1
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Ohno R, Auditore A, Gensberger-Reigl S, Saller J, Stützer J, Weigel I, Pischetsrieder M. Qualitative and Quantitative Profiling of Fructose Degradation Products Revealed the Formation of Thirteen Reactive Carbonyl Compounds and Higher Reactivity Compared to Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19131-19142. [PMID: 39145730 DOI: 10.1021/acs.jafc.4c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Fructose occurs in foods and as a metabolite in vivo. It can be degraded, leading to the formation of reactive carbonyl compounds, which may influence food properties and have an impact on health. The present study performed an in-depth qualitative and quantitative profiling of fructose degradation products. Thus, the α-dicarbonyl compounds 3-deoxyglucosone, glucosone, methylglyoxal, glyoxal, hydroxypyruvaldehyde, threosone, 3-deoxythreosone, and 1-desoxypentosone and the monocarbonyl compounds formaldehyde, acetaldehyde, glycolaldehyde, glyceraldehyde, and dihydroxyacetone were detected in fructose solutions incubated at 37 °C. Quantitative profiling after 7 days revealed 4.6-271.6-fold higher yields of all degradation products from fructose compared to glucose. Except for 3-deoxyglucosone, the product formation appeared to be metal dependent, indicating oxidative pathways. CaCl2 and MgCl2 partially reduced fructose degradation. Due to its high reactivity compared to glucose, particularly toward metal-catalyzed pathways, fructose may be a strong contributor to sugar degradation and Maillard reaction in foods and in vivo.
Collapse
Affiliation(s)
- Reiichi Ohno
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Andrea Auditore
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Sabrina Gensberger-Reigl
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Julia Saller
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Joachim Stützer
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Ingrid Weigel
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
- FAU NeW - Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, Erlangen 91058, Germany
| |
Collapse
|
3
|
Nyarko K, Greenlief CM. Investigations of Major α-Dicarbonyl Content in U.S. Honey of Different Geographical Origins. Molecules 2024; 29:1588. [PMID: 38611866 PMCID: PMC11013281 DOI: 10.3390/molecules29071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.
Collapse
|
4
|
Qi C, Jin Y, Cheng S, Di L, Wang X, Zhang M, Zhang L, Li XL, Han Y, Ma Q, Min JZ. A novel UHPLC-MS/MS method for the determination of four α-dicarbonyl compounds in wine and dynamic monitoring in human urine after drinking. Food Res Int 2023; 163:112170. [PMID: 36596116 DOI: 10.1016/j.foodres.2022.112170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
α-dicarbonyl compounds (α-DCs) serve as potential biomarkers for oxidative stress-related diseases but are difficult to detect.To study the metabolism of carbonyl compounds, we developed a new mass spectrometry probe, 3-benzyl-2-oxo-4λ3-thiazolidine-4-carbohydrazide (BOTC), containing hydrazyl groups for the targeted detection of carbonyl functional groups.In a novel approach, we used BOTC pre-column derivatization with ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to simultaneously detect four kinds of α-DCs in red wine as well as in urine after drinking. The α-DCs were completely separated (R2 ≥ 0.9995), detection was sensitive (detection limit was 12.5-50 fmol), consistent (intraday and interday precision was 0.1-5.7 %), and efficient (average recoveries were 103.3-110.2 %). The method was applied to the analysis of α-DCs in different wines and the dynamic monitoring of transit and excretion in vivo after drinking. Our novel method provides a new strategy for the detection of α-dicarbonyl compounds in red wine and dicarbonyl compounds produced in oxidative stress-related diseases.
Collapse
Affiliation(s)
- Chao Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lei Di
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xin Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Minghui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Lingli Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Qingkun Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Department of Pharmaceutical Analysis, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
5
|
In Vitro Reactivity of the Glucose Degradation Product 3,4-Dideoxyglucosone-3-ene (3,4-DGE) towards Abundant Components of the Human Blood Circulatory System. Int J Mol Sci 2022; 23:ijms23094557. [PMID: 35562948 PMCID: PMC9103577 DOI: 10.3390/ijms23094557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
3,4-Dideoxyglucosone-3-ene (3,4-DGE) is a glucose degradation product present in processed foods and medicinal products. Additionally, its constant formation from 3-deoxyglucosone in plasma has been suggested. Due to its α,β-unsaturated dicarbonyl moiety, 3,4-DGE is highly reactive and has shown harmful effects in vitro. Here, we investigated the impact of major components of the human blood circulatory system on 3,4-DGE in vitro. Under physiological conditions, plasma concentrations of human serum albumin (HSA) reacted efficiently with 3,4-DGE, resulting in only 8.5% of the initial 3,4-DGE concentration after seven hours (vs. 83.4% without HSA, p < 0.001). Thereby, accessible thiol groups were reduced from 0.121 to 0.064 mol/mol HSA, whereas ketoprofen binding and esterase-like activity of HSA were not affected. Plasma concentrations of glutathione (GSH) reacted immediately and completely with 3,4-DGE, leading to two stereoisomeric adducts. Plasma concentrations of immunoglobulin G (IgG) bound to 3,4-DGE to a lower extent, resulting in 62.6% 3,4-DGE after seven hours (vs. 82.2% in the control, p < 0.01). Immobilized human collagen type IV did not alter 3,4-DGE concentrations. The results indicated that particularly HSA, GSH, and IgG readily scavenge 3,4-DGE after its appearance in the blood stream, which may be associated with a reduced antioxidative and cytoprotective activity for the living cells and, thus, the human organism by blocking free thiol groups.
Collapse
|
6
|
Degradation and de novo formation of nine major glucose degradation products during storage of peritoneal dialysis fluids. Sci Rep 2022; 12:4268. [PMID: 35277529 PMCID: PMC8917136 DOI: 10.1038/s41598-022-08123-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022] Open
Abstract
Reactive glucose degradation products (GDPs) are formed during heat sterilization of glucose-containing peritoneal dialysis fluids (PDFs) and may induce adverse clinical effects. Long periods of storage and/or transport of PDFs before use may lead to de novo formation or degradation of GDPs. Therefore, the present study quantified the GDP profiles of single- and double-chamber PDFs during storage. Glucosone, 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal, methylglyoxal (MGO), acetaldehyde, formaldehyde, and 5-hydroxymethylfurfural (5-HMF) were quantified by two validated UHPLC-DAD methods after derivatization with o-phenylenediamine (dicarbonyls) or 2,4-dinitrophenylhydrazine (monocarbonyls). The PDFs were stored at 50 °C for 0, 1, 2, 4, 13, and 26 weeks. The total GDP concentration of single-chamber PDFs did not change considerably during storage (496.6 ± 16.0 µM, 0 weeks; 519.1 ± 13.1 µM, 26 weeks), but individual GDPs were affected differently. 3-DG (− 82.6 µM) and 3-DGal (− 71.3 µM) were degraded, whereas 5-HMF (+ 161.7 µM), glyoxal (+ 32.2 µM), and formaldehyde (+ 12.4 µM) accumulated between 0 and 26 weeks. Acetaldehyde, glucosone, MGO, and 3,4-DGE showed time-dependent formation and degradation. The GDP concentrations in double-chamber fluids were generally lower and differently affected by storage. In conclusion, the changes of GDP concentrations during storage should be considered for the evaluation of clinical effects of PDFs.
