1
|
Guo Y, Chen M, Liao M, Su S, Sun W, Gan Z. Organophosphorus flame retardants and their metabolites in paired human blood and urine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115696. [PMID: 37979363 DOI: 10.1016/j.ecoenv.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been shown to be carcinogenic, neurotoxic, and endocrine disruptive, so it is important to understand the levels of OPFRs in human body as well as the modes of external exposure. In this study, we investigated the levels of 13 OPFRs and 7 phosphodiester metabolites in paired human blood and urine, as well as the influencing factors (region, age and gender), and studied the relationship between OPFRs and oxidative stress by urinary metabolites. We found that the concentrations of triphenyl phosphate (TPhP) and tris-(2-ethylhexyl) phosphate (TEHP) in the blood of urban populations were higher than those of rural populations, and that younger populations suffered higher TPhP and 2-ethylhexyl diphenyl phosphate (EHDPP) exposures than older populations. In addition, we found that tris-(2-chloroethyl) phosphate (TCEP), tributyl phosphate (TnBP), TPhP and EHDPP exposure induced oxidative stress. The results of the internal load principal component analysis indicated that dust ingestion, skin exposure, respiration and dietary intake may be the most important sources of TCEP, tris(2-butoxyethyl) phosphate (TBOEP), tri(2-chloroisopropyl) phosphate (TCIPP) and TEHP, respectively, and dust ingestion and skin exposure may be the main sources of TPhP for humans.
Collapse
Affiliation(s)
- Yantao Guo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Mengqin Chen
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China.
| | - Mengxi Liao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Dürig W, Lindblad S, Golovko O, Gkotsis G, Aalizadeh R, Nika MC, Thomaidis N, Alygizakis NA, Plassmann M, Haglund P, Fu Q, Hollender J, Chaker J, David A, Kunkel U, Macherius A, Belova L, Poma G, Preud'Homme H, Munschy C, Aminot Y, Jaeger C, Lisec J, Hansen M, Vorkamp K, Zhu L, Cappelli F, Roscioli C, Valsecchi S, Bagnati R, González B, Prieto A, Zuloaga O, Gil-Solsona R, Gago-Ferrero P, Rodriguez-Mozaz S, Budzinski H, Devier MH, Dierkes G, Boulard L, Jacobs G, Voorspoels S, Rüdel H, Ahrens L. What is in the fish? Collaborative trial in suspect and non-target screening of organic micropollutants using LC- and GC-HRMS. ENVIRONMENT INTERNATIONAL 2023; 181:108288. [PMID: 37918065 DOI: 10.1016/j.envint.2023.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Sofia Lindblad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Georgios Gkotsis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Reza Aalizadeh
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Maria-Christina Nika
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nikolaos Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nikiforos A Alygizakis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovakia.
| | - Merle Plassmann
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 90187 Umeå, Sweden.
| | - Qiuguo Fu
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | - Jade Chaker
- Université de Rennes, Inserm, EHESP, Irset - UMR_S, 1085 Rennes, France.
| | - Arthur David
- Université de Rennes, Inserm, EHESP, Irset - UMR_S, 1085 Rennes, France.
| | - Uwe Kunkel
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - André Macherius
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, 44000 Nantes, France.
| | - Yann Aminot
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, 44000 Nantes, France.
| | - Carsten Jaeger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Jan Lisec
- Bundesanstalt für Materialforschung und -prüfung (BAM), Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Linyan Zhu
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Francesca Cappelli
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Claudio Roscioli
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Sara Valsecchi
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| | - Belén González
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Olatz Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain; Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain.
| | - Pablo Gago-Ferrero
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain.
