1
|
Lightfoot SHM, Baglot SL, Hume C, Grace LM, McLaughlin RJ, Hill MN. Acute and chronic cannabis vapor exposure influences basal and stress-induced release of glucocorticoids in male and female rats. Psychoneuroendocrinology 2024; 172:107263. [PMID: 39787867 DOI: 10.1016/j.psyneuen.2024.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Management of stress and anxiety is often listed as the primary motivation behind cannabis use. Human research has found that chronic cannabis use is associated with increased basal cortisol levels but blunted neuroendocrine responses to stress. Preclinical research has demonstrated mixed effects of Δ9-tetrahydrocannabinol (THC; the psychoactive constituent of cannabis), much of which is suggestive of dose-dependent effects; however, the predominance of this work has employed an injection method to deliver cannabis. As inhalation is the most common route of administration in humans, we employed a translationally relevant model of inhaled cannabis vapor exposure to help characterize the extent to which acute and chronic cannabis exposure modulates neuroendocrine responses to stress. Male and female Sprague-Dawley rats were acutely (single day) or chronically (10 days) exposed to cannabis or vehicle vapor, and the stress hormone, corticosterone, was analyzed prior to and following an acute 30-min restraint stress. Our results indicate that initial exposure to the vapor chambers, regardless of vehicle or cannabis exposure, is sufficient to elevate corticosterone levels in male and female rodents. Further, acute cannabis exposure was capable of increasing corticosterone levels in both male and female rats, however, this effect was modified by the habituation to the vapor chambers differentially in males and females. Regardless of sex, chronic cannabis exposure is sufficient to both elevate basal corticosterone levels and blunt stress-induced increases in corticosterone following a restraint stressor. Collectively, these data help characterize the impacts of cannabis vapor exposure on basal and stress-induced activation of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Savannah H M Lightfoot
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Samantha L Baglot
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Graduate Program in Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Hume
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Laine M Grace
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Torrens A, Mabou Tagne A, Tran A, Ahmed F, Huestis MA, Piomelli D. Comparative Pharmacokinetics of Δ9-Tetrahydrocannabinol in Adolescent and Adult Female Mice. Cannabis Cannabinoid Res 2024; 9:1537-1542. [PMID: 39162003 PMCID: PMC11685284 DOI: 10.1089/can.2024.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Introduction: Animal studies suggest that adolescent exposure to Δ9-tetrahydrocannabinol (Δ9-THC), the intoxicating constituent of cannabis, causes lasting functional alterations in brain and other organs. Those studies often neglect the impact that age- and sex-dependent differences in the distribution and metabolism of the drug might exert on its pharmacological effects. Here, we provide a comparative analysis of Δ9-THC pharmacokinetics in adolescent and adult female mice, which identify significant dissimilarities in distribution and metabolism of Δ9-THC between females of these age groups. Materials and Methods: We administered Δ9-THC (5 mg/kg, intraperitoneal) to adolescent (37-day old) and young adult (70-day old) female mice and quantified Δ9-THC and its first-pass metabolites-11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-in plasma and brain tissue using liquid chromatography/tandem mass spectrometry. Results: Maximal plasma concentrations of Δ9-THC were 8 times higher in adolescent than adult female mice. Conversely, brain concentrations and brain-to-plasma ratios were 25-50% higher in adults than adolescents. Concentrations of Δ9-THC metabolites were higher in plasma but lower in brain of adolescent compared to adult female mice. Conclusions: The results identify multiple age-dependent differences in the pharmacokinetic properties of Δ9-THC in female mice, which might influence the pharmacological response to the drug.
Collapse
Affiliation(s)
- Alexa Torrens
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Alex Mabou Tagne
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Adren Tran
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Faizy Ahmed
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
3
|
Corley C, Craig A, Sadek S, Marusich JA, Chehimi SN, White AM, Holdiness LJ, Reiner BC, Gipson CD. Enhancing translation: A need to leverage complex preclinical models of addictive drugs to accelerate substance use treatment options. Pharmacol Biochem Behav 2024; 243:173836. [PMID: 39067531 PMCID: PMC11344688 DOI: 10.1016/j.pbb.2024.173836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Preclinical models of addictive drugs have been developed for decades to model aspects of the clinical experience in substance use disorders (SUDs). These include passive exposure as well as volitional intake models across addictive drugs and have been utilized to also measure withdrawal symptomatology and potential neurobehavioral mechanisms underlying relapse to drug seeking or taking. There are a number of Food and Drug Administration (FDA)-approved medications for SUDs, however, many demonstrate low clinical efficacy as well as potential sex differences, and we also note gaps in the continuum of care for certain aspects of clinical experiences in individuals who use drugs. In this review, we provide a comprehensive update on both frequently utilized and novel behavioral models of addiction with a focus on translational value to the clinical experience and highlight the need for preclinical research to follow epidemiological trends in drug use patterns to stay abreast of clinical treatment needs. We then note areas in which models could be improved to enhance the medications development pipeline through efforts to enhance translation of preclinical models. Next, we describe neuroscience efforts that can be leveraged to identify novel biological mechanisms to enhance medications development efforts for SUDs, focusing specifically on advances in brain transcriptomics approaches that can provide comprehensive screening and identification of novel targets. Together, the confluence of this review demonstrates the need for careful selection of behavioral models and methodological parameters that better approximate the clinical experience combined with cutting edge neuroscience techniques to advance the medications development pipeline for SUDs.
