1
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
2
|
Determination of Gaseous and Particulate Secondary Amines in the Atmosphere Using Gas Chromatography Coupled with Electron Capture Detection. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to develop and optimize methods for the determination of gaseous and particulate (PM2.5) secondary amines (SAs) in the atmosphere using gas chromatography coupled with electron capture detection (GC-ECD) following chemical derivatization. The methods employed the liquid–liquid extraction (LLE) of pentafluorobenzenesulfonyl derivatives of the SAs before analytical samples were injected into GC-ECD. The optimized methods were applied to the determination of SAs in gaseous and particulate samples at two sites (urban and rural areas) from June to September in 2021. Gaseous samples were collected into an SPE cartridge containing a mixture of silica gel and sulfamic acid at a flow rate of 2 L·min−1 for 48 h. Particulate samples were collected onto 47 mm filters by a cyclone sampler at a flow rate of 16.7 L·min−1 for 48 h. The linearity of calibration curves, accuracy, and precision of the methods were satisfactory. In most of the field samples, dimethylamine (DMA), methylethylamine (MEA), diethylamine (DEA), and dipropylamine (DPA) were found to be the most frequently encountered compounds at the sampling sites.
Collapse
|
3
|
Chen Y, Hu L, Lin H, Yu H, You J. Serum metabolomic profiling for patients with adenocarcinoma of the esophagogastric junction. Metabolomics 2022; 18:26. [PMID: 35441991 DOI: 10.1007/s11306-022-01883-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The incidence of adenocarcinoma in the esophagogastric junction (AEG) has increased in the recent years. AEG is reported to have a worse prognosis compared with tumor confined to the stomach (non-AEG). Although the metabolic changes of non-AEG have been investigated in extensive studies, little effort focused on the metabolic profiling of AEG serum. OBJECTIVES Here we report an untargeted gas chromatography-mass spectrometry (GC-MS) method to explore the abnormal metabolism underlying AEG. METHODS GC-MS-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of serum samples from AEG patients (n = 70), non-AEG patients (n = 70) and health controls (n = 71). RESULTS A novel serum metabolic profiling of 18 metabolites from patients of AEG and non-AEG was indicated, in comparison with health controls. Moreover, AEG and non-AEG were also well-classified with 9 distinguishing metabolites including hypoxanthine, alanine, proline, pyroglutamate, glycine, lactate, succinic acid, glutamate and kynurenine, which produced a discriminatory model with an area under the Receiver Operating Characteristic (ROC) curve of 0.852, suggesting a distinct metabolic signature of AEG. Importantly, lactate and glutamate disclosed outcome-prediction values by multivariate cox-proportional hazard model and Kaplan-Meier method based on follow-up information for 2-5 years. CONCLUSION This is the first metabolomics study to identify serum metabolic signature of AEG. The distinguishing metabolites show a promising application on clinical diagnose and outcome prediction, and allow us to unveil several key metabolic variations coexisting in AEG, which may aid to understand the underlying metabolic mechanisms.
Collapse
Affiliation(s)
- Yinan Chen
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Lei Hu
- Department of General Surgery, The First Affliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hexin Lin
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Huangdao Yu
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Jun You
- Department of Gastrointestinal Surgery, Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
4
|
Marable CA, Frank CL, Seim RF, Hester S, Henderson WM, Chorley B, Shafer TJ. Integrated Omic Analyses Identify Pathways and Transcriptomic Regulators Associated With Chemical Alterations of In Vitro Neural Network Formation. Toxicol Sci 2022; 186:118-133. [PMID: 34927697 PMCID: PMC11460064 DOI: 10.1093/toxsci/kfab151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Development of in vitro new approach methodologies has been driven by the need for developmental neurotoxicity (DNT) hazard data on thousands of chemicals. The network formation assay characterizes DNT hazard based on changes in network formation but provides no mechanistic information. This study investigated nervous system signaling pathways and upstream physiological regulators underlying chemically induced neural network dysfunction. Rat primary cortical neural networks grown on microelectrode arrays were exposed for 12 days in vitro to cytosine arabinoside, 5-fluorouracil, domoic acid, cypermethrin, deltamethrin, or haloperidol as these exposures altered network formation in previous studies. RNA-seq from cells and gas chromatography/mass spectrometry analysis of media extracts collected on days in vitro 12 provided gene expression and metabolomic identification, respectively. The integration of differentially expressed genes and metabolites for each neurotoxicant was analyzed using ingenuity pathway analysis. All 6 compounds altered gene expression that linked to developmental disorders and neurological diseases. Other enriched canonical pathways overlapped among compounds of the same class; eg, genes and metabolites altered by both cytosine arabinoside and 5-fluorouracil exposures are enriched in axonal guidance pathways. Integrated analysis of upstream regulators was heterogeneous across compounds, but identified several transcriptomic regulators including CREB1, SOX2, NOTCH1, and PRODH. These results demonstrate that changes in network formation are accompanied by transcriptomic and metabolomic changes and that different classes of compounds produce differing responses. This approach can enhance information obtained from new approach methodologies and contribute to the identification and development of adverse outcome pathways associated with DNT.
Collapse
Affiliation(s)
- Carmen A. Marable
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Christopher L. Frank
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Roland F. Seim
- Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
- Chemical Processes and Systems Branch, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
| | - Susan Hester
- Experimental Toxicokinetics and Exposure Branch, Chemical Characterization and Exposure Division, Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - W. Matthew Henderson
- Chemical Processes and Systems Branch, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, Georgia 30605, USA
| | - Brian Chorley
- Advanced Experimental Toxicology Models Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Timothy J. Shafer
- Rapid Assay Development Branch, Biomolecular and Computational Toxicology Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| |
Collapse
|
5
|
Defining Blood Plasma and Serum Metabolome by GC-MS. Metabolites 2021; 12:metabo12010015. [PMID: 35050137 PMCID: PMC8779220 DOI: 10.3390/metabo12010015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
Metabolomics uses advanced analytical chemistry methods to analyze metabolites in biological samples. The most intensively studied samples are blood and its liquid components: plasma and serum. Armed with advanced equipment and progressive software solutions, the scientific community has shown that small molecules’ roles in living systems are not limited to traditional “building blocks” or “just fuel” for cellular energy. As a result, the conclusions based on studying the metabolome are finding practical reflection in molecular medicine and a better understanding of fundamental biochemical processes in living systems. This review is not a detailed protocol of metabolomic analysis. However, it should support the reader with information about the achievements in the whole process of metabolic exploration of human plasma and serum using mass spectrometry combined with gas chromatography.
Collapse
|
6
|
Fu Z, Jia Q, Zhang H, Kang L, Sun X, Zhang M, Wang Y, Hu P. Simultaneous quantification of eleven short-chain fatty acids by derivatization and solid phase microextraction - Gas chromatography tandem mass spectrometry. J Chromatogr A 2021; 1661:462680. [PMID: 34879311 DOI: 10.1016/j.chroma.2021.462680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 02/09/2023]
Abstract
As metabolites of the gut microbiome, short-chain fatty acids (SCFAs) played an important role in the diagnosis of the metabolic diseases. Because of the high polarity, high volatility and complex matrix of biological samples, the highly sensitive, selective and accurate method to determine SCFAs remains a major challenge. Herein, a new method for simultaneous quantification of eleven SCFAs by derivatization combined with solid phase microextraction (SPME) and gas chromatography tandem mass spectrometry (GC-MS/MS) was developed. Isobutyl chloroformate coupled with isobutanol was used as the reaction reagent to derivatize SCFAs. The method validation data showed a satisfactory linearity with the linear regression coefficients (R) ranging from 0.9964 to 0.9996. The limit of detection (LOD) of all SCFAs ranges from 0.01 ng·mL-1 to 0.72 ng·mL-1 and the limit of quantification (LOQ) ranges from 0.04 ng·mL-1 to 2.41 ng·mL-1. The intra-day and inter-day precision (RSDs) ranged from 0.65% to 8.92% and 1.62% to 15.61%, respectively. The recovery ranged from 88.10% to 108.71%. Finally, the developed method was successfully used to determine SCFAs in mice fecal sample, and ten of the SCFAs were found in feces of mice, including formic acid.
