2023; 13:468. [DOI: 10.3390/cryst13030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Co-crystallization experiments of 4-halophenylboronic acid with several pharmaceutical compounds (including aciclovir, caffeine, nitrofurazone, and proline) produced several new molecular complexes. The experiments involved varying the solvent and the molar ratio of boronic acid to a pharmaceutical compound (e.g., 1:1, 2:1, 1:2). The screening process for new crystal phases revealed that the formation of the different molecular complexes was strongly influenced by the molar ratio and the presence or absence of water in the solvent. The new molecular crystals were characterized through single crystal X-ray diffraction and differential scanning calorimetry (DSC) analyses. The single crystal analyses of the molecular complexes revealed an unexpected variety in the hydrogen bonding network interactions that can be produced by the –B(OH)2 motif.
Collapse
Affiliation(s)
- Ventsislav Dyulgerov
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Hristina Sbirkova-Dimitrova
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Kostadin Iliev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
De Vlieger L, Vandenbroucke RE, Van Hoecke L. Recent insights into viral infections as a trigger and accelerator in alzheimer's disease. Drug Discov Today 2022; 27:103340. [PMID: 35987492 PMCID: PMC9385395 DOI: 10.1016/j.drudis.2022.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder for which only symptomatic medication is available, except for the recently FDA-approved aducanumab. This lack of effective treatment urges us to investigate alternative paths that might contribute to disease development. In light of the recent SARS-CoV-2 pandemic and the disturbing neurological complications seen in some patients, it is desirable to (re)investigate the viability of the viral infection theory claiming that a microbe could affect AD initiation and/or progression. Here, we review the most important evidence for this theory with a special focus on two viruses, namely HSV-1 and SARS-CoV-2. Moreover, we discuss the possible involvement of extracellular vesicles (EVs). This overview will contribute to a more rational approach of potential treatment strategies for AD patients.
Collapse
Affiliation(s)
- Lize De Vlieger
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Lien Van Hoecke
- Barriers in Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Mou CY, Xie YF, Wei JX, Wang QY, Le JY, Bao YJ, Zhang PP, Mao YC, Huang XH, Pan HB, Naman CB, Liu L, Liang HZ, Wu X, Xu J, Cui W. Rose Bengal inhibits β-amyloid oligomers-induced tau hyperphosphorylation via acting on Akt and CDK5 kinases. Psychopharmacology (Berl) 2022; 239:3579-3593. [PMID: 36221038 DOI: 10.1007/s00213-022-06232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Tau hyperphosphorylation and aggregation is considered as a main pathological mechanism underlying Alzheimer's disease (AD). Rose Bengal (RB) is a synthetic dye used for disease diagnosis, which was reported to inhibit tau toxicity via inhibiting tau aggregation in Drosophila. However, it was unknown if RB could produce anti-AD effects in rodents. OBJECTIVES The research aimed to investigate if and how RB could prevent β-amyloid (Aβ) oligomers-induced tau hyperphosphorylation in rodents. METHODS AND RESULTS RB was tested in vitro (0.3-1 μM) and prevented Aβ oligomers-induced tau hyperphosphorylation in PC12 cells. Moreover, RB (10-30 mg/kg, i.p.) effectively attenuated cognitive impairments induced by Aβ oligomers in mice. Western blotting analysis demonstrated that RB significantly increased the expression of pSer473-Akt, pSer9-glycogen synthase kinase-3β (GSK3β) and reduced the expression of cyclin-dependent kinase 5 (CDK5) both in vitro and in vivo. Molecular docking analysis suggested that RB might directly interact with GSK3β and CDK5 by acting on ATP binding sites. Gene Ontology enrichment analysis indicated that RB might act on protein phosphorylation pathways to inhibit tau hyperphosphorylation. CONCLUSIONS RB was shown to inhibit tau neurotoxicity at least partially via inhibiting the activity of GSK3β and CDK5, which is a novel neuroprotective mechanism besides the inhibition of tau aggregation. As tau hyperphosphorylation is an important target for AD therapy, this study also provided support for investigating the drug repurposing of RB as an anti-AD drug candidate.