Collapse
Affiliation(s)
- Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lexi J Holdiness
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
4
|
DeVuono MV, Nashed MG, Sarikahya MH, Kocsis A, Lee K, Vanin SR, Hudson R, Lonnee EP, Rushlow WJ, Hardy DB, Laviolette SR. Prenatal tetrahydrocannabinol and cannabidiol exposure produce sex-specific pathophysiological phenotypes in the adolescent prefrontal cortex and hippocampus. Neurobiol Dis 2024; 199:106588. [PMID: 38960101 DOI: 10.1016/j.nbd.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024] Open
Abstract
Clinical and preclinical evidence has demonstrated an increased risk for neuropsychiatric disorders following prenatal cannabinoid exposure. However, given the phytochemical complexity of cannabis, there is a need to understand how specific components of cannabis may contribute to these neurodevelopmental risks later in life. To investigate this, a rat model of prenatal cannabinoid exposure was utilized to examine the impacts of specific cannabis constituents (Δ9-tetrahydrocannabinol [THC]; cannabidiol [CBD]) alone and in combination on future neuropsychiatric liability in male and female offspring. Prenatal THC and CBD exposure were associated with low birth weight. At adolescence, offspring displayed sex-specific behavioural changes in anxiety, temporal order and social cognition, and sensorimotor gating. These phenotypes were associated with sex and treatment-specific neuronal and gene transcriptional alterations in the prefrontal cortex, and ventral hippocampus, regions where the endocannabinoid system is implicated in affective and cognitive development. Electrophysiology and RT-qPCR analysis in these regions implicated dysregulation of the endocannabinoid system and balance of excitatory and inhibitory signalling in the developmental consequences of prenatal cannabinoids. These findings reveal critical insights into how specific cannabinoids can differentially impact the developing fetal brains of males and females to enhance subsequent neuropsychiatric risk.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Mina G Nashed
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Mohammed H Sarikahya
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Andrea Kocsis
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Kendrick Lee
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Sebastian R Vanin
- Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Roger Hudson
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Eryn P Lonnee
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Daniel B Hardy
- Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Physiology & Pharmacology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Obstetrics & Gynecology, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Dept of Anatomy & Cell Biology, University of Western Ontario, London, ON N6A 3K7, Canada; Dept of Psychiatry, University of Western Ontario, London, ON N6A 3K7, Canada; Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute (CHRI), Lawson Health Research Institute, St. Joseph's Health Care, London, ON N6C 2R5, Canada
| |
Collapse
|
5
|
Martinez MX, Alizo Vera V, Ruiz CM, Floresco SB, Mahler SV. Adolescent THC impacts on mPFC dopamine-mediated cognitive processes in male and female rats. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06676-9. [PMID: 39190156 DOI: 10.1007/s00213-024-06676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
RATIONALE Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. OBJECTIVE We determined how 14 daily THC injections (5 mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. METHODS In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impact probabilistic discounting. RESULTS AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. CONCLUSIONS These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine neurons or their projections to mPFC.
Collapse
Affiliation(s)
- Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Martinez MX, Alizo Vera V, Ruiz CM, Floresco SB, Mahler SV. Adolescent THC impacts on mPFC dopamine-mediated cognitive processes in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588937. [PMID: 38826339 PMCID: PMC11142049 DOI: 10.1101/2024.04.12.588937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Rationale Adolescent cannabis use is linked to later-life changes in cognition, learning, and memory. Rodent experimental studies suggest Δ9-tetrahydrocannabinol (THC) influences development of circuits underlying these processes, especially in the prefrontal cortex, which matures during adolescence. Objective We determined how 14 daily THC injections (5mg/kg) during adolescence persistently impacts medial prefrontal cortex (mPFC) dopamine-dependent cognition. Methods In adult Long Evans rats treated as adolescents with THC (AdoTHC), we quantify performance on two mPFC dopamine-dependent reward-based tasks-strategy set shifting and probabilistic discounting. We also determined how acute dopamine augmentation with amphetamine (0, 0.25, 0.5 mg/kg), or specific chemogenetic stimulation of ventral tegmental area (VTA) dopamine neurons and their projections to mPFC impacts probabilistic discounting. Results AdoTHC sex-dependently impacts acquisition of cue-guided instrumental reward seeking, but has minimal effects on set-shifting or probabilistic discounting in either sex. When we challenged dopamine circuits acutely with amphetamine during probabilistic discounting, we found reduced discounting of improbable reward options, with AdoTHC rats being more sensitive to these effects than controls. In contrast, neither acute chemogenetic stimulation of VTA dopamine neurons nor pathway-specific chemogenetic stimulation of their projection to mPFC impacted probabilistic discounting in control rats, although stimulation of this cortical dopamine projection slightly disrupted choices in AdoTHC rats. Conclusions These studies confirm a marked specificity in the cognitive processes impacted by AdoTHC exposure. They also suggest that some persistent AdoTHC effects may alter amphetamine-induced cognitive changes in a manner independent of VTA dopamine neurons or their projections to mPFC.
Collapse
Affiliation(s)
- Maricela X. Martinez
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| | - Christina M. Ruiz
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| | - Stan B. Floresco
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine. 2221 McGaugh Hall. Irvine, CA 92697
| |
Collapse
|
7
|
Murray CH, Javanbakht M, Cho GD, Gorbach PM, Fulcher JA, Cooper ZD. Changes in Immune-Related Biomarkers and Endocannabinoids as a Function of Frequency of Cannabis Use in People Living With and Without HIV. Cannabis Cannabinoid Res 2024; 9:e897-e906. [PMID: 37093248 PMCID: PMC11295663 DOI: 10.1089/can.2022.0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Background: Cannabis use is common among people living with HIV (PLWH). Some observational studies of PLWH have linked cannabis use to lower immune markers; however, this is yet to be confirmed. In addition, whether HIV affects the endogenous cannabinoid system has not been studied. Our objective was to examine changes in immune-related biomarkers and endocannabinoids as a function of cannabis use frequency in people living with and without HIV. Materials and Methods: Data were obtained from a longitudinal study of men who have sex with men living in Los Angeles with, or at risk for, HIV. By design, half were PLWH. Those eligible for the parent study were willing and able to return for follow-up every 6 months. Those eligible for inclusion in this study reported varying levels of current cannabis use at follow-up. Specifically, one visit corresponded to a period of daily use and another to a period of infrequent use (weekly, monthly, or less than monthly). Banked serum from all eligible participants was analyzed for immune-related biomarkers, endocannabinoids, and paracannabinoids. Results: The analysis included 36 men, 19 of whom were PLWH. PLWH reported greater lifetime methamphetamine or amphetamine use (68% vs. 0%) and current cigarette use (55% vs. 20%) than people without HIV. Serum levels of HIV-related immune biomarkers including tumor necrosis factor receptor 2 (TNFR2; p=0.013) and CD27 (p=0.004) were greater in PLWH, alongside lower anandamide (AEA) (F1,34=5.337, p=0.027) and oleoylethanolamide (OEA) (F1,34=8.222, p=0.007) levels relative to people without HIV. Frequency of cannabis use did not impact the serum analytes in our study. Conclusions: Higher levels of TNFR2 and CD27 and lower levels of AEA and OEA in PLWH underscore the role of the TNF/TNFR superfamily in HIV, while highlighting a new role for the enzymatic activity of fatty acid amide hydrolase (the enzyme that hydrolyzes AEA and OEA) in HIV. Findings that cannabis frequency did not impact the immune phenotype may not generalize to other populations of PLWH. Additional work is required to further clarify the relationship between immune markers and endocannabinoids as a function of cannabis use frequency in PLWH. ClinicalTrials.gov ID: NCT01201083.