Collapse
Affiliation(s)
- Zhibo Fu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Qiangqiang Jia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, P.R. China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.
| | - Lu Kang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xuezhi Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Min Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P.R. China
| | - Yuerong Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China.
| |
Collapse
|
7
|
Zhang MJ, Chou J, Sun ZW, Zhao JH, Guo J, Yu JY, Gao SQ, Tang YS, Liu LY. Gas chromatography/mass spectrometry analysis of organic acid profiles in human serum: A protocol of direct ultrasound-assisted derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9149. [PMID: 34156734 DOI: 10.1002/rcm.9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Low-molecular-weight organic acids that generally contain one to three carboxyl groups are involved in many important biological processes; therefore, it is important to develop a quantitative method for analyzing organic acids in serum in order to allow an evaluation of metabolic changes. In this study, we evaluated a protocol for detecting 26 organic acids in serum based on ultrasound-assisted derivatization by gas chromatography/mass spectrometry (GC/MS). METHODS Serum samples were prepared using ultrasound-assisted silane derivatization before GC/MS analysis to quantify concentrations of organic acids. Additionally, we investigated the variables affecting derivatization yields, including the extraction solvent, derivatization reagents, and derivatization conditions (reaction temperature, duration, and sonication parameters). The protocol was ultimately applied to detect organic acid profiles related to obesity. RESULTS We used acetone as the extraction solvent and determined suitable derivatization conditions, as follows: BSTFA + 1% TMCS, 50°C, 10 min, and 100% ultrasound power. The protocol showed satisfactory linearity (r = 0.9958-0.9996), a low limit of detection (0.04-0.42 μmol/L), good reproducibility (coefficient of variation (CV) %: 0.32-13.76%), acceptable accuracy (recovery: 82.97-114.96%), and good stability within 5 days (CV%: 1.35-12.01% at room temperature, 1.24-14.09% at 4°C, and 1.01-11.67% at -20°C). Moreover, the protocol was successfully applied to obtain the organic acid profiles from obese and healthy control subjects. CONCLUSIONS We identified and validated a protocol for ultrasound-assisted derivatization prior to GC/MS analysis for detecting 26 kinds of organic acids in serum. The results suggest the efficacy of this protocol for clinical applications to determine metabolic changes related to fluctuations in organic acid profiles.
Collapse
Affiliation(s)
- Ming-Jia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jing Chou
- PingHu Hospital, Health Science Center, Shenzhen University, Shenzhen, P.R. China
| | - Zhi-Wei Sun
- Harbin University of Commerce, Harbin, P.R. China
| | - Jin-Hui Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jing Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Jia-Ying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Si-Qi Gao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Ying-Shu Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| | - Li-Yan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
8
|
Sun Y, Hu J, Zhang S, He H, Nie Q, Zhang Y, Chen C, Geng F, Nie S. Prebiotic characteristics of arabinogalactans during in vitro fermentation through multi-omics analysis. Food Chem Toxicol 2021; 156:112522. [PMID: 34438010 DOI: 10.1016/j.fct.2021.112522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Dietary fibers have beneficial effects on human health through the interaction with gut microbiota. Larch wood arabinogalactan (LA-AG) is one kind of complex soluble dietary fibers that may be utilized by human gut microbiota. METHODS AND RESULTS In this study, the LA-AG degradation by gut microbiota were characterized by investigating the change of LA-AG, microbiota composition, and the production of short-chain fatty acids (SCFAs), lactic acid, succinic acid, as well as volatile organic metabolites. During the fermentation, pH decreased continuously, along with the organic acids (especially acetic acid and lactic acid) accumulating. LA-AG was degraded by gut microbiota then some beneficial metabolites were produced. In addition, LA-AG inhibited the proliferation of some gut microbiota (Unclassified_Enterobacteriaceae and Citrobacter) and the accumulation of some metabolites (Sulfide and indole) released by gut microbiota. CONCLUSION LA-AG was partly fermentable fibers with prebiotic potential for human gut health.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Huijun He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
9
|
Mass Spectrometry-based Metabolomics in Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:509-531. [PMID: 33834448 DOI: 10.1007/978-981-33-6064-8_19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metabolomics is the systematic study of metabolite profiles of complex biological systems, and involves the systematic identification and quantification of metabolites. Metabolism is integrated with all biochemical reactions in biological systems; thus metabolite profiles provide collective information on biochemical processes induced by genetic or environmental perturbations. Transcriptomes or proteomes may not be functionally active and not always reflect phenotypic variations. The metabolome, however, consists of the biomolecules closest to the phenotype of living organisms, and is often called the molecular phenotype of biological systems. Thus, metabolome alterations can easily result in disease states, providing important clues to understand pathophysiological mechanisms contributing to various biomedical symptoms. The metabolome and metabolomics have been emphasized in translational research related to biomarker discovery, drug target discovery, drug responses, and disease mechanisms. This review describes the basic concepts, workflows, and applications of mass spectrometry-based metabolomics in translational research.
Collapse
|
10
|
Choi NR, Lee JY, Ahn YG, Kim YP. Determination of atmospheric amines at Seoul, South Korea via gas chromatography/tandem mass spectrometry. CHEMOSPHERE 2020; 258:127367. [PMID: 32947676 DOI: 10.1016/j.chemosphere.2020.127367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Due to their important roles in salt-producing acid-base reactions, new particle formation (NPF), and as precursors in secondary organic aerosol (SOA) producing reactions, the atmospheric concentrations of particulate volatile amines (dimethylamine (DMA), ethylamine, diethylamine (DEA), propylamine, and butylamine) at Seoul were analyzed and evaluated. To quantify the presence of volatile amines in particulate matter with aerodynamic diameters less than or equal to a nominal 2.5 μm (PM2.5), an efficient and rapid analytical method based on in-matrix ethyl chloroformate (ECF) derivatization followed by headspace solid-phase microextraction (HS-SPME) was developed and validated using gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) in the multiple reaction monitoring (MRM) mode. The annual mean concentration of the total 5 target amines was 5.56±2.76 ng/m3 and the seasonal difference was small. The concentrations of particulate amines measured in this study were lower than those observed in Zongludak, Turkey, Nanjing, China, and Jeju, Korea but slightly higher than that reported in Kobe, Japan. The concentrations of the nitrosamines (nitrosodimethylamine (NDMA) and nitrosodiethylamine (NDEA)), and of the nitramines (dimethylnitramine (DMN) and diethylnitramine (DEN)) measured along with those of the target amines were used in a simple linear regression analysis. It indicates the contribution of DMA to the formation of NDMA in all seasons (except the fall) and DEA to the formation of NDEA in the summer, while DMA and DEA did not significantly contribute to the formation of nitramines.
