1
|
Kandpal M, Varshney N, Rawal KS, Jha HC. Gut dysbiosis and neurological modalities: An engineering approach via proteomic analysis of gut-brain axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:199-248. [PMID: 38762270 DOI: 10.1016/bs.apcsb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The human gut microbiota is a complex and dynamic community of microorganisms, that influence metabolic, neurodevelopmental, and immune pathways. Microbial dysbiosis, characterized by changes in microbial diversity and relative abundances, is implicated in the development of various chronic neurological and neurodegenerative disorders. These disorders are marked by the accumulation of pathological protein aggregates, leading to the progressive loss of neurons and behavioural functions. Dysregulations in protein-protein interaction networks and signalling complexes, critical for normal brain function, are common in neurological disorders but challenging to unravel, particularly at the neuron and synapse-specific levels. To advance therapeutic strategies, a deeper understanding of neuropathogenesis, especially during the progressive disease phase, is needed. Biomarkers play a crucial role in identifying disease pathophysiology and monitoring disease progression. Proteomics, a powerful technology, shows promise in accelerating biomarker discovery and aiding in the development of novel treatments. In this chapter, we provide an in-depth overview of how proteomic techniques, utilizing various biofluid samples from patients with neurological conditions and diverse animal models, have contributed valuable insights into the pathogenesis of numerous neurological disorders. We also discuss the current state of research, potential challenges, and future directions in proteomic approaches to unravel neuro-pathological conditions.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Kunal Sameer Rawal
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India; Centre for Rural Development & Technology, IIT Indore, Indore, India.
| |
Collapse
|
2
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
3
|
Long Y, Wu J, Shen Y, Gan C, Zhang C, Wang G, Jing J, Zhang C, Pan W. CAPG is a novel biomarker for early gastric cancer and is involved in the Wnt/β-catenin signaling pathway. Cell Death Discov 2024; 10:15. [PMID: 38191512 PMCID: PMC10774411 DOI: 10.1038/s41420-023-01767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Past studies have shown that the Gelsolin-like actin-capping protein (CAPG) regulates cell migration and proliferation and is strongly associated with tumor progression. We present the first study of the mechanism of action of CAPG in early gastric cancer (EGC). We demonstrate that CAPG expression is upregulated in gastric cancer (GC) especially EGC. CAPG promotes GC proliferation, migration, invasion, and metastasis in vivo and in vitro. More importantly, CAPG plays a role in GC by involving the Wnt/β-catenin signaling pathway. Our findings suggest that CAPG may function as a novel biomarker for EGC.
Collapse
Affiliation(s)
- Yan Long
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China
| | - JiaQi Wu
- Department of Gastroenterology, Affiliated Hospital of Hangzhou Normal University, 310015, Hangzhou, China
| | - Yu Shen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxiao Gan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuandong Zhang
- The Medical College of QingDao University, Qingdao, Shandong, China
| | - Gang Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Jiyong Jing
- Department of Medical Education and Simulation Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Chenjing Zhang
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China.
| | - Wensheng Pan
- Cancer Center, Department of Gastroenterology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Haq SAU, Bashir T, Roberts TH, Husaini AM. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches. Mol Biol Rep 2023; 51:41. [PMID: 38158512 DOI: 10.1007/s11033-023-09042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 10/13/2023] [Indexed: 01/03/2024]
Abstract
While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.
Collapse
Affiliation(s)
- Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India
| | - Thomas H Roberts
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Eveleigh, Australia
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, 190025, India.
| |
Collapse
|
5
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Johan MF. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics (Basel) 2023; 13:2328. [PMID: 37510072 PMCID: PMC10378430 DOI: 10.3390/diagnostics13142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
6
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Hlatky D, Medzihradszky KF, Darula Z, Nyitrai G, Czurkó A, Juhász G, Kardos J, Kékesi KA. Chronic Cerebral Hypoperfusion-Induced Disturbed Proteostasis of Mitochondria and MAM Is Reflected in the CSF of Rats by Proteomic Analysis. Mol Neurobiol 2023; 60:3158-3174. [PMID: 36808604 PMCID: PMC10122630 DOI: 10.1007/s12035-023-03215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 02/23/2023]
Abstract
Declining cerebral blood flow leads to chronic cerebral hypoperfusion which can induce neurodegenerative disorders, such as vascular dementia. The reduced energy supply of the brain impairs mitochondrial functions that could trigger further damaging cellular processes. We carried out stepwise bilateral common carotid occlusions on rats and investigated long-term mitochondrial, mitochondria-associated membrane (MAM), and cerebrospinal fluid (CSF) proteome changes. Samples were studied by gel-based and mass spectrometry-based proteomic analyses. We found 19, 35, and 12 significantly altered proteins in the mitochondria, MAM, and CSF, respectively. Most of the changed proteins were involved in protein turnover and import in all three sample types. We confirmed decreased levels of proteins involved in protein folding and amino acid catabolism, such as P4hb and Hibadh in the mitochondria by western blot. We detected reduced levels of several components of protein synthesis and degradation in the CSF as well as in the subcellular fractions, implying that hypoperfusion-induced altered protein turnover of brain tissue can be detected in the CSF by proteomic analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Dávid Hlatky
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary.,Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
| | - Gabriella Nyitrai
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - András Czurkó
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,InnoScience Ltd., Mátranovák, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary. .,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary. .,InnoScience Ltd., Mátranovák, Hungary. .,Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
7
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
8
|
Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb Cell Fact 2023; 22:11. [PMID: 36647087 PMCID: PMC9841694 DOI: 10.1186/s12934-022-02013-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Macroscopic fungi, mainly higher basidiomycetes and some ascomycetes, are considered medicinal mushrooms and have long been used in different areas due to their pharmaceutically/nutritionally valuable bioactive compounds. However, the low production of these bioactive metabolites considerably limits the utilization of medicinal mushrooms both in commerce and clinical trials. As a result, many attempts, ranging from conventional methods to novel approaches, have been made to improve their production. The novel strategies include conducting omics investigations, constructing genome-scale metabolic models, and metabolic engineering. So far, genomics and the combined use of different omics studies are the most utilized omics analyses in medicinal mushroom research (both with 31% contribution), while metabolomics (with 4% contribution) is the least. This article is the first attempt for reviewing omics investigations in medicinal mushrooms with the ultimate aim of bioactive compound overproduction. In this regard, the role of these studies and systems biology in elucidating biosynthetic pathways of bioactive compounds and their contribution to metabolic engineering will be highlighted. Also, limitations of omics investigations and strategies for overcoming them will be provided in order to facilitate the overproduction of valuable bioactive metabolites in these valuable organisms.