Collapse
Affiliation(s)
- Conor H. Murray
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Marjan Javanbakht
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Grace D. Cho
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pamina M. Gorbach
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Jennifer A. Fulcher
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Ziva D. Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
8
|
Hinckley JD, Ferland JMN, Hurd YL. The Developmental Trajectory to Cannabis Use Disorder. Am J Psychiatry 2024; 181:353-358. [PMID: 38706340 PMCID: PMC11296671 DOI: 10.1176/appi.ajp.20231006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The increase of cannabis use, particularly with the evolution of high potency products, and of cannabis use disorder (CUD) are a growing healthcare concern. While the harms of adult use and potential medicinal properties of cannabis continue to be debated, it is becoming evident that adolescent cannabis use is a critical window for CUD risk with potential lifelong mental health implications. Herein, we discuss mental health consequences of adolescent cannabis use, factors that contribute to the risk of developing CUD, and what remains unclear in the changing legal landscape of cannabis use. We also discuss the importance of preclinical models to provide translational insight about the causal relationship of cannabis to CUD-related phenotypes and conclude with highlighting opportunities for clinicians and allied professionals to engage in addressing adolescent cannabis use.
Collapse
Affiliation(s)
- Jesse D. Hinckley
- Division of Addiction Science, Treatment & Prevention, Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado
| | - Jacqueline-Marie N. Ferland
- Department of Psychiatry, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Addiction Institute at Mount Sinai, New York, New York
| | - Yasmin L. Hurd
- Department of Psychiatry, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Addiction Institute at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Xu Y, Li X, Xu P, Yan F, Wang D. Comparative pharmacokinetic and intracerebral distribution of MDMB-4F-BICA in mice following inhalation ('vapor') and subcutaneous injection. J Pharm Biomed Anal 2024; 241:115988. [PMID: 38301574 DOI: 10.1016/j.jpba.2024.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
MDMB-4F-BICA, also known as 4F-MDMB-BICA, is a new psychoactive substance that emerged in 2020. It is often illegally added to electronic cigarette oil for inhalation abuse, leading to serious adverse symptoms and even death. There are significant differences in pharmacokinetics between inhalation administration and conventional drug delivery methods. Inhalation administration can pass through the blood-brain barrier to enter the brain directly. However, the specific distribution of the drug in the brain following inhalation has not been well investigated. In order to scientifically compare the absorption and distribution of MDMB-4F-BICA after two administration methods (inhalation and subcutaneous injection), this study analyzed the drug concentration in mice blood and brain by LC-MS/MS after systemic exposure inhalation in the form of electronic cigarettes. The aim was to conduct the pharmacokinetics study of MDMB-4F-BICA after inhalation('vapor') administration. Pharmacokinetics and distribution of the compound revealed that the maximum concentrations in blood of this compound were reached at 0.5 min and 15 min, respectively, and the concentration in the brain reached the maximum at the same time after two modes of administration. The drug concentration in the brain was higher than that of subcutaneous injection, and the drug remained at a low concentration in the brain for a long period (20 ng/g brain tissue) with a significant distribution in several olfactory primary cortex brain regions. Taken together, the pharmacokinetics of the synthetic cannabinoid MDMB-4F-BICA after single systemic exposure inhalation were investigated for the first time in this study. A basis for subsequent evaluation research of inhalation-related harmfulness is provided by comparing the distribution of drugs in the brain after the two administration modes.
Collapse
Affiliation(s)
- Yawen Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Xiangyu Li
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Peng Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China
| | - Fang Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China.
| | - Dan Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China; Office of China National Narcotics Control Commission, China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing 100193, China.
| |
Collapse
|
10
|
Gutierrez A, Taffe MA. Rats chasing the dragon: A new heroin inhalation method. J Neurosci Methods 2024; 402:110013. [PMID: 37989452 DOI: 10.1016/j.jneumeth.2023.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Despite extensive human use of inhalation for ingesting opioids, models in rodents have mostly been limited to parenteral injection and oral dosing. Methods using electronic drug delivery systems (EDDS; "e-cigarettes") have shown efficacy in rodent models but these do not faithfully mimic the most popular human inhalation method of heating heroin to the point of vaporization. NEW METHOD Middle aged rats were exposed to vapor created by direct heating of heroin HCl powder in a ceramic e-cigarette type atomizer. Efficacy was determined with a warm water tail withdrawal nociception assay, rectal temperature and self-administration. RESULTS Ten minutes of inhalation of vaporized heroin slowed response latency in a warm water tail withdrawal assay and increased rectal temperature in male rats, in a dose-dependent manner. Similar antinociceptive effects in female rats were attenuated by the opioid antagonist naloxone (1.0 mg/kg, s.c.). Female rats made operant responses for heroin vapor in 15-minute sessions, increased their response rate when the reinforcement ratio increased from FR1 to FR5, and further increased their responding when vapor delivery was omitted. Anti-nociceptive effects of self-administered volatilized heroin were of a similar magnitude as those produced by the 10-minute non-contingent exposure. COMPARISON WITH EXISTING METHODS Inhalation of directly volatilized heroin successfully produces heroin-typical effects, comparable to EDDS inhalation delivery. CONCLUSIONS This study shows that "chasing the dragon" methods of inhalation of heroin can be modeled successfully in the rat. Inhalation techniques may be particularly useful for longer term studies deep into the middle age of rats.
Collapse
Affiliation(s)
- Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Michael A Taffe
- Department of Psychiatry, University of California, San Diego, CA, USA.
| |
Collapse
|
11
|
Moore CF, Davis CM, Sempio C, Klawitter J, Christians U, Weerts EM. Δ 9-Tetrahydrocannabinol Vapor Exposure Produces Conditioned Place Preference in Male and Female Rats. Cannabis Cannabinoid Res 2024; 9:111-120. [PMID: 36179013 PMCID: PMC10874829 DOI: 10.1089/can.2022.0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The use of place conditioning procedures and drug vapor exposure models can increase our understanding of the rewarding and aversive effects of vaped cannabis products. Currently there are limited data on the conditioned rewarding effects of vaporized Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis in rats, and no studies to date examining sex differences. Methods: Male and female Sprague-Dawley rats (N=96; 12 per sex/group) underwent place conditioning sessions immediately after exposure to THC or vehicle (propylene glycol [PG]) vapor. Locomotor activity was measured by beam breaks during conditioning sessions. THC vapor-conditioned rats received one of three THC vapor exposure amounts (low: 5 puffs of 100 mg/mL THC, medium: 5 puffs of 200 mg/mL THC, or high: 10 puffs of 200 mg/mL THC) and matched vehicle vapor (PG) exposure on alternate days for 16 daily sessions. A "no THC" control group of vehicle-conditioned rats received only PG vapor exposure each day. After the 8th and 16th conditioning sessions, untreated rats were tested for conditioned place preference (CPP) or aversion (CPA). Next, extinction tests and a THC vapor-primed reinstatement test were conducted. Results: THC vapor produced CPP and locomotor effects in an exposure dependent manner, and some sex differences were observed. Low THC vapor exposure did not produce CPP in males or females. Medium THC vapor exposure produced CPP in males, but not females. High THC vapor exposure produced CPP in both males and females. Medium and high THC vapor exposure amounts produced hyperactivity in female rats, but not male rats. CPP was more resistant to extinction in females than males. THC vapor reexposure (i.e., drug-prime) after extinction did not result in reinstatement of CPP for either sex. Conclusion: This study demonstrates conditioned rewarding effects of THC vapor in both male and female rats and provides evidence for sex differences in amounts of THC vapor that produce CPP and in time to extinction. CPA was not observed at any of the THC vapor exposure amounts tested. These data provide a foundation for future exploration of the conditioned effects of cannabis constituents and extracts using vapor exposure models.