Collapse
Affiliation(s)
- Na Rae Choi
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Ji Yi Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Yun Gyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Seoul, 03759, South Korea.
| | - Yong Pyo Kim
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
11
|
Martín Santos P, Del Nogal Sánchez M, Pérez Pavón JL, Moreno Cordero B. Non-separative method based on a single quadrupole mass spectrometer for the semi-quantitative determination of amino acids in saliva samples. A preliminary study. Talanta 2020; 208:120381. [PMID: 31816699 DOI: 10.1016/j.talanta.2019.120381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 10/26/2022]
Abstract
Amino acids have been of great interest in clinical studies since variation in their concentration may provide information about different disorders. For the first time, a non-separative method based on single quadrupole mass spectrometry (qMS) for the simultaneous semiquantitative determination of sixteen amino acids in saliva samples has been developed. The method includes derivatisation of amino acids with ethyl chloroformate-pyridine-ethanol to obtain volatile products, liquid-liquid extraction (LLE) and further analysis using a programmed temperature vaporizer (PTV) coupled to qMS. This method could be applied to the analysis of a great number of saliva samples, limiting the use of separative methods only when abnormal concentrations of amino acids were found, reducing analysis time and cost. The results obtained in the determination of amino acids using the non-separative method were compared to those obtained when a separative method based on gas chromatography (GC) was used, providing values of average relative predictive error (E %) ranging between 2 and 48%. Repeatability and reproducibility were tested, obtaining relative standard deviation (RSD) values equal to or lower than 11% and 16%, respectively. Detection limits were in the range of 0.076-8.747 mg L-1 for the non-separative method.
Collapse
Affiliation(s)
- Patricia Martín Santos
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain
| | - Miguel Del Nogal Sánchez
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain.
| | - José Luis Pérez Pavón
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain
| | - Bernardo Moreno Cordero
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008, Salamanca, Spain
| |
Collapse
|
12
|
Li M, Zhu R, Song X, Wang Z, Weng H, Liang J. A sensitive method for the quantification of short-chain fatty acids by benzyl chloroformate derivatization combined with GC-MS. Analyst 2020; 145:2692-2700. [PMID: 32073098 DOI: 10.1039/d0an00005a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Short-chain fatty acids (SCFAs) were identified as critical markers in the diagnosis of chronic and metabolic diseases, but a sensitive and stable method to determine SCFAs in feces is a challenge for analysts due to the high volatility.
Collapse
Affiliation(s)
- Menghan Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Fudan University
- Shanghai 201203
- China
| | - Rongrong Zhu
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Fudan University
- Shanghai 201203
- China
| | - Xiaoxia Song
- Department of Pharmacy
- Pudong Hospital
- Fudan University
- Shanghai 201203
- China
| | - Zhijun Wang
- Department of Pharmacology
- School of Pharmacy
- Fudan University
- Shanghai 201203
- China
| | - Hongbo Weng
- Department of Pharmacology
- School of Pharmacy
- Fudan University
- Shanghai 201203
- China
| | - Jianying Liang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Fudan University
- Shanghai 201203
- China
| |
Collapse
|
13
|
Abstract
Terrestrial animals often use evaporative cooling to lower body temperature. Evaporation can occur from humid body surfaces or from fluids interfaced to the environment through a number of different mechanisms, such as sweating or panting. In Diptera, some flies move tidally a droplet of fluid out and then back in the buccopharyngeal cavity for a repeated number of cycles before eventually ingesting it. This is referred to as the bubbling behaviour. The droplet fluid consists of a mix of liquids from the ingested food, enzymes from the salivary glands, and antimicrobials, associated to the crop organ system, with evidence pointing to a role in liquid meal dehydration. Herein, we demonstrate that the bubbling behaviour also serves as an effective thermoregulatory mechanism to lower body temperature by means of evaporative cooling. In the blowfly, Chrysomya megacephala, infrared imaging revealed that as the droplet is extruded, evaporation lowers the fluid´s temperature, which, upon its re-ingestion, lowers the blowfly's body temperature. This effect is most prominent at the cephalic region, less in the thorax, and then in the abdomen. Bubbling frequency increases with ambient temperature, while its cooling efficiency decreases at high air humidities. Heat transfer calculations show that droplet cooling depends on a special heat-exchange dynamic, which result in the exponential activation of the cooling effect.
Collapse
|
14
|
Stepwise extraction, chemical modification, GC-MS separation, and determination of amino acids in human plasma#. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201700043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Ianni F, Aroni K, Gili A, Sardella R, Bacci M, Lancia M, Natalini B, Gambelunghe C. GC-MS/MS detects potential pregabalin abuse in susceptible subjects' hair. Drug Test Anal 2018; 10:968-976. [PMID: 29214743 DOI: 10.1002/dta.2347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023]
Abstract
Pregabalin, a GABA analogue, binds to the alpha 2 delta subunit of voltage-dependent calcium channels. It is recognised as efficacious in pathologies such as epilepsy, neuropathic pain, and anxiety disorders. Since pregabalin prescriptions have increased worldwide, reports of its abuse have been accumulating, mainly in patients with opioid abuse disorders. The present study investigated potential pregabalin abuse by means of hair analysis, a matrix that provides valuable retrospective information. Half of the pool of 280 susceptible patients had been occasional drug users and were being monitored for driving licence renewals. The other 140 patients had a history of opiate dependency and were monitored to assess compliance with methadone therapy. In view of determining pregabalin in hair samples, it was extracted in methanol, successfully derivatised to give the ethyl chloroformate derivative, and finally pregabalin was analysed by gas chromatography-tandem mass spectrometry. Selectivity, linearity, limit of detection, limit of quantification, recovery, intra- and inter-day precision, and accuracy of the quantification procedure were appraised. Pregabalin limits of detection and quantification were 30 pg/mg and 50 pg/mg, respectively. We found 10.7% of hair samples from methadone patients and 4.29% from occasional drug users were positive to pregabalin without medical prescription. The mean pregabalin concentration in hair was higher than in consumers with medical indications (1.45 ng/mg vs 0.74 ng/mg). These results suggest that pregabalin possesses a significant abuse potential particularly among individuals attending opiate dependence services and that pregabalin abuse is a serious emerging issue, which should be carefully monitored.
Collapse
Affiliation(s)
- Federica Ianni
- Drug Chemistry and Technology Section, Department of Pharmaceutics, University of Perugia, Italy
| | - Kyriaki Aroni
- Forensic and Sports Medicine Section, Department of Surgery and Biomedical Science, University of Perugia, Italy
| | - Alessio Gili
- Hygiene and Public Health Section, Department of Experimental Medicine, University of Perugia, Italy
| | - Roccaldo Sardella
- Drug Chemistry and Technology Section, Department of Pharmaceutics, University of Perugia, Italy
| | - Mauro Bacci
- Forensic and Sports Medicine Section, Department of Surgery and Biomedical Science, University of Perugia, Italy
| | - Massimo Lancia
- Forensic and Sports Medicine Section, Department of Surgery and Biomedical Science, University of Perugia, Italy
| | - Benedetto Natalini
- Drug Chemistry and Technology Section, Department of Pharmaceutics, University of Perugia, Italy
| | - Cristiana Gambelunghe
- Forensic and Sports Medicine Section, Department of Surgery and Biomedical Science, University of Perugia, Italy
| |
Collapse
|
16
|
Zhao L, Ni Y, Su M, Li H, Dong F, Chen W, Wei R, Zhang L, Guiraud SP, Martin FP, Rajani C, Xie G, Jia W. High Throughput and Quantitative Measurement of Microbial Metabolome by Gas Chromatography/Mass Spectrometry Using Automated Alkyl Chloroformate Derivatization. Anal Chem 2017; 89:5565-5577. [PMID: 28437060 DOI: 10.1021/acs.analchem.7b00660] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability to identify and quantify small molecule metabolites derived from gut microbial-mammalian cometabolism is essential for the understanding of the distinct metabolic functions of the microbiome. To date, analytical protocols that quantitatively measure a complete panel of microbial metabolites in biological samples have not been established but are urgently needed by the microbiome research community. Here, we report an automated high-throughput quantitative method using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform to simultaneously measure over one hundred microbial metabolites in human serum, urine, feces, and Escherichia coli cell samples within 15 min per sample. A reference library was developed consisting of 145 methyl and ethyl chloroformate (MCF and ECF) derivatized compounds with their mass spectral and retention index information for metabolite identification. These compounds encompass different chemical classes including fatty acids, amino acids, carboxylic acids, hydroxylic acids, and phenolic acids as well as benzoyl and phenyl derivatives, indoles, etc., that are involved in a number of important metabolic pathways. Within an optimized range of concentrations and sample volumes, most derivatives of both reference standards and endogenous metabolites in biological samples exhibited satisfactory linearity (R2 > 0.99), good intrabatch reproducibility, and acceptable stability within 6 days (RSD < 20%). This method was further validated by examination of the analytical variability of 76 paired human serum, urine, and fecal samples as well as quality control samples. Our method involved using high-throughput sample preparation, measurement with automated derivatization, and rapid GC/TOFMS analysis. Both techniques are well suited for microbiome metabolomics studies.