Collapse
|
9
|
Abstract
The gradual loss of skeletal muscle mass during aging and associated decline in contractile strength can result in reduced fitness, frailty, and loss of independence. In order to better understand the molecular and cellular mechanisms that underlie sarcopenia of old age and the frailty syndrome, as well as identify novel therapeutic targets to treat age-related fiber wasting, it is crucial to develop a comprehensive biomarker signature of muscle aging. Fluorescence two-dimensional gel electrophoresis (2D-DIGE) in combination with sensitive mass spectrometry presents an ideal bioanalytical tool for biomarker discovery in biogerontology. This chapter outlines the application of the 2D-DIGE method for the comparative analysis of human biopsy specimens from middle-aged versus senescent individuals using a two-CyDye-based method.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
10
|
Abstract
In-gel digestion of protein spots derived from two-dimensional gels and their subsequent identification by mass spectrometry is involved in a multitude of mass spectrometry-driven proteomic experiments, including fluorescence two-dimensional difference gel electrophoresis (2D-DIGE). This type of proteomic methodology has been involved in the establishment of comparative proteome maps and in the identification of differentially expressed proteins and their isoforms in health and disease. Most in-gel digestion protocols follow a number of common steps including excision of the protein spots of interest, destaining, reduction and alkylation (for silver-stained gels), and dehydration and overnight digestion with the proteolytic enzyme of choice. While trypsin has been a mainstay of peptide digestion for many years, it does have its shortcomings, particularly related to incomplete peptide digestion, and this has led to a rise in popularity for other proteolytic enzymes either used alone or in combination. This chapter discusses the alternative enzymes available and describes the process of in-gel digestion using the enzyme trypsin.
Collapse
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
11
|
O'Sullivan EM, Dowling P, Swandulla D, Ohlendieck K. Proteomic Identification of Saliva Proteins as Noninvasive Diagnostic Biomarkers. Methods Mol Biol 2023; 2596:147-167. [PMID: 36378438 DOI: 10.1007/978-1-0716-2831-7_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Many biomedically relevant biomarkers are proteins with characteristic biochemical properties and a relatively restricted subcellular distribution. The comparative and mass spectrometry-based proteomic analysis of body fluids can be particularly instrumental for the targeted identification of novel protein biomarkers with pathological relevance. In this respect, new research efforts in biomarker discovery focus on the systematic mapping of the human saliva proteome, as well as the pathobiochemical identification of disease-related modifications or concentration changes in specific saliva proteins. As a product of exocrine secretion, saliva can be considered an ideal source for the biochemical identification of new disease indicators. Importantly, saliva represents a body fluid that is continuously available for diagnostic and prognostic assessments. This chapter gives an overview of saliva proteomics, including a discussion of the usefulness of both liquid chromatography and two-dimensional gel electrophoresis for efficient protein separation in saliva proteomics.
Collapse
Affiliation(s)
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
12
|
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) is an elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2D-GE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The use of an internal pooled standard makes 2D-DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. Technical limitations of this technique (i.e., underrating of low abundant, high molecular mass and integral membrane proteins) are counterbalanced by the incomparable separation power which allows proteoforms and unknown PTM (posttranslational modification) identification. Moreover, the image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate, Italy.
| |
Collapse
|
13
|
Abstract
The combination of large-scale protein separation techniques, sophisticated mass spectrometry, and systems bioinformatics has led to the establishment of proteomics as a distinct discipline within the wider field of protein biochemistry. Both discovery proteomics and targeted proteomics are widely used in biological and biomedical research, whereby the analytical approaches can be broadly divided into proteoform-centric top-down proteomics versus peptide-centric bottom-up proteomics. This chapter outlines the scientific value of top-down proteomics and describes how fluorescence two-dimensional difference gel electrophoresis can be combined with the systematic analysis of crucial post-translational modifications. The concept of on-membrane digestion following the electrophoretic transfer of proteins and the usefulness of comparative two-dimensional immunoblotting are discussed.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
14
|
Abstract
The skeletal muscle proteome consists of a large number of diverse protein species with a broad and dynamic concentration range. Since mature skeletal muscles are characterized by a distinctive combination of contractile cells with differing physiological and biochemical properties, it is essential to determine specific differences in the protein composition of fast, slow, and hybrid fibers. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a powerful comparative tool to analyze fiber type-specific differences between predominantly fast contracting versus slower twitching muscles. In this chapter, the application of the 2D-DIGE method for the comparative analysis of different subtypes of skeletal muscles is outlined in detail. A standardized proteomic workflow is described, involving sample preparation, protein extraction, differential fluorescence labeling using a 3-CyDye system, first-dimension isoelectric focusing, second-dimension slab gel electrophoresis, 2D-DIGE image analysis, protein digestion, and mass spectrometry.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
15
|
Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int J Mol Sci 2022; 23:ijms23095162. [PMID: 35563559 PMCID: PMC9100097 DOI: 10.3390/ijms23095162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.
Collapse
|
16
|
Azevedo R, Jacquemin C, Villain N, Fenaille F, Lamari F, Becher F. Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells 2022; 11:1279. [PMID: 35455959 PMCID: PMC9031030 DOI: 10.3390/cells11081279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders that challenge modern medicine. A deeper understanding of the pathogenesis underlying neurodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and disease-modifying therapy and reduce these diseases' burden. Specifically, post-translational modifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs and in the context of biomarker discovery has improved and opened venues for analyzing more complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the most important and recent breakthroughs in MS-based biomarker discovery.
Collapse
Affiliation(s)
- Rita Azevedo
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Chloé Jacquemin
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Nicolas Villain
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
- Institut du Cerveau (ICM), Pitié-Salpêtrière Hospital, 75013 Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, AP-HP Sorbonne Université, CEDEX 13, 75651 Paris, France
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| | - Foudil Lamari
- Department of Metabolic Biochemistry (AP-HP Sorbonne), Pitié-Salpêtrière Hospital, CEDEX 13, 75651 Paris, France;
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (C.J.); (N.V.); (F.F.)
| |
Collapse
|
17
|
Al-Amrani S, Al-Jabri Z, Al-Zaabi A, Alshekaili J, Al-Khabori M. Proteomics: Concepts and applications in human medicine. World J Biol Chem 2021; 12:57-69. [PMID: 34630910 PMCID: PMC8473418 DOI: 10.4331/wjbc.v12.i5.57] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Proteomics is the complete evaluation of the function and structure of proteins to understand an organism’s nature. Mass spectrometry is an essential tool that is used for profiling proteins in the cell. However, biomarker discovery remains the major challenge of proteomics because of their complexity and dynamicity. Therefore, combining the proteomics approach with genomics and bioinformatics will provide an understanding of the information of biological systems and their disease alteration. However, most studies have investigated a small part of the proteins in the blood. This review highlights the types of proteomics, the available proteomic techniques, and their applications in different research fields.