Collapse
Affiliation(s)
- Catherine F. Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Cristina Sempio
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jost Klawitter
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Uwe Christians
- iC42 Clinical Research and Development, Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elise M. Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Ahmed F, Torrens A, Mahler SV, Ferlenghi F, Huestis MA, Piomelli D. A Sensitive Ultrahigh-Performance Liquid Chromatography/Tandem Mass Spectrometry Method for the Simultaneous Analysis of Phytocannabinoids and Endocannabinoids in Plasma and Brain. Cannabis Cannabinoid Res 2024; 9:371-385. [PMID: 36367975 PMCID: PMC10874825 DOI: 10.1089/can.2022.0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are major chemical constituents of cannabis, which may interact either directly or indirectly with the endocannabinoid and endocannabinoid-like ("paracannabinoid") systems, two lipid-based signaling complexes that play important roles in physiology. Legislative changes emphasize the need to understand how THC and CBD might impact endocannabinoid and paracannabinoid signaling, and to develop analytical approaches to study such impact. In this study, we describe a sensitive and accurate method for the simultaneous quantification of THC, its main oxidative metabolites [11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)], CBD, and a representative set of endocannabinoid [anandamide and 2-arachidonoyl-sn-glycerol (2-AG)] and paracannabinoid [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] compounds. Analyte separation relies on the temperature-dependent shape selectivity properties of polymerically bonded C18 stationary phases. Materials and Methods: Analytes are extracted from tissues using acetonitrile precipitation followed by phospholipid removal. The ultrahigh-performance liquid chromatography/tandem mass spectrometry protocol utilizes a commercially available C18 polymeric-bonded phase column and a simple gradient elution system. Results: Ten-point calibration curves show excellent linearity (R2>0.99) over a wide range of analyte concentrations (0.02-500 ng/mL). Lowest limits of quantification are 0.05 ng/mL for anandamide, 0.1 ng/mL for 11-OH-THC and OEA, 0.2 ng/mL for THC and CBD, 0.5 ng/mL for 11-COOH-THC, 1.0 ng/mL for 2-AG, and 2.0 ng/mL for PEA. The lowest limits of detection are 0.02 ng/mL for anandamide, 0.05 ng/mL for 11-OH-THC and OEA, 0.1 ng/mL for THC and CBD, 0.2 ng/mL for 11-COOH-THC, 0.5 ng/mL for 2-AG, and 1.0 ng/mL for PEA. Conclusions: An application of the method is presented, which showed that phytocannabinoid administration elevates endocannabinoid levels in plasma and brain of adolescent male and female mice.
Collapse
Affiliation(s)
- Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Francesca Ferlenghi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
13
|
English A, Uittenbogaard F, Torrens A, Sarroza D, Slaven AVE, Piomelli D, Bruchas MR, Stella N, Land BB. A preclinical model of THC edibles that produces high-dose cannabimimetic responses. eLife 2024; 12:RP89867. [PMID: 38214701 PMCID: PMC10945583 DOI: 10.7554/elife.89867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
No preclinical experimental approach enables the study of voluntary oral consumption of high-concentration Δ9-tetrahydrocannabinol (THC) and its intoxicating effects, mainly owing to the aversive response of rodents to THC that limits intake. Here, we developed a palatable THC formulation and an optimized access paradigm in mice to drive voluntary consumption. THC was formulated in chocolate gelatin (THC-E-gel). Adult male and female mice were allowed ad libitum access for 1 and 2 hr. Cannabimimetic responses (hypolocomotion, analgesia, and hypothermia) were measured following access. Levels of THC and its metabolites were measured in blood and brain tissue. Acute acoustic startle responses were measured to investigate THC-induced psychotomimetic behavior. When allowed access for 2 hr to THC-E-gel on the second day of a 3-day exposure paradigm, adult mice consumed up to ≈30 mg/kg over 2 hr, which resulted in robust cannabimimetic behavioral responses (hypolocomotion, analgesia, and hypothermia). Consumption of the same gelatin decreased on the following third day of exposure. Pharmacokinetic analysis shows that THC-E-gel consumption led to parallel accumulation of THC and its psychoactive metabolite, 11-OH-THC, in the brain, a profile that contrasts with the known rapid decline in brain 11-OH-THC levels following THC intraperitoneal (i.p.) injections. THC-E-gel consumption increased the acoustic startle response in males but not in females, demonstrating a sex-dependent effect of consumption. Thus, while voluntary consumption of THC-E-gel triggered equivalent cannabimimetic responses in male and female mice, it potentiated acoustic startle responses preferentially in males. We built a dose-prediction model that included cannabimimetic behavioral responses elicited by i.p. versus THC-E-gel to test the accuracy and generalizability of this experimental approach and found that it closely predicted the measured acoustic startle results in males and females. In summary, THC-E-gel offers a robust preclinical experimental approach to study cannabimimetic responses triggered by voluntary consumption in mice, including sex-dependent psychotomimetic responses.
Collapse
Affiliation(s)
- Anthony English
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| | - Fleur Uittenbogaard
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| | - Alexa Torrens
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
| | - Dennis Sarroza
- Departments of Pharmacology, University of WashingtonSeattleUnited States
| | - Anna Veronica Elizabeth Slaven
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
| | - Daniele Piomelli
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
| | - Michael R Bruchas
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
- Department of Anatomy & Neurobiology, University of California IrvineIrvineUnited States
- Department of Anesthesiology, University of WashingtonSeattleUnited States
| | - Nephi Stella
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
- Psychiatry & Behavioral Sciences, University of WashingtonSeattleUnited States
| | - Benjamin Bruce Land
- Departments of Pharmacology, University of WashingtonSeattleUnited States
- UW Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of WashingtonSeattleUnited States
- Center for Cannabis Research, University of WashingtonSeattleUnited States
| |
Collapse
|
14
|
Lee HL, Squire E, Fotio Y, Mabou Tagne A, Lee J, Yoon JJ, Hong Y, Kim LH, Jung KM, Piomelli D. Frequent low-impact exposure to THC during adolescence causes persistent sexually dimorphic alterations in the response to viral infection in mice. Pharmacol Res 2024; 199:107049. [PMID: 38159785 DOI: 10.1016/j.phrs.2023.107049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.