Collapse
|
7
|
Quantification of Degradation Products Formed during Heat Sterilization of Glucose Solutions by LC-MS/MS: Impact of Autoclaving Temperature and Duration on Degradation. Pharmaceuticals (Basel) 2021; 14:ph14111121. [PMID: 34832903 PMCID: PMC8625795 DOI: 10.3390/ph14111121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022] Open
Abstract
Heat sterilization of glucose solutions can lead to the formation of various glucose degradation products (GDPs) due to oxidation, hydrolysis, and dehydration. GDPs can have toxic effects after parenteral administration due to their high reactivity. In this study, the application of the F0 concept to modify specific time/temperature models during heat sterilization and their influence on the formation of GDPs in parenteral glucose solutions was investigated using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Glucose solutions (10%, w/v) were autoclaved at 111 °C, 116 °C, and 121 °C for different durations. The GDPs glyoxal, methylglyoxal, glucosone, 3-deoxyglucosone/3-deoxygalactosone, 3,4-dideoxyglucosone-3-ene, and 5-hydroxymethylfurfural were quantified after derivatization with o-phenylenediamine by an optimized LC-MS/MS method. For all GDPs, the limit of detection was <0.078 μg/mL, and the limit of quantification was <0.236 μg/mL. The autoclaving time of 121 °C and 15 min resulted in the lowest levels of 3-DG/3-DGal and 5-HMF, but in the highest levels of GO and 2-KDG. The proposed LC-MS/MS method is rapid and sensitive. So far, only 5-HMF concentrations are limited by the regulatory authorities. Our results suggest reconsidering the impurity limits of various GDPs, especially the more toxic ones such as GO and MGO, by the Pharmacopoeias.
Collapse
|
8
|
Bartosova M, Zhang C, Schaefer B, Herzog R, Ridinger D, Damgov I, Levai E, Marinovic I, Eckert C, Romero P, Sallay P, Ujszaszi A, Unterwurzacher M, Wagner A, Hildenbrand G, Warady BA, Schaefer F, Zarogiannis SG, Kratochwill K, Schmitt CP. Glucose Derivative Induced Vasculopathy in Children on Chronic Peritoneal Dialysis. Circ Res 2021; 129:e102-e118. [PMID: 34233458 DOI: 10.1161/circresaha.121.319310] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maria Bartosova
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Conghui Zhang
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Betti Schaefer
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - David Ridinger
- Kirchhoff Institute for Physics (D.R., G.H.), University of Heidelberg, Heidelberg, Germany
| | - Ivan Damgov
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Eszter Levai
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
- ELKH-SE, Pediatrics and Nephrology Research Group, Budapest, Hungary (E.L.)
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary (E.L., P.S.)
| | - Iva Marinovic
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Christoph Eckert
- Institute of Pathology (C.E.), University of Heidelberg, Heidelberg, Germany
| | - Philipp Romero
- Division of Pediatric Surgery, Department of General, Visceral and Transplantation Surgery (P.R.), University of Heidelberg, Heidelberg, Germany
| | - Peter Sallay
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary (E.L., P.S.)
| | - Akos Ujszaszi
- Division of Nephrology, Heidelberg University Hospital, Heidelberg, Germany (A.U.)
| | - Markus Unterwurzacher
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics (D.R., G.H.), University of Heidelberg, Heidelberg, Germany
| | | | - Franz Schaefer
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| | - Sotirios G Zarogiannis
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
- Department of Physiology, Faculty of Medicine, University of Thessaly, Larissa, Greece (S.G.Z.)
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria (R.H., M.U., A.W., K.K.)
| | - Claus Peter Schmitt
- Center for Pediatric and Adolescent Medicine (M.B., C.Z., B.S., I.D., E.L., I.M., F.S., S.G.Z., C.P.S.), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Leitzen S, Vogel M, Engels A, Zapf T, Brandl M. Identification and quantification of glucose degradation products in heat-sterilized glucose solutions for parenteral use by thin-layer chromatography. PLoS One 2021; 16:e0253811. [PMID: 34214128 PMCID: PMC8253424 DOI: 10.1371/journal.pone.0253811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
During heat sterilization of glucose solutions, a variety of glucose degradation products (GDPs) may be formed. GDPs can cause cytotoxic effects after parenteral administration of these solutions. The aim of the current study therefore was to develop a simple and quick high-performance thin-layer chromatography (HPTLC) method by which the major GDPs can be identified and (summarily) quantified in glucose solutions for parenteral administration. All GDPs were derivatized with o-phenylenediamine (OPD). The resulting GDP derivatives (quinoxalines) were applied to an HPTLC plate. After 20 minutes of chamber saturation with the solvent, the HPTLC plate was developed in a mixture of 1,4-dioxane-toluene-glacial acetic acid (49:49:2, v/v/v), treated with thymol-sulfuric acid spray reagent, and heated at 130°C for 10 minutes. Finally, the GDPs were quantified by using a TLC scanner. For validation, the identities of the quinoxaline derivatives were confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Glyoxal (GO)/methylglyoxal (MGO) and 3-deoxyglucosone (3-DG)/3-deoxygalactosone (3-DGal) could be identified and quantified in pairs, glucosone (2-KDG), 5-hydroxymethylfurfural (5-HMF), and 3,4-dideoxyglucosone-3-ene (3,4-DGE) each individually. For 2-KDG, the linearity of the method was demonstrated in the range of 1–50 μg/mL, for 5-HMF and 3,4-DGE 1–75 μg/mL, for GO/MGO 2–150 μg/mL, and for 3-DG/3-DGal 10–150 μg/mL. All GDPs achieved a limit of detection (LOD) of 2 μg/mL or less and a limit of quantification (LOQ) of 10 μg/mL or less. R2 was 0.982 for 3.4-DGE, 0.997 for 5-HMF, and 0.999 for 2-KDG, 3-DG/3-DGal, and GO/MGO. The intraday precision was between 0.4 and 14.2% and the accuracy, reported as % recovery, between 86.4 and 112.7%. The proposed HPTLC method appears to be an inexpensive, fast, and sufficiently sensitive approach for routine quantitative analysis of GDPs in heat-sterilized glucose solutions.