Collapse
Affiliation(s)
- Chen-Ye Mou
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yan-Fei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jia-Xin Wei
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qi-Yao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jing-Yang Le
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yong-Jie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Pan-Pan Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yue-Chun Mao
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xing-Han Huang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Han-Bo Pan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Lin Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Hong-Ze Liang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xiang Wu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Wei Cui
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China. .,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
20
|
Identification of Potential Repurposable Drugs in Alzheimer’s Disease Exploiting a Bioinformatics Analysis. J Pers Med 2022; 12:jpm12101731. [PMID: 36294870 PMCID: PMC9605472 DOI: 10.3390/jpm12101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurologic disorder causing brain atrophy and the death of brain cells. It is a progressive condition marked by cognitive and behavioral impairment that significantly interferes with daily activities. AD symptoms develop gradually over many years and eventually become more severe, and no cure has been found yet to arrest this process. The present study is directed towards suggesting putative novel solutions and paradigms for fighting AD pathogenesis by exploiting new insights from network medicine and drug repurposing strategies. To identify new drug–AD associations, we exploited SAveRUNNER, a recently developed network-based algorithm for drug repurposing, which quantifies the vicinity of disease-associated genes to drug targets in the human interactome. We complemented the analysis with an in silico validation of the candidate compounds through a gene set enrichment analysis, aiming to determine if the modulation of the gene expression induced by the predicted drugs could be counteracted by the modulation elicited by the disease. We identified some interesting compounds belonging to the beta-blocker family, originally approved for treating hypertension, such as betaxolol, bisoprolol, and metoprolol, whose connection with a lower risk to develop Alzheimer’s disease has already been observed. Moreover, our algorithm predicted multi-kinase inhibitors such as regorafenib, whose beneficial effects were recently investigated for neuroinflammation and AD pathology, and mTOR inhibitors such as sirolimus, whose modulation has been associated with AD.
Collapse
|
21
|
Zhang F, Hu W, Liu Y. GCMM: graph convolution network based on multimodal attention mechanism for drug repurposing. BMC Bioinformatics 2022; 23:372. [PMID: 36100897 PMCID: PMC9469552 DOI: 10.1186/s12859-022-04911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background The main focus of in silico drug repurposing, which is a promising area for using artificial intelligence in drug discovery, is the prediction of drug–disease relationships. Although many computational models have been proposed recently, it is still difficult to reliably predict drug–disease associations from a variety of sources of data. Results In order to identify potential drug–disease associations, this paper introduces a novel end-to-end model called Graph convolution network based on a multimodal attention mechanism (GCMM). In particular, GCMM incorporates known drug–disease relations, drug–drug chemical similarity, drug–drug therapeutic similarity, disease–disease semantic similarity, and disease–disease target-based similarity into a heterogeneous network. A Graph Convolution Network encoder is used to learn how diseases and drugs are embedded in various perspectives. Additionally, GCMM can enhance performance by applying a multimodal attention layer to assign various levels of value to various features and the inputting of multi-source information. Conclusion 5 fold cross-validation evaluations show that the GCMM outperforms four recently proposed deep-learning models on the majority of the criteria. It shows that GCMM can predict drug–disease relationships reliably and suggests improvement in the desired metrics. Hyper-parameter analysis and exploratory ablation experiments are also provided to demonstrate the necessity of each module of the model and the highest possible level of prediction performance. Additionally, a case study on Alzheimer’s disease (AD). Four of the five medications indicated by GCMM to have the highest potential correlation coefficient with AD have been demonstrated through literature or experimental research, demonstrating the viability of GCMM. All of these results imply that GCMM can provide a strong and effective tool for drug development and repositioning.
