1
|
Hu T, Sang Q, Liang D, Zhang W, Wang Y, Qian K. A tunable LDI-MS platform assisted by metal-phenolic network-coated AuNPs for sensitive and customized detection of amino acids. Talanta 2025; 281:126928. [PMID: 39317066 DOI: 10.1016/j.talanta.2024.126928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
This study introduces a novel approach for the sensitive and accurate detection of small molecule metabolites, employing metal-phenolic network (MPN) functionalized AuNPs as both adsorbent and matrix to enhance laser desorption/ionization mass spectrometry (LDI-MS) performance. The MPN comprising tannic acid (TA) and transition metal ions (Fe3+, Co2+, Ni2+, Cu2+, or Zn2+) was coated on the surface of AuNPs, forming metal-TA network-coated AuNPs (M-TA@AuNPs). The M-TA@AuNPs provided a tunable surface for specific interactions with analytes, displaying distinct enrichment efficacies for different amino acids, especially for Cu-TA@AuNPs exhibiting the highest affinity for histidine (His). Under the optimized condition, the proposed method enabled ultrasensitive detection of His, with good linearity (R2 = 0.9627) in the low-concentration range (50 nM-1 μM) and a limit of detection (LOD) as low as 0.9 nM. Furthermore, the method was successfully applied to detect His from human urine samples, showcasing its practical applications in clinical diagnostics, particularly in the realm of amino acid-based targeted metabolomics.
Collapse
Affiliation(s)
- Tong Hu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, PR China
| | - Qi Sang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, PR China
| | - Dingyitai Liang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, PR China
| | - Wenjing Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, PR China
| | - Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, PR China.
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, 610213, PR China
| |
Collapse
|
2
|
Kołodziej A, Płaza-Altamer A. Advances in the synthesis and application of silver nanoparticles for laser mass spectrometry: A mini-review. Talanta 2024; 277:126347. [PMID: 38838565 DOI: 10.1016/j.talanta.2024.126347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Silver nanoparticles are used in laser mass spectrometry to replace organic matrices. Thanks to their unique properties, they enable effective desorption/ionization of samples of various polarities and ionization abilities. This review presents new methods for the synthesis of monoisotopic silver nanoparticles and the use of targets coated with these nanoparticles for qualitative and quantitative analyses of various small-molecule compounds. Additionally, the results of progress in the application of AgNPs for metabolomics analyses were presented.
Collapse
Affiliation(s)
- Artur Kołodziej
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| | - Aneta Płaza-Altamer
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| |
Collapse
|
3
|
Shibamoto K, Fujita T. Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with a Two-Dimensional Au Nanoparticle Array for Soft Ionization. ACS OMEGA 2024; 9:21822-21828. [PMID: 38799331 PMCID: PMC11112685 DOI: 10.1021/acsomega.3c08648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is a valuable technique for detecting small molecules in environmental and medicinal studies. We investigated dot-like and 2D-array gold nanoparticle-based SALDI-MS substrates that excite surface plasmons and enhance the desorption/ionization of sample molecules via charge transfer between the substrate and sample molecules. We aimed to optimize the nondissociative detection of sample molecules by efficiently transferring energy while suppressing excess internal energy. SALDI-MS measurements using crystal violet (CV) molecules revealed ion intensity and spectral pattern differences between the dot-like and 2D-array substrates. SALDI-MS measurements using dot-like substrates suggested two desorption/ionization processes: internal energy supply and charge transfer between the substrate and sample molecules. However, SALDI-MS measurements using 2D-array substrates suggested that the internal energy supply was suppressed. As a result, the dot-like substrate provided higher desorption/ionization efficiency but increased fragmentation, whereas the 2D-array substrate was suitable for highly sensitive and nondissociative SALDI-MS measurements. This study contributes to the optimization of SALDI-MS measurements and advances our understanding of energy transfer and sample molecule dissociation.
Collapse
Affiliation(s)
- Kohei Shibamoto
- Department
of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 ,Japan
| | - Takashi Fujita
- Department
of Applied Chemistry, School of Engineering, Tokyo University of Technology, 1401-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
4
|
Sakai R, Kondo H, Ishikawa K, Ohta T, Hiramatsu M, Tanaka H, Hori M. Effects of High-Quality Carbon Nanowalls Ionization-Assisting Substrates on Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:63. [PMID: 36615973 PMCID: PMC9823508 DOI: 10.3390/nano13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is performed using carbon nanowalls (CNWs) for ionization-assisting substrates. The CNWs (referred to as high-quality CNWs) in the present study were grown using a radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with the addition of oxygen in a mixture of CH4 and H2 gases. High-quality CNWs were different with respect to crystallinity and C-OH groups, while showing similar wall-to-wall distances and a wettability comparable to CNWs (referred to as normal CNWs) grown without O2. The efficiency of SALDI was tested with both parameters of ion intensity and fragmental efficiency (survival yield (SY)) using N-benzylpyridinuim chloride (N-BP-CI). At a laser fluence of 4 mJ/cm2, normal CNWs had an SY of 0.97 and an ion intensity of 0.13, while 5-sccm-O2- high-quality CNWs had an SY of 0.89 and an ion intensity of 2.55. As a result, the sensitivity for the detection of low-molecular-weight analytes was improved with the high-quality CNWs compared to the normal CNWs, while an SY of 0.89 was maintained at a low laser fluence of 4 mJ/cm2. SALDI-MS measurements available with the high-quality CNWs ionization-assisting substrate provided high ionization and SY values.
Collapse
Affiliation(s)
- Ryusei Sakai
- Department of Electronics, Graduate School of Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Hiroki Kondo
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Kenji Ishikawa
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Takayuki Ohta
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Mineo Hiramatsu
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Hiromasa Tanaka
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| | - Masaru Hori
- Center for Low-Temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Fournelle F, Lauzon N, Yang E, Chaurand P. Metal-Assisted Laser Desorption Ionization Imaging Mass Spectrometry for Biological and Forensic Applications. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Müller WH, Verdin A, De Pauw E, Malherbe C, Eppe G. Surface-assisted laser desorption/ionization mass spectrometry imaging: A review. MASS SPECTROMETRY REVIEWS 2022; 41:373-420. [PMID: 33174287 PMCID: PMC9292874 DOI: 10.1002/mas.21670] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 05/04/2023]
Abstract
In the last decades, surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) has attracted increasing interest due to its unique capabilities, achievable through the nanostructured substrates used to promote the analyte desorption/ionization. While the most widely recognized asset of SALDI-MS is the untargeted analysis of small molecules, this technique also offers the possibility of targeted approaches. In particular, the implementation of SALDI-MS imaging (SALDI-MSI), which is the focus of this review, opens up new opportunities. After a brief discussion of the nomenclature and the fundamental mechanisms associated with this technique, which are still highly controversial, the analytical strategies to perform SALDI-MSI are extensively discussed. Emphasis is placed on the sample preparation but also on the selection of the nanosubstrate (in terms of chemical composition and morphology) as well as its functionalization possibilities for the selective analysis of specific compounds in targeted approaches. Subsequently, some selected applications of SALDI-MSI in various fields (i.e., biomedical, biological, environmental, and forensic) are presented. The strengths and the remaining limitations of SALDI-MSI are finally summarized in the conclusion and some perspectives of this technique, which has a bright future, are proposed in this section.