Collapse
Affiliation(s)
- Sarah Leitzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Anette Engels
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Thomas Zapf
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
10
|
Lee DY, Lin YC, Chang GD. Biochemical Regulation of the Glyoxalase System in Response to Insulin Signaling. Antioxidants (Basel) 2021; 10:antiox10020326. [PMID: 33671767 PMCID: PMC7926409 DOI: 10.3390/antiox10020326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/18/2022] Open
Abstract
Methylglyoxal (MG) is a reactive glycation metabolite and potentially induces dicarbonyl stress. The production of MG in cells is increased along with an increase in carbohydrate metabolism. The efficiency of the glyoxalase system, consisting of glyoxalase 1 (GlxI) and glyoxalase 2 (GlxII), is crucial for turning the accumulated MG into nontoxic metabolites. Converting MG-glutathione hemithioacetal to S-d-lactoylglutathione by GlxI is the rate-determining step of the enzyme system. In this study, we found lactic acid accumulated during insulin stimulation in cells, however, cellular MG and S-d-lactoylglutathione also increased due to the massive flux of glycolytic intermediates. The insulin-induced accumulation of MG and S-d-lactoylglutathione were efficiently removed by the treatment of metformin, possibly via affecting the glyoxalase system. With the application of isotopic 13C3-MG, the flux of MG from extracellular and intracellular origins was dissected. While insulin induced an influx of extracellular MG, metformin inhibited the trafficking of MG across the plasma membrane. Therefore, metformin could maintain the extracellular MG by means of reducing the secretion of MG rather than facilitating the scavenging. In addition, metformin may affect the glyoxalase system by controlling the cellular redox state through replenishing reduced glutathione. Overall, alternative biochemical regulation of the glyoxalase system mediated by insulin signaling or molecules like biguanides may control cellular MG homeostasis.
Collapse
Affiliation(s)
- Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Correspondence: (D.-Y.L.); (G.-D.C.); Tel.: +886-4-22053366#3505 (D.-Y.L.); +886-2-33664071 (G.-D.C.); Fax: +886-2-22037690 (D.-Y.L.); +886-2-23635038 (G.-D.C.)
| | - Yu-Chin Lin
- Ph.D. Program for Health Science and Industry, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Correspondence: (D.-Y.L.); (G.-D.C.); Tel.: +886-4-22053366#3505 (D.-Y.L.); +886-2-33664071 (G.-D.C.); Fax: +886-2-22037690 (D.-Y.L.); +886-2-23635038 (G.-D.C.)
| |
Collapse
|
11
|
Metal cations promote α-dicarbonyl formation in glucose-containing peritoneal dialysis fluids. Glycoconj J 2020; 38:319-329. [PMID: 33283256 PMCID: PMC8116238 DOI: 10.1007/s10719-020-09964-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/04/2022]
Abstract
Heat sterilization of peritoneal dialysis fluids (PDFs) leads to the formation of glucose degradation products (GDPs), which impair long-term peritoneal dialysis. The current study investigated the effects of metal ions, which occur as trace impurities in the fluids, on the formation of six major α-dicarbonyl GDPs, namely glucosone, glyoxal, methylglyoxal, 3-deoxyglucosone, 3-deoxygalactosone, and 3,4-dideoxyglucosone-3-ene. The chelation of metal ions by 2-[bis[2-[bis(carboxymethyl)amino]ethyl]amino]acetic acid (DTPA) during sterilization significantly decreased the total GDP content (585 μM vs. 672 μM), mainly due to the decrease of the glucose-oxidation products glucosone (14 μM vs. 61 μM) and glyoxal (3 μM vs. 11 μM), but also of methylglyoxal (14 μM vs. 31 μM). The glucose-dehydration products 3-deoxyglucosone, 3-deoxygalactosone, and 3,4-dideoxyglucosone-3-ene were not significantly affected by chelation of metal ions. Additionally, PDFs were spiked with eleven different metal ions, which were detected as traces in commercial PDFs, to investigate their influence on GDP formation during heat sterilization. Iron(II), manganese(II), and chromium(III) had the highest impact increasing the formation of glucosone (1.2–1.5 fold increase) and glyoxal (1.3–1.5 fold increase). Nickel(II) and vanadium(III) further promoted the formation of glyoxal (1.3 fold increase). The increase of the pH value of the PDFs from pH 5.5 to a physiological pH of 7.5 resulted in a decreased formation of total GDPs (672 μM vs 637 μM). These results indicate that the adjustment of metal ions and the pH value may be a strategy to further decrease the content of GDPs in PDFs.
Collapse
|
12
|
Hellwig M, Henle T. Maillard Reaction Products in Different Types of Brewing Malt. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14274-14285. [PMID: 33205653 DOI: 10.1021/acs.jafc.0c06193] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Individual Maillard reaction products (MRPs), namely, free and protein-bound glycated amino acids as well as dicarbonyl compounds, were quantitated in various types of brewing malt using chromatographic means. Among the protein-bound glycated amino acids, which were analyzed following enzymatic hydrolysis, N-ε-fructosyllysine was the dominating compound in light (EBC < 10) and dark (10 < EBC < 500) malts, accounting for up to 15.9% of lysine derivatization, followed by N-ε-maltulosyllysine (light malts, up to 4.9% lysine derivatization) or pyrraline (dark malts, up to 10.4% lysine derivatization). Roasting of malt led to the degradation of most of the protein-bound glycated amino acids. The same trends were visible for free glycated amino acids. A novel MRP-derived Strecker aldehyde, namely, 5-(2'-formyl-5'-hydroxymethylpyrrol-1'-yl)-pentanal (pyrralinal), was detected in dark malt. The most abundant 1,2-dicarbonyl compound in malt samples was 3-deoxyglucosone (up to 9 mmol/kg), followed by 3-deoxymaltosone (up to 2 mmol/kg). Only few MRPs such as 5-hydroxymethylfurfural, furfural, the dicarbonyl compounds glyoxal, methylglyoxal, and diacetyl as well as protein-bound rhamnolysine and MG-H1 correlated with the malt color. A comparison of MRPs present in malt with corresponding amounts in beer points to neoformation of MRPs such as MG-H1 and 3-deoxygalactosone during the brewing process.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
13
|
Becker AK, Auditore A, Pischetsrieder M, Messlinger K, Fleming T, Reeh PW, Sauer SK. Reactive dicarbonyl compounds cause Calcitonin Gene-Related Peptide release and synergize with inflammatory conditions in mouse skin and peritoneum. J Biol Chem 2020; 295:6330-6343. [PMID: 32198181 DOI: 10.1074/jbc.ra120.012890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
The plasmas of diabetic or uremic patients and of those receiving peritoneal dialysis treatment have increased levels of the glucose-derived dicarbonyl metabolites like methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG). The elevated dicarbonyl levels can contribute to the development of painful neuropathies. Here, we used stimulated immunoreactive Calcitonin Gene-Related Peptide (iCGRP) release as a measure of nociceptor activation, and we found that each dicarbonyl metabolite induces a concentration-, TRPA1-, and Ca2+-dependent iCGRP release. MGO, GO, and 3-DG were about equally potent in the millimolar range. We hypothesized that another dicarbonyl, 3,4-dideoxyglucosone-3-ene (3,4-DGE), which is present in peritoneal dialysis (PD) solutions after heat sterilization, activates nociceptors. We also showed that at body temperatures 3,4-DGE is formed from 3-DG and that concentrations of 3,4-DGE in the micromolar range effectively induced iCGRP release from isolated murine skin. In a novel preparation of the isolated parietal peritoneum PD fluid or 3,4-DGE alone, at concentrations found in PD solutions, stimulated iCGRP release. We also tested whether inflammatory tissue conditions synergize with dicarbonyls to induce iCGRP release from isolated skin. Application of MGO together with bradykinin or prostaglandin E2 resulted in an overadditive effect on iCGRP release, whereas MGO applied at a pH of 5.2 resulted in reduced release, probably due to an MGO-mediated inhibition of transient receptor potential (TRP) V1 receptors. These results indicate that several reactive dicarbonyls activate nociceptors and potentiate inflammatory mediators. Our findings underline the roles of dicarbonyls and TRPA1 receptors in causing pain during diabetes or renal disease.