Collapse
Affiliation(s)
- Safa Al-Amrani
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Zaaima Al-Jabri
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Adhari Al-Zaabi
- Department of Human and Clinical Anatomy, Sultan Qaboos University, Muscat 123, Oman
| | - Jalila Alshekaili
- Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman
| | | |
Collapse
|
18
|
Ha J, Park SB. Callyspongiolide kills cells by inducing mitochondrial dysfunction via cellular iron depletion. Commun Biol 2021; 4:1123. [PMID: 34556786 PMCID: PMC8460830 DOI: 10.1038/s42003-021-02643-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The highly cytotoxic marine natural product callyspongiolide holds great promise as a warhead of antibody-drug conjugate in cancer therapeutics; however, the mechanism underlying its cytotoxicity remains unclear. To elucidate how callyspongiolide kills cells, we employed label-free target identification with thermal stability-shift-based fluorescence difference in two-dimensional (2-D) gel electrophoresis (TS-FITGE), which allowed observation of a unique phenomenon of protein-spot separation on 2-D gels upon treatment with callyspongiolide at increasing temperatures. During our exploration of what proteins were associated with this phenomenon as well as why it happens, we found that callyspongiolide induces mitochondrial/lysosomal dysfunction and autophagy inhibition. Moreover, molecular biology studies revealed that callyspongiolide causes lysosomal dysfunction, which induces cellular iron depletion and leads to mitochondrial dysfunction and subsequent cytotoxicity. Notably, these effects were rescued through iron supplementation. Although our approach was unable to reveal the direct protein targets of callyspongiolide, unique phenomena observed only by TS-FITGE provided critical insight into the mechanism of action of callyspongiolide and specifically its cytotoxic activity via induction of mitochondrial dysfunction through cellular iron depletion caused by lysosomal deacidification, which occurred independent of known programmed cell death pathways. In order to elucidate how callyspongiolide, a potent cytotoxic marine natural product, kills human lung cancer cells, Ha and Park employed TS-FITGE technique, a label-free target identification method with thermal stability-shift-based fluorescence difference in 2-D gel electrophoresis, allowing them to observe protein-spot separation upon treatment in increasing temperatures. They found that callyspongiolide induces lysosomal dysfunction followed by mitochondrial dysfunction as well as iron depletion, which sheds light on the mechanism of action of callyspongiolide.
Collapse
Affiliation(s)
- Jaeyoung Ha
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Korea. .,CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul, 08826, Korea. .,SPARK Biopharma, Inc, Seoul, 08791, Korea.
| |
Collapse
|
19
|
Carbonara K, Andonovski M, Coorssen JR. Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes 2021; 9:38. [PMID: 34564541 PMCID: PMC8482110 DOI: 10.3390/proteomes9030038] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Proteomes are complex-much more so than genomes or transcriptomes. Thus, simplifying their analysis does not simplify the issue. Proteomes are of proteoforms, not canonical proteins. While having a catalogue of amino acid sequences provides invaluable information, this is the Proteome-lite. To dissect biological mechanisms and identify critical biomarkers/drug targets, we must assess the myriad of proteoforms that arise at any point before, after, and between translation and transcription (e.g., isoforms, splice variants, and post-translational modifications [PTM]), as well as newly defined species. There are numerous analytical methods currently used to address proteome depth and here we critically evaluate these in terms of the current 'state-of-the-field'. We thus discuss both pros and cons of available approaches and where improvements or refinements are needed to quantitatively characterize proteomes. To enable a next-generation approach, we suggest that advances lie in transdisciplinarity via integration of current proteomic methods to yield a unified discipline that capitalizes on the strongest qualities of each. Such a necessary (if not revolutionary) shift cannot be accomplished by a continued primary focus on proteo-genomics/-transcriptomics. We must embrace the complexity. Yes, these are the hard questions, and this will not be easy…but where is the fun in easy?
Collapse
Affiliation(s)
| | | | - Jens R. Coorssen
- Faculties of Applied Health Sciences and Mathematics & Science, Departments of Health Sciences and Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (K.C.); (M.A.)
| |
Collapse
|
20
|
Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations. Antioxidants (Basel) 2021; 10:antiox10030499. [PMID: 33807006 PMCID: PMC8004825 DOI: 10.3390/antiox10030499] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications regulate the structure and function of proteins that can result in changes to the activity of different pathways. These include modifications altering the redox state of thiol groups on protein cysteine residues, which are sensitive to oxidative environments. While mass spectrometry has advanced the identification of protein thiol modifications and expanded our knowledge of redox-sensitive pathways, the quantitative aspect of this technique is critical for the field of redox proteomics. In this review, we describe how mass spectrometry-based redox proteomics has enabled researchers to accurately quantify the stoichiometry of reversible oxidative modifications on specific cysteine residues of proteins. We will describe advancements in the methodology that allow for the absolute quantitation of thiol modifications, as well as recent reports that have implemented this approach. We will also highlight the significance and application of such measurements and why they are informative for the field of redox biology.
Collapse
|
21
|
Fernandes Vileigas D, Cicogna AC. Effects of obesity on the cardiac proteome. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2020.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Grzelak S, Stachyra A, Moskwa B, Bień-Kalinowska J. Exploiting the potential of 2D DIGE and 2DE immunoblotting for comparative analysis of crude extract of Trichinella britovi and Trichinella spiralis muscle larvae proteomes. Vet Parasitol 2020; 289:109323. [PMID: 33278763 DOI: 10.1016/j.vetpar.2020.109323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/01/2022]
Abstract
The Trichinella genus poses an interesting puzzle for researchers, having diverged very early in the evolution of the nematodes. The Trichinella spiralis proteome is a cosmopolitan and well-studied model of Trichinella; however, Trichinella britovi also circulates in the sylvatic environment and both species infect humans, resulting in the development of trichinellosis. Few experiments have examined the proteins belonging to the T. britovi proteome. The aim of the present study was to compare the protein expression profiles of crude extracts of T. spiralis and T. britovi muscle larvae using a highly-sensitive two-dimensional differential in-gel electrophoresis (2D DIGE) technique coupled with 2DE immunoblotting. Selected immunoreactive protein spots were then identified by liquid chromatography coupled with mass spectrometry analysis (LC-MS/MS), and their function in Trichinella and the host-parasite interaction was determined by gene ontology analysis. Spots common to both T. spiralis and T. britovi, spots with different expressions between the two and spots specific to each species were labelled with different cyanine dyes. In total, 196 protein spots were found in both proteomes; of these 165 were common, 23 expressed exclusively in T. spiralis and 8 in T. britovi. A comparative analysis of volume ratio values with Melanie software showed that among the common spots, nine demonstrated higher expression in T. spiralis, and 17 in T. britovi. LC-MS/MS analysis of 11 selected spots identified 41 proteins with potential antigenic characteristics: 26 were specific for T. spiralis, six for T. britovi, and eight were found in both proteomes. Gene Ontology analysis showed that the identified T. spiralis proteins possess hydrolytic endopeptidase, endonuclease and transferase activities. Similarly, most of the T. britovi proteins possess catalytic activities, such as lyase, hydrolase, isomerase and peptidase activity. The applied 2D DIGE technique visualized Trichinella spp. protein spots with different molecular weights or isoelectric point values, as well as those with different expression levels. The identified immunoreactive proteins participate in multiple processes associated with host muscle cell invasion and larval adaptation to the host environment. Their reactivity with the host immune system makes them possible candidates for the development of a novel trichinellosis diagnostic test or vaccine against helminthiasis caused by T. spiralis or T. britovi.