Collapse
Affiliation(s)
- Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Jungyeon Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - John Jeongwoo Yoon
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Yedam Hong
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Laura Hyunseo Kim
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, USA; Department of Biological Chemistry, University of California, Irvine, USA; Department of Pharmaceutical Sciences, University of California, Irvine, USA.
| |
Collapse
|
15
|
Marusich JA, Wiley JL. Δ 9-tetrahydrocannabinol discrimination: Effects of route of administration in mice. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 9:100205. [PMID: 38045495 PMCID: PMC10690562 DOI: 10.1016/j.dadr.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Background Route of administration is an important pharmacokinetic variable in development of translationally relevant preclinical models. Humans primarily administer cannabis through smoking, vaping, and edibles. In contrast, preclinical research has historically utilized injected Δ9-tetrahydrocannabinol (THC). The present study sought to examine how route of administration affected the potency and time course of THC's discriminative stimulus properties. Methods Adult female and male C57BL/6 mice were trained to discriminate intraperitoneal (i.p.) THC from vehicle in a drug discrimination procedure. After discrimination was acquired, a dose-effect curve was determined for i.p., oral (p.o.), subcutaneous (s.c.), and aerosolized THC. Subsequently, the time course of effects of each route of administration was determined. Results THC administered i.p., p.o., s.c., or via aerosolization fully substituted for i.p. THC. The potency of THC's psychoactive effects was similar for i.p., p.o., and s.c., except that THC was more potent when administered s.c. vs p.o. in females. All routes of administration had a similar potency in both sexes. The duration of THC's psychoactive effects was similar across i.p., s.c., and p.o. routes of administration, whereas aerosolized THC produced a faster onset and shorter duration of effects compared to the other routes. Conclusion THC administered via multiple routes of administration, including those commonly used in preclinical research (i.p. and s.c.) and more translationally relevant routes (aerosol and p.o.), produced THC-like discriminative stimulus effects in mice trained to discriminate i.p. THC. More precise predictions of THC's effects in humans may result from use of these translationally relevant routes of administration.
Collapse
Affiliation(s)
- Julie A. Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| | - Jenny L. Wiley
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Sallam NA, Peterson CS, Baglot SL, Kohro Y, Trang T, Hill MN, Borgland SL. Sex Differences in Plasma, Adipose Tissue, and Central Accumulation of Cannabinoids, and Behavioral Effects of Oral Cannabis Consumption in Male and Female C57BL/6 Mice. Int J Neuropsychopharmacol 2023; 26:773-783. [PMID: 37715955 PMCID: PMC10674081 DOI: 10.1093/ijnp/pyad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Cannabis edibles are an increasingly popular form of cannabis consumption. Oral consumption of cannabis has distinct physiological and behavioral effects compared with injection or inhalation. An animal model is needed to understand the pharmacokinetics and physiological effects of oral cannabis consumption in rodents as a model for human cannabis edible use. METHODS Adult male and female C57BL/6 mice received a single dose of commercially available cannabis oil (5 mg/kg Δ⁹-tetrahydrocannabinol [THC]) by oral gavage. At 0.5, 1, 2, 3, and 6 hours post exposure, plasma, hippocampus, and adipose tissue were collected for THC, 11-OH-THC, and THC-COOH measures. RESULTS We report delayed time to peak THC and 11-OH-THC concentrations in plasma, brain, and adipose tissue, which is consistent with human pharmacokinetics studies. We also found sex differences in the cannabis tetrad: (1) female mice had a delayed hypothermic effect 6 hours post consumption, which was not present in males; (2) females had stronger catalepsy than males; (3) males were less mobile following cannabis exposure, whereas female mice showed no difference in locomotion but an anxiogenic effect at 3 hours post exposure; and (4) male mice displayed a longer-lasting antinociceptive effect of oral cannabis. CONCLUSIONS Oral cannabis consumption is a translationally relevant form of administration that produces similar physiological effects as injection or vaping administration and thus should be considered as a viable approach for examining the physiological effects of cannabis moving forward. Furthermore, given the strong sex differences in metabolism of oral cannabis, these factors should be carefully considered when designing animal studies on the effects of cannabis.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Colleen S Peterson
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
| | - Samantha L Baglot
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Canada
| | - Yuta Kohro
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tuan Trang
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
| | - Matthew N Hill
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Canada (Dr Hill and Ms Baglot)
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, The University of Calgary, Calgary, Canada
| |
Collapse
|
17
|
Alam F, Silveyra P. Sex Differences in E-Cigarette Use and Related Health Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7079. [PMID: 37998310 PMCID: PMC10671806 DOI: 10.3390/ijerph20227079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Electronic cigarettes (e-cigarettes) comprise a variety of products designed to deliver nicotine, flavorings, and other substances. To date, multiple epidemiological and experimental studies have reported a variety of health issues associated with their use, including respiratory toxicity, exacerbation of respiratory conditions, and behavioral and physiological effects. While some of these effects appear to be sex- and/or gender-related, only a portion of the research has been conducted considering these variables. In this review, we sought to summarize the available literature on sex-specific effects and sex and gender differences, including predictors and risk factors, effects on organ systems, and behavioral effects. METHODS We searched and selected articles from 2018-2023 that included sex as a variable or reported sex differences on e-cigarette-associated effects. RESULTS We found 115 relevant studies published since 2018 that reported sex differences in a variety of outcomes. The main differences reported were related to reasons for initiation, including smoking history, types of devices and flavoring, polysubstance use, physiological responses to nicotine and toxicants in e-liquids, exacerbation of lung disease, and behavioral factors such as anxiety, depression, sexuality, and bullying. CONCLUSIONS The available literature supports the notion that both sex and gender influence the susceptibility to the negative effects of e-cigarette use. Future research needs to consider sex and gender variables when addressing e-cigarette toxicity and other health-related consequences.