Collapse
Affiliation(s)
- Anna K Becker
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 17, 91054 Erlangen, Germany
| | - Andrea Auditore
- Department of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 17, 91054 Erlangen, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry and Pharmacology, University of Heidelberg, INF 410, 69120 Heidelberg, Germany.,German Center for Diabetes Research (DZD), Eberhard-Karls-University of Tuebingen, Otfried-Müller-Strasse 10, 72076 Tuebingen, Germany
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 17, 91054 Erlangen, Germany
| | - Susanne K Sauer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 17, 91054 Erlangen, Germany
| |
Collapse
|
14
|
Wang XJ, Zhang HX, Li H, Zhu AH, Gao WY. Measurement of α-dicarbonyl compounds in human saliva by pre-column derivatization HPLC. Clin Chem Lab Med 2019; 57:1915-1922. [PMID: 31377732 DOI: 10.1515/cclm-2019-0350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/17/2019] [Indexed: 02/02/2023]
Abstract
Background α-Dicarbonyl compounds (α-DCs) have been detected in body fluids including plasma and urine and elevation of this sort of compounds in vivo has been associated with the development of many kinds of chronic diseases. However whether α-DCs are present in human saliva, and if their presence/absence can be related with various chronic diseases is yet to be determined. Methods In this study, a pre-column derivatization HPLC-UV method was developed to measure 3-deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), diacetyl (DA), and pentane-2,3-dione (PD) in human saliva employing 4-(2,3-dimethyl-6-quinoxalinyl)-1,2-benzenediamine (DQB) as a derivatizing reagent. The derivatization of the α-DCs is fast and the conditions are facile. The method was evaluated and the results show that it is suitable for the quantification of α-DCs in human saliva. Results In the measurements of these α-DCs in the saliva of 15 healthy subjects and 23 type 2 diabetes mellitus (T2DM) patients, we found that the concentrations of GO and MGO in the saliva of the diabetic patients were significantly higher than those in healthy subjects. As far as we know, this is the first time that salivary α-DC concentrations have been determined and associated with T2DM. Conclusions The developed method would be useful for the measurement of the salivary α-DC levels and the data acquired could be informative in the early screening for diabetes.
Collapse
Affiliation(s)
- Xin-Jie Wang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Hong-Xia Zhang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Ai-Hua Zhu
- The Shaanxi Key Laboratory of Chinese Medicine Research and Development, Xi'an, P.R. China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
15
|
Gensberger-Reigl S, Atzenbeck L, Göttler A, Pischetsrieder M. Identification of [6-Hydroxy-2-(hydroxymethyl)-5-oxo-5,6-dihydro-2 H-pyran-3-yl]-cysteine (HHPC) as a Cysteine-specific Modification Formed from 3,4-Dideoxyglucosone-3-ene (3,4-DGE). Chem Res Toxicol 2019; 32:304-311. [PMID: 30640474 DOI: 10.1021/acs.chemrestox.8b00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glucose degradation products (GDPs) are formed from glucose and other reducing sugars during heat treatment, for example, in heat-sterilized peritoneal dialysis fluids or foods. Because of their reactive mono- and dicarbonyl structure, they react readily with proteins, resulting in the formation of advanced glycation end products (AGEs), loss of protein functionality, and cytotoxicity. Among the GDPs, 3,4-dideoxyglucosone-3-ene (3,4-DGE) exerts the strongest effects despite its relatively low concentration levels. The goal of the present study was therefore to identify the structure of specific protein modifications deriving from 3,4-DGE. A nonapeptide containing the reactive amino acids lysine, arginine, and cysteine was incubated with 3,4-DGE and the dominant GDPs 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal) in concentrations as present in peritoneal dialysis fluids (235 μM 3-DG, 100 μM 3-Gal, and 11 μM 3,4-DGE). Glycation rate and product formation were determined by ultra-HPLC-MS/MS (UHPLC-MS/MS). 3,4-DGE showed the strongest glycation activity. After 2 h of incubation, 3,4-DGE had modified 57% of the nonapeptide, whereas 3-DG had modified only 2% and 3-DGal had modified 29% of the peptide. A stable 3,4-DGE-derived cysteine modification was isolated. Its structure was determined by comprehensive NMR and MS experiments to be [6-hydroxy-2-(hydroxymethyl)-5-oxo-5,6-dihydro-2 H-pyran-3-yl]-cysteine (HHPC), which represents a novel cysteine-AGE derived from 3,4-DGE. The results indicate that 3,4-DGE might contribute to a severe loss of protein functionality by forming cysteine-specific AGEs, such as HHPC.
Collapse
Affiliation(s)
- Sabrina Gensberger-Reigl
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Lisa Atzenbeck
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Alexander Göttler
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| | - Monika Pischetsrieder
- Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Department of Chemistry and Pharmacy, Food Chemistry , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| |
Collapse
|
16
|
Houdier S, Lévêque J, Sabatier T, Jacob V, Jaffrezo JL. Aniline-based catalysts as promising tools to improve analysis of carbonyl compounds through derivatization techniques: preliminary results using dansylacetamidooxyamine derivatization and LC-fluorescence. Anal Bioanal Chem 2018; 410:7031-7042. [PMID: 30094788 DOI: 10.1007/s00216-018-1304-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/20/2018] [Accepted: 08/02/2018] [Indexed: 11/24/2022]
Affiliation(s)
- Stéphan Houdier
- CNRS, IRD, Grenoble INP, IGE, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Justine Lévêque
- CNRS, IRD, Grenoble INP, IGE, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Tiphaine Sabatier
- CNRS, IRD, Grenoble INP, IGE, Univ. Grenoble Alpes, 38000, Grenoble, France
- CNRM, UMR3589, METEO-FRANCE & CNRS, 42 Avenue G. Coriolis, 31057, Toulouse Cedex 01, France
| | - Véronique Jacob
- CNRS, IRD, Grenoble INP, IGE, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Jean-Luc Jaffrezo
- CNRS, IRD, Grenoble INP, IGE, Univ. Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
17
|
Bartosova M, Schaefer B, Bermejo JL, Tarantino S, Lasitschka F, Macher-Goeppinger S, Sinn P, Warady BA, Zaloszyc A, Parapatics K, Májek P, Bennett KL, Oh J, Aufricht C, Schaefer F, Kratochwill K, Schmitt CP. Complement Activation in Peritoneal Dialysis-Induced Arteriolopathy. J Am Soc Nephrol 2017; 29:268-282. [PMID: 29046343 DOI: 10.1681/asn.2017040436] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of increased mortality in patients with CKD and is further aggravated by peritoneal dialysis (PD). Children are devoid of preexisting CVD and provide unique insight into specific uremia- and PD-induced pathomechanisms of CVD. We obtained peritoneal specimens from children with stage 5 CKD at time of PD catheter insertion (CKD5 group), children with established PD (PD group), and age-matched nonuremic controls (n=6/group). We microdissected omental arterioles from tissue layers not directly exposed to PD fluid and used adjacent sections of four arterioles per patient for transcriptomic and proteomic analyses. Findings were validated in omental and parietal arterioles from independent pediatric control (n=5), CKD5 (n=15), and PD (n=15) cohorts. Transcriptomic analysis revealed differential gene expression in control versus CKD5 arterioles and in CKD5 versus PD arterioles. Gene ontology analyses revealed activation of metabolic processes in CKD5 arterioles and of inflammatory, immunologic, and stress-response cascades in PD arterioles. PD arterioles exhibited particular upregulation of the complement system and respective regulatory pathways, with concordant findings at the proteomic level. In the validation cohorts, PD specimens had the highest abundance of omental and parietal arteriolar C1q, C3d, terminal complement complex, and phosphorylated SMAD2/3, a downstream effector of TGF-β Furthermore, in the PD parietal arterioles, C1q and terminal complement complex abundance correlated with the level of dialytic glucose exposure, abundance of phosphorylated SMAD2/3, and degree of vasculopathy. We conclude that PD fluids activate arteriolar complement and TGF-β signaling, which quantitatively correlate with the severity of arteriolar vasculopathy.