Collapse
Affiliation(s)
- Sylwia Grzelak
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| | - Anna Stachyra
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Bożena Moskwa
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Justyna Bień-Kalinowska
- The Witold Stefański Institute of Parasitology Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| |
Collapse
|
23
|
Coombs KM. Update on Proteomic approaches to uncovering virus-induced protein alterations and virus -host protein interactions during the progression of viral infection. Expert Rev Proteomics 2020; 17:513-532. [PMID: 32910682 DOI: 10.1080/14789450.2020.1821656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Viruses induce profound changes in the cells they infect. Understanding these perturbations will assist in designing better therapeutics to combat viral infection. System-based proteomic assays now provide unprecedented opportunity to monitor large numbers of cellular proteins. AREAS COVERED This review will describe various quantitative and functional mass spectrometry-based methods, and complementary non-mass spectrometry-based methods, such as aptamer profiling and proximity extension assays, and examples of how each are used to delineate how viruses affect host cells, identify which viral proteins interact with which cellular proteins, and how these change during the course of a viral infection. PubMed was searched multiple times prior to manuscript submissions and revisions, using virus, viral, proteomics; in combination with each keyword. The most recent examples of published works from each search were then analyzed. EXPERT OPINION There has been exponential growth in numbers and types of proteomic analyses in recent years. Continued development of reagents that allow increased multiplexing and deeper proteomic probing of the cell, at quantitative and functional levels, enhancements that target more important protein modifications, and improved bioinformatics software tools and pathway prediction algorithms will accelerate this growth and usher in a new era of host proteome understanding.
Collapse
Affiliation(s)
- Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, Canada.,Manitoba Centre for Proteomics and Systems Biology , Winnipeg, Manitoba, Canada.,Manitoba Institute of Child Health , Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Itze-Mayrhofer C, Brem G. Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. J Proteomics 2020; 225:103884. [PMID: 32593762 DOI: 10.1016/j.jprot.2020.103884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Reproductive fluids from the female reproductive tract are gaining attention for their potential to support and optimize reproductive processes, including gamete maturation and embryo culture in vitro. Quantitative proteomics is a powerful way to decipher the proteome of reproductive tract fluids and to identify biologically relevant proteins. The present review describes proteomic strategies for analysing female reproductive fluid proteins. In addition, it considers the strategies for the preparation of oviductal, uterine and follicular fluid samples. Finally, it highlights the main results of quantitative proteomic studies, providing insights into the biological processes related to reproductive biology in farm animals. SIGNIFICANCE: Assisted reproductive technologies (ARTs) have become vitally important for farm animal breeding and much effort is going into the optimization and refinement of the techniques. There are also attempts to imitate physiological conditions by adding reproductive fluids or individual fluid proteins to improve in vitro procedures. A detailed knowledge of the reproductive fluid proteomes is indispensable. The present review summarizes the most widely used quantitative proteomic approaches for the analysis of fluids from the female reproductive tract and highlights the potential of quantitative proteomics to delineate reproductive processes and identify candidate proteins for ARTs in farm animals.
Collapse
Affiliation(s)
- Corina Itze-Mayrhofer
- Institute of Animal Breeding and Genetics, Group Molecular Reproduction IFA-Tulln, University of Veterinary Medicine, Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
25
|
Moffett JR, Arun P, Puthillathu N, Vengilote R, Ives JA, Badawy AAB, Namboodiri AM. Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD + Synthesis During Inflammation and Infection. Front Immunol 2020; 11:31. [PMID: 32153556 PMCID: PMC7047773 DOI: 10.3389/fimmu.2020.00031] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Quinolinate (Quin) is a classic example of a biochemical double-edged sword, acting as both essential metabolite and potent neurotoxin. Quin is an important metabolite in the kynurenine pathway of tryptophan catabolism leading to the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As a precursor for NAD+, Quin can direct a portion of tryptophan catabolism toward replenishing cellular NAD+ levels in response to inflammation and infection. Intracellular Quin levels increase dramatically in response to immune stimulation [e.g., lipopolysaccharide (LPS) or pokeweed mitogen (PWM)] in macrophages, microglia, dendritic cells, and other cells of the immune system. NAD+ serves numerous functions including energy production, the poly ADP ribose polymerization (PARP) reaction involved in DNA repair, and the activity of various enzymes such as the NAD+-dependent deacetylases known as sirtuins. We used highly specific antibodies to protein-coupled Quin to delineate cells that accumulate Quin as a key aspect of the response to immune stimulation and infection. Here, we describe Quin staining in the brain, spleen, and liver after LPS administration to the brain or systemic PWM administration. Quin expression was strong in immune cells in the periphery after both treatments, whereas very limited Quin expression was observed in the brain even after direct LPS injection. Immunoreactive cells exhibited diverse morphology ranging from foam cells to cells with membrane extensions related to cell motility. We also examined protein expression changes in the spleen after kynurenine administration. Acute (8 h) and prolonged (48 h) kynurenine administration led to significant changes in protein expression in the spleen, including multiple changes involved with cytoskeletal rearrangements associated with cell motility. Kynurenine administration resulted in several expression level changes in proteins associated with heat shock protein 90 (HSP90), a chaperone for the aryl-hydrocarbon receptor (AHR), which is the primary kynurenine metabolite receptor. We propose that cells with high levels of Quin are those that are currently releasing kynurenine pathway metabolites as well as accumulating Quin for sustained NAD+ synthesis from tryptophan. Further, we propose that the kynurenine pathway may be linked to the regulation of cell motility in immune and cancer cells.
Collapse
Affiliation(s)
- John R. Moffett
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Peethambaran Arun
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Ranjini Vengilote
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - John A. Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, VA, United States
| | | | - Aryan M. Namboodiri
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| |
Collapse
|
26
|
Moriggi M, Giussani M, Torretta E, Capitanio D, Sandri M, Leone R, De Palma S, Vasso M, Vozzi G, Tagliabue E, Gelfi C. ECM Remodeling in Breast Cancer with Different Grade: Contribution of 2D-DIGE Proteomics. Proteomics 2019; 18:e1800278. [PMID: 30353998 DOI: 10.1002/pmic.201800278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/24/2018] [Indexed: 01/05/2023]
Abstract
Tumor extracellular matrix (ECM) plays a pivotal role in outcome of breast cancer (BC) patients. Overexpression of 58 genes, encoding 43 structural ECM proteins, has been identified to determine a specific cluster of BC with accelerated metastatic potential only in the undifferentiated (grade III) phenotype. The scope of this study is to characterize protein repertoire able to predict patient outcome in BC according to ECM gene expression pattern and histological grade. The differential proteomic analysis is based on 2D-differential gel electrophoresis, MALDI-MS, bioinformatics, and immunoblotting. Results suggest a relationship among ECM remodeling, signal mechanotransduction, and metabolic rewiring in BCs characterized by a specific mRNA ECM signature and identified a set of dysregulated proteins characteristic of hormone receptors expression as fibrinogen-β chain, collagen α-1(VI) chain, and α-1B-glycoprotein. Furthermore, in triple negative tumors with ECM signature, the FGG and α5β1/αvβ3 integrins increase whereas detyrosinated α-tubulin and mimecan decrease leading to unorganized integrin presentation involving focal adhesion kinase, activation of Rho GTPases associated to epithelial mesenchymal transition. In hormone receptors negative BCs characterized by a specific ECM gene cluster, the differentially regulated proteins, identified in the present study, can be potentially relevant to predict patient's outcome.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy
| | - Marta Giussani
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy
| | - Marco Sandri
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Roberta Leone
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy
| | - Sara De Palma
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Segrate-Cefalù 20090, Italy
| | - Michele Vasso
- Institute of Bioimaging and Molecular Physiology, National Research Council (CNR), Segrate-Cefalù 20090, Italy
| | - Giovanni Vozzi
- Research Center BE. Piaggio, University of Pisa, Pisa 56122, Italy.,Dipartimento di Ingegneria dell'Informazione (DII), University of Pisa, Pisa 56122, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan 20129, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milano 20161, Italy
| |
Collapse
|
27
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
28
|
Blundon M, Ganesan V, Redler B, Van PT, Minden JS. Two-Dimensional Difference Gel Electrophoresis. Methods Mol Biol 2019; 1855:229-247. [PMID: 30426421 DOI: 10.1007/978-1-4939-8793-1_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D DIGE) is a modified form of 2D electrophoresis (2D E) that allows one to compare two or three protein samples simultaneously on the same gel. The proteins in each sample are covalently tagged with different color fluorescent dyes that are designed to have no effect on the relative migration of proteins during electrophoresis. Proteins that are common to the samples appear as "spots" with a fixed ratio of fluorescent signals, whereas proteins that differ between the samples have different fluorescence ratios. With conventional imaging systems, DIGE is capable of reliably detecting as little as 0.2 fmol of protein, and protein differences down to ± 15%, over a ~10,000-fold protein concentration range. DIGE combined with digital image analysis therefore greatly improves the statistical assessment of proteome variation. Here we describe a protocol for conducting DIGE experiments, which takes 2-3 days to complete. We have further improved upon 2D DIGE by introducing in-gel equilibration to improve protein retention during transfer between the first and second dimensions of electrophoresis and by developing a fluorescent gel imaging system with a millionfold dynamic range.