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Hélène Budzinski
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France.
| | - Marie-Helene Devier
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France.
| | - Georg Dierkes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| | - Lise Boulard
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany; Metabolomics Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Griet Jacobs
- Flemish Institute for Technological Research (VITO), Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO), Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| |
Collapse
|
3
|
Guan X, Zhang G, Meng L, Liu M, Zhang L, Zhao C, Li Y, Zhang Q, Jiang G. Novel biomonitoring method for determining five classes of legacy and alternative flame retardants in human serum samples. J Environ Sci (China) 2023; 131:111-122. [PMID: 37225373 DOI: 10.1016/j.jes.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 05/26/2023]
Abstract
Flame retardants (FRs) are ubiquitous in environment and biota and may pose harm to human health. In recent years, concern regarding legacy and alternative FRs has been intensified due to their widespread production and increasing contamination in environmental and human matrices. In this study, we developed and validated a novel analytical method for simultaneous determination of legacy and alternative FRs, including polychlorinated naphthalenes (PCNs), short- and middle-chain chlorinated paraffins (SCCPs and MCCPs), novel brominated flame retardants (NBFRs), and organophosphate esters (OPEs) in human serum. Serum samples were prepared by liquid-liquid extraction using ethyl acetate, and purified with Oasis® HLB cartridge and Florisil-silica gel columns. Instrumental analyses were carried out using gas chromatography-triple quadrupole mass spectrometry, high-resolution gas chromatography coupled with high-resolution mass spectrometry, and gas chromatography coupled with quadrupole time-of-flight mass spectrometry, respectively. The proposed method was validated for linearity, sensitivity, precision, accuracy, and matrix effects. Method detection limits for NBFRs, OPEs, PCNs, SCCPs, and MCCPs were 4.6 × 10-4-8.6 × 10-2, 4.3 × 10-3-1.3, 1.1 × 10-5-1.0 × 10-4, 1.5, and 9.0 × 10-1 ng/mL, respectively. Matrix spike recoveries ranged from 73%-122%, 71%-124%, 75%-129%, 92%-126%, and 94%-126% for NBFRs, OPEs, PCNs, SCCPs, and MCCPs, respectively. The analytical method was applied for detection of real human serum. CPs were the dominant FRs in serum, indicating CPs were widely presented in human serum and should be pay more attention for their health risk.
Collapse
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Gaoxin Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyuan Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Critical review of analytical methods for the determination of flame retardants in human matrices. Anal Chim Acta 2022; 1193:338828. [PMID: 35058002 DOI: 10.1016/j.aca.2021.338828] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
Human biomonitoring is a powerful approach in assessing exposure to environmental pollutants. Flame retardants (FRs) are of particular concern due to their wide distribution in the environment and adverse health effects. This article reviews studies published in 2009-2020 on the chemical analysis of FRs in a variety of human samples and discusses the characteristics of the analytical methods applied to different FR biomarkers of exposure, including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), novel halogenated flame retardants (NHFRs), bromophenols, incl. tetrabromobisphenol A (TBBPA), and organophosphorous flame retardants (PFRs). Among the extraction techniques, liquid-liquid extraction (LLE) and solid phase extraction (SPE) were used most frequently due to the good efficiencies in the isolation of the majority of the FR biomarkers, but with challenges for highly lipophilic FRs. Gas chromatography-mass spectrometry (GC-MS) is mainly applied in the instrumental analysis of PBDEs and most NHFRs, with recent inclusions of GC-MS/MS and high resolution MS techniques. Liquid chromatography-MS/MS is mainly applied to HBCD, bromophenols, incl. TBBPA, and PFRs (including metabolites), however, GC-based analysis following derivatization has also been used for phenolic compounds and PFR metabolites. Developments are noticed towards more universal analytical methods, which enable widening method scopes in the human biomonitoring of FRs. Challenges exist with regard to sensitivity required for the low concentrations of FRs in the general population and limited sample material for some human matrices. A strong focus on quality assurance/quality control (QA/QC) measures is required in the analysis of FR biomarkers in human samples, related to their variety of physical-chemical properties, low levels in most human samples and the risk of contamination.