Collapse
Affiliation(s)
- Wendy H. Müller
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, Chemistry DepartmentUniversity of LiègeLiègeBelgium
| |
Collapse
|
7
|
Płaza A, Kołodziej A, Nizioł J, Ruman T. Laser Ablation Synthesis in Solution and Nebulization of Silver-109 Nanoparticles for Mass Spectrometry and Mass Spectrometry Imaging. ACS MEASUREMENT SCIENCE AU 2022; 2:14-22. [PMID: 36785587 PMCID: PMC9885948 DOI: 10.1021/acsmeasuresciau.1c00020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Preparation of monoisotopic silver-109 nanoparticles (109AgNPs) by pulsed fiber laser (PFL) ablation synthesis in solution (LASiS) with the use of a 2D galvoscanner (2D GS) is described. The procedure of covering of custom-made stainless-steel MALDI targets containing studied objects via nebulization is also presented. Examples of application of the new method (PFL-2D GS LASiS and nebulization) in mass spectrometry (MS) analyses and MS imaging (MSI) are shown. These include tests with a nonionic nucleoside and saccharide, ionic amino acids, and also a low-molecular-weight polymer. Fingerprint MS imaging is shown as an example of a fast and simple MSI procedure.
Collapse
Affiliation(s)
- Aneta Płaza
- Doctoral
School of Engineering and Technical Sciences at the Rzeszów
University of Technology, 8 Powstańców Warszawy Ave., Rzeszów 35-959, Poland
| | - Artur Kołodziej
- Doctoral
School of Engineering and Technical Sciences at the Rzeszów
University of Technology, 8 Powstańców Warszawy Ave., Rzeszów 35-959, Poland
| | - Joanna Nizioł
- Rzeszów
University of Technology, Faculty of Chemistry,
Inorganic and Analytical Chemistry Department, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Tomasz Ruman
- Rzeszów
University of Technology, Faculty of Chemistry,
Inorganic and Analytical Chemistry Department, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| |
Collapse
|
8
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Xu H, Zhang Z, Wang Y, Lu W, Min Q. Engineering of nanomaterials for mass spectrometry analysis of biomolecules. Analyst 2021; 146:5779-5799. [PMID: 34397044 DOI: 10.1039/d1an00860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) based analysis has received intense attention in diverse biological fields. However, direct MS interrogation of target biomolecules in complex biological samples is still challenging, due to the extremely low abundance and poor ionization potency of target biological species. Innovations in nanomaterials create new auxiliary tools for deep and comprehensive MS characterization of biomolecules. More recently, growing research interest has been directed to the compositional and structural engineering of nanomaterials for enriching target biomolecules prior to MS analysis, enhancing the ionization efficiency in MS detection and designing biosensing nanoprobes in sensitive MS readout. In this review, we mainly focus on the recent advances in the engineering of nanomaterials towards their applications in sample pre-treatment, desorption/ionization matrices and ion signal amplification for MS profiling of biomolecules. This review will provide a toolbox of nanomaterials for researchers devoted to developing analytical methods and practical applications in the biological MS field.
Collapse
Affiliation(s)
- Hongmei Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China. and Institute of Environmental Science, Shanxi University, Taiyuan 030006, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Weifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
10
|
Shanta PV, Li B, Stuart DD, Cheng Q. Lipidomic Profiling of Algae with Microarray MALDI-MS toward Ecotoxicological Monitoring of Herbicide Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10558-10568. [PMID: 34286960 DOI: 10.1021/acs.est.1c01138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Misuse of agrochemicals has a long-lasting negative impact on aquatic systems. Mismanagement of herbicides in agri-food sectors is often linked to a simultaneous decline in the health of downstream waterways. However, monitoring the herbicide levels in these areas is a laborious task, and modern analytical approaches, such as solid-phase extraction-liquid chromatography-mass spectrometry (SPE-LC-MS) and enzyme-linked immunosorbent assay, are low-throughput and require significant sample preparation. We report here the use of microchip technology in combination with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) for the assessment of the ecotoxicological effect of agrochemicals on aquatic species at the single-cell level. This approach quantifies the fluctuations in lipid content in sentinel organisms and targets the microalga, Chlamydomonas reinhardtii (C. reinhardtii), as the model system. Specifically, we investigated the cytotoxicity of three herbicides (atrazine, clomazone, and norflurazon) on C. reinhardtii by analyzing the lipid component variation upon assorted herbicide exposure. Lipidomic profiling reveals a significantly altered lipid content at >EC50 in atrazine-exposed cells. The response for norflurazon showed similar trends but diminished in magnitude, while the result for clomazone was near muted. At lower herbicide concentrations, digalactosyldiacylglycerols showed a rapid decrease in abundance, while several other lipids displayed a moderate increase. The microchip-based MALDI technique demonstrates the ability to achieve lipidomic profiling of aquatic species exposed to different stressors, proving effective for high-throughput screening and single-cell analysis in ecotoxicity studies.
Collapse
Affiliation(s)
- Peter V Shanta
- Environmental Toxicology, University of California, Riverside, California 92521, United States
| | - Bochao Li
- Environmental Toxicology, University of California, Riverside, California 92521, United States
| | - Daniel D Stuart
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Gold-Conjugated Nanobodies for Targeted Imaging Using High-Resolution Secondary Ion Mass Spectrometry. NANOMATERIALS 2021; 11:nano11071797. [PMID: 34361183 PMCID: PMC8308316 DOI: 10.3390/nano11071797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022]
Abstract
Nanoscale imaging with the ability to identify cellular organelles and protein complexes has been a highly challenging subject in the secondary ion mass spectrometry (SIMS) of biological samples. This is because only a few isotopic tags can be used successfully to target specific proteins or organelles. To address this, we generated gold nanoprobes, in which gold nanoparticles are conjugated to nanobodies. The nanoprobes were well suited for specific molecular imaging using NanoSIMS at subcellular resolution. They were demonstrated to be highly selective to different proteins of interest and sufficiently sensitive for SIMS detection. The nanoprobes offer the possibility of correlating the investigation of cellular isotopic turnover to the positions of specific proteins and organelles, thereby enabling an understanding of functional and structural relations that are currently obscure.