Collapse
Affiliation(s)
- Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine
| | - Betti Schaefer
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine
| | | | | | - Felix Lasitschka
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | - Peter Sinn
- Department of General Pathology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ariane Zaloszyc
- Department of Pediatrics 1, University Hospital of Strasbourg, Strasbourg, France
| | - Katja Parapatics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; and
| | - Jun Oh
- Department of Pediatric Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine
| | - Klaus Kratochwill
- Department of Pediatrics and Adolescent Medicine and.,Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine,
| |
Collapse
|
18
|
Navarro M, Atzenbeck L, Pischetsrieder M, Morales FJ. Investigations on the Reaction of C3 and C6 α-Dicarbonyl Compounds with Hydroxytyrosol and Related Compounds under Competitive Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6327-6332. [PMID: 27476321 DOI: 10.1021/acs.jafc.6b01423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
α-Dicarbonyl compounds are intermediates in reactions that lead to the formation of potentially harmful advanced glycation end-products. Carbonyl-trapping capacities of antiglycative substances have been traditionally limited to C2 and C3 α-dicarbonyl structures. Glyoxal (GO)-, methylglyoxal (MGO)-, 3-deoxyglucosone (3-DG)-, 3-deoxygalactosone (3-DGal)-, 3,4-dideoxyglucoson-3-ene-, and glucosone-trapping capacities of hydroxytyrosol (HT), hydroxytyrosol acetate (HTA), and 3,4-dihydroxyphenylacetic acid (DOPAC) in simple (phenolic/dicarbonyl) and competitive model systems (phenolic/dicarbonyl1/dicarbonyl2) were investigated. HT and HTA were more effective for MGO than 3-DG and 3-DGal. Furthermore, DOPAC exerted higher trapping capacity than HT and HTA for C3 and C6 α-dicarbonyl compounds. In the competitive systems, HT-related substances did not show preference for trapping 3-DG or 3-DGal and behaved as in the simple systems. In the presence of MGO, however, HT-related substances were more effective for trapping MGO than C6 structures. The results demonstrate the C6 α-dicarbonyl-trapping capacities of HT, HTA, and DOPAC, with DOPAC exerting the highest activity.
Collapse
Affiliation(s)
- Marta Navarro
- Institute of Food Science, Technology and Nutrition, ICTAN-CSIC , E-28040 Madrid, Spain
| | - Lisa Atzenbeck
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg , 91054 Erlangen, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg , 91054 Erlangen, Germany
| | - Francisco J Morales
- Institute of Food Science, Technology and Nutrition, ICTAN-CSIC , E-28040 Madrid, Spain
| |
Collapse
|
19
|
Pischetsrieder M, Gensberger-Reigl S, Atzenbeck L, Weigel I. Chemistry and clinical relevance of carbohydrate degradation in drugs. Drug Discov Today 2016; 21:1620-1631. [PMID: 27320689 DOI: 10.1016/j.drudis.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/29/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022]
Abstract
Carbohydrate degradation products are formed during heat sterilization in drugs containing (poly-)glucose as osmotic agents. Given this situation, peritoneal dialysis fluids (PDFs) and infusion fluids are of particular clinical relevance, because these drugs deliver process contaminants either over a longer period or directly into the circulation of patients who are critically ill. For the development of suitable mitigation strategies, it is important to understand the reaction mechanisms of carbohydrate degradation during sterilization and how the resulting products interact with physiological targets at the molecular level. Furthermore, reliable, comprehensive, and highly sensitive quantification methods are required for product control and toxicological evaluation.
Collapse
Affiliation(s)
- Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany.
| | - Sabrina Gensberger-Reigl
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| | - Lisa Atzenbeck
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| | - Ingrid Weigel
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052, Erlangen, Germany
| |
Collapse
|
20
|
Hellwig M, Nobis A, Witte S, Henle T. Occurrence of (Z)-3,4-Dideoxyglucoson-3-ene in Different Types of Beer and Malt Beer as a Result of 3-Deoxyhexosone Interconversion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2746-2753. [PMID: 26984557 DOI: 10.1021/acs.jafc.6b00468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In beer, 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal) are important sugar degradation products, but little is known about the relevance of the interconversion reaction between these compounds in different types of beer. In the present study, 3-DG was quantitated at concentrations of 12.9-52.7 mg/L and 3-DGal at concentrations of 6.0-26.4 mg/L in different types of beer (pilsner, wheat, bock, dark, and alcohol-free beers). The concentrations in malt beer tended to be higher. Largely overlapping concentration ranges precluded a classification of beers by their 3-deoxyglycosone contents. 3,4-Dideoxyglucoson-3-ene (3,4-DGE) was identified as an important intermediate and quantitated in beer and malt beer for the first time. The E and Z isomers of the corresponding quinoxaline were synthesized by a new synthetic approach and isolated by semipreparative HPLC. An assay was developed for quantitation of (E)- and (Z)-3,4-DGE by HPLC-MS/MS, and the Z isomer was determined at concentrations of 0.3-1.7 mg/L in beer and 0.5-4.8 mg/L in malt beer samples. The E isomer was shown to be of little importance. Concentrations of 5-hydroxymethylfurfural (HMF) were twice as high as those of (Z)-3,4-DGE in beer samples (0.4-3.7 mg/L) but much higher in malt beer samples (1.6-336 mg/L).