Collapse
|
22
|
New Insights into the Molecular Interplay between Human Herpesviruses and Alzheimer’s Disease—A Narrative Review. Brain Sci 2022; 12:brainsci12081010. [PMID: 36009073 PMCID: PMC9406069 DOI: 10.3390/brainsci12081010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
Human herpesviruses (HHVs) have been implicated as possible risk factors in Alzheimer’s disease (AD) pathogenesis. Persistent lifelong HHVs infections may directly or indirectly contribute to the generation of AD hallmarks: amyloid beta (Aβ) plaques, neurofibrillary tangles composed of hyperphosphorylated tau proteins, and synaptic loss. The present review focuses on summarizing current knowledge on the molecular mechanistic links between HHVs and AD that include processes involved in Aβ accumulation, tau protein hyperphosphorylation, autophagy, oxidative stress, and neuroinflammation. A PubMed search was performed to collect all the available research data regarding the above mentioned mechanistic links between HHVs and AD pathology. The vast majority of research articles referred to the different pathways exploited by Herpes Simplex Virus 1 that could lead to AD pathology, while a few studies highlighted the emerging role of HHV 6, cytomegalovirus, and Epstein–Barr Virus. The elucidation of such potential links may guide the development of novel diagnostics and therapeutics to counter this devastating neurological disorder that until now remains incurable.
Collapse
|
23
|
Optimizations for Computing Relatedness in Biomedical Heterogeneous Information Networks: SemNet 2.0. BIG DATA AND COGNITIVE COMPUTING 2022; 6. [PMID: 35936510 PMCID: PMC9351549 DOI: 10.3390/bdcc6010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Literature-based discovery (LBD) summarizes information and generates insight from large text corpuses. The SemNet framework utilizes a large heterogeneous information network or “knowledge graph” of nodes and edges to compute relatedness and rank concepts pertinent to a user-specified target. SemNet provides a way to perform multi-factorial and multi-scalar analysis of complex disease etiology and therapeutic identification using the 33+ million articles in PubMed. The present work improves the efficacy and efficiency of LBD for end users by augmenting SemNet to create SemNet 2.0. A custom Python data structure replaced reliance on Neo4j to improve knowledge graph query times by several orders of magnitude. Additionally, two randomized algorithms were built to optimize the HeteSim metric calculation for computing metapath similarity. The unsupervised learning algorithm for rank aggregation (ULARA), which ranks concepts with respect to the user-specified target, was reconstructed using derived mathematical proofs of correctness and probabilistic performance guarantees for optimization. The upgraded ULARA is generalizable to other rank aggregation problems outside of SemNet. In summary, SemNet 2.0 is a comprehensive open-source software for significantly faster, more effective, and user-friendly means of automated biomedical LBD. An example case is performed to rank relationships between Alzheimer’s disease and metabolic co-morbidities.
Collapse
|
24
|
Tang AS, Oskotsky T, Havaldar S, Mantyh WG, Bicak M, Solsberg CW, Woldemariam S, Zeng B, Hu Z, Oskotsky B, Dubal D, Allen IE, Glicksberg BS, Sirota M. Deep phenotyping of Alzheimer's disease leveraging electronic medical records identifies sex-specific clinical associations. Nat Commun 2022; 13:675. [PMID: 35115528 PMCID: PMC8814236 DOI: 10.1038/s41467-022-28273-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder that is still not fully understood. Sex modifies AD vulnerability, but the reasons for this are largely unknown. We utilize two independent electronic medical record (EMR) systems across 44,288 patients to perform deep clinical phenotyping and network analysis to gain insight into clinical characteristics and sex-specific clinical associations in AD. Embeddings and network representation of patient diagnoses demonstrate greater comorbidity interactions in AD in comparison to matched controls. Enrichment analysis identifies multiple known and new diagnostic, medication, and lab result associations across the whole cohort and in a sex-stratified analysis. With this data-driven method of phenotyping, we can represent AD complexity and generate hypotheses of clinical factors that can be followed-up for further diagnostic and predictive analyses, mechanistic understanding, or drug repurposing and therapeutic approaches.
Collapse
Affiliation(s)
- Alice S Tang
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA.
- Graduate Program in Bioengineering, UCSF, San Francisco, CA, USA.