Collapse
|
12
|
Yukird J, Kaminsky CJ, Chailapakul O, Rodthongkum N, Vachet RW. Enhanced and Selective MALDI-MS Detection of Peptides via the Nanomaterial-Dependent Coffee Ring Effect. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1780-1788. [PMID: 34048651 DOI: 10.1021/jasms.1c00132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterials have been explored as alternative matrices in MALDI-MS to overcome some of the limitations of conventional matrices. Recently, we demonstrated a new means by which nanomaterials can improve peptide ionization and detection in MALDI-MS analyses by exploiting the tendency of nanomaterials to form "coffee rings" upon drying from liquids. In the current work, we investigate how nanomaterial size and composition affect the signal enhancement of peptides through the coffee-ring effect. From studies of eight different types of nanomaterials ranging in size and composition, we find that most nanomaterials can provide signal enhancement ranging from 2- to 10-fold for individual peptides, as long as a coffee ring is formed. However, when a mixture of peptides is present in a sample, the signal enhancement is the greatest for peptides whose net charge is complementary to the nanomaterial's surface charge. These results suggest that careful design of NM surface properties could allow for selective, enhanced MALDI-MS detection of specific peptides in complex mixtures.
Collapse
Affiliation(s)
- Jutiporn Yukird
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Cameron J Kaminsky
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok 10330, Thailand
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
13
|
Sakai R, Ichikawa T, Kondo H, Ishikawa K, Shimizu N, Ohta T, Hiramatsu M, Hori M. Effects of Carbon Nanowalls (CNWs) Substrates on Soft Ionization of Low-Molecular-Weight Organic Compoundsin Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS). NANOMATERIALS 2021; 11:nano11020262. [PMID: 33498479 PMCID: PMC7909522 DOI: 10.3390/nano11020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/15/2023]
Abstract
Carbon nanowalls (CNWs), which are vertically oriented multi-layer graphene sheets, were employed in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) measurements to detect low-molecular-weight organic compounds. CNWs substrates with widely different wall-to-wall distances from 142 to 467 nm were synthesized using a radical-injection plasma-enhanced chemical vapor deposition (RI-PECVD) system with nanosecond pulse biasing to a sample stage. When survival yield (SY) values of N-benzylpyridinium chloride (N-BP-Cl) were examined, which is commonly used to evaluate desorption/ionization efficiency, a narrower wall-to-wall distance presented a higher SY value. The highest SY value of 0.97 was realized at 4 mJ/cm2 for the highest-density CNWs with a wall-to-wall distance of 142 nm. The laser desorption/ionization effect of arginine, an amino acid, was also investigated. When CNWs with a narrower wall-to-wall distance were used, the signal-to-noise (SN) ratios of the arginine signals were increased, while the intensity ratios of fragment ions to arginine signals were suppressed. Therefore, the CNWs nanostructures are a powerful tool when used as a SALDI substrate for the highly efficient desorption/ionization of low-molecular-weight biomolecules.
Collapse
Affiliation(s)
- Ryusei Sakai
- Department of Electronics, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan;
| | - Tomonori Ichikawa
- Japan Aerospace Exploration Agency, 7-44-1, Jindaiji, Higashi-machi, Chofu-shi, Tokyo 182-8522, Japan;
| | - Hiroki Kondo
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
- Correspondence: ; Tel.: +81-52-789-3461
| | - Kenji Ishikawa
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
| | - Naohiro Shimizu
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
| | - Takayuki Ohta
- Departmet of Electrical and Electronic Engineering, Meijo University, Shiogamaguchi, Tenpaku, Nagoya 468-8502, Japan; (T.O.); (M.H.)
| | - Mineo Hiramatsu
- Departmet of Electrical and Electronic Engineering, Meijo University, Shiogamaguchi, Tenpaku, Nagoya 468-8502, Japan; (T.O.); (M.H.)
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo, Chikusa, Nagoya 464-8603, Japan; (K.I.); (N.S.); (M.H.)
| |
Collapse
|
14
|
Iakab SA, Ràfols P, Tajes M, Correig-Blanchar X, García-Altares M. Gold Nanoparticle-Assisted Black Silicon Substrates for Mass Spectrometry Imaging Applications. ACS NANO 2020; 14:6785-6794. [PMID: 32463223 DOI: 10.1021/acsnano.0c00201] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) based on matrix-assisted laser desorption ionization (MALDI) is widely used in proteomics. However, matrix-free technologies are gaining popularity for detecting low molecular mass compounds. Small molecules were analyzed with nanostructured materials as ionization promoters, which produce low-to-no background signal, and facilitate enhanced specificity and sensitivity through functionalization. We investigated the fabrication and the use of black silicon and gold-coated black silicon substrates for surface-assisted laser desorption/ionization mass spectrometry imaging (SALDI-MSI) of animal tissues and human fingerprints. Black silicon was created using dry etching, while gold nanoparticles were deposited by sputtering. Both methods are safe for the user. Physicochemical characterization and MSI measurements revealed the optimal properties of the substrates for SALDI applications. The gold-coated black silicon worked considerably better than black silicon as the LDI-MSI substrate. The substrate was also compatible with imprinting, as a sample-simplification method that allows efficient transference of metabolites from the tissues to the substrate surface, without compound delocalization. Moreover, by modifying the surface with hydrophilic and hydrophobic groups, specific interactions were stimulated between surface and sample, leading to a selective analysis of molecules. Thus, our substrate facilitates targeted and/or untargeted in situ metabolomics studies for various fields such as clinical, environmental, forensics, and pharmaceutical research.
Collapse
Affiliation(s)
- Stefania Alexandra Iakab
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, 28029, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, 28029, Spain
| | - Marta Tajes
- Group of Biomedical Research in Heart Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona 08003, Spain
| | - Xavier Correig-Blanchar
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, 28029, Spain
- Institut d'Investigacio Sanitària Pere Virgili, Tarragona 43204, Spain
| | - María García-Altares
- Department of Electronic Engineering, Rovira i Virgili University, Tarragona 43007, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, 28029, Spain
| |
Collapse
|
15
|
Liu Z, Zhang P, Pyttlik A, Kraus T, Volmer DA. Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP‐SALDI‐MS. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/ansa.202000002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhen Liu
- Institute of Bioanalytical Chemistry Saarland University Saarbrücken Germany
| | - Peng Zhang
- School of Materials Science and Engineering Sun Yat‐sen University Guangzhou China
| | - Andrea Pyttlik
- INM‐Leibniz Institute for New Materials Saarbrücken Germany
| | - Tobias Kraus
- INM‐Leibniz Institute for New Materials Saarbrücken Germany
- Institute of Colloid and Interface Chemistry Saarland University Saarbrücken Germany
| | | |
Collapse
|
16
|
Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review. Mikrochim Acta 2019; 186:682. [DOI: 10.1007/s00604-019-3770-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
|
17
|
|
18
|
Ràfols P, Vilalta D, Torres S, Calavia R, Heijs B, McDonnell LA, Brezmes J, del Castillo E, Yanes O, Ramírez N, Correig X. Assessing the potential of sputtered gold nanolayers in mass spectrometry imaging for metabolomics applications. PLoS One 2018; 13:e0208908. [PMID: 30540827 PMCID: PMC6291137 DOI: 10.1371/journal.pone.0208908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry imaging (MSI) is a molecular imaging technique that maps the distribution of molecules in biological tissues with high spatial resolution. The most widely used MSI modality is matrix-assisted laser desorption/ionization (MALDI), mainly due to the large variety of analyte classes amenable for MALDI analysis. However, the organic matrices used in classical MALDI may impact the quality of the molecular images due to limited lateral resolution and strong background noise in the low mass range, hindering its use in metabolomics. Here we present a matrix-free laser desorption/ionization (LDI) technique based on the deposition of gold nanolayers on tissue sections by means of sputter-coating. This gold coating method is quick, fully automated, reproducible, and allows growing highly controlled gold nanolayers, necessary for high quality and high resolution MS image acquisition. The performance of the developed method has been tested through the acquisition of MS images of brain tissues. The obtained spectra showed a high number of MS peaks in the low mass region (m/z below 1000 Da) with few background peaks, demonstrating the ability of the sputtered gold nanolayers of promoting the desorption/ionization of a wide range of metabolites. These results, together with the reliable MS spectrum calibration using gold peaks, make the developed method a valuable alternative for MSI applications.