Collapse
Affiliation(s)
- Fatima Alam
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, Bloomington, IN 47405, USA;
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University School of Public Health Bloomington, Bloomington, IN 47405, USA;
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 47405, USA
| |
Collapse
|
18
|
Steinfeld MR, Torregrossa MM. Consequences of adolescent drug use. Transl Psychiatry 2023; 13:313. [PMID: 37802983 PMCID: PMC10558564 DOI: 10.1038/s41398-023-02590-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023] Open
Abstract
Substance use in adolescence is a known risk factor for the development of neuropsychiatric and substance use disorders in adulthood. This is in part due to the fact that critical aspects of brain development occur during adolescence, which can be altered by drug use. Despite concerted efforts to educate youth about the potential negative consequences of substance use, initiation remains common amongst adolescents world-wide. Additionally, though there has been substantial research on the topic, many questions remain about the predictors and the consequences of adolescent drug use. In the following review, we will highlight some of the most recent literature on the neurobiological and behavioral effects of adolescent drug use in rodents, non-human primates, and humans, with a specific focus on alcohol, cannabis, nicotine, and the interactions between these substances. Overall, consumption of these substances during adolescence can produce long-lasting changes across a variety of structures and networks which can have enduring effects on behavior, emotion, and cognition.
Collapse
Affiliation(s)
- Michael R Steinfeld
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| |
Collapse
|
19
|
Craft RM, Gogulski HY, Freels TG, Glodosky NC, McLaughlin RJ. Vaporized cannabis extract-induced antinociception in male vs female rats with persistent inflammatory pain. Pain 2023; 164:2036-2047. [PMID: 37027147 PMCID: PMC11323050 DOI: 10.1097/j.pain.0000000000002902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023]
Abstract
ABSTRACT Although preclinical studies generally report robust antinociceptive effects of cannabinoids in rodent persistent pain models, randomized controlled trials in chronic pain patients report limited pain relief from cannabis/cannabinoids. Differences between animal and human studies that may contribute to these discrepant findings include route of cannabis/cannabinoid administration, type of cannabis/cannabinoid, and how pain is measured. To address these factors, rats with complete Freund adjuvant (CFA)-induced hind paw inflammation were exposed acutely or repeatedly to vaporized cannabis extract that was either tetrahydrocannabinol (THC) or cannabidiol (CBD)dominant. One measure of evoked pain (mechanical threshold), 2 functional measures of pain (hind paw weight-bearing, and locomotor activity), and hind paw edema were assessed for up to 2 hours after vapor exposure. Acute exposure to vaporized THC-dominant extract (200 or 400 mg/mL) decreased mechanical allodynia and hind paw edema and increased hind paw weight-bearing and locomotor activity, with no sex differences. After repeated exposure to vaporized THC-dominant extract (twice daily for 3 days), only the antiallodynic effect was significant. Acute exposure to vaporized CBD-dominant cannabis extract (200 mg/mL) did not produce any effects in either sex; repeated exposure to this extract (100, 200, or 400 mg/mL) decreased mechanical allodynia in male rats only. Sex differences (or lack thereof) in the effects of vaporized cannabis extracts were not explained by sex differences in plasma levels of THC, CBD, or their major metabolites. These results suggest that although vaporized THC-dominant extract is likely to be modestly effective against inflammatory pain in both male and female rats, tolerance may develop, and the CBD-dominant extract may be effective only in male rats.
Collapse
Affiliation(s)
| | | | - Timothy G Freels
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | | | - Ryan J McLaughlin
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| |
Collapse
|
20
|
Gazarov EA, Zequeira S, Senetra AS, Howard J, Sharma A, McCurdy CR, Lewis J, Bizon JL, Setlow B. Pharmacokinetics of delta-9-tetrahydrocannabinol following acute cannabis smoke exposure in mice; effects of sex, age, and strain. Front Pharmacol 2023; 14:1227220. [PMID: 37701025 PMCID: PMC10493391 DOI: 10.3389/fphar.2023.1227220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Increased use of cannabis and cannabinoids for recreational and medical purposes has led to a growth in research on their effects in animal models. The majority of this work has employed cannabinoid injections; however, smoking remains the most common route of cannabis consumption. To better model real-world cannabis use, we exposed mice to cannabis smoke to establish the pharmacokinetics of Δ9THC and its metabolites in plasma and brain. To determine the time course of Δ9THC and two major metabolites [11-hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (11-COOH-THC)], male and female C57BL/6J mice were exposed to smoke from sequentially burning 5 cannabis cigarettes. Following smoke exposure, trunk blood and brains were collected at 6 time points (10-240 min). Plasma and brain homogenates were analyzed for Δ9THC and metabolites using a validated ultraperformance liquid chromatography-tandem mass spectrometry method. To assess effects of age, sex, and mouse strain, we exposed mice of four strains (C57BL/6J, FVB, Swiss Webster, and 129S6/SvEv, aged 4-24 months) to cannabis using the same smoke regimen. Samples were collected 10 and 40 min following exposure. Lastly, to assess effects of dose, C57BL/6J mice were exposed to smoke from burning 3 or 5 cannabis cigarettes, with samples collected 40 min following exposure. The pharmacokinetic study revealed that maximum plasma Δ9THC concentrations (Cmax) were achieved at 10 and 40 min for males and females, respectively, while Cmax for brain Δ9THC was observed at 20 and 40 min for males and females, respectively. There were no age or strain differences in plasma Δ9THC concentrations at 10 or 40 min; however, 129S6/SvEv mice had significantly higher brain Δ9THC concentrations than FVB mice. Additionally, 3 cigarettes produced significantly lower plasma 11-COOH-THC concentrations compared to 5 cigarettes, although dose differences were not evident in plasma or brain concentrations of Δ9THC or 11-OH-THC. Across all experiments, females had higher levels of 11-COOH-THC in plasma compared to males. The results reveal robust sex differences in Δ9THC pharmacokinetics, and lay the groundwork for future studies using mice to model the pharmacodynamics of smoked cannabis.
Collapse
Affiliation(s)
- Emely A. Gazarov
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
| | - Sabrina Zequeira
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | | | - John Howard
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Christopher R. McCurdy
- Department of Pharmaceutics, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States
| | - Jada Lewis
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jennifer L. Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Psychiatry, University of Florida, Gainesville, FL, United States
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States
| |
Collapse
|
21
|
Craft RM. Burrowing as an index of inflammatory pain in male vs. female rats. Behav Pharmacol 2023; 34:55-67. [PMID: 36473021 DOI: 10.1097/fbp.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study objective was to determine whether burrowing behavior is useful as a functional index of pain in both male and female rats, and whether a 'no-training' protocol can be used to increase testing efficiency. Adult Sprague-Dawley rats were injected in one or both hindpaws with oil vehicle or complete Freund's adjuvant (CFA); starting the next day, the amount of gravel each rat burrowed out of a tube in 1 h was measured daily for ≤7 days. Without preliminary training on the burrowing procedure, CFA reliably suppressed burrowing for 2-3 days compared to controls, in both sexes. However, whereas unilateral CFA completely suppressed burrowing 1-day post-CFA in nearly all males, bilateral CFA was required to do so in females. When administered 30 min before testing, once daily for 5 days post-CFA, the nonsteroidal anti-inflammatory drug ketoprofen (0.01-3.2 mg/kg) and the opioid morphine (0.1-3.2 mg/kg) significantly increased CFA-suppressed burrowing, whereas the purported cannabinoid analgesic Δ 9 -tetrahydrocannabinol (0.01-2.0 mg/kg) did not. The benzodiazepine chlordiazepoxide (1.25-10 mg/kg), included as a 'true negative' control, also did not restore CFA-suppressed burrowing in either sex. However, in CFA-treated males only, chlordiazepoxide decreased burrowing, suggesting that anxiety may contribute to burrowing in males but not females that are in pain. Overall these results suggest that burrowing is a valid, functional index of inflammatory pain in both sexes, and training on the burrowing procedure is not necessary. However, females are more avid burrowers than males, which should be considered when both sexes are used in inflammatory pain testing.