Collapse
Affiliation(s)
- Linjing Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Yan Ni
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Mingming Su
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Hongsen Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science , Shanghai 201620, China
| | - Fangcong Dong
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Wenlian Chen
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Runmin Wei
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Lulu Zhang
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Seu Ping Guiraud
- Nestlé Institute of Health Sciences SA , EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Francois-Pierre Martin
- Nestlé Institute of Health Sciences SA , EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Cynthia Rajani
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Guoxiang Xie
- University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China.,University of Hawaii Cancer Center , Honolulu, Hawaii 96813, United States
| |
Collapse
|
17
|
Chen DQ, Cao G, Chen H, Liu D, Su W, Yu XY, Vaziri ND, Liu XH, Bai X, Zhang L, Zhao YY. Gene and protein expressions and metabolomics exhibit activated redox signaling and wnt/β-catenin pathway are associated with metabolite dysfunction in patients with chronic kidney disease. Redox Biol 2017; 12:505-521. [PMID: 28343144 PMCID: PMC5369369 DOI: 10.1016/j.redox.2017.03.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022] Open
Abstract
Changes in plasma concentration of small organic metabolites could be due to their altered production or urinary excretion and changes in their urine concentration may be due to the changes in their filtered load, tubular reabsorption, and/or altered urine volume. Therefore, these factors should be considered in interpretation of the changes observed in plasma or urine of the target metabolite(s). Fasting plasma and urine samples from 180 CKD patients and 120 age-matched healthy controls were determined by UPLC-HDMS-metabolomics and quantitative real-time RT-PCR techniques. Compared with healthy controls, patients with CKD showed activation of NF-κB and up-regulation of pro-inflammatory and pro-oxidant mRNA and protein expression as well as down-regulation of Nrf2-associated anti-oxidant gene mRNA and protein expression, accompanied by activated canonical Wnt/β-catenin signaling. 124 plasma and 128 urine metabolites were identified and 40 metabolites were significantly altered in both plasma and urine. Plasma concentration and urine excretion of 25 metabolites were distinctly different between CKD and controls. They were related to amino acid, methylamine, purine and lipid metabolisms. Logistic regression identified four plasma and five urine metabolites. Parts of them were good correlated with eGFR or serum creatinine. 5-Methoxytryptophan and homocystine and citrulline were good correlated with both eGFR and creatinine. Clinical factors were incorporated to establish predictive models. The enhanced metabolite model showed 5-methoxytryptophan, homocystine and citrulline have satisfactory accuracy, sensitivity and specificity for predictive CKD. The dysregulation of CKD was related to amino acid, methylamine, purine and lipid metabolisms. 5-methoxytryptophan, homocystine and citrulline could be considered as additional GFR-associated biomarker candidates and for indicating advanced renal injury. CKD caused dysregulation of the plasma and urine metabolome, activation of inflammatory/oxidative pathway and Wnt/β-catenin signaling and suppression of antioxidant pathway.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Xiao-Yong Yu
- Department of Nephrology, Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine, No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, MedSci 1 C352, Irvine, CA 92897, USA
| | - Xiu-Hua Liu
- School of Pharmacy, Henan University, Kaifeng, No. 85 Minglun Road, Henan 475004, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd., No. 1000 Jinhai Road, Shanghai 201203, China
| | - Li Zhang
- Department of Nephrology, Xi'an No. 4 Hospital, No. 21 Jiefang Road, Xi'an 710004, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
18
|
Sébédio JL. Metabolomics, Nutrition, and Potential Biomarkers of Food Quality, Intake, and Health Status. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:83-116. [PMID: 28427537 DOI: 10.1016/bs.afnr.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diet, dietary patterns, and other environmental factors such as exposure to toxins are playing an important role in the prevention/development of many diseases, like obesity, type 2 diabetes, and consequently on the health status of individuals. A major challenge nowadays is to identify novel biomarkers to detect as early as possible metabolic dysfunction and to predict evolution of health status in order to refine nutritional advices to specific population groups. Omics technologies such as genomics, transcriptomics, proteomics, and metabolomics coupled with statistical and bioinformatics tools have already shown great potential in this research field even if so far only few biomarkers have been validated. For the past two decades, important analytical techniques have been developed to detect as many metabolites as possible in human biofluids such as urine, blood, and saliva. In the field of food science and nutrition, many studies have been carried out for food authenticity, quality, and safety, as well as for food processing. Furthermore, metabolomic investigations have been carried out to discover new early biomarkers of metabolic dysfunction and predictive biomarkers of developing pathologies (obesity, metabolic syndrome, type-2 diabetes, etc.). Great emphasis is also placed in the development of methodologies to identify and validate biomarkers of nutrients exposure.
Collapse
Affiliation(s)
- Jean-Louis Sébédio
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France; Laboratoire de Nutrition Humaine, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 321, Clermont-Ferrand, France.
| |
Collapse
|
19
|
Trontel A, Slavica A, Novak M, Jelovac N, Novak S, Šantek B. Applying gas chromatography to monitor extracellular free amino acids content in cultivation medium during lactic acid fermentation. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/01.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
The aim of this work was the adaptation of a Gas Chromatographic-Flame Ionization Detector (GC-FID) method for detection and quantification of extracellular free amino acids in demineralized water, De Mann Rogosa Sharpe (MRS) medium and corn grits (CG) withdrawn during lactic acid fermentation. In order to analyze free amino acids by the GC-FID method it was necessary to convert free amino acids to volatile compounds. This was accomplished by derivatization of free amino acids with ethylchlor formate in aqueous medium followed by extraction of volatile free amino acid esters with chloroform. It was proven that the combination of derivatization and extraction procedure with developed GC-FID method gave accurate, reproducible and sensitive analytical results. Quantification of 15 (Ala, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Asn, Met, Pro, Lys, His, Asp and Glu) out of 20 ethoxycarbonyl-ethyl esters of free amino acids in demineralized water and MRS medium was achieved by established methods. In corn grits medium all of the above mentioned 15 amino acids, except His, were quantified with this GC-FID method. The established method was efficiently verified in monitoring of extracellular free amino acid concentration during lactic acid production with Lactobacillus rhamnosus DSM 20021T in MRS medium and Lactobacillus amylovorus DSM 20531T in corn grits medium.