Collapse
Affiliation(s)
- Pere Ràfols
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- * E-mail: (PR); (NR)
| | - Dídac Vilalta
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sònia Torres
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Raul Calavia
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Bram Heijs
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A. McDonnell
- Center for Proteomics & Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden The Netherlands
- Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Jesús Brezmes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Esteban del Castillo
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Noelia Ramírez
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
- * E-mail: (PR); (NR)
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili, Tarragona, Spain
| |
Collapse
|
19
|
Yoon S, Lee TG. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. NANO CONVERGENCE 2018; 5:24. [PMID: 30467706 PMCID: PMC6153193 DOI: 10.1186/s40580-018-0157-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/05/2018] [Indexed: 05/03/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is an analytical technique rapidly expanding in use in biological studies. This technique is based on high spatial resolution (50-100 nm), high surface sensitivity (1-2 nm top-layer), and statistical analytic power. In mass spectrometry imaging (MSI), sample preparation is a crucial step to maintaining the natural state of the biomolecules and providing accurate spatial information. However, a number of problems associated with temperature changes in tissue samples such as loss of original distribution due to undesired molecular migration during the sample preparation or reduced ionization efficiency make it difficult to accurately perform MSI. Although frozen hydrate analysis is the ideal sample preparation method to eliminate the effects of temperature, this approach is hindered by mechanical limitations. Alternatively, an adhesive-tape-supported mounting and freeze-drying preparation has been proposed. This paper provides a concise review of the sample preparation procedures, a review of current issues, and proposes efficacious solutions for ToF-SIMS imaging in biological research.
Collapse
Affiliation(s)
- Sohee Yoon
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113 Republic of Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34113 Republic of Korea
| |
Collapse
|
20
|
Palermo A, Forsberg EM, Warth B, Aisporna AE, Billings E, Kuang E, Benton HP, Berry D, Siuzdak G. Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry. ACS NANO 2018; 12:6938-6948. [PMID: 29966083 DOI: 10.1021/acsnano.8b02376] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanostructure imaging mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) is a nanoparticle assisted laser desorption/ionization approach that requires low laser energy and has demonstrated high sensitivity. Here we describe NIMS with f-AuNPs for the comprehensive analysis of metabolites in biological tissues. F-AuNPs assist in desorption/ionization by laser-induced release of the fluorocarbon chains with minimal background noise. Since the energy barrier required to release the fluorocarbons from the AuNPs is minimal, the energy of the laser is maintained in the low μJ/pulse range, thus limiting metabolite in-source fragmentation. Electron microscopy analysis of tissue samples after f-AuNP NIMS shows a distinct "raising" of the surface as compared to matrix assisted laser desorption ionization ablation, indicative of a gentle desorption mechanism aiding in the generation of intact molecular ions. Moreover, the use of perfluorohexane to distribute the f-AuNPs on the tissue creates a hydrophobic environment minimizing metabolite solubilization and spatial dislocation. The transfer of the energy from the incident laser to the analytes through the release of the fluorocarbon chains similarly enhances the desorption/ionization of metabolites of different chemical nature, resulting in heterogeneous metabolome coverage. We performed the approach in a comparative study of the colon of mice exposed to three different diets. F-AuNP NIMS allows the direct detection of carbohydrates, lipids, bile acids, sulfur metabolites, amino acids, nucleotide precursors as well as other small molecules of varied biological origins. Ultimately, the diversified molecular coverage obtained provides a broad picture of a tissue's metabolic organization.
Collapse
Affiliation(s)
- Amelia Palermo
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Erica M Forsberg
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Vienna Metabolomics Center (VIME) , University of Vienna , Währingerstraße 38 , 1090 Vienna , Austria
| | - Aries E Aisporna
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Elizabeth Billings
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ellen Kuang
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - H Paul Benton
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Gary Siuzdak
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
- Department of Chemistry, Molecular and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
21
|
Tseng YT, Chang HY, Harroun SG, Wu CW, Wei SC, Yuan Z, Chou HL, Chen CH, Huang CC, Chang HT. Self-Assembled Chiral Gold Supramolecules with Efficient Laser Absorption for Enantiospecific Recognition of Carnitine. Anal Chem 2018; 90:7283-7291. [DOI: 10.1021/acs.analchem.8b00490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiang-Yu Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Scott G. Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Chien-Wei Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hung-Lung Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Ching-Hsiang Chen
- Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| |
Collapse
|
22
|
Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Mikrochim Acta 2018; 185:200. [DOI: 10.1007/s00604-018-2687-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
|
23
|
Muller L, Baldwin K, Barbacci DC, Jackson SN, Roux A, Balaban CD, Brinson BE, McCully MI, Lewis EK, Schultz JA, Woods AS. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1716-1728. [PMID: 28432654 PMCID: PMC8848835 DOI: 10.1007/s13361-017-1665-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/03/2017] [Accepted: 03/12/2017] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ludovic Muller
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, MD, USA
| | | | | | | | - Aurélie Roux
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, MD, USA
| | | | | | | | | | | | - Amina S Woods
- Structural Biology Unit, NIDA IRP, NIH, Baltimore, MD, USA.
| |
Collapse
|
24
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
25
|
Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review. NANOMATERIALS 2017; 7:nano7040075. [PMID: 28368330 PMCID: PMC5408167 DOI: 10.3390/nano7040075] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022]
Abstract
Nanomaterials are frequently used in laser desorption ionization mass spectrometry (LDI-MS) as DI enhancers, providing excellent figures of merit for the analysis of low molecular weight organic molecules. In recent years, literature on this topic has benefited from several studies assessing the fundamental aspects of the ion desorption efficiency and the internal energy transfer, in the case of model analytes. Several different parameters have been investigated, including the intrinsic chemical and physical properties of the nanophase (chemical composition, thermal conductivity, photo-absorption efficiency, specific heat capacity, phase transition point, explosion threshold, etc.), along with morphological parameters such as the nanophase size, shape, and interparticle distance. Other aspects, such as the composition, roughness and defects of the substrate supporting the LDI-active nanophases, the nanophase binding affinity towards the target analyte, the role of water molecules, have been taken into account as well. Readers interested in nanoparticle based LDI-MS sub-techniques (SALDI-, SELDI-, NALDI- MS) will find here a concise overview of the recent findings in the specialized field of fundamental and mechanistic studies, shading light on the desorption ionization phenomena responsible of the outperforming MS data offered by these techniques.