Collapse
Affiliation(s)
- Michael Hellwig
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Arndt Nobis
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Sophia Witte
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| |
Collapse
|
21
|
Gensberger-Reigl S, Huppert J, Pischetsrieder M. Quantification of reactive carbonyl compounds in icodextrin-based peritoneal dialysis fluids by combined UHPLC-DAD and -MS/MS detection. J Pharm Biomed Anal 2016; 118:132-138. [DOI: 10.1016/j.jpba.2015.10.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
|
22
|
Hrynets Y, Ndagijimana M, Betti M. Studies on the Formation of Maillard and Caramelization Products from Glucosamine Incubated at 37 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6249-6261. [PMID: 26114422 DOI: 10.1021/acs.jafc.5b02664] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This experiment compared the in vitro degradation of glucosamine (GlcN), N-acetylglucosamine, and glucose in the presence of NH3 incubated at 37 °C in phosphate buffer from 0.5 to 12 days. The reactions were monitored with UV-vis absorption and fluorescence emission spectroscopies, and the main products of degradation, quinoxaline derivatives of α-dicarbonyl compounds and condensation products, were determined using UHPLC-UV and Orbitrap mass spectrometry. GlcN produced two major dicarbonyl compounds, glucosone and 3-deoxyglucosone, ranging from 709 to 3245 mg/kg GlcN and from 272 to 4535 mg/kg GlcN, respectively. 3,4-Dideoxyglucosone-3-ene, glyoxal, hydroxypyruvaldehyde, methylglyoxal, and diacetyl were also detected in lower amounts compared to glucosone and 3-deoxyglucosone. Several pyrazine condensation products resulting from the reaction between dicarbonyls and GlcN were also identified. This study determined that GlcN is a significantly unstable molecule producing a high level of degradation products at 37 °C.
Collapse
Affiliation(s)
- Yuliya Hrynets
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, Canada T6G 2P5
| | - Maurice Ndagijimana
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, Canada T6G 2P5
| | - Mirko Betti
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, Canada T6G 2P5
| |
Collapse
|
23
|
Gensberger S, Knabner C, Waibel R, Huppert J, Pischetsrieder M. Qualitative Profiling of Polyglucose Degradation Products in Peritoneal Dialysis Fluids. Anal Chem 2015; 87:6103-11. [DOI: 10.1021/acs.analchem.5b00665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Gensberger
- Food
Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer
Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052 Erlangen, Germany
| | - Carina Knabner
- Food
Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer
Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052 Erlangen, Germany
| | - Reiner Waibel
- Medicinal
Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer
Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052 Erlangen, Germany
| | - Jochen Huppert
- Fresenius Medical Care Deutschland GmbH, Frankfurter Str. 6-8, 66606 St. Wendel, Germany
| | - Monika Pischetsrieder
- Food
Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer
Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schuhstr. 19, 91052 Erlangen, Germany
| |
Collapse
|
24
|
Ferreira RC, Ramos RM, Gonçalves LM, Almeida PJ, Rodrigues JA. Application of gas-diffusion microextraction to solid samples using the chromatographic determination of α-diketones in bread as a case study. Analyst 2015; 140:3648-53. [DOI: 10.1039/c5an00196j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, gas-diffusion microextraction was used for the direct analysis of solid samples (vicinal diketones in bread).
Collapse
Affiliation(s)
- Rui César Ferreira
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Rui Miguel Ramos
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Luís Moreira Gonçalves
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Paulo Joaquim Almeida
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - José António Rodrigues
- LAQV/REQUIMTE
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| |
Collapse
|
25
|
Kihm LP, Müller-Krebs S, Holoch S, Schmuck S, Becker LE, Brownlee M, Zeier M, Fleming TH, Nawroth PP, Schwenger V. Increased peritoneal damage in glyoxalase 1 knock-down mice treated with peritoneal dialysis. Nephrol Dial Transplant 2014; 30:401-9. [PMID: 25387474 DOI: 10.1093/ndt/gfu346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is limited by peritoneal fibrosis and ultrafiltration failure. This is in part caused by the high concentration of glucose degradation products (GDPs) present in PD fluids (PDF) as a consequence of heat sterilization. Existing research in long-term PD has mainly dealt with the toxicity induced by GDPs and the development of therapeutic strategies to reduce the cellular burden of GDPs. Currently, there are few data regarding the potential role of detoxification systems of GDP in PD. In this study, the role of glyoxalase 1 (Glo1), the major detoxification pathway for dicarbonyl-derived GD such as methylglyoxal (MG) and glyoxal (Gx), was investigated in vivo using heterozygous knock-down mice for Glo1 (Glo1(-/+)). METHODS Wild-type (WT) and Glo1(-/+) mice were repeatedly treated with PDF containing low and high amounts of GDP, particularly with respect to the content of dicarbonyls. After 12 weeks of treatment with PDF, peritoneal damage and function were evaluated. RESULTS Glo1(-/+) mice treated with PDF showed increased formation of advanced glycation endproduct (AGE) when compared with WT mice, particularly the Gx-derived AGE, carboxymethyl-lysine. This was associated with increased inflammation, neovascularization, increased peritoneal fibrosis and impaired peritoneal function. CONCLUSIONS This study suggests a pivotal and underestimated role for Glo1 as a detoxifying enzyme in GDP-associated peritoneal toxicity in PD. The indirect and direct modulation of Glo1 may therefore offer a new therapeutic option in prevention of GDP-induced peritoneal damage in PD.
Collapse
Affiliation(s)
- Lars P Kihm
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | | | - Sandra Holoch
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Svenja Schmuck
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Luis E Becker
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Michael Brownlee
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Thomas H Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
26
|
Henning C, Liehr K, Girndt M, Ulrich C, Glomb MA. Extending the spectrum of α-dicarbonyl compounds in vivo. J Biol Chem 2014; 289:28676-88. [PMID: 25164824 DOI: 10.1074/jbc.m114.563593] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Maillard α-dicarbonyl compounds are known as central intermediates in advanced glycation end product (AGE) formation. Glucose is the primary source of energy for the human body, whereas l-threo-ascorbic acid (vitamin C) is an essential nutrient, involved in a variety of enzymatic reactions. Thus, the Maillard degradation of glucose and ascorbic acid is of major importance in vivo. To understand the complex mechanistic pathways of AGE formation, it is crucial to extend the knowledge on plasma concentrations of reactive key α-dicarbonyl compounds (e.g. 1-deoxyglucosone). With the present work, we introduce a highly sensitive LC-MS/MS multimethod for human blood plasma based on derivatization with o-phenylenediamine under acidic conditions. The impact of workup and reaction conditions, particularly of pH, was thoroughly evaluated. A comprehensive validation provided the limit of detection, limit of quantitation, coefficients of variation, and recovery rates. The method includes the α-dicarbonyls 1-deoxyglucosone, 3-deoxyglucosone, glucosone, Lederer's glucosone, dehydroascorbic acid, 2,3-diketogulonic acid, 1-deoxypentosone, 3-deoxypentosone, 3,4-dideoxypentosone, pentosone, 1-deoxythreosone, 3-deoxythreosone, threosone, methylglyoxal, glyoxal; the α-keto-carboxylic acids pyruvic acid and glyoxylic acid; and the dicarboxylic acid oxalic acid. The method was then applied to the analyses of 15 healthy subjects and 24 uremic patients undergoing hemodialysis. The comparison of the results revealed a clear shift in the product spectrum. In most cases, the plasma levels of target analytes were significantly higher. Thus, this is the first time that a complete spectrum of α-dicarbonyl compounds relevant in vivo has been established. The results provide further insights into the chemistry of AGE formation and will be helpful to find specific markers to differentiate between the various precursors of glycation.