Collapse
Affiliation(s)
- Malachi Blundon
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vinitha Ganesan
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Brendan Redler
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Phu T Van
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jonathan S Minden
- Department of Biological Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Li P, Wu Y, Zhang Z, Lin D, Wang D, Huang X, Zhang Y. Proteomics analysis identified serum biomarkers for occupational benzene exposure and chronic benzene poisoning. Medicine (Baltimore) 2019; 98:e16117. [PMID: 31232959 PMCID: PMC6636960 DOI: 10.1097/md.0000000000016117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The study aimed to find novel effect biomarkers for occupational benzene exposure and chronic benzene poisoning (CBP), which might also provide clues to the mechanism of benzene toxicity.We performed a comparative serological proteome analysis between healthy control workers with no benzene exposure, workers with short-term benzene exposure, workers with long-term benzene exposure, and CBP patients using 2D-DIGE and MALDI-TOF-MS. Two of the differentially expressed proteins were then selected to be validated by immune turbidimetric analysis.A total of 10 proteins were found to be significantly altered between different groups. The identified deferentially expressed proteins were classified according to their molecular functions, biological processes, and protein classes. The alteration of 2 important serum proteins among them, apolipoprotein A-I and transthyretin, were further confirmed.Our findings suggest that the identified differential proteins could be used as biomarkers for occupational benzene exposure and CBP, and they may also help elucidate the mechanisms of benzene toxicity.
Collapse
Affiliation(s)
- Peimao Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Yuanru Wu
- The Second People's Hospital of Longgang District, Shenzhen, Guangdong, China
| | - Zhimin Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Dafeng Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Dianpeng Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Xianqing Huang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| | - Yanfang Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen
| |
Collapse
|
30
|
Bisht D, Sharma D, Sharma D, Singh R, Gupta VK. Recent insights intoMycobacterium tuberculosisthrough proteomics and implications for the clinic. Expert Rev Proteomics 2019; 16:443-456. [DOI: 10.1080/14789450.2019.1608185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Devesh Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Divakar Sharma
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rananjay Singh
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, National JALMA Institute for Leprosy & Other Mycobacterial Diseases (ICMR), Agra, India
| |
Collapse
|
31
|
Proteomic Analysis of the Maternal Preoptic Area in Rats. Neurochem Res 2019; 44:2314-2324. [PMID: 30847857 PMCID: PMC6776485 DOI: 10.1007/s11064-019-02755-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 10/29/2022]
Abstract
The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.
Collapse
|
32
|
Cao Y, Li Z, Mao L, Cao H, Kong J, Yu B, Yu C, Liao W. The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. Eur J Med Chem 2019; 162:423-434. [DOI: 10.1016/j.ejmech.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023]
|
33
|
Rao AA, Mehta K, Gahoi N, Srivastava S. Application of 2D-DIGE and iTRAQ Workflows to Analyze CSF in Gliomas. Methods Mol Biol 2019; 2044:81-110. [PMID: 31432408 DOI: 10.1007/978-1-4939-9706-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomics is an indispensable tool for disease biomarker discovery. It is widely used for the analysis of biological fluids such as cerebrospinal fluid (CSF), blood, and saliva, which further aids in our understanding of disease incidence and progression. CSF is often the biospecimen of choice in case of intracranial tumors, as rapid changes in the tumor microenvironment can be easily assessed due to its close proximity to the brain. On the contrary studies comprising of serum or plasma samples do not truly reflect the underlying molecular alterations due to the presence of protective blood-brain barrier. We have described in here the detailed workflows for two advanced proteomics techniques, namely, 2D-DIGE (two-dimensional difference in-gel electrophoresis) and iTRAQ (isobaric tag for relative and absolute quantitation), for CSF analysis. Both of these techniques are very sensitive and widely used for quantitative proteomics analysis.
Collapse
Affiliation(s)
- Aishwarya A Rao
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Kanika Mehta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Nikita Gahoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
34
|
Rana A, Thakur S, Kumar G, Akhter Y. Recent Trends in System-Scale Integrative Approaches for Discovering Protective Antigens Against Mycobacterial Pathogens. Front Genet 2018; 9:572. [PMID: 30538722 PMCID: PMC6277634 DOI: 10.3389/fgene.2018.00572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterial infections are one of the deadliest infectious diseases still posing a major health burden worldwide. The battle against these pathogens needs to focus on novel approaches and key interventions. In recent times, availability of genome scale data has revolutionized the fields of computational biology and immunoproteomics. Here, we summarize the cutting-edge ‘omics’ technologies and innovative system scale strategies exploited to mine the available data. These may be targeted using high-throughput technologies to expedite the identification of novel antigenic candidates for the rational next generation vaccines and serodiagnostic development against mycobacterial pathogens for which traditional methods have been failing.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Shweta Thakur
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Girish Kumar
- School of Life Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
35
|
Di Gerlando R, Tolone M, Sutera AM, Monteleone G, Portolano B, Sardina MT, Mastrangelo S. Variation of proteomic profile during lactation in Girgentana goat milk: a preliminary study. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1483749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Marco Tolone
- Dipartimento di Scienze Agrarie, University of Palermo, Palermo, Italy
| | - Anna Maria Sutera
- Dipartimento di Scienze Agrarie, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
36
|
Than NG, Romero R, Tarca AL, Kekesi KA, Xu Y, Xu Z, Juhasz K, Bhatti G, Leavitt RJ, Gelencser Z, Palhalmi J, Chung TH, Gyorffy BA, Orosz L, Demeter A, Szecsi A, Hunyadi-Gulyas E, Darula Z, Simor A, Eder K, Szabo S, Topping V, El-Azzamy H, LaJeunesse C, Balogh A, Szalai G, Land S, Torok O, Dong Z, Kovalszky I, Falus A, Meiri H, Draghici S, Hassan SS, Chaiworapongsa T, Krispin M, Knöfler M, Erez O, Burton GJ, Kim CJ, Juhasz G, Papp Z. Integrated Systems Biology Approach Identifies Novel Maternal and Placental Pathways of Preeclampsia. Front Immunol 2018; 9:1661. [PMID: 30135684 PMCID: PMC6092567 DOI: 10.3389/fimmu.2018.01661] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022] Open
Abstract
Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.