Collapse
|
26
|
Tseng YT, Harroun SG, Wu CW, Mao JY, Chang HT, Huang CC. Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics 2017; 1:141-153. [PMID: 29071183 PMCID: PMC5646720 DOI: 10.7150/ntno.18897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/25/2017] [Indexed: 11/30/2022] Open
Abstract
We have developed a simple, rapid, high-throughput cancer diagnosis system using functional nanoparticles (NPs) consisting of poly(catechin) capped-gold NPs (Au@PC NPs) and smaller nucleolin-binding aptamer (AS1411) conjugated gold NPs (AS1411-Au NPs). The AS1411-Au NPs/Au@PC NP is used as a targeting agent in laser desorption/ionization mass spectrometry (LDI-MS)-based tumor tissue imaging. Self-assembled core-shell Au@PC NPs are synthesized by a simple reaction of tetrachloroaurate(III) with catechin. Au@PC NPs with a well-defined and dense poly(catechin) shell (~40-60 nm) on the surface of each Au core (~60-80 nm) are obtained through careful control of the ratio of catechin to gold ions, as well as the pH of the reaction solution. Furthermore, we have shown that AS1411-conjugated Au NPs (13-nm) self-assembled on Au@PC NP can from a satellite-like gold nanocomposite. The high density of AS1411-Au NPs on the surface of Au@PC NP enhances multivalent binding with nucleolin molecules on tumor cell membranes. We have employed LDI-MS to detect AS1411-Au NPs/Au@PC NPs labeled nucleolin-overexpressing MCF-7 breast cancer cells through the monitoring of Au cluster ions ([Aun]+; 1 ≤ n ≤ 3). The ultrahigh signal amplification from Au NPs through the formation of a huge number of [Aun]+ ions results in a sensing platform with a limit of detection of 100 MCF-7 cells mL-1. Further, we have applied the satellite-like AS1411-Au NPs/Au@PC NP nanocomposite as a labeling agent for tumor tissue imaging by LDI-MS. Our nanocomposite-assisted LDI-MS imaging platform can be extended for simultaneous analysis of different tumor markers on cell membranes when using different ligand-modified metal nanoparticles.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Scott G Harroun
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Chien-Wei Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.,Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
27
|
A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging. NANOMATERIALS 2017; 7:nano7030071. [PMID: 28336905 PMCID: PMC5388173 DOI: 10.3390/nano7030071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 11/17/2022]
Abstract
The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice.
Collapse
|
28
|
Kolářová L, Prokeš L, Kučera L, Hampl A, Peňa-Méndez E, Vaňhara P, Havel J. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:419-427. [PMID: 27995502 DOI: 10.1007/s13361-016-1567-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 05/23/2023]
Abstract
Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n+/Au n- and P n+/P n-) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge (m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Lenka Kolářová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Lubomír Prokeš
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic
| | - Lukáš Kučera
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Eladia Peňa-Méndez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206, La Laguna, Spain
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
29
|
Marsico ALM, Duncan B, Landis RF, Tonga GY, Rotello VM, Vachet RW. Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Biomolecules Using Gold Nanoparticles, Matrix, and the Coffee Ring Effect. Anal Chem 2017; 89:3009-3014. [PMID: 28193006 DOI: 10.1021/acs.analchem.6b04538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanomaterials have been extensively used as alternate matrices to minimize the low molecular weight interferences observed in typical MALDI but such nanomaterials typically do not improve the spot-to-spot variability that is commonly seen. In this work, we demonstrate that nanoparticles and low matrix concentrations (<2.5 mg/mL) can be used to homogeneously concentrate analytes into a narrow ring by taking advantage of the "coffee ring" effect. Concentration of the samples in this way leads to enhanced signals when compared to conventional MALDI, with higher m/z analytes being enhanced to the greatest extent. Moreover, the ionization suppression often observed in samples with high salt concentrations can be overcome by preparing samples in this way. The ring that is formed is readily visible, allowing the laser to be focused only on spots that contain analyte. The coffee-ring effect represents a new mode by which nanomaterials can be used to enhance the MALDI-based detection of biomolecules.
Collapse
Affiliation(s)
- Alyssa L M Marsico
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Ryan F Landis
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Colangelo E, Comenge J, Paramelle D, Volk M, Chen Q, Lévy R. Characterizing Self-Assembled Monolayers on Gold Nanoparticles. Bioconjug Chem 2016; 28:11-22. [DOI: 10.1021/acs.bioconjchem.6b00587] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Elena Colangelo
- Institute
of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, United Kingdom
| | - Joan Comenge
- Institute
of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, United Kingdom
| | - David Paramelle
- Institute
of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634
| | - Martin Volk
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Surface
Science Research Centre, Department of Chemistry, Abercromby Square, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Qiubo Chen
- Institute
of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632
| | - Raphaël Lévy
- Institute
of Integrative Biology, University of Liverpool, Crown Street, L69 7ZB Liverpool, United Kingdom
| |
Collapse
|
31
|
Picca RA, Calvano CD, Lo Faro MJ, Fazio B, Trusso S, Ossi PM, Neri F, D'Andrea C, Irrera A, Cioffi N. Functionalization of silicon nanowire arrays by silver nanoparticles for the laser desorption ionization mass spectrometry analysis of vegetable oils. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:849-856. [PMID: 27476797 DOI: 10.1002/jms.3826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/15/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
In this work, novel hybrid nanostructured surfaces, consisting of dense arrays of silicon nanowires (SiNWs) functionalized by Ag nanoparticles (AgNP/SiNWs), were used for the laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) analysis of some typical unsaturated food components (e.g. squalene, oleic acid) to assess their MS performance. The synthesis of the novel platforms is an easy, cost-effective process based on the maskless wet-etching preparation at room temperature of SiNWs followed by their decoration with AgNPs, produced by pulsed laser deposition. No particular surface pretreatment or addition of organic matrixes/ionizers was necessary. Moreover, oil extracts (e.g. extra virgin olive oil, peanut oil) could be investigated on AgNP/SiNWs surfaces, revealing their different MS profiles. It was shown that such substrates operate at reduced laser energy, typically generating intense silver cluster ions and analyte adducts. A comparison with bare SiNWs was also performed, indicating the importance of AgNP density on NW surface. In this case, desorption/ionization on silicon was invoked as probable LDI mechanism. Finally, the influence of SiNW length and surface composition on MS results was assessed. The combination of typical properties of SiNWs (hydrophobicity, antireflectivity) with ionization ability of metal NPs can be a valid methodology for the further development of nanostructured surfaces in LDI-TOF MS applications. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rosaria Anna Picca