Collapse
Affiliation(s)
- Antonija Trontel
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb , Croatia
| | - Anita Slavica
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb , Croatia
| | - Mario Novak
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb , Croatia
| | - Nuša Jelovac
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb , Croatia
| | - Srđan Novak
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb , Croatia
| | - Božidar Šantek
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb , Croatia
| |
Collapse
|
20
|
Boelaert J, Lynen F, Glorieux G, Schepers E, Neirynck N, Vanholder R. Metabolic profiling of human plasma and urine in chronic kidney disease by hydrophilic interaction liquid chromatography coupled with time-of-flight mass spectrometry: a pilot study. Anal Bioanal Chem 2017; 409:2201-2211. [DOI: 10.1007/s00216-016-0165-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
21
|
Luan H, Yang L, Ji F, Cai Z. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1047:180-184. [PMID: 27381571 DOI: 10.1016/j.jchromb.2016.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022]
Abstract
Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C3H8O (60Da), C3H5O2 (74Da) and C4H8O2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R2) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (<5%). Our method provided a qualitative and semi-quantitative PCI-GC-MS-MS, coupled with alkyl chloroformate derivatization.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lin Yang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Fenfen Ji
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
22
|
A GC-MS urinary quantitative metabolomics analysis in depressed patients treated with TCM formula of Xiaoyaosan. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1026:227-235. [PMID: 26733091 DOI: 10.1016/j.jchromb.2015.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
Xiaoyaosan, one of the best-known traditional Chinese medicine prescriptions, has been widely used in China for the treatment of mental disorders such as depression. Although both clinical application and animal experiments indicate that Xiaoyaosan has an obvious antidepressant effect, the mechanism still remains unclarified, and there are few studies quantitatively measured the biomarkers of Xiaoyaosan treatment by metabolomics to determination. In this study, 25 depressed patients and 33 healthy volunteers were recruited. A GC-MS based metabolomics approach and the multivariate statistical methods were used for analyzing the urine metabolites of depressed patients before and after treatment compared with healthy controls. Then the biomakers through metabolomics determination were carried out the quantitative analysis. In total, 5 metabolites were identified as the potential diseased and therapeutic biomarkers of depression and Xiaoyaosan. Alanine, citrate and hippurate levels were significantly increased in the urine samples from depressed patients compared with healthy controls, while phenylalanie and tyrosine levels were significantly decreased. However, after Xiaoyaosan treatment for 6 weeks, phenylalanie and tyrosine levels were significantly increased (p<0.05) and alanine, citrate and hippurate levels significantly decreased (p<0.05). Xiaoyaosan has a good priority on the treatment of depression and the ability to adjust the neurotransmitters to obtain the best treated response and also could regulate the metabolism of amino acids and promote to produce energy meet the needs of the body.
Collapse
|
23
|
Yi DH, Sathiyanarayanan G, Seo HM, Lee JH, Kim HJ, Kim YG, Jang KS, Lee YK, Park K, Yang YH. Linear correlation of aliphatic diamines to response factors by number of carbons in GC–MS. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Direct Derivatization vs Aqueous Extraction Methods of Fecal Free Fatty Acids for GC–MS Analysis. Lipids 2015; 50:681-9. [DOI: 10.1007/s11745-015-4029-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/01/2015] [Indexed: 02/07/2023]
|
25
|
Liu S, Liu JS, Luo RN, Xu H, Zhang WR, Meng J, Liang YZ, Tao LJ. Application of GC-MS coupled with chemometrics for scanning serum metabolic biomarkers from renal fibrosis rat. Biochem Biophys Res Commun 2015; 461:186-92. [PMID: 25881503 DOI: 10.1016/j.bbrc.2015.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Renal interstitial fibrosis closely relates to chronic kidney disease and is regarded as the final common pathway in most cases of end-stage renal disease. Metabolomic biomarkers can facilitate early diagnosis and allow better understanding of the pathogenesis underlying renal fibrosis. Gas chromatography-mass spectrometry (GC/MS) is one of the most promising techniques for identification of metabolites. However, the existence of the background, baseline offset, and overlapping peaks makes accurate identification of the metabolites unachievable. In this study, GC/MS coupled with chemometric methods was successfully developed to accurately identify and seek metabolic biomarkers for rats with renal fibrosis. By using these methods, seventy-six metabolites from rat serum were accurately identified and five metabolites (i.e., urea, ornithine, citric acid, galactose, and cholesterol) may be useful as potential biomarkers for renal fibrosis.
Collapse
Affiliation(s)
- Shao Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Ji-Shi Liu
- Xiangya's Third Affiliated Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Ren-Na Luo
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hui Xu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Wei-Ru Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jie Meng
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yi-Zeng Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410008, PR China
| | - Li-Jian Tao
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
26
|
Tian JS, Peng GJ, Gao XX, Zhou YZ, Xing J, Qin XM, Du GH. Dynamic analysis of the endogenous metabolites in depressed patients treated with TCM formula Xiaoyaosan using urinary (1)H NMR-based metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:1-10. [PMID: 25448502 DOI: 10.1016/j.jep.2014.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/22/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Xiaoyaosan (XYS), one of the best-known traditional Chinese medicine prescriptions with a long history of use, is composed of Bupleurum chinense DC., Paeonia lactiflora Pall., Poria cocos (Schw.) Wolf, Angelica sinensis (Oliv.) Diels, Zingiber officinale Rosc., Atractylodes macrocephala Koidz., Glycyrrhiza uralensis Fisch., and Mentha haplocalyx Briq. For centuries, XYS has been widely used in China for the treatment of mental disorders such as depression. However, the complicated mechanism underlying the antidepressant activity of XYS is not yet well-understood. This understanding is complicated by the sophisticated pathophysiology of depression and by the complexity of XYS, which has multiple constituents acting on different metabolic pathways. The variations of endogenous metabolites in depressed patients after administration of XYS may help elucidate the anti-depressant effect and mechanism of action of XYS. The aim of this study is to establish the metabolic profile of depressive disorder and to investigate the changes of endogenous metabolites in the depressed patients before and after the treatment of Xiaoyaosan using the dynamic analysis of urine metabolomics profiles based on (1)H NMR. MATERIALS AND METHODS Twenty-one depressed patients were recruited from the Traditional Chinese Medicine Department of the First Affiliated Hospital of Shanxi Medical University. Small endogenous metabolites present in urine samples were measured by nuclear magnetic resonance (NMR) and analyzed by multivariate statistical methods. The patients then received XYS treatment for six weeks, after which their Hamilton Depression Scale (HAMD) scores were significantly decreased compared with their baseline scores (p≤0.01). Eight components in urine specimens were identified that enabled discrimination between the pre- and post-XYS-treated samples. RESULTS Urinary of creatinine, taurine, 2-oxoglutarate and xanthurenic acid increased significantly after XYS treatment (p≤0.05), while the urinary levels of citrate, lactate, alanine and dimethylamine decreased significantly (p≤0.05) compared with pre-treatment urine samples. These statistically significant perturbations are involved in energy metabolism, gut microbes, tryptophan metabolism and taurine metabolism. CONCLUSIONS The symptoms of depression had been improved after 6 weeks׳ treatment of XYS according to evaluation of HAMD scores. The dynamic tendency of the 8 metabolites that changed significantly during the treatment of XYS is consistent with the improvement in symptoms of depression. These metabolites may be used as biomarkers for the diagnosis of depressive disorders or the evaluation of the antidepressant as well as the exploration of the mechanism of depression.