Collapse
Affiliation(s)
- Nandor Gabor Than
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, United States
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Zhonghui Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard University, Boston, MA, United States
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | | | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Balazs Andras Gyorffy
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Laszlo Orosz
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anett Szecsi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Hunyadi-Gulyas
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Attila Simor
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Katalin Eder
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Morphology and Physiology, Semmelweis University, Budapest, Hungary
| | - Vanessa Topping
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Haidy El-Azzamy
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Christopher LaJeunesse
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Andrea Balogh
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabor Szalai
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Susan Land
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Olga Torok
- Department of Obstetrics and Gynaecology, University of Debrecen, Debrecen, Hungary
| | - Zhong Dong
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Sorin Draghici
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Department of Clinical and Translational Science, Wayne State University, Detroit, MI, United States
| | - Sonia S. Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Martin Knöfler
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Graham J. Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chong Jai Kim
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD, United States
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Pathology, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | - Gabor Juhasz
- Laboratory of Proteomics, Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| |
Collapse
|
37
|
Alcalde J, Izquierdo JM. Proteomic profile changes associated with diminished expression of T-cell intracellular antigens reveal a hormesis response. Biochem Biophys Res Commun 2018; 503:2569-2575. [PMID: 30017198 DOI: 10.1016/j.bbrc.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023]
Abstract
T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis by controlling global gene expression in response to dynamic regulatory changes and environmental stress. Here, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry (MALDI-TOF/TOF) to identify protein changes associated with the down-regulated expression of TIA proteins. We detected 30 differentially expressed proteins (DEPs), 24 of which were identified, and some of these DEPs were validated by western blotting. In silico analysis showed that DEPs were associated with metabolic processes, detoxification and proteostasis. We mapped the DEPs to the available biological pathways and networks, which included the metabolism of small molecules such as sugars, lipids, amino acids, and nucleotides. Our findings support previous studies and suggest that low expression of TIA proteins might act as a potential adaptive switch to link gene expression reprogramming to a proliferative phenotype mediated by a hormesis phenomenon.
Collapse
Affiliation(s)
- José Alcalde
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas. Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1., Cantoblanco, 28049, Madrid, Spain
| | - José M Izquierdo
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas. Universidad Autónoma de Madrid (CSIC/UAM), C/ Nicolás Cabrera 1., Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
38
|
Zhang Z, Li P, Lin D, Wang D, Zhang Y. Proteome analysis of the potential serum biomarkers for chronic benzene poisoning. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:157-164. [PMID: 29729575 DOI: 10.1016/j.etap.2018.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
The aim of our study is to seek novel specific biomarkers which could provide clues to the mechanism of chronic benzene poisoning (CBP) and might also be used as specific markers for early detection and diagnosis. In this study, a comparative serological proteome analysis between normal controls and CBP patients at three different levels of poisoning were performed via a 2D-DIGE and MALDI-TOF-MS. As the result a total of 10 proteins were found significantly altered between the normal and the mild, moderate and severe poisoning. The identified differentially expressed proteins were classified according to their molecular functions, biological processes, and protein classes, and three important serum proteins among them, apolipoproteinA-1, alpha-1-antitrypsin and complement C3, were further confirmed by immune turbidimetric analysis for their significant up-regulation in the CBP patients. Our findings suggest that these differential proteins may help elucidate the mechanism of CBP and provide potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Zhimin Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Peimao Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Dafeng Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Dianpeng Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China
| | - Yanfang Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
39
|
Abstract
2D-DIGE is still a very widespread technique in proteomics for the identification of panels of biomarkers, allowing to tackle with some important drawback of classical two-dimensional gel-electrophoresis. However, once 2D-gels are obtained, they must undergo a quite articulated multistep image analysis procedure before the final differential analysis via statistical mono- and multivariate methods. Here, the main steps of image analysis software are described and the most recent procedures reported in the literature are briefly presented.
Collapse
Affiliation(s)
- Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121, Alessandria, Italy.
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
40
|
Zhou YY, Chun RKM, Wang JC, Zuo B, Li KK, Lam TC, Liu Q, To CH. Proteomic analysis of chick retina during early recovery from lens‑induced myopia. Mol Med Rep 2018; 18:59-66. [PMID: 29749514 PMCID: PMC6059693 DOI: 10.3892/mmr.2018.8954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Myopia development has been extensively studied from different perspectives. Myopia recovery is also considered important for understanding the development of myopia. However, despite several previous studies, retinal proteomics during recovery from myopia is still relatively unknown. Therefore, the aim of the present study was to investigate the changes in protein profiles of chicken retinas during early recovery from lens-induced myopia to evaluate the signals involved in the adjustment of this refractive disorder. Three-day old chickens wore glasses for 7 days (−10D lens over the right eye and a plano lens as control over the left eye), followed by 24 h without lenses. Protein expression in the retina was measured by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Pro-Q Diamond phosphoprotein staining 2D gel electrophoresis was used to analyze phosphoprotein profiles. Protein spots with significant differences (P<0.05) were analyzed by mass spectrometry. The minus lens-treated eye became myopic, however following 24 h recovery, less myopia was observed. 2D-DIGE proteomic analysis demonstrated that three identified protein spots were upregulated at least 1.2-fold in myopic recovery retinas compared with those of the controls, Ras related protein Rab-11B, S-antigen retina and pineal gland and 26S proteasome non-ATPase regulatory subunit 14. Pro-Q Diamond images further revealed three protein spots with significant changes (at least 1.8-fold): β-tubulin was downregulated, while peroxiredoxin 4 and ubiquitin carboxyl-terminal hydrolase-L1 were upregulated in the recovery retinas compared with the control eye retinas. The present study detected previously unreported protein changes in recovering eyes, therefore revealing their potential involvement in retinal remodeling during eye ball reforge.
Collapse
Affiliation(s)
- Yun Yun Zhou
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Rachel Ka Man Chun
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Jian Chao Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Bing Zuo
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - King Kit Li
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Quan Liu
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chi-Ho To
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
41
|
Vieira GAL, Silva MTAD, Regasini LO, Cotinguiba F, Laure HJ, Rosa JC, Furlan M, Cicarelli RMB. Trypanosoma cruzi: analysis of two different strains after piplartine treatment. Braz J Infect Dis 2018; 22:208-218. [PMID: 29879424 PMCID: PMC9425661 DOI: 10.1016/j.bjid.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022] Open
Abstract
The hemoflagellate protozoan, Trypanosoma cruzi, mainly transmitted by triatomine insects through blood transfusion or from mother-to-child, causes Chagas' disease. This is a serious parasitic disease that occurs in Latin America, with considerable social and economic impact. Nifurtimox and benznidazole, drugs indicated for treating infected persons, are effective in the acute phase, but poorly effective during the chronic phase. Therefore, it is extremely urgent to find innovative chemotherapeutic agents and/or effective vaccines. Since piplartine has several biological activities, including trypanocidal activity, the present study aimed to evaluate it on two T. cruzi strains proteome. Considerable changes in the expression of some important enzymes involved in parasite protection against oxidative stress, such as tryparedoxin peroxidase (TXNPx) and methionine sulfoxide reductase (MSR) was observed in both strains. These findings suggest that blocking the expression of the two enzymes could be potential targets for therapeutic studies.