- Dipartimento di Chimica, Università degli Studi Bari 'Aldo Moro', Via E. Orabona 4, 70126, Bari, Italy
| | - Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi Bari 'Aldo Moro', Via E. Orabona 4, 70126, Bari, Italy
| | - Maria Josè Lo Faro
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158, Messina, Italy
- MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123, Catania, Italy
| | - Barbara Fazio
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | - Sebastiano Trusso
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | - Paolo Maria Ossi
- Dipartimento di Energia and Center for NanoEngineered Materials and Surfaces-NEMAS, Politecnico di Milano, Milano, Italy
| | - Fortunato Neri
- Dipartimento di Scienze matematiche e informatiche, scienze fisiche e scienze della terra, Università degli Studi di Messina, Messina, Italy
| | - Cristiano D'Andrea
- MATIS CNR-IMM, Istituto per la Microelettronica e Microsistemi, Via Santa Sofia 64, 95123, Catania, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, V. le F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | - Nicola Cioffi
- Dipartimento di Chimica, Università degli Studi Bari 'Aldo Moro', Via E. Orabona 4, 70126, Bari, Italy
| |
Collapse
|
32
|
Yagnik GB, Hansen RL, Korte AR, Reichert MD, Vela J, Lee YJ. Large Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry. Anal Chem 2016; 88:8926-30. [DOI: 10.1021/acs.analchem.6b02732] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gargey B. Yagnik
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Rebecca L. Hansen
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Andrew R. Korte
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Malinda D. Reichert
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Javier Vela
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Young Jin Lee
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Ames Laboratory-U.S. Department of Energy, Ames, Iowa 50011, United States
| |
Collapse
|
33
|
Peng LH, Unnikrishnan B, Shih CY, Hsiung TM, Chang J, Hsu PH, Chiu TC, Huang CC. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:283-292. [PMID: 26842733 DOI: 10.1007/s10126-016-9685-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.
Collapse
Affiliation(s)
- Lung-Hsiang Peng
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Chi-Yu Shih
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tung-Ming Hsiung
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Jeng Chang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Marine Environmental Chemistry and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, 20224, Taiwan
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, 369, Sec. 2, University Rd., Taitung, 95092, Taiwan.
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Abdelhamid HN, Wu HF. Gold nanoparticles assisted laser desorption/ionization mass spectrometry and applications: from simple molecules to intact cells. Anal Bioanal Chem 2016; 408:4485-502. [DOI: 10.1007/s00216-016-9374-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/29/2015] [Accepted: 01/28/2016] [Indexed: 01/05/2023]
|
35
|
Kurita M, Arakawa R, Kawasaki H. Silver nanoparticle functionalized glass fibers for combined surface-enhanced Raman scattering spectroscopy (SERS)/surface-assisted laser desorption/ionization (SALDI) mass spectrometry via plasmonic/thermal hot spots. Analyst 2016; 141:5835-5841. [DOI: 10.1039/c6an00511j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Closely-packed silver nanoparticles with a size of 20–50 nm and an inter-particle nanoscale gap of less than 10 nm were effective for a simultaneously enhanced SERS/SALDI substrate via plasmonic/thermal “hot spots”.
Collapse
Affiliation(s)
- Masahiro Kurita
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita 564-8680
- Japan
| | - Ryuichi Arakawa
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita 564-8680
- Japan
| | - Hideya Kawasaki
- Faculty of Chemistry
- Materials and Bioengineering
- Kansai University
- Suita 564-8680
- Japan
| |
Collapse
|
36
|
Marsico ALM, Elci GS, Moyano DF, Yesilbag Tonga G, Duncan B, Landis RF, Rotello VM, Vachet RW. Enhanced Laser Desorption/Ionization Mass Spectrometric Detection of Gold Nanoparticles in Biological Samples Using the Synergy between Added Matrix and the Gold Core. Anal Chem 2015; 87:12145-50. [DOI: 10.1021/acs.analchem.5b02985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alyssa L. M. Marsico
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gokhan S. Elci
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Daniel F. Moyano
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gulen Yesilbag Tonga
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ryan F. Landis
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
37
|
Marsico ALM, Creran B, Duncan B, Elci SG, Jiang Y, Onasch TB, Wormhoudt J, Rotello VM, Vachet RW. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1931-1937. [PMID: 26202457 DOI: 10.1007/s13361-015-1223-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 05/24/2023]
Abstract
Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Alyssa L M Marsico
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Brian Creran
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - S Gokhan Elci
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Ying Jiang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | | | | | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
38
|
Gan J, Wei X, Li Y, Wu J, Qian K, Liu B. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1715-23. [DOI: 10.1016/j.nano.2015.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/10/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
|
39
|
Kolářová L, Kučera L, Vaňhara P, Hampl A, Havel J. Use of flower-like gold nanoparticles in time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1585-1595. [PMID: 28339158 DOI: 10.1002/rcm.7265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 06/06/2023]
Abstract