- School of Medicine, UCSF, San Francisco, CA, USA.
| | - Tomiko Oskotsky
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Shreyas Havaldar
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Mantyh
- Department of Neurology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Mesude Bicak
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caroline Warly Solsberg
- Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Memory and Aging Center, UCSF, San Francisco, CA, USA
| | - Sarah Woldemariam
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
| | - Billy Zeng
- School of Medicine, UCSF, San Francisco, CA, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
| | - Boris Oskotsky
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
| | - Dena Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
| | - Benjamin S Glicksberg
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA.
- Department of Pediatrics, UCSF, San Francisco, CA, USA.
| |
Collapse
|
25
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
26
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
27
|
Peres RM, Sousa JML, de Oliveira MO, Rossi MV, de Oliveira RR, de Lima NB, Bernussi A, Warzywoda J, Sarmento B, Munhoz AH. Pseudoboehmite as a drug delivery system for acyclovir. Sci Rep 2021; 11:15448. [PMID: 34326377 PMCID: PMC8322319 DOI: 10.1038/s41598-021-94325-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Herpes simplex virus is among the most prevalent sexually transmitted infections. Acyclovir is a potent, selective inhibitor of herpes viruses and it is indicated for the treatment and management of recurrent cold sores on the lips and face, genital herpes, among other diseases. The problem of the oral bioavailability of acyclovir is limited because of the low permeability across the gastrointestinal membrane. The use of nanoparticles of pseudoboehmite as a drug delivery system in vitro assays is a promising approach to further the permeability of acyclovir release. Here we report the synthesis of high purity pseudoboehmite from aluminium nitrate and ammonium hydroxide containing nanoparticles, using the sol–gel method, as a drug delivery system to improve the systemic bioavailability of acyclovir. The presence of pseudoboehmite nanoparticles were verified by infrared spectroscopy, transmission electron microscopy, and X-ray diffraction techniques. In vivo tests were performed with Wistar rats to compare the release of acyclovir, with and without the addition of pseudoboehmite. The administration of acyclovir with the addition of pseudoboehmite increased the drug content by 4.6 times in the plasma of Wistar rats after 4 h administration. We determined that the toxicity of pseudoboehmite is low up to 10 mg/mL, in gel and the dried pseudoboehmite nanoparticles.
Collapse
Affiliation(s)
- Renato Meneghetti Peres
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil
| | - Jéssica Maiara Leme Sousa
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil
| | | | - Maura Vincenza Rossi
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil
| | | | | | - Ayrton Bernussi
- Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX, 79409, USA
| | - Juliusz Warzywoda
- Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica and i3S-Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal
| | - Antonio Hortencio Munhoz
- School of Engineering, Mackenzie Presbyterian University, Rua da Consolação, 930, Building 33, Consolação, São Paulo, SP, 01302-907, Brazil.
| |
Collapse
|
28
|
Shao L, Dong C, Geng D, He Q, Shi Y. Ginkgolide B protects against cognitive impairment in senescence-accelerated P8 mice by mitigating oxidative stress, inflammation and ferroptosis. Biochem Biophys Res Commun 2021; 572:7-14. [PMID: 34332327 DOI: 10.1016/j.bbrc.2021.07.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a destructive neurodegenerative disease that currently has no effective treatment option available. Ginkgolide B (GB) is a terpene lactone derivative of Ginkgo biloba that possesses neuroprotective effects in various diseases. The aim of the present study was to investigate whether GB protects against cognitive impairment in AD by mitigating oxidative stress, inflammation and ferroptosis using senescence-accelerated P8 (SAMP8) mice. The results showed that GB improved the cognitive dysfunction of SAMP8 mice in the Morris water maze and novel object recognition test, which was associated with the attenuation of oxidative stress, inflammation and nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 (GPX4) pathway-mediated ferroptosis. Furthermore, Ras-selective lethal small molecule 3, a GPX4 inhibitor and ferroptosis inducer, compromised GB-induced cognitive performance in SAMP8 mice. These findings suggested that GB alleviated AD-induced cognitive defects by mitigating oxidative stress, neuroinflammation and ferroptosis, and that the inhibition of ferroptosis is required for GB to have beneficial effects in AD.