Collapse
Affiliation(s)
- Jun-sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Guo-jiang Peng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China; College of Chemistry and Chemical Engineering of Shanxi University, Taiyuan 030006, PR China
| | - Xiao-xia Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Yu-zhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Jie Xing
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xue-mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| | - Guan-hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
27
|
Fast determination of ethylene glycol, 1,2-propylene glycol and glycolic acid in blood serum and urine for emergency and clinical toxicology by GC-FID. Talanta 2014; 130:470-4. [DOI: 10.1016/j.talanta.2014.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 11/17/2022]
|
28
|
Fast ibuprofen, ketoprofen and naproxen simultaneous determination in human serum for clinical toxicology by GC–FID. Clin Biochem 2014; 47:109-11. [DOI: 10.1016/j.clinbiochem.2014.06.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|
29
|
Qiu Y, Xiao F, Wei X, Wen Z, Chen S. Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. Appl Microbiol Biotechnol 2014; 98:8895-903. [PMID: 25085615 DOI: 10.1007/s00253-014-5978-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/21/2014] [Accepted: 07/27/2014] [Indexed: 11/29/2022]
Abstract
Lichenysin is a biodegradable surfactant with huge potential for recovering crude oil from the oil reservoir. The current production of lichenysin is made through fermentation from wild strain of Bacillus licheniformis, which is limited by low yield. The aim of this work was to improve lichenysin-producing capability of a wide strain B. licheniformis WX-02. Lichenysin produced from WX-02 was first extracted, purified, and identified. Through the substitution of the promoter of lichenysin biosynthesis operon, the mutants B. licheniformis WX02-P43lch, WX02-Pxyllch, and WX02-Psrflch were constructed with the constitutive promoter (P43), the xylose-inducible promoter (P xyl ), and the surfactin operon promoter (P srf ), respectively. A consistent change trend was observed between lichenysin production and lchAA gene transcription, confirming the strength of the promoters as an important factor for lichenysin synthesis. Among the three mutants, WX02-Psrflch produced the highest lichenysin yield. The production by the mutant WX02-Psrflch was further improved with the optimization of the major medium components including glucose, NH4NO3, and Na2HPO4/KH2PO4. Under 30 g/L glucose, 5 g/L NH4NO3, and 80 mM/60 mM Na2HPO4/KH2PO4, the strain WX02-Psrflch produced 2,149 mg/L lichenysin, a 16.8-fold improvement compared to that of wild strain WX-02.
Collapse
Affiliation(s)
- Yimin Qiu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | |
Collapse
|
30
|
Wu X, Si N, Bo G, Hu H, Yang J, Bian B, Zhao HY, Wang H. Characterization and quantitative amino acids analysis of analgesic peptides in cinobufacini injection by size exclusion chromatography, matrix-assisted laser desorption/ionization time of flight mass spectrometry and gas chromatography mass spectrometry. Biomed Chromatogr 2014; 29:138-47. [PMID: 24924921 DOI: 10.1002/bmc.3250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/06/2023]
Abstract
Cinobufacini injection that comes from the water extract of Bufo bufo gargarizans Cantor skin is widely used for cancer treatment in China. Peptide is one of its major types of constituents, however the biological effects and content of this injection are little reported. In present study, the analgesic effect of peptides was determined and evaluated by in-vivo models. To characterize and quantitatively analyze these peptides, a reliable and efficient method combining size exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with amino acid analysis was developed. The peptides presented as a series of analogs with similar molecular weights mostly ranging from 2 to 8 kDa. The amino acid analysis by gas chromatography mass spectrometry (GC-MS) was developed to determine both free and combined amino acids (FAA and CAA) in cinobufacini injection. This method achieved good linearity (R(2) , 0.9909-0.9999) and low limit of detection and quantification. FAA and CAA samples were efficiently analyzed by modified Phenomenex EZ: faast procedure. For the sample analysis, the method showed good repeatability (relative standard deviation, RSD ≤ 10%). For most FAA and CAA the mean recoveries were >80% with RSD <10%. The GC-MS based method is useful for quality assurance of both FAA and CAA in cinobufacini injection.
Collapse
Affiliation(s)
- Xu Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu P, Duan JA, Guo JM, Qian DW, Shang EX, Tang YP, Su SL. Plasma metabolic profiling of normal and dysmenorrhea syndrome rats and the effects of Xiang-Fu-Si-Wu Decoction intervention. PHARMACEUTICAL BIOLOGY 2014; 52:603-613. [PMID: 24262062 DOI: 10.3109/13880209.2013.858269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
CONTEXT Primary dysmenorrhea (PDM), a common, clinically heterogeneous endocrine disorder affecting young women, is associated with endocrinopathy and metabolic abnormalities. The Xiang-Fu-Si-Wu Decoction (XFSWD) is a traditional Chinese medicine preparation used to treat PDM. OBJECTIVE In the current study, a plasma metabonomics method based on the ultra-high-performance liquid chromatography-quantitative time-of-flight-mass spectrometry (UHPLC-Q-TOF-MS) system was employed to examine the mechanism of XFSWD action in PDM. MATERIALS AND METHODS Estradiol benzoate (0.01 g/kg/d) and oxytocin (5 mL/kg) were used to create the dysmenorrhea rat model. Based on the chromatographic data of plasma samples at different time-points following oral administration of XFSWD mixed in water (37.8 g crude herbs/kg) on day 7, partial least square (PLS) and discriminate analysis (DA) were applied to visualize group differentiation and marker selection. RESULTS Systemic changes occurring in PDM reflect alterations in not only uterus function but also whole-body metabolism. The XFSWD was effective as a therapeutic agent for PDM by reflect metabolic pathway. Prostaglandins and lysophospholipids were identified as two marker types for oxytocin-induced dysmenorrhea syndrome, including LysoPC(18:4), LysoPE(22:2/0:0), LysoPC(17:0), PGJ₂, 11-deoxy-11-methylene-PGD₂, 15-deoxy-δ-12,14-PGJ₂, LysoPC(20:3), etc. Specifically, the concentrations of prostaglandins compounds (PGJ₂, 11-deoxy-11-methylene-PGD₂, 15-deoxy-δ-12,14-PGJ₂) were increased while those of lysophospholipid compounds [lysoPC(18:4), LysoPE(22:2/0:0), LysoPC(17:0)] were decreased to a significant extent (p < 0.05) in dysmenorrheal rats. Upon treatment with the XFSWD at 12 h, the concentrations of lysophospholipids showed no significant differences (P > 0.05) between the model and normal groups. The lysophospholipid levels were restored. Lysophospholipids were the key factors in phospholipid metabolism. Thus, disruption of phospholipids metabolism appears critical for the development of dysmenorrhea. The XFSWD exerted its effects by interfering with the sphingolipid metabolic pathway. DISCUSSION AND CONCLUSIONS The metabonomics method presents a promising tool to treat PDM in animal models, and may be applicable for clinical treatment of the human disease in the future.