RATIONALE Many kinds of nanoparticles (NPs) have been used for mass spectrometry (MS) so far. Here we report the first use of flower-like gold nanoparticles (AuNPs) as a mediator to enhance ionization in MS of peptides and proteins. METHODS Flower-like AuNPs were characterized using transmission and scanning electron microscopy, UV-VIS spectrophotometry, and laser desorption/ionization (LDI)-MS and compared with polyhedral AuNPs. Mass spectra were obtained in positive ion mode using a time-of-flight (TOF) analyzer coupled with either matrix-assisted laser desorption/ionization (MALDI) or surface-assisted laser desorption/ionization (SALDI) methods. RESULTS The intensities of peptide peaks (m/z 500-3500) were up to 7.5× and up to 7× higher using flower-like AuNPs and flower-like AuNPs-enriched α-cyano-4-hydroxycinnamic acid (CHCA) matrix respectively, than the classical CHCA matrix. The signals of higher mass peptide/protein peaks (m/z 3600-17000) were up to 2× higher with using flower-like AuNPs-enriched CHCA matrix than conventional CHCA matrix. The signal of profile peaks generated by intact cell MALDI-TOFMS of fibroblast suspension (m/z 4000-20000) was 2× higher with using flower-like AuNPs combined with sinapinic acid (SA) compared to SA matrix alone. The use of flower-like AuNPs as internal calibration standard for the calibration of MS spectra of peptides was performed. CONCLUSIONS Flower-like AuNPs and flower-like AuNPs combined with CHCA or SA as combined matrices for MS measurement of peptides and proteins were used. Comparison of the conventional MALDI method and our method with flower-like AuNPs was carried out. In addition, gold clusters generated from flower-like AuNPs by SALDI provide a suitable internal calibration standard for MS analysis of peptides. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lenka Kolářová
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 62500, Brno, Czech Republic
| | - Lukáš Kučera
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3/A1, 62500, Brno, Czech Republic
| | - Petr Vaňhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3/A1, 62500, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3/A1, 62500, Brno, Czech Republic
| | - Josef Havel
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5/A14, 62500, Brno, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3/A1, 62500, Brno, Czech Republic
| |
Collapse
|
40
|
Obena RP, Tseng MC, Primadona I, Hsiao J, Li IC, Capangpangan RY, Lu HF, Li WS, Chao I, Lin CC, Chen YJ. UV-activated multilayer nanomatrix provides one-step tunable carbohydrate structural characterization in MALDI-MS. Chem Sci 2015; 6:4790-4800. [PMID: 28717486 PMCID: PMC5502396 DOI: 10.1039/c5sc00546a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/27/2015] [Indexed: 11/21/2022] Open
Abstract
The structure-specific fragmentation of gas-phase ions in tandem mass spectrometry among other techniques provides an efficient analytical method for confirming unknown analytes or for elucidating chemical structures. Using concentration-dependent UV-absorbing matrix-functionalized magnetic nanoparticles and matrix-assisted laser desorption-ionization mass spectrometry (MALDI MS), we developed a single-step pseudo-MS/MS approach for tunable ionization and fragmentation to facilitate structure determination. Without chemical derivatization, we have demonstrated that this approach successfully distinguished isomeric sets of di-, tri- and tetrasaccharides. Low concentration of nanomatrix provided an enhanced signal for accurate mass determination of the intact molecular ions of analytes present in the sample. In contrast, high concentration of nanomatrix induced extensive and unique fragmentation, including high-energy facile bond breakage (A- and X-type cross-ring cleavages), which facilitated the linkage and sequence characterization of oligosaccharides without conventional tandem mass spectrometric instrumentation. The practicality of this approach for complex sample analysis was evaluated by an oligosaccharide mixture, wherein molecular ions are unambiguously observed and signature product ions are distinguishable enough for molecular identification and isomer differentiation by this simple tunable approach. By probing the roles of the multilayer nanomatrix components: matrix (energy absorption), silane-coating (energy pooling and dissipation) and core Fe3O4 (fragmentation), a plausible energy transfer mechanism was proposed based on a computational study and photoelectron experiments. The differentiation of tri- and tetra-oligosaccharide shown in this study not only demonstrated the first step toward glycan characterization by nanoparticle-assisted MALDI-MS, but also shed some insight on the nanoparticle-mediated energy transfer dynamics behind our approach.
Collapse
Affiliation(s)
- Rofeamor P Obena
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
- Institute of Chemistry , University of the Philippines-Diliman , Quezon City , Philippines
| | - Mei-Chun Tseng
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Indah Primadona
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Molecular Science and Technology Program , Taiwan International Graduate Program , Institute of Chemistry , Academia Sinica , Taiwan
| | - Jun Hsiao
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - I-Che Li
- Department of Chemistry , National Taiwan University , Taipei , Taiwan
| | - Rey Y Capangpangan
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Molecular Science and Technology Program , Taiwan International Graduate Program , Institute of Chemistry , Academia Sinica , Taiwan
| | - Hsiu-Fong Lu
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Wan-Sheung Li
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Ito Chao
- Institute of Chemistry , Academia Sinica , Taipei , Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
| | - Yu-Ju Chen
- Department of Chemistry , National Tsing Hua University , Hsinchu , Taiwan .
- Department of Chemistry , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
41
|
Chang HY, Huang MF, Hsu CL, Huang CC, Chang HT. Analyses of functional polymer-modified nanoparticles for protein sensing by surface-assisted laser desorption/ionization mass spectrometry coupled with HgTe nanomatrices. Colloids Surf B Biointerfaces 2015; 130:157-63. [DOI: 10.1016/j.colsurfb.2015.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 01/07/2023]
|
42
|
Sekuła J, Nizioł J, Rode W, Ruman T. Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal Chim Acta 2015; 875:61-72. [PMID: 25937107 DOI: 10.1016/j.aca.2015.01.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/16/2022]
Abstract
Preparation is described of a durable surface of cationic gold nanoparticles (AuNPs), covering commercial and custom-made MALDI targets, along with characterization of the nanoparticle surface properties and examples of the use in MS analyses and MS imaging (IMS) of low molecular weight (LMW) organic compounds. Tested compounds include nucleosides, saccharides, amino acids, glycosides, and nucleic bases for MS measurements, as well as over one hundred endogenous compounds in imaging experiment. The nanoparticles covering target plate were enriched in sodium in order to promote sodium-adduct formation. The new surface allows fast analysis, high sensitivity of detection and high mass determination accuracy. Example of application of new Au nanoparticle-enhanced target for fast and simple MS imaging of a fingerprint is also presented.
Collapse
Affiliation(s)
- Justyna Sekuła
- Rzeszów University of Technology, Faculty of Chemistry, Bioorganic Chemistry Laboratory, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, Bioorganic Chemistry Laboratory, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
| | - Wojciech Rode
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, Bioorganic Chemistry Laboratory, 6 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland.
| |
Collapse
|
43
|
Sekuła J, Nizioł J, Rode W, Ruman T. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging. Analyst 2015; 140:6195-209. [DOI: 10.1039/c5an00943j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS).