Collapse
Affiliation(s)
| | | | - Matthias Girndt
- the Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | - Christof Ulrich
- the Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle/Saale, Germany
| | | |
Collapse
|
27
|
Büchel J, Bartosova M, Eich G, Wittenberger T, Klein-Hitpass L, Steppan S, Hackert T, Schaefer F, Passlick-Deetjen J, Schmitt CP. Interference of peritoneal dialysis fluids with cell cycle mechanisms. Perit Dial Int 2014; 35:259-74. [PMID: 25082841 DOI: 10.3747/pdi.2013.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Peritoneal dialysis fluids (PDF) differ with respect to osmotic and buffer compound, and pH and glucose degradation products (GDP) content. The impact on peritoneal membrane integrity is still insufficiently described. We assessed global genomic effects of PDF in primary human peritoneal mesothelial cells (PMC) by whole genome analyses, quantitative real-time polymerase chain reaction (RT-PCR) and functional measurements. METHODS PMC isolated from omentum of non-uremic patients were incubated with conventional single chamber PDF (CPDF), lactate- (LPDF), bicarbonate- (BPDF) and bicarbonate/lactate-buffered double-chamber PDF (BLPDF), icodextrin (IPDF) and amino acid PDF (APDF), diluted 1:1 with medium. Affymetrix GeneChip U133Plus2.0 (Affymetrix, CA, USA) and quantitative RT-PCR were applied; cell viability was assessed by proliferation assays. RESULTS The number of differentially expressed genes compared to medium was 464 with APDF, 208 with CPDF, 169 with IPDF, 71 with LPDF, 45 with BPDF and 42 with BLPDF. Out of these genes 74%, 73%, 79%, 72%, 47% and 57% were downregulated. Gene Ontology (GO) term annotations mainly revealed associations with cell cycle (p = 10(-35)), cell division, mitosis, and DNA replication. One hundred and eighteen out of 249 probe sets detecting genes involved in cell cycle/division were suppressed, with APDF-treated PMC being affected the most regarding absolute number and degree, followed by CPDF and IPDF. Bicarbonate-containing PDF and BLPDF-treated PMC were affected the least. Quantitative RT-PCR measurements confirmed microarray findings for key cell cycle genes (CDK1/CCNB1/CCNE2/AURKA/KIF11/KIF14). Suppression was lowest for BPDF and BLPDF, they upregulated CCNE2 and SMC4. All PDF upregulated 3 out of 4 assessed cell cycle repressors (p53/BAX/p21). Cell viability scores confirmed gene expression results, being 79% of medium for LPDF, 101% for BLPDF, 51% for CPDF and 23% for IPDF. Amino acid-containing PDF (84%) incubated cells were as viable as BPDF (86%). CONCLUSION In conclusion, PD solutions substantially differ with regard to their gene regulating profile and impact on vital functions of PMC, i.e. on cells known to be essential for peritoneal membrane homeostasis.
Collapse
Affiliation(s)
- Janine Büchel
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Maria Bartosova
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Eich
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Ludger Klein-Hitpass
- University of Duisburg-Essen, Faculty of Medicine, Institute of Cell Biology, Essen, Germany
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Thilo Hackert
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | - Franz Schaefer
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Claus P Schmitt
- University Hospital for Pediatrics & Adolescent Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Distler L, Georgieva A, Kenkel I, Huppert J, Pischetsrieder M. Structure- and concentration-specific assessment of the physiological reactivity of α-dicarbonyl glucose degradation products in peritoneal dialysis fluids. Chem Res Toxicol 2014; 27:1421-30. [PMID: 25033248 DOI: 10.1021/tx500153n] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In peritoneal dialysis (PD), glucose degradation products (GDPs), which are formed during heat sterilization of dialysis fluids, lead to structural and functional changes in the peritoneal membrane, which eventually result in the loss of its ultrafiltration capacity. To determine the molecular mechanisms behind these processes, the present study tested the influence of the six major α-dicarbonyl GDPs in PD fluids, namely, glyoxal, methylglyoxal, 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), and glucosone with respect to their potential to impair the enzymatic activity of RNase A as well as their effects on cell viability. For comprehensive risk assessment, the α-dicarbonyl GDPs were applied separately and in concentrations as present in conventional PD fluids. Thus, it was shown that after 5 days, glucosone impaired RNase A activity most distinctly (58% remaining activity, p < 0.001 compared to that of the control), followed by 3,4-DGE (62%, p < 0.001), 3-DGal (66%, p < 0.001), and 3-DG (76%, p < 0.01). Methylglyoxal and glyoxal caused weaker inactivation with significant effects only after 10 days of incubation (79%, 81%, p < 0.001). Profiling of the advanced glycation end products formed during the incubation of RNase A with methylglyoxal revealed predominant formation of the arginine modifications imidazolinone, CEA/dihydroxyimidazoline, and tetrahydropyrimidine at Arg10, Arg33, Arg39, and Arg85. Particularly, modification at Arg39 may severely affect the active site of the enzyme. Additionally, structure- and concentration-specific assessment of the cytotoxicity of the α-dicarbonyl GDPs was performed. Although present at very low concentration, the cytotoxic effect of PD fluids after 2 days of incubation was exclusively caused by 3,4-DGE (14% cell viability, p < 0.001). After 4 days of incubation, 3-DGal (13% cell viability, p < 0.001), 3-DG (24%, p < 0.001), and, to a lower extent, glyoxal and methylglyoxal (both 57%, p < 0.01) also reduced cell viability significantly. In conclusion, 3,4-DGE, 3-DGal, and glucosone appear to be the most relevant parameters for the biocompatibility of PD fluids.
Collapse
Affiliation(s)
- Leonie Distler
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) , Schuhstraße 19, 91052 Erlangen, Germany
| | | | | | | | | |
Collapse
|
29
|
Lee DY, Chang GD. Methylglyoxal in cells elicits a negative feedback loop entailing transglutaminase 2 and glyoxalase 1. Redox Biol 2014; 2:196-205. [PMID: 24494193 PMCID: PMC3909781 DOI: 10.1016/j.redox.2013.12.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 12/27/2013] [Accepted: 12/27/2013] [Indexed: 01/13/2023] Open
Abstract
Glyoxalase 1 (GlxI) is the key enzyme that converts the highly reactive α-oxo-aldehydes into the corresponding α-hydroxy acids using l-glutathione as a cofactor. In our preliminary data, GlxI was identified as a substrate of transglutaminase 2 (TG2), a ubiquitous enzyme with multiple functions. According to the catalytic properties of TG2, protein cross-linking, polyamine conjugation, and/or deamidation are potential post-translational modifications. In this article, we have demonstrated that TG2 catalyzes either polyamine conjugation or deamidation to GlxI depending on the presence of polyamines or not. Deamidation leads to activation of GlxI while polyamine conjugation results in activation of GlxI as well as stabilization of GlxI against denaturation treatment. In cultured HeLa cells, methylglyoxal challenge causes increase in intracellular levels of reactive oxygen species (ROS) and calcium leading to TG2 activation and subsequent transamidation and activation of GlxI. The inhibition of TG2 significantly weakens the cell resistance to the methylglyoxal challenge. Thus, GlxI is a novel substrate of TG2 and is activated by TG2 in vitro and in cellulo. Exposure to methylglyoxal elicits a negative feedback loop entailing ROS, calcium, TG2 and GlxI, thus leading to attenuation of the increase in the methylglyoxal level. The results imply that cancer cells highly express TG2 or GlxI can endure the oxidative stress derived from higher glycolytic flux and may gain extra growth advantage from the aerobic glycolysis. We have demonstrated novel modifications of glyoxalase I by transglutaminase 2. The modifications mediated by transglutaminse 2 modulate the glyoxalase I activities. Methylglyoxal treatment in cells induces increases in the levels of endogenous reactive oxygen species and activation transglutaminase 2 and glyoxalase I. Cells dispose the accumulated intracellular methylglyoxal by a negative feedback loop consisting of reactive oxygen species, calcium, transglutaminase 2 and glyoxalase I.