Collapse
Affiliation(s)
- Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
22
|
Stella N. THC and CBD: Similarities and differences between siblings. Neuron 2023; 111:302-327. [PMID: 36638804 PMCID: PMC9898277 DOI: 10.1016/j.neuron.2022.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) and its sibling, cannabidiol (CBD), are produced by the same Cannabis plant and have similar chemical structures but differ dramatically in their mechanisms of action and effects on brain functions. Both THC and CBD exhibit promising therapeutic properties; however, impairments and increased incidence of mental health diseases are associated with acute and chronic THC use, respectively, and significant side effects are associated with chronic use of high-dose CBD. This review covers recent molecular and preclinical discoveries concerning the distinct mechanisms of action and bioactivities of THC and CBD and their impact on human behavior and diseases. These discoveries provide a foundation for the development of cannabinoid-based therapeutics for multiple devastating diseases and to assure their safe use in the growing legal market of Cannabis-based products.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Department Psychiatry and Behavioral Sciences, Center for Cannabis Research, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Ferland JMN, Ellis RJ, Betts G, Silveira MM, de Firmino JB, Winstanley CA, Hurd YL. Long-Term Outcomes of Adolescent THC Exposure on Translational Cognitive Measures in Adulthood in an Animal Model and Computational Assessment of Human Data. JAMA Psychiatry 2023; 80:66-76. [PMID: 36416863 PMCID: PMC9685552 DOI: 10.1001/jamapsychiatry.2022.3915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Importance Although perceived as relatively harmless and nonaddictive, adolescent cannabis use significantly increases the likelihood of developing cannabis use disorder in adulthood, especially for high-potency cannabis. Risky decision-making is associated with chronic cannabis use, but given confounds of human studies, it remains unclear whether adolescent cannabis exposure and Δ9-tetrahydrocannabinol (THC) potency specifically predicts risky decision-making or influences cognitive response to the drug later in life. Objective To leverage a human data set of cannabis users and a rat model to evaluate the long-term outcomes of adolescent THC exposure on adult decision-making and impulse control. Design, Setting, and Participants This translational rat study tested the link between adolescent THC exposure and adulthood decision-making. A reanalysis of a previously published dataset of human chronic cannabis users was conducted to evaluate decision-making phenotypes. Computational modeling assessed the human and animal results in a single framework. Data were collected from 2017 to 2020 and analyzed from 2020 to 2022. Main Outcomes and Measures Decision-making was measured by the Iowa Gambling Task (IGT) and Rat Gambling Task (rGT). Impulse control was assessed in the rat model. Computational modeling was used to determine reward and punishment learning rates and learning strategy used by cannabis users and THC-exposed rats. Cell-specific molecular measures were conducted in the prefrontal cortex and amygdala. Results Of 37 participants, 24 (65%) were male, and the mean (SD) age was 33.0 (8.3) years. Chronic cannabis users (n = 22; mean [SE] IGT score, -5.182 [1.262]) showed disadvantageous decision-making compared with controls (n = 15; mean [SE] IGT score, 7.133 [2.687]; Cohen d = 1.436). Risky choice was associated with increased reward learning (mean [SE] IGT score: cannabis user, 0.170 [0.018]; control, 0.046 [0.008]; Cohen d = 1.895) and a strategy favoring exploration vs long-term gains (mean [SE] IGT score: cannabis user, 0.088 [0.012]; control, 0.020 [0.002]; Cohen d = 2.218). Rats exposed to high-dose THC but not low-dose THC during adolescence also showed increased risky decision-making (mean [SE] rGT score: vehicle, 46.17 [7.02]; low-dose THC, 69.45 [6.01]; high-dose THC, 21.97 [11.98]; Cohen d = 0.433) and elevated reward learning rates (mean [SE] rGT score: vehicle, 0.17 [0.01]; low-dose THC, 0.10 [0.01]; high-dose THC, 0.24 [0.06]; Cohen d = 1.541) during task acquisition. These animals were also uniquely susceptible to increased cognitive impairments after reexposure to THC in adulthood, which was correlated with even greater reward learning (r = -0.525; P < .001) and a shift in strategy (r = 0.502; P < .001), similar to results seen in human cannabis users. Molecular studies revealed that adolescent THC dose differentially affected cannabinoid-1 receptor messenger RNA expression in the prelimbic cortex and basolateral amygdala in a layer- and cell-specific manner. Further, astrocyte glial fibrillary acidic protein messenger RNA expression associated with cognitive deficits apparent with adult THC reexposure. Conclusions and Relevance In this translational study, high-dose adolescent THC exposure was associated with cognitive vulnerability in adulthood, especially with THC re-exposure. These data also suggest a link between astrocytes and cognition that altogether provides important insights regarding the neurobiological genesis of risky cannabis use that may help promote prevention and treatment efforts.
Collapse
Affiliation(s)
- Jacqueline-Marie N. Ferland
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Randall J. Ellis
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Addiction Institute of Mount Sinai, New York, New York
| | - Graeme Betts
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mason M. Silveira
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joao Bronze de Firmino
- The Collaborative Advanced Microscopy Laboratories of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Catharine A. Winstanley
- Djavad Mowafaghian Centre for Brain Health, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yasmin L. Hurd
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Addiction Institute of Mount Sinai, New York, New York
| |
Collapse
|
24
|
Torrens A, Ruiz CM, Martinez MX, Tagne AM, Roy P, Grimes D, Ahmed F, Lallai V, Inshishian V, Bautista M, Chen YC, Huestis MA, Das A, Fowler CD, Mahler SV, Piomelli D. Nasal accumulation and metabolism of Δ 9-tetrahydrocannabinol following aerosol ('vaping') administration in an adolescent rat model. Pharmacol Res 2023; 187:106600. [PMID: 36481259 PMCID: PMC9845136 DOI: 10.1016/j.phrs.2022.106600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were ∼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (∼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.