Collapse
|
5
|
Huang S, Qi Z, Ma S, Li G, Long C, Yu Y. A critical review on human internal exposure of phthalate metabolites and the associated health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116941. [PMID: 33756240 DOI: 10.1016/j.envpol.2021.116941] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Phthalates (PAEs) are popular synthetic chemicals used as plasticizers and solvents for various products, such as polyvinyl chloride or personal care products. Human exposure to PAEs is associated with various diseases, resulting in PAE biomonitoring in humans. Inhalation, dietary ingestion, and dermal absorption are the major human exposure routes. However, estimating the actual exposure dose of PAEs via an external route is difficult. As a result, estimation by internal exposure has become the popular analytical methods to determine the concentrations of phthalate metabolites (mPAEs) in human matrices (such as urine, serum, breast milk, hair, and nails). The various exposure sources and patterns result in different composition profiles of PAEs in biomatrices, which vary from country to country. Nevertheless, the mPAEs of diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and di-(2-ethylhexyl) phthalate (DEHP) are predominant in the urine. These mPAEs have greater potential health risks for humans. Children have been observed to exhibit higher exposure risks to several mPAEs than adults. Besides age, other influencing factors for phthalate exposure are gender, jobs, and residential areas. Although many studies have reported biological monitoring of PAEs, only a few reviews that adequately summarized the reports are available. The current review appraised available studies on mPAE quantitation in human biomatrices and estimated the dose and health risks of phthalate exposure. While some countries lack biomonitoring data, some countries' data do not reflect the current PAE exposure. Thence, future studies should involve frequent PAE biomonitoring to accurately estimate human exposure to PAEs, which will contribute to health risk assessments of human exposure to PAEs. Such would aid the formulation of corresponding regulations and restrictions by the government.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou, 510430, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
7
|
Oberg G, Leopold A. On the role of review papers in the face of escalating publication rates - a case study of research on contaminants of emerging concern (CECs). ENVIRONMENT INTERNATIONAL 2019; 131:104960. [PMID: 31299604 DOI: 10.1016/j.envint.2019.104960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 06/10/2023]
Abstract
In the past few decades, there has been a dramatic increase in scientific publications dealing with contaminants of emerging concern (CECs) and the escalating publication rate makes it close to impossible for individual researchers to get an overview of the field. Assuring the relevance and quality of the research conducted in any research field is a crucially important task. The rapidly increasing publication rates imply that review papers will play a progressively more central role to that end. The aim of the present paper is to critically assess whether reviews dealing with contaminants of emerging concern (CECs) are effective vehicles for a healthy dialogue about methodological weaknesses, uncertainties, research gaps and the future direction of the field. We carried out a tiered content-analysis of CEC review papers. Relevant papers were identified through searches in Web of Science (Clarivate), leading to the identification of 6391 original research papers of which 193 are review papers. We find that the majority of CEC reviews are written as if they are comprehensive, even though this clearly is not the case. A minority (~20%) take a critical-analytical approach to the reviewing task and identify weaknesses and research gaps. The following widespread tendencies in CEC research papers are commonly noted as concerning: to equate removal of CECs to 'decreased concentrations in the effluent'; to focus on parent substances and not concern oneself with degradation products; to focus on most commonly studied substances rather than those of most concern; to not deal with the corollary of our inability to detect or assess the risk for all substances, and to give insufficient attention to uncertainties and the unknown. Several critical-analytical reviews are among the highest cited, which suggests that they have the potential to function as effective vehicles for a healthy dialogue on these topics. On the other hand, it would appear that the concerns expressed in these reviews have a limited impact, as the same concerns are repeated over time. This might be due to a tendency among review authors to express their concerns implicitly, instead of clearly spelling them out. Our study suggests that CEC reviews presently fail to provide adequate and reliable guidance regarding the relevance and quality of research in the field. We argue that the overwhelming number of publications in combination with a lack of quality criteria for review papers are reasons to this failure: it is well documented that choices made during the reviewing process have a major impact on the outcome of a review. These choices include: search engine; the criteria used to include or exclude papers; the criteria used to assess the quality of the data generated in the research papers included; the criteria used for the choice of substances/ organisms/ technologies reported on. The lack of transparent procedures makes it very difficult, if not impossible, to assess the quality of the findings presented or to put those findings in context. In this light, it is noteworthy that criteria for a good review paper are rarely spelled out by peer-reviewed journals or included in instructions on scientific writing. The dramatic increase in publications is a challenge for the entire research community, particularly for research fields that are expected to provide policy-relevant data. We argue that only when peer-reviewed journals start specifying quality criteria for review papers, can such papers be relied upon to provide adequate and strategic guidance on the development of CEC research. We anticipate that our findings and conclusions are valid for many other research fields.