Collapse
Affiliation(s)
| | | | - Luis Octávio Regasini
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto, SP, Brazil
| | - Fernando Cotinguiba
- Universidade Estadual Paulista - UNESP, Instituto de Química, Araraquara, SP, Brazil; Instituto de Pesquisas de Produtos Naturais (IPPN), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Helen Julie Laure
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Química de Proteínas, Ribeirão Preto, SP, Brazil
| | - José César Rosa
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Centro de Química de Proteínas, Ribeirão Preto, SP, Brazil
| | - Maysa Furlan
- Universidade Estadual Paulista - UNESP, Instituto de Química, Araraquara, SP, Brazil
| | | |
Collapse
|
42
|
Zhong X, Li L, Wang M, Luo W, Tan Q, Xu F, Zhu W, Wang Q, Wang T, Hou M, Nadimity N, Xue X, Chen J, Ma W, Gao AC, Zhou Q. A proteomic approach to elucidate the multiple targets of selenium-induced cell-growth inhibition in human lung cancer. Thorac Cancer 2018; 2:164-178. [PMID: 27755845 DOI: 10.1111/j.1759-7714.2011.00066.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Methylseleninic acid (MSA) has been implicated as a promising anticancer agent for lung cancer. However, the underlying molecular mechanism(s) responsible for MSA's action is not well understood. Our study aimed to examine the cellular effects of MSA on L9981 human high-metastatic large cell lung cancer cells and gain insights into its possible molecular mechanism(s) through a proteomic approach. METHODS L9981 cells were exposed to MSA at different concentrations and time points. The effects of MSA on cell proliferation and apoptosis were detected by cell viability analyzer Vi-CELL and flow cytometric analysis, respectively. We analyzed the alterations in the proteome profile of L9981 cells induced by MSA using the 2-D difference in gel electrophoresis (2-D DIGE) and identified the differentially expressed proteins using a liquid chromatography system followed by tandem mass spectrometry (LC-MS/MS). RESULTS We found that MSA inhibited cell proliferation in a dose-dependent manner and significantly induced early apoptosis in L9981 cells. 2-D DIGE showed that MSA induced significant changes (>1.29 fold) in the expression levels of 42 protein spots compared to the untreated control (P < 0.05). As identified by LC-MS/MS, proteins that underwent changes in response to MSA were related to various biological functions, including: (i) endoplasmic reticulum stress (upregulation of molecular chaperones like heat shock protein A5, protein disulfide-isomerase precursor, and calreticulin precursor); (ii) oxidative stress response/ thioredoxin system (decreased thioredoxin-like protein 1 and increased thioredoxin reductase 1); (iii) translation regulation (downregulation of translation factors like elongation factor 1-beta and eukaryotic translation initiation factor 6); (iv) mitochondrial bioenergetic function (upregulation of adenosine triphosphate synthase subunit beta and mitochondria); and (v) cell signal transduction regulation (decreased peptidyl-prolyl cis-trans isomerase A and 14-3-3 protein gamma). The protein and gene expression levels of those proteins of interest were further confirmed by Western blot and/or real-time reverse transcription polymerase chain reaction. CONCLUSION Our results suggest that MSA may inhibit cell proliferation and induce apoptosis in lung cancer by modulating multiple targets involved in various crucial cellular processes.
Collapse
Affiliation(s)
- Xiaorong Zhong
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Lu Li
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Min Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Wei Luo
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Qingwei Tan
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Feng Xu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Wen Zhu
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Qi Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Ting Wang
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Mei Hou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Nagalakshmi Nadimity
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Xingyang Xue
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Jun Chen
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Wei Ma
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Allen C Gao
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| | - Qinghua Zhou
- The Key Laboratory of Lung Cancer Molecular Biology in Sichuan Province, West China Hospital, Sichuan University, Sichuan, ChinaTianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, ChinaGraduate Program of Pharmacology and Toxicology and Cancer Center, University of California at Davis, Sacramento, California, USADepartment of Thoracic Surgery, First Affiliated Hospital, Dalian Medical University, Dalian, ChinaDepartment of Respiratory Medicine, the Second Hospital affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
43
|
Feugang JM, Liao SF, Willard ST, Ryan PL. In-depth proteomic analysis of boar spermatozoa through shotgun and gel-based methods. BMC Genomics 2018; 19:62. [PMID: 29347914 PMCID: PMC5774113 DOI: 10.1186/s12864-018-4442-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/10/2018] [Indexed: 01/14/2023] Open
Abstract
Background Mature spermatozoa contain numerous epididymal and seminal plasma proteins, which full identification through high-throughput technologies may allow for a better understanding of the sperm biology. Therefore, we conducted a global proteomic analysis of boar spermatozoa through shotgun and gel-based methodologies. Results The total proteins were extracted from mature spermatozoa and subjecsted to proteome analyses. Functional analyses of gene ontology representations and pathway enrichments were conducted on the shotgun dataset, followed by immunology and gene expression validations. Shotgun and gel-based approaches allowed the detection of 2728 proteins and 2123 spots, respectively. Approximately 38% and 59% of total proteins were respectively fully and partially annotated, and 3% were unknown. Gene ontology analysis indicated high proportions of proteins associated with intracellular and cytoplasm localizations, protein and nucleic acid binding, hydrolase and transferase activities, and cellular, metabolic, and regulation of biological processes. Proteins associated with phosphorylation processes and mitochondrial membranes, nucleic acid binding, and phosphate and phosphorous metabolics represented 77% of the dataset. Pathways associated with oxidative phosphorylation, citrate cycle, and extra-cellular matrix-receptor interaction were significantly enriched. Protein complex, intracellular organelle, cytoskeletal parts, fertilization and reproduction, and gap junction pathway were significantly enriched within the top 116 highly abundant proteins. Nine randomly selected protein candidates were confirmed with gel-based identification, immunofluorescence detection, and mRNA expression. Conclusions This study offers an in-depth proteomic mapping of mature boar spermatozoa that will enable comparative and discovery research for the improvement of male fertility. Electronic supplementary material The online version of this article (10.1186/s12864-018-4442-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
44
|
Abstract
Two-dimensional difference gel electrophoresis (2-D DIGE) is an advanced and elegant gel electrophoretic analytical tool for comparative protein assessment. It is based on two-dimensional gel electrophoresis (2-DE) separation of fluorescently labeled protein extracts. The tagging procedures are designed to not interfere with the chemical properties of proteins with respect to their pI and electrophoretic mobility, once a proper labeling protocol is followed. The two-dye or three-dye systems can be adopted and their choice depends on specific applications. Furthermore, the use of an internal pooled standard makes 2-D DIGE a highly accurate quantitative method enabling multiple protein samples to be separated on the same two-dimensional gel. The image matching and cross-gel statistical analysis generates robust quantitative results making data validation by independent technologies successful.