Collapse
Affiliation(s)
- Alexa Torrens
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Maricela X Martinez
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Alex Mabou Tagne
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Pritam Roy
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Dakota Grimes
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Faizy Ahmed
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Valeria Lallai
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Victoria Inshishian
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Malia Bautista
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | | | - Aditi Das
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4625, USA
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697-4625, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-4625, USA.
| |
Collapse
|
25
|
Torrens A, Roy P, Lin L, Vu C, Grimes D, Inshishian VC, Montesinos JS, Ahmed F, Mahler SV, Huestis MA, Das A, Piomelli D. Comparative Pharmacokinetics of Δ 9-Tetrahydrocannabinol in Adolescent and Adult Male and Female Rats. Cannabis Cannabinoid Res 2022; 7:814-826. [PMID: 35353551 PMCID: PMC9784615 DOI: 10.1089/can.2021.0205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Introduction: Studies in rodent models have shown that adolescent exposure to Δ9-THC, the psychotropic constituent of cannabis, produces long-lasting alterations in brain function and behavior. However, our understanding of how age and sex might influence the distribution and metabolism of THC in laboratory rodents is still incomplete. In the present report, we provide a comparative analysis of the pharmacokinetic (PK) properties of THC in adolescent and adult rats of both sexes, and outline several dissimilarities across these groups. Materials and Methods: A single (acute) or 2-week daily (subchronic) administration of THC (0.5 or 5 mg/kg, acute; 5 mg/kg, subchronic; intraperitoneal) was given to adolescent (33-day-old, acute; 30-44-day-old, subchronic) and young adult (70-day-old, acute only) male and female rats. THC and its first-pass metabolites-11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)-were quantified in plasma and brain tissue using a selective isotope-dilution liquid chromatography/tandem mass spectrometry assay. Changes in body temperature were measured using abdominally implanted microchips. Biotransformation of THC to its metabolites using freshly prepared liver microsomes was assessed. Results: At the acute 5 mg/kg dose, maximal plasma concentrations of THC were twice as high in adult than in adolescent rats. Conversely, in adults, brain concentrations and brain-to-plasma ratios for THC were substantially lower (25-50%) than those measured in adolescents. Similarly, plasma and brain concentrations of THC metabolites were higher in adolescent male rats compared with adult males. Interestingly, plasma and brain concentrations of the psychoactive THC metabolite 11-OH-THC were twofold to sevenfold higher in female animals of both ages compared with males. Moreover, liver microsomes from adolescent males and adolescent and adult females converted THC to 11-OH-THC twice as fast as adult male microsomes. A dose-dependent hypothermic response to THC was observed in females with 0.5 and 5 mg/kg THC, whereas only the highest dose elicited a response in males. Finally, subchronic administration of THC during adolescence did not significantly affect the drug's PK profile. Conclusions: The results reveal the existence of multiple age and sex differences in the distribution and metabolism of THC in rats, which might influence the pharmacological response to the drug.
Collapse
Affiliation(s)
- Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Pritam Roy
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Cindy Vu
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Dakota Grimes
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Victoria C. Inshishian
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Johanna S. Montesinos
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Marylin A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aditi Das
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, and University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
26
|
Comparative Metabolomic Profiling of the Metabolic Differences of Δ9-Tetrahydrocannabinol and Cannabidiol. Molecules 2022; 27:molecules27217573. [DOI: 10.3390/molecules27217573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
More than one hundred cannabinoids have been found in cannabis. Δ9-Tetrahydrocannabinol (THC) is the recognized addictive constituent in cannabis; however, the mechanisms underlying THC-induced toxicity remain elusive. To better understand cannabis-induced toxicity, the present study compared the metabolic pathways of THC and its isomer cannabidiol (CBD) in human and mouse liver microsomes using the metabolomic approach. Thirty-two metabolites of THC were identified, including nine undescribed metabolites. Of note, two glutathione (GSH) and two cysteine (Cys) adducts were found in THC’s metabolism. Molecular docking revealed that THC conjugates have a higher affinity with GSH and Cys than with the parent compound, THC. Human recombinant cytochrome P450 enzymes, and their corresponding chemical inhibitors, demonstrated that CYP3A4 and CYP1B1 were the primary enzymes responsible for the formation of THC-GSH and THC-Cys, thus enabling conjugation to occur. Collectively, this study systematically compared the metabolism of THC with the metabolism of CBD using the metabolomic approach, which thus highlights the critical role of metabolomics in identifying novel drug metabolites. Moreover, this study also facilitates mechanistic speculation in order to expand the knowledge of drug metabolism and safety.
Collapse
|
27
|
Robinson D, Ritter S, Yassin M. Comparing Sublingual and Inhaled Cannabis Therapies for Low Back Pain: An Observational Open-Label Study. Rambam Maimonides Med J 2022; 13:RMMJ.10485. [PMID: 36394500 PMCID: PMC9622393 DOI: 10.5041/rmmj.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Medical cannabis is becoming an acceptable treatment modality in medicine, especially for pain relief. Concurrently, cannabis use is becoming more prevalent worldwide, a public demand-driven trend despite the lack of established scientific basis. This observational open-label study sought to investigate the effectiveness of cannabis therapy for alleviating low back pain symptoms. METHODS Two types of cannabis treatment modalities were sequentially administered to chronic low back pain patients. After an initial 1-month washout period (WO1), the first modality was cannabidiol (CBD)-rich sublingual extract treatment administered for 10 months. Following another washout period, the second modality, Δ9-tetrahydrocannabinol (THC)-rich smoked inflorescence (whole dried cannabis flowers) was administered for 12 months. RESULTS Enrolled in the study were 24 patients whose advanced imaging studies (i.e. computerized tomography or magnetic resonance imaging of the lumbar spine) revealed disc herniation or spinal stenosis. Three patients dropped out of extract therapy treatment but resumed study participation to receive THC-rich smoking therapy. After a minimum of 2 years, cannabis therapy had reduced lower back pain symptoms, as assessed by Oswestry Disability Index, the SF-12 patient-reported outcome questionnaire, and the visual analogue scale. Pain reduction was not significant during the extract treatment part of the study; however, pain reduction was significant during the inhaled therapy part of the study. CONCLUSIONS Our findings indicate that inhaled THC-rich therapy is more effective than CBD-rich sublingual extract therapy for treating low back pain and that cannabis therapy is safe and effective for chronic low back pain.
Collapse
Affiliation(s)
- Dror Robinson
- Department of Orthopedics, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
- To whom correspondence should be addressed. E-mail:
| | - Sivan Ritter
- The Behavioral Neurobiology Laboratory, Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, The University of Haifa, Haifa, Israel
| | - Mustafa Yassin
- Department of Orthopedics, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|