Collapse
Affiliation(s)
- Gunilla Oberg
- Institute for Resources, Environment and Sustainability (IRES), the University of British Columbia (UBC), Vancouver, Canada.
| | | |
Collapse
|
8
|
A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). Int J Mol Sci 2019; 20:ijms20122874. [PMID: 31212857 PMCID: PMC6627825 DOI: 10.3390/ijms20122874] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
Organophosphate flame retardants (OPFRs) have been detected in various environmental matrices and have been identified as emerging contaminants (EC). Given the adverse influence of OPFRs, many researchers have focused on the absorption, bioaccumulation, metabolism, and internal exposure processes of OPFRs in animals and humans. This paper first reviews the evolution of various types of flame retardants (FRs) and the environmental pollution of OPFRs, the different absorption pathways of OPFRs by animals and humans (such as inhalation, ingestion, skin absorption and absorption), and then summarizes the environmental impacts of OPFRs, including their biological toxicity, bioaccumulation, persistence, migration, endocrine disruption and carcinogenicity. Based on limited available data and results, this study also summarizes the bioaccumulation and biomagnification potential of OPFRs in different types of biological and food nets. In addition, a new governance idea for the replacement of existing OPFRs from the source is proposed, seeking environmentally friendly alternatives to OPFRs in order to provide new ideas and theoretical guidance for the removal of OPFRs.
Collapse
|
9
|
Saillenfait AM, Ndaw S, Robert A, Sabaté JP. Recent biomonitoring reports on phosphate ester flame retardants: a short review. Arch Toxicol 2018; 92:2749-2778. [PMID: 30097699 DOI: 10.1007/s00204-018-2275-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
Abstract
Organophosphate triesters (PEFRs) are used increasingly as flame retardants and plasticizers in a variety of applications, such as building materials, textiles, and electric and electronic equipment. They have been proposed as alternatives to brominated flame retardants. This updated review shows that biomonitoring has gained incrementally greater importance in evaluating human exposure to PEFRs, and it holds the advantage of taking into account the multiple potential sources and various intake pathways of PEFRs. Simultaneous and extensive internal exposure to a broad range of PEFRs have been reported worldwide. Their metabolites, mainly dialkyl or diaryl diesters, have been used as biomarkers of exposure and have been ubiquitously detected in the urine of adults and children in the general population. Concentrations and profiles of PEFR urinary metabolites are seen to be variable and are highly dependent on individual and environmental factors, including age, country regulation of flame retardants, and types and quantities of emissions in microenvironments, as well as analytical procedures. Additional large biomonitoring studies, using a broad range of urinary diesters and hydroxylated metabolites, would be useful to improve the validity of the biomarkers and to refine assessments of human exposure to PEFRs.
Collapse
Affiliation(s)
- Anne-Marie Saillenfait
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France.
| | - Sophie Ndaw
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Alain Robert
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| | - Jean-Philippe Sabaté
- Institut National de Recherche et de Sécurité, Rue du Morvan, CS, 60027, 54519, Vandoeuvre Cedex, France
| |
Collapse
|
10
|
Sun Y, Gong X, Lin W, Liu Y, Wang Y, Wu M, Kannan K, Ma J. Metabolites of organophosphate ester flame retardants in urine from Shanghai, China. ENVIRONMENTAL RESEARCH 2018; 164:507-515. [PMID: 29604578 DOI: 10.1016/j.envres.2018.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 05/22/2023]
Abstract
The metabolites of nine organophosphate ester (OPE) flame retardants were measured in 180 urine samples collected from a population (including adults and children) in western Shanghai, China, using liquid chromatography-tandem spectrometry (LC-MS/MS). The total urinary concentrations of nine OPE metabolites ranged 100-23800 pg/mL, with a geometric mean (GM) value of 1450 pg/mL. The concentrations of alkyl-OPE metabolites (879 pg/mL) were approximately an order of magnitude higher than those of aryl-OPE (53.7 pg/mL) and chlorinated-OPE metabolites (52.7 pg/mL). Diphenyl phosphate (DPHP), diethyl phosphate (DEP), di-n-butyl phosphate (DNBP), bis(2-ethylhexyl) phosphate (BEHP), and bis(2-butoxyethyl) phosphate (BBOEP) were the dominant OPE metabolites found in urine. The results showed that an increase in age was associated with a significant decrease in urinary DPHP (r = -0.278, p < 0.01) and DNBP (r = -0.314, p < 0.01) concentrations. The highest concentrations of DPHP (GM = 80.7 pg/mL) and DNBP (GM = 16.9 pg/mL) were found in urine from people living in homes that were less than 10 years old. The urinary DNBP concentration was significantly associated with self-reported symptoms of allergy. Our result establishes baseline value for OPE exposure in a population in China for comparison in future studies.