Collapse
Affiliation(s)
- Li Shao
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Neurology, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221116, China
| | - Chen Dong
- Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Deqin Geng
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| | - Qing He
- Department of Neurology, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221116, China
| | - Yu Shi
- Department of Neurology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, Jiangsu, 221005, China
| |
Collapse
|
29
|
Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Wang T, Chen H. Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infect Dis Ther 2021; 10:1907-1931. [PMID: 34296386 PMCID: PMC8298044 DOI: 10.1007/s40121-021-00500-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the global healthcare community has raced to find effective therapeutic agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, dexamethasone is the first and an important therapeutic to significantly reduce the risk of death in COVID-19 patients with severe disease. Due to powerful anti-inflammatory and immunosuppressive effects, dexamethasone could attenuate SARS-CoV-2-induced uncontrolled cytokine storm, severe acute respiratory distress syndrome and lung injury. Nevertheless, dexamethasone treatment is a double-edged sword, as numerous studies have revealed that it has significant adverse impacts later in life. In this article, we reviewed the literature regarding the adverse effects of dexamethasone administration on different organ systems as well as related disease pathogenesis in an attempt to clarify the potential harms that may arise in COVID-19 patients receiving dexamethasone treatment. Overall, taking the threat of COVID19 pandemic into account, we think it is necessary to apply dexamethasone as a pharmaceutical therapy in critical patients. However, its adverse side effects cannot be ignored. Our review will help medical professionals in the prognosis and follow-up of patients treated with dexamethasone. In addition, given that a considerable amount of uncertainty, confusion and even controversy still exist, further studies and more clinical trials are urgently needed to improve our understanding of the parameters and the effects of dexamethasone on patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China.
| | - Lanting Hao
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Shiheng Zhu
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xinyuan Yang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Wenhao Shi
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Kai Zheng
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Tenger Wang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Huiran Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| |
Collapse
|
30
|
Iqbal UH, Zeng E, Pasinetti GM. The Use of Antimicrobial and Antiviral Drugs in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4920. [PMID: 32664669 PMCID: PMC7404195 DOI: 10.3390/ijms21144920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The aggregation and accumulation of amyloid-β plaques and tau proteins in the brain have been central characteristics in the pathophysiology of Alzheimer's disease (AD), making them the focus of most of the research exploring potential therapeutics for this neurodegenerative disease. With success in interventions aimed at depleting amyloid-β peptides being limited at best, a greater understanding of the physiological role of amyloid-β peptides is needed. The development of amyloid-β plaques has been determined to occur 10-20 years prior to AD symptom manifestation, hence earlier interventions might be necessary to address presymptomatic AD. Furthermore, recent studies have suggested that amyloid-β peptides may play a role in innate immunity as an antimicrobial peptide. These findings, coupled with the evidence of pathogens such as viruses and bacteria in AD brains, suggests that the buildup of amyloid-β plaques could be a response to the presence of viruses and bacteria. This has led to the foundation of the antimicrobial hypothesis for AD. The present review will highlight the current understanding of amyloid-β, and the role of bacteria and viruses in AD, and will also explore the therapeutic potential of antimicrobial and antiviral drugs in Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (U.H.I.); (E.Z.)
| |
Collapse
|
31
|
Sodium Butyrate Protects N2a Cells against A β Toxicity In Vitro. Mediators Inflamm 2020; 2020:7605160. [PMID: 32377164 PMCID: PMC7180402 DOI: 10.1155/2020/7605160] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Aβ plays an important role in the pathogenesis of AD. Sodium butyrate (NaB) is a short-chain fatty acid salt that exerts neuroprotective effects such as anti-inflammatory, antioxidant, antiapoptotic, and cognitive improvement in central nervous system diseases. The aim of this study is to research the protective effects of NaB on neurons against Aβ toxicity and to uncover the underlying mechanisms. The results showed that 2 mM NaB had a significant improvement effect on Aβ-induced N2a cell injury, by increasing cell viability and reducing ROS to reduce injury. In addition, by acting on the GPR109A receptor, NaB regulates the expression of AD-related genes such as APP, NEP, and BDNF. Therefore, NaB protects N2a cells from Aβ-induced cell damage through activating GPR109A, which provides an innovative idea for the treatment of AD.
Collapse
|