Collapse
Affiliation(s)
- Justyna Sekuła
- Rzeszów University of Technology
- Faculty of Chemistry
- Bioorganic Chemistry Laboratory
- 35-959 Rzeszów
- Poland
| | - Joanna Nizioł
- Rzeszów University of Technology
- Faculty of Chemistry
- Bioorganic Chemistry Laboratory
- 35-959 Rzeszów
- Poland
| | - Wojciech Rode
- Nencki Institute of Experimental Biology
- 02-093 Warsaw
- Poland
| | - Tomasz Ruman
- Rzeszów University of Technology
- Faculty of Chemistry
- Bioorganic Chemistry Laboratory
- 35-959 Rzeszów
- Poland
| |
Collapse
|
44
|
Abdelhamid HN, Wu HF. Synthesis and characterization of quantum dots for application in laser soft desorption/ionization mass spectrometry to detect labile metal–drug interactions and their antibacterial activity. RSC Adv 2015. [DOI: 10.1039/c5ra11301f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and characterization of quantum dot modified mercaptopropionic acid (CdS@MPA) and its application in laser soft desorption/ionization for labile metal–drug interactions is reported.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Department of Chemistry
| | - Hui-Fen Wu
- Department of Chemistry
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- Center for Nanoscience and Nanotechnology
| |
Collapse
|
45
|
Nasser Abdelhamid H, Wu BS, Wu HF. Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: A novel approach for environmental and biomolecule analysis. Talanta 2014; 126:27-37. [DOI: 10.1016/j.talanta.2014.03.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 11/29/2022]
|
46
|
Colaianni L, Kung SC, Taggart DK, Picca RA, Greaves J, Penner RM, Cioffi N. Reduction of spectral interferences using ultraclean gold nanowire arrays in the LDI-MS analysis of a model peptide. Anal Bioanal Chem 2014; 406:4571-83. [DOI: 10.1007/s00216-014-7876-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 01/01/2023]
|
47
|
Nitta S, Yamamoto A, Kurita M, Arakawa R, Kawasaki H. Gold-decorated titania nanotube arrays as dual-functional platform for surface-enhanced Raman spectroscopy and surface-assisted laser desorption/ionization mass spectrometry. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8387-8395. [PMID: 24731133 DOI: 10.1021/am501291d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this report, we demonstrate gold-decorated titania nanotube arrays (Au-TNA substrate) as a dual-functional platform for surface-enhanced Raman spectroscopy (SERS) and surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The Au nanoparticles are grown on the substrate using vapor deposition of Au. The resulting substrates perform better than Au colloids in terms of the reproducibility of the SERS measurements, long-term stability of the fabricated structures, and clean surface of the Au. The nanostructure of the Au-TNA substrate was designed to optimize the SALDI-MS and SERS performance. Excellent reproducibility of the SERS measurements using the Au-TNA substrate was obtained, with a standard error less than 6 %. SALDI activity was also demonstrated for the same Au-TNA substrates. Finally, the Au-TNA substrate was used for combined SERS and SALDI-MS analysis (i) to discriminate the structural isomers of pyridine compounds (para-, meta-, and ortho-pyridinecarboxylic acid) and (ii) to detect polycarbamate, a dithiocarbamate fungicide. These results are difficult to obtain using either approach alone.
Collapse
Affiliation(s)
- Syuhei Nitta
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University , 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | | | | | | | | |
Collapse
|
48
|
Kusano M, Kawabata SI, Tamura Y, Mizoguchi D, Murouchi M, Kawasaki H, Arakawa R, Tanaka K. Laser Desorption/Ionization Mass Spectrometry (LDI-MS) of Lipids with Iron Oxide Nanoparticle-Coated Targets. Mass Spectrom (Tokyo) 2014; 3:A0026. [PMID: 24860715 PMCID: PMC3967010 DOI: 10.5702/massspectrometry.a0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/27/2013] [Indexed: 11/23/2022] Open
Abstract
Iron oxide nanoparticle (NP)-coated target plates were employed for the direct detection and analysis of low molecular weight lipids by laser desorption/ionization (LDI) mass spectrometry (MS). We have demonstrated that the use of the iron oxide NP-coated target provides a simple, direct, and rapid detection method for lipid standards and epidermal surface lipids without any cumbersome sample pretreatment as well as mass spectra that are free of background matrix peaks. Lipid standards (1-stearoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-sn-glycerol, 1-palmitoyl-2-oleoyl-3-linoleoyl-rac-glycerol, 1,2-distearoyl-sn-glycero-3-phosphocholine) were detected as either protonated or cationated species. Clean MS/MS spectra for each lipid were also successfully obtained. Pre-MS surface cleaning of the target plates with UV-ozone treatment successfully removed organic contaminants that would interfere with the mass spectra especially in the low molecular weight region. Preliminary application of the presented target plate to the detection of endogenous lipids in latent fingerprints showed promising results and for potential use in the visualization and chemical composition determination of latent fingerprints by nanoparticle assistance.
Collapse
Affiliation(s)
- Maiko Kusano
- Koichi Tanaka Laboratory of Advanced Science and Technology, Shimadzu Corporation
| | | | | | | | | | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University
| | - Ryuichi Arakawa
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University
| | - Koichi Tanaka
- Koichi Tanaka Laboratory of Advanced Science and Technology, Shimadzu Corporation
| |
Collapse
|
49
|
Calvano CD, De Ceglie C, Zambonin CG. Proteomic analysis of complex protein samples by MALDI-TOF mass spectrometry. Methods Mol Biol 2014; 1129:365-380. [PMID: 24648088 DOI: 10.1007/978-1-62703-977-2_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
MALDI MS has become a technique of considerable impact on many fields, from proteomics to lipidomics, including polymer analysis and, more recently, even low molecular weight analytes due to the introduction of matrix-less ionization techniques (e.g., DIOS) or new matrices such as ionic liquids, proton sponges, and metal nanoparticles. However, protein identification by peptide mass fingerprint (PMF) still remains the main routine application. In the last few years, MALDI MS has played an emerging role in food chemistry especially in detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications, induced by various industrial processes that could be detrimental for food quality and safety. Sample handling and pretreatment can be very different depending on the physical state, liquid or solid, of the analyzed matrices. Here, we describe simple protocols for protein extraction and MALDI MS analysis of liquid (milk) and solid (hazelnuts) samples taken as model. A classic approach based on a preliminary SDS gel electrophoresis separation followed by in-gel digestion and a faster approach based on in-solution digestion of whole samples are described and compared.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy,
| | | | | |
Collapse
|
50
|
Li YJ, Tseng YT, Unnikrishnan B, Huang CC. Gold-nanoparticles-modified cellulose membrane coupled with laser desorption/ionization mass spectrometry for detection of iodide in urine. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9161-9166. [PMID: 23978046 DOI: 10.1021/am4025824] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report an efficient method for the determination of iodide (I(-)) ions by using gold-iodide hybrid cluster ions on gold nanoparticles (Au NPs) modified mixed cellulose ester membrane (Au NPs-MCEM) by pulsed laser desorption/ionization mass spectrometry (LDI-MS). When I(-) ions were deposited and concentrated on the surfaces of Au NPs (32 nm) via strong Au(+)-I(-) interaction on the MECM, the Au NPs-MCEM was observed to function as an efficient surface-assisted LDI substrate with very low background noise. When pulsed laser radiation (355 nm) was applied, I(-) binding to Au NPs ions induced the enhancement of the desorption and ionization efficiency of gold-iodide hybrid cluster ions from the Au NPs surfaces. The reproducibility of the probe for both shot-to-shot and sample-to-sample (both less than 10%) ion production was also improved by the homogeneous nature of the substrate surface. Thus, it allows the accurate and precise quantification of I(-) ions in high-salinity real samples (i.e., edible salt samples and urine) at the nanomolar range. This novel LDI-MS approach provides a simple route for the high-speed analysis of I(-) ions with high sensitivity and selectivity in real biological samples.
Collapse
Affiliation(s)
- Yu-Jia Li
- Institute of Bioscience and Biotechnology and ‡Center of Excellence for the Oceans, National Taiwan Ocean University , Keelung, 20224, Taiwan
| | | | | | | |
Collapse
|