Collapse
Affiliation(s)
- Der-Yen Lee
- Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Technology Commons, Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, Technology Commons, Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Center for Systems Biology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
- Correspondence to: Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan. Tel.: +886 2 3366 4071; fax: +886 2 2363 5038.
| |
Collapse
|
30
|
Gensberger S, Glomb MA, Pischetsrieder M. Analysis of sugar degradation products with α-dicarbonyl structure in carbonated soft drinks by UHPLC-DAD-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10238-10245. [PMID: 23452313 DOI: 10.1021/jf3048466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sugar-sweetened carbonated soft drinks (CSDs) are broadly consumed worldwide. The added sugar, particularly high-fructose corn syrup (HFCS), can be an important source of sugar degradation products, such as α-dicarbonyl compounds. This study recorded the α-dicarbonyl profile in CSDs by ultrahigh-performance liquid chromatography with hyphenated diode array-tandem mass spectrometry after derivatization with o-phenylenediamine. Thus, 3-deoxy-D-erythro-hexos-2-ulose (3-DG), D-lyxo-hexos-2-ulose (glucosone), 3-deoxy-D-threo-hexos-2-ulose (3-DGal), 1-deoxy-D-erythro-hexos-2,3-diulose (1-DG), 3,4-dideoxyglucosone-3-ene (3,4-DGE), methylglyoxal, and glyoxal were identified as major α-dicarbonyls and, with the exception of glyoxal, quantified (recovery rates, 85.6-103.1%; RSD, 0.8-3.6%). Total α-dicarbonyl concentration in 25 tested commercial products ranged between 0.3 and 116 μg/mL and was significantly higher in HFCS-sweetened CSDs compared to CSDs sweetened with HFCS and sucrose or with sucrose alone. Predominant was 3-DG (≤87 μg/mL) followed by glucosone (≤21 μg/mL), 3-DGal (≤7.7 μg/mL), 1-DG (≤2.8 μg/mL), methylglyoxal (≤0.62 μg/mL), and 3,4-DGE (≤0.45 μg/mL).
Collapse
Affiliation(s)
- Sabrina Gensberger
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg , Schuhstrasse 19, 91052 Erlangen, Germany
| | | | | |
Collapse
|
31
|
Mittelmaier S, Niwa T, Pischetsrieder M. Chemical and physiological relevance of glucose degradation products in peritoneal dialysis. J Ren Nutr 2012; 22:181-5. [PMID: 22200439 DOI: 10.1053/j.jrn.2011.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 01/25/2023] Open
Abstract
Fibrosis and vascular sclerosis are main complications that limit the long-term application of peritoneal dialysis (PD). Low biocompatibility has been largely attributed to the presence of glucose degradation products (GDPs), which are formed during the heat sterilization of PD fluids. GDPs readily modify proteins in the peritoneum, leading to a decline of their biological function. After absorption, GDPs can also promote systemic protein glycation. Additionally, GDPs may augment DNA glycation, a process enhanced in uremia. Apart from their glycating activity, GDPs induce cytotoxicity and interfere with cell signaling in peritoneal mesothelial cells. Targeted screening revealed the nature of the 6 major GDPs with α-dicarbonyl structure as 3-deoxyglucosone, 3-deoxygalactosone, glucosone, glyoxal, methylglyoxal, and 3,4-dideoxyglucosone-3-ene. Valid quantification of these GDPs was achieved by ultrahigh-performance liquid chromatography/diode array detector/tandem mass spectrometry. Identification and quantification of single GDPs allow a structure-dependent risk evaluation. As a consequence, PD fluids and processes can be improved to reduce the GDP burden of patients undergoing PD.
Collapse
Affiliation(s)
- Stefan Mittelmaier
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
32
|
Identification and quantification of six major α-dicarbonyl process contaminants in high-fructose corn syrup. Anal Bioanal Chem 2012; 403:2923-31. [DOI: 10.1007/s00216-012-5817-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
|
33
|
Rapid and sensitive determination of the intermediates of advanced glycation end products in the human nail by ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Anal Biochem 2012; 424:187-94. [PMID: 22381369 DOI: 10.1016/j.ab.2012.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/13/2012] [Accepted: 02/21/2012] [Indexed: 12/19/2022]
Abstract
The resolution of the intermediate advanced glycation end products (AGEs) in the human nail was carried out by the combination of 4,5-dimethyl-1,2-phenylenediamine (DMPD) derivatives and ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry (UPLC-ESI-TOF-MS). The reaction of the reagent with 3-deoxyglucosone (3-DG), methylglyoxal (MG), and glyoxal (GO) effectively proceeds at 60°C for 2h. The resulting derivatives were efficiently separated by a gradient program (a mixture of water and acetonitrile containing 0.1% formic acid) using a reversed-phase ACQUITY UPLC BEH C(18) column (1.7 μm, 50×2.1 mm i.d.) and sensitively detected by TOF-MS. The detection limits (signal-to-noise ratio=5) of the TOF-MS were 10 to 50 fmol. A good linearity was achieved from the calibration curve, which was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS) (i.e., 2,3-hexanedione) versus the injected amounts of 3-DG, MG, and GO (r(2)>0.999), and the intra- and interday assay precisions were less than 6.89%. The derivatives of the compounds in the human nail were successfully identified by the proposed procedure. As we know, these three kinds of dicarbonyl intermediates in the formation of AGEs-3-DG, MG, and GO-were first found in human nail samples. Using these methods, the amounts of compound in the nails of healthy volunteers and diabetic patients were determined. When comparing the index from the diabetic patients with that from healthy volunteers, there is no significant difference in the content of the MG and GO in the nails. However, a statistically significant (P<0.001) correlation was observed between the 3-DG concentrations. Because the proposed method provides a good mass accuracy and the trace detection of the dicarbonyl intermediates of AGEs in the human nail, this analytical technique could be a noninvasive technique to assist in the diagnosis and assessment of disease activity in diabetic patients. Here we present a novel, sensitive, and simple method for the simultaneous determination of dicarbonyl compounds in the human nail.
Collapse
|
34
|
Mittelmaier S, Pischetsrieder M. Multistep Ultrahigh Performance Liquid Chromatography/Tandem Mass Spectrometry Analysis for Untargeted Quantification of Glycating Activity and Identification of Most Relevant Glycation Products. Anal Chem 2011; 83:9660-8. [DOI: 10.1021/ac2025706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Mittelmaier
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer Center, University of Erlangen-Nuremberg, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|