Collapse
Affiliation(s)
- Pei Liu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine , Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Kostić N, Dotsikas Y, Malenović A, Medenica M. Effects of derivatization reagents consisting of n-alkyl chloroformate/n-alcohol combinations in LC–ESI-MS/MS analysis of zwitterionic antiepileptic drugs. Talanta 2013; 116:91-9. [DOI: 10.1016/j.talanta.2013.04.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 12/24/2022]
|
33
|
Novel method for quantification of individual free fatty acids in milk using an in-solution derivatisation approach and gas chromatography-mass spectrometry. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Determination of efficacy of fingermark enhancement reagents; the use of propyl chloroformate for the derivatization of fingerprint amino acids extracted from paper. Sci Justice 2013; 53:301-8. [DOI: 10.1016/j.scijus.2013.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/12/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022]
|
35
|
Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, Xie G, Ore BM, Qiao S, Spencer MD, Zeisel SH, Zhou Z, Zhao A, Jia W. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 2013; 9:818-827. [PMID: 23997757 PMCID: PMC3756605 DOI: 10.1007/s11306-013-0500-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and inter-day (within 7 days) precision (< 10%), and good stability (< 20%) within 4 days at room temperature (23-25 °C), or 7 days when stored at -20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistics analysis of the concentrations of these target metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunping Qiu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Sarah Baxter
- David H. Murdock Research Institute, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Mingming Su
- David H. Murdock Research Institute, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Qiong Li
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Guoxiang Xie
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Brandon M. Ore
- David H. Murdock Research Institute, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Shanlei Qiao
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Melanie D. Spencer
- UNC Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina 28081, USA
| | - Steven H. Zeisel
- UNC Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina 28081, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | - Aihua Zhao
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wei Jia
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| |
Collapse
|
36
|
Kuehnbaum NL, Britz-McKibbin P. New Advances in Separation Science for Metabolomics: Resolving Chemical Diversity in a Post-Genomic Era. Chem Rev 2013; 113:2437-68. [DOI: 10.1021/cr300484s] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naomi L. Kuehnbaum
- Department of Chemistry
and Chemical Biology, McMaster University, Hamilton, Canada
| | | |
Collapse
|
37
|
Husek P. Letter to the Editor regarding "GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia". Anal Bioanal Chem 2012; 403:2785-6; author reply 2787-9. [PMID: 22252653 DOI: 10.1007/s00216-011-5615-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Mudiam MKR, Ratnasekhar C, Jain R, Saxena PN, Chauhan A, Murthy RC. Rapid and simultaneous determination of twenty amino acids in complex biological and food samples by solid-phase microextraction and gas chromatography-mass spectrometry with the aid of experimental design after ethyl chloroformate derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 907:56-64. [PMID: 22998980 DOI: 10.1016/j.jchromb.2012.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022]
Abstract
Amino acids play a vital role as intermediates in many important metabolic pathways such as the biosynthesis of nucleotides, vitamins and secondary metabolites. A sensitive and rapid analytical method has been proposed for the first time for the simultaneous determination of twenty amino acids using solid-phase microextraction (SPME). The protein samples were hydrolyzed by 6M HCl under microwave radiation for 120 min. Then the amino acids were derivatized by ethyl chloroformate (ECF) and the ethoxy carbonyl ethyl esters of amino acids formed were extracted using SPME by direct immersion. Finally the extracted analytes on the SPME fiber were desorbed at 260°C and analyzed by gas chromatography-mass spectrometer (GC-MS) in electron ionization mode. Factors which affect the SPME efficiency were screened by Plackett-Burmann design; most significant factors were optimized with response surface methodology. The optimum conditions for SPME are as follows: pH of 1.7, ionic strength of 733 mg, extraction time of 30 min and fiber of divinyl benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS). The recovery of all the amino acids was found to be in the range of 89.17-100.98%. The limit of detection (LOD) of all derivatized amino acids in urine, hair and soybean was found to be in the range of 0.20-7.52 μg L(-1), 0.21-8.40 μg L(-1) and 0.18-5.62 μg L(-1), respectively. Finally, the proposed technique was successfully applied for the determination of amino acids in complex biological (hair, urine) and food samples (soybean). The method can find wide applications in the routine analysis of amino acids in any biological as well as food samples.
Collapse
Affiliation(s)
- Mohana Krishna Reddy Mudiam
- Analytical Chemistry Section, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India.
| | | | | | | | | | | |
Collapse
|
39
|
Hušek P, Švagera Z, Hanzlíková D, Šimek P. Survey of several methods deproteinizing human plasma before and within the chloroformate-mediated treatment of amino/carboxylic acids quantitated by gas chromatography. J Pharm Biomed Anal 2012; 67-68:159-62. [DOI: 10.1016/j.jpba.2012.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/19/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
40
|
Response to Letter to the Editor regarding “GC-MS with ethyl chloroformate derivatization for comprehensive analysis of metabolites in serum and its application to human uremia”. Anal Bioanal Chem 2012. [DOI: 10.1007/s00216-012-6047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 2011; 6:1060-83. [PMID: 21720319 DOI: 10.1038/nprot.2011.335] [Citation(s) in RCA: 2001] [Impact Index Per Article: 142.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolism has an essential role in biological systems. Identification and quantitation of the compounds in the metabolome is defined as metabolic profiling, and it is applied to define metabolic changes related to genetic differences, environmental influences and disease or drug perturbations. Chromatography-mass spectrometry (MS) platforms are frequently used to provide the sensitive and reproducible detection of hundreds to thousands of metabolites in a single biofluid or tissue sample. Here we describe the experimental workflow for long-term and large-scale metabolomic studies involving thousands of human samples with data acquired for multiple analytical batches over many months and years. Protocols for serum- and plasma-based metabolic profiling applying gas chromatography-MS (GC-MS) and ultraperformance liquid chromatography-MS (UPLC-MS) are described. These include biofluid collection, sample preparation, data acquisition, data pre-processing and quality assurance. Methods for quality control-based robust LOESS signal correction to provide signal correction and integration of data from multiple analytical batches are also described.
Collapse
|
42
|
Moon JY, Kim KJ, Moon MH, Chung BC, Choi MH. A novel GC-MS method in urinary estrogen analysis from postmenopausal women with osteoporosis. J Lipid Res 2011; 52:1595-603. [PMID: 21602563 DOI: 10.1194/jlr.d016113] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogen metabolites play important roles in the development of female-related disorders and homeostasis of the bone. To improve detectability, a validated gas chromatography-mass spectrometry (GC-MS) method was conducted with two-phase extractive ethoxycarbonlyation (EOC) and subsequent pentafluoropropionyl (PFP) derivatization was introduced. The resulting samples were separated through a high-temperature MXT-1 column within an 8 min run and were detected in the selected ion monitoring (SIM) mode. The optimized analytical conditions led to good separation with a symmetric peak shape for 19 estrogens as their EOC-PFP derivatives. The limit of quantification (LOQ) was from 0.02 to ∼0.1 ng/ml for most estrogens analyzed, except for 2-hydroxyestriol (0.5 ng/ml). The devised method was found to be linear (r² > 0.995) in the range from the LOQ to 40 ng/ml, whereas the precision (% CV) and accuracy (% bias) ranged from 1.4 to 10.5% and from 91.4 to 108.5%, respectively. The good sensitivity and selectivity of this method even allowed quantification of the estrogen metabolites in urine samples obtained from the postmenopausal female patients with osteoporosis. The present technique can be useful for clinical diagnosis as well as to better understand the pathogenesis of estrogen-related disorders in low-level quantification.
Collapse
Affiliation(s)
- Ju-Yeon Moon
- Future Convergence Research DivisionCollege of Medicine, Korea Institute of Science and Technology, Seoul, Korea
| | | | | | | | | |
Collapse
|
43
|
Niwa T. Update of uremic toxin research by mass spectrometry. MASS SPECTROMETRY REVIEWS 2011; 30:510-521. [PMID: 21328600 DOI: 10.1002/mas.20323] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 05/30/2023]
Abstract
Mass spectrometry (MS) has been successfully applied for the identification and quantification of uremic toxins and uremia-associated modified proteins. This review focuses on the recent progress in the MS analysis of uremic toxins. Uremic toxins include low-molecular weight solutes, protein-bound low-molecular weight solutes, and middle molecules (peptides and proteins). Based on MS analysis of these uremic toxins, the pathogenesis of the uremic symptoms will be elucidated to prevent and manage the symptoms. Notably, protein-bound uremic toxins such as indoxyl sulfate, p-cresyl sulfate, and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid have emerged as important targets of therapeutic removal. Hemodialysis even with a high-flux membrane cannot efficiently remove the protein-bound uremic toxins because of their high albumin-binding property. The accumulation of these protein-bound uremic toxins in the blood of dialysis patients might play an important role in the development of uremic complications such as cardiovascular disease. Indoxyl sulfate is the most promising protein-bound uremic toxin as a biomarker of progress in chronic kidney disease. Novel dialysis techniques or membranes should be developed to efficiently remove these protein-bound uremic toxins for the prevention and management of uremic complications.