Collapse
Affiliation(s)
- Cecilia Gelfi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via f.lli Cervi, 93, 20090, Segrate, Milan, Italy.
- U.O. Proteomica clinica, IRCCS Policlinico San Donato, 20097, San Donato, Milan, Italy.
- Istituto di Bioimmagini e Fisiologia Molecolare, CNR, 20090, Segrate, Milan, Italy.
| | - Daniele Capitanio
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via f.lli Cervi, 93, 20090, Segrate, Milan, Italy
| |
Collapse
|
45
|
Abstract
Gel-based proteomics has been widely used for the systematic cataloging of the protein constituents of defined biofluids, purified organelles, individual cell types, heterogeneous tissues and isolated organs, as well as being applied to comparative biochemical and biomedical analyses of complex biological specimens. Of the many electrophoretic techniques used in modern biochemical approaches, large-scale protein separation by difference gel electrophoresis (DIGE) has established itself as the most powerful analytical tool in comparative proteomics. Both 2-dye and 3-dye fluorescence systems with minimal or saturation labeling are routinely used. This chapter briefly describes the technical advantages of the pre-electrophoretic fluorescent labeling technique and discusses the bioanalytical usefulness of this highly successful electrophoretic method.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
46
|
Abstract
In-gel digestion of protein spots derived from two-dimensional gels and their subsequent identification by mass spectrometry is involved in a multitude of mass spectrometry-driven proteomic experiments, including fluorescence difference gel electrophoresis (DIGE). This type of proteomic methodology has been involved in the establishment of comparative proteome maps and in the identification of differentially expressed proteins and protein isoforms in health and disease. Most in-gel digestion protocols follow a number of common steps including excision of the protein spots of interest, de-staining, reduction and alkylation (for silver-stained gels), dehydration and overnight digestion with the proteolytic enzyme of choice. While trypsin has been a mainstay of peptide digestion for many years, it does have its shortcomings, particularly related to incomplete peptide digestion, and this has led to a rise in popularity for other proteolytic enzymes either used alone or in combination. This chapter discusses the alternative enzymes available and describes the process of in-gel digestion using the enzyme trypsin.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
47
|
Moriggi M, Pastorelli L, Torretta E, Tontini GE, Capitanio D, Bogetto SF, Vecchi M, Gelfi C. Contribution of Extracellular Matrix and Signal Mechanotransduction to Epithelial Cell Damage in Inflammatory Bowel Disease Patients: A Proteomic Study. Proteomics 2017; 17. [PMID: 29027377 DOI: 10.1002/pmic.201700164] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Indexed: 12/14/2022]
Abstract
This study utilizes 2D-DIGE (difference gel etrophoresis), isotope-coded protein labeling and biochemical assays to characterize protein alteration in ulcerative colitis (UC) and Crohn's disease (CD) in human epithelial cell and mucosal biopsies in inflammatory bowel disease (IBD)-affected patients. The aim of this study is to identify the key molecular signatures involved in epithelial cell structure of IBDs. In non-inflamed UC (QUC) keratins, vimentin, and focal adhesion kinase (7) increased, whereas vinculin and de-tyrosinated α-tubulin decreased; inflammation (IUC) exacerbated molecular changes, being collagen type VI alpha 1 chain (COL6A1), tenascin-C and vimentin increased. In non-inflamed CD (QCD), tenascin C, de-tyrosinated α-tubulin, vinculin, FAK, and Rho-associated protein kinase 1 (ROCK1) decreased while vimentin increased. In inflamed CD (ICD), COL6A1, vimentin and integrin alpha 4 increased. In QUC, cell metabolism is characterized by a decrease of the tricarboxylic acid cycle enzymes and a decrease of short/branched chain specific acyl-CoA dehydrogenase, fatty acid synthase, proliferator-activated receptors alpha, and proliferator-activated receptors gamma. In QCD a metabolic rewiring occurs, as suggested by glycerol-3-phosphate dehydrogenase (GPD2), pyruvate dehydrogenase E1 component subunit beta, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, and 4-trimethylaminobutyraldehyde dehydrogenase increment, while dihydrolipoyl dehydrogenase decreased. Macroautophagy is activated in QUC and IUC, with increased levels of p62, HSC70, major vault protein, myosin heavy chain 9, whereas it is blunted in QCD and ICD. The differing pattern of extracellular matrix, cytoskeletal derangements, cellular metabolism, and autophagy in UC and CD may contribute to the pathophysiological understanding of these disorders and serve as diagnostic markers in IBD patients.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Luca Pastorelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Gian Eugenio Tontini
- Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Maurizio Vecchi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Clinical Proteomics Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
48
|
Abstract
The skeletal muscle proteome consists of a large number of diverse protein species with a broad and dynamic concentration range. Since mature skeletal muscles are characterized by a specific combination of contractile cells with differing physiological and biochemical properties, it is essential to determine specific differences in the protein composition of fast, slow, and hybrid fibers. Fluorescence two-dimensional gel electrophoresis (DIGE) is a powerful comparative tool to analyze fiber type-specific differences between fast and slow muscles. In this chapter, the application of the DIGE method for the comparative analysis of different subtypes of skeletal muscles is outlined in detail. A standardized proteomic workflow is described, involving sample preparation, protein extraction, differential fluorescence labeling using a 3-dye system, first-dimension isoelectric focusing, second-dimension slab gel electrophoresis, DIGE image analysis, protein digestion, and mass spectrometry.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
49
|
Wang Y, Zhang J, Li B, He QY. Proteomic analysis of mitochondria: biological and clinical progresses in cancer. Expert Rev Proteomics 2017; 14:891-903. [DOI: 10.1080/14789450.2017.1374180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
50
|
Capitanio D, Moriggi M, Gelfi C. Mapping the human skeletal muscle proteome: progress and potential. Expert Rev Proteomics 2017; 14:825-839. [PMID: 28780899 DOI: 10.1080/14789450.2017.1364996] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human skeletal muscle represents 40% of our body mass and deciphering its proteome composition to further understand mechanisms regulating muscle function under physiological and pathological conditions has proved a challenge. The inter-individual variability, the presence of structurally and functionally different muscle types and the high protein dynamic range require carefully selected methodologies for the assessment of the muscle proteome. Furthermore, physiological studies are understandingly hampered by ethical issues related to biopsies on healthy subjects, making it difficult to recruit matched controls essential for comparative studies. Areas covered: This review critically analyses studies performed on muscle to date and identifies what still remains unknown or poorly investigated in physiological and pathological states, such as training, aging, metabolic disorders and muscular dystrophies. Expert commentary: Efforts should be made on biological fluid analyses targeting low abundant/low molecular weight fragments generated from muscle cell disruption to improve diagnosis and clinical monitoring. From a methodological point of view, particular attention should be paid to improve the characterization of intact proteins and unknown post translational modifications to better understand the molecular mechanisms of muscle disorders.
Collapse
Affiliation(s)
- Daniele Capitanio
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Manuela Moriggi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Cecilia Gelfi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| |
Collapse
|