Collapse
Affiliation(s)
- Toshimitsu Niwa
- Department of Advanced Medicine for Uremia, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
44
|
Cavaliere B, Macchione B, Monteleone M, Naccarato A, Sindona G, Tagarelli A. Sarcosine as a marker in prostate cancer progression: a rapid and simple method for its quantification in human urine by solid-phase microextraction-gas chromatography-triple quadrupole mass spectrometry. Anal Bioanal Chem 2011; 400:2903-12. [PMID: 21491110 DOI: 10.1007/s00216-011-4960-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/18/2011] [Accepted: 03/26/2011] [Indexed: 10/18/2022]
Abstract
Sarcosine is an amino acid derivative of N-methylglycine and is involved in the amino acid metabolism and methylation processes that are enriched during prostate cancer progression. It could also serve as a new target to be measured during therapeutic interventions and help in the identification of aggressive tumors for radical treatment. In this study, we present a new urine test that can help early diagnosis of prostate cancer. The method for the quantification of sarcosine in urine consists of a solid-phase microextraction (SPME) step followed by gas chromatography-triple quadrupole mass spectrometry analysis. We used a preliminary derivatization step with ethyl chloroformate/ethanol and the corresponding ester was then extracted by SPME in immersion mode. Several fibers were evaluated and the optimization of the parameters affecting the SPME process was carried out using an experimental design. The optimal values were 20 min extraction time, 10% NaCl, and 270°C using a divinylbenzene/Carboxen/polydimethylsiloxane fiber. The triple quadrupole analyzer acquired data in selected reaction monitoring mode, allowing us to obtain reconstructed chromatograms with well-defined chromatographic peaks. The accuracy and precision of this method were evaluated at concentrations of 70, 250, and 800 ng/ml and were found to be acceptable. Very satisfactory values (0.10 and 0.16 ng/ml, respectively) were also achieved for the limit of detection and the limit of quantification. The proposed protocol represents a rapid, simple, selective, and sensitive tool to quantify sarcosine in urine samples for prostate cancer diagnosis and for a screening test.
Collapse
Affiliation(s)
- Brunella Cavaliere
- Dipartimento di Chimica, Università della Calabria, Arcavacata di Rende, CS, Italy
| | | | | | | | | | | |
Collapse
|
45
|
An ultrasonication-assisted extraction and derivatization protocol for GC/TOFMS-based metabolite profiling. Anal Bioanal Chem 2011; 400:1405-17. [PMID: 21448603 DOI: 10.1007/s00216-011-4880-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/02/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
Conventional chemical derivatization of metabolites in biological specimens is time-consuming, which limits the throughput and efficiency of metabolite profiling using a gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) platform. We report an ultrasonication-assisted protocol which reduces the derivatization time from hours to about 30 min and significantly enhances the derivatization efficiency prior to a GC/TOFMS analysis. The protocol was evaluated using 40 compounds representing different classes of human metabolites, and demonstrated good analytical precision and accuracy. In comparison with the conventional method, the new protocol was able to increase the intensity of most of the identified peaks (71.0%) in the GC/TOFMS chromatograms of human serum samples. The detected compounds with increased intensity include most amino acids, keto-containing organic acids, carbonyl-containing carbohydrates, and unsaturated fatty acids. We applied this protocol in a metabolomic study of human serum samples obtained from 34 patients diagnosed with hypertension and 29 age- and gender-matched healthy subjects. Metabolite markers associated with hypertension, including glucosamine, D-sorbitol, 1-stearoylglycerol, and homocysteine, were identified and validated by statistical methods and use of reference standards. Our work highlights the potential of this novel approach for the large-scale metabolite profiling of samples generated from plant, animal, and clinical and epidemiological studies.
Collapse
|
46
|
Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 2010; 40:387-426. [PMID: 20717559 DOI: 10.1039/b906712b] [Citation(s) in RCA: 575] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of biological systems in a holistic manner (systems biology) is increasingly being viewed as a necessity to provide qualitative and quantitative descriptions of the emergent properties of the complete system. Systems biology performs studies focussed on the complex interactions of system components; emphasising the whole system rather than the individual parts. Many perturbations to mammalian systems (diet, disease, drugs) are multi-factorial and the study of small parts of the system is insufficient to understand the complete phenotypic changes induced. Metabolomics is one functional level tool being employed to investigate the complex interactions of metabolites with other metabolites (metabolism) but also the regulatory role metabolites provide through interaction with genes, transcripts and proteins (e.g. allosteric regulation). Technological developments are the driving force behind advances in scientific knowledge. Recent advances in the two analytical platforms of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have driven forward the discipline of metabolomics. In this critical review, an introduction to metabolites, metabolomes, metabolomics and the role of MS and NMR spectroscopy will be provided. The applications of metabolomics in mammalian systems biology for the study of the health-disease continuum, drug efficacy and toxicity and dietary effects on mammalian health will be reviewed. The current limitations and future goals of metabolomics in systems biology will also be discussed (374 references).
Collapse
Affiliation(s)
- Warwick B Dunn
- Manchester Centre for Integrative Systems Biology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | |
Collapse
|
47
|
Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics--a review in human disease diagnosis. Anal Chim Acta 2009; 659:23-33. [PMID: 20103103 DOI: 10.1016/j.aca.2009.11.042] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 11/15/2009] [Accepted: 11/17/2009] [Indexed: 12/14/2022]
Abstract
Metabolomics is a post genomic research field concerned with developing methods for analysis of low molecular weight compounds in biological systems, such as cells, organs or organisms. Analyzing metabolic differences between unperturbed and perturbed systems, such as healthy volunteers and patients with a disease, can lead to insights into the underlying pathology. In metabolomics analysis, large amounts of data are routinely produced in order to characterize samples. The use of multivariate data analysis techniques and chemometrics is a commonly used strategy for obtaining reliable results. Metabolomics have been applied in different fields such as disease diagnosis, toxicology, plant science and pharmaceutical and environmental research. In this review we take a closer look at the chemometric methods used and the available results within the field of disease diagnosis. We will first present some current strategies for performing metabolomics studies, especially regarding disease diagnosis. The main focus will be on data analysis strategies and validation of multivariate models, since there are many pitfalls in this regard. Further, we highlight the most interesting metabolomics publications and discuss these in detail; additional studies are mentioned as a reference for the interested reader. A general trend is an increased focus on biological interpretation rather than merely the ability to classify samples. In the conclusions, the general trends and some recommendations for improving metabolomics data analysis are provided.
Collapse
Affiliation(s)
- Rasmus Madsen
- Computational Life Science Cluster (CLiC), KBC, Umeå University, S-901 87, Umeå, Sweden
| | | | | |
Collapse
|
48
|
Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization. Anal Biochem 2009; 393:163-75. [PMID: 19573517 DOI: 10.1016/j.ab.2009.06.036] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/25/2009] [Accepted: 06/25/2009] [Indexed: 01/30/2023]
Abstract
Fecal water is a complex mixture of various metabolites with a wide range of physicochemical properties and boiling points. The analytical method developed here provides a qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis, with high sensitivity and efficiency, coupled with derivatization of ethyl chloroformate in aqueous medium. The water/ethanol/pyridine ratio was optimized to 12:6:1, and a two-step derivatization with an initial pH regulation of 0.1M sodium bicarbonate was developed. The deionized water exhibited better extraction efficiency for fecal water compounds than did acidified and alkalized water. Furthermore, more amino acids were extracted from frozen fecal samples than from fresh samples based on multivariate statistical analysis and univariate statistical validation on GC/MS data. Method validation by 34 reference standards and fecal water samples showed a correlation coefficient higher than 0.99 for each of the standards, and the limit of detection (LOD) was from 10 to 500pg on-column for most of the standards. The analytical equipment exhibited excellent repeatability, with the relative standard deviation (RSD) lower than 4% for standards and lower than 7% for fecal water. The derivatization method also demonstrated good repeatability, with the RSD lower than 6.4% for standards (except 3,4-dihydroxyphenylacetic acid) and lower than 10% for fecal water (except dicarboxylic acids). The qualitative means by searching the electron impact (EI) mass spectral database, chemical ionization (CI) mass spectra validation, and reference standards comparison totally identified and structurally confirmed 73 compounds, and the fecal water compounds of healthy humans were also quantified. This protocol shows a promising application in metabolome analysis based on human fecal water samples.
Collapse
|