Collapse
Affiliation(s)
- Yan Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xia Gong
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Wanlong Lin
- Shanghai No.3 Rehabilitation Hospital, Shanghai 200436, China
| | - Ye Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yujie Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY 12201-0509, United States.
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Khalid NK, Devadasan D, Aravind UK, Aravindakumar CT. Screening and quantification of emerging contaminants in Periyar River, Kerala (India) by using high-resolution mass spectrometry (LC-Q-ToF-MS). ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:370. [PMID: 29855727 DOI: 10.1007/s10661-018-6745-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
The presence of emerging contaminants (ECs) in different aquatic systems may contribute to hazardous effects on aquatic organisms and subsequently on human health. In the present work, liquid chromatography coupled to a quadrupole time of flight mass spectrometer (LC-Q-ToF-MS) was used to identify and quantify a series of ECs in Periyar River in Aluva region, Kerala, India. The water samples were pre concentrated using solid-phase extraction (SPE) prior to analysis. The compounds were probed in both positive and negative ionization mode using electro spray ionization (ESI). Method validations were performed for linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision (intraday and inter day). The ECs were quantified using standard calibration curve. The identified nine ECs include pharmaceuticals, personal care products, steroids, surfactants, and phthalate. A relatively high concentration was observed in the case of 2-dodecyl benzene sulfonic acid (1012 ng/l) and low concentration was observed for lignocaine (4.3 ng/l; since this is below LOQ, the value is only approximate). In addition, we have identified another 28 organic compounds using the technique of non-target analysis out of which seven compounds fall in the category of surfactants. Being the first report on ECs in Periyar River, the data is very important as this river is one of the biggest and important rivers of Kerala having several purification units for drinking water in the province.
Collapse
Affiliation(s)
- Nejumal K Khalid
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Dineep Devadasan
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Usha K Aravind
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
- Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
12
|
Hao C, Helm PA, Morse D, Reiner EJ. Liquid chromatography-tandem mass spectrometry direct injection analysis of organophosphorus flame retardants in Ontario surface water and wastewater effluent. CHEMOSPHERE 2018; 191:288-295. [PMID: 29040943 DOI: 10.1016/j.chemosphere.2017.10.060] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Organophosphorus flame retardants (OPFRs) started to be used in plastics, electronics and furnishings back in the 1960s and became popular again last decade. They are now widely present in the environment and regarded as "new" emerging organic pollutants. An effective liquid chromatography-tandem mass spectrometry (LC-MS/MS) direct injection analysis (DIA) method was developed to monitor OPFR levels in aquatic environment. The removal of sample extraction and concentration steps not only improved operation efficiency, but also reduced the potential contamination commonly observed during the sample preparation process before. Positive background signals from the analytical instrument were eliminated by employing a "trap" column in front of the sample injector while an ACE C18 and an ACE C18-PFP column were compared for the separation of OPFRs. Nineteen OPFR related compounds were evaluated and rapid signal drops were observed for seven of them including TOTP, TMTP, TPTP, TEHP, T35DMPP, T2iPPP and EHDP, due to their low water solubility. The other twelve compounds, TMP, TEP, TPrP, TiPP, TBP, TCEP, TCPP, TDCPP, TPP, TBEP, BDCP and BEHP, were included for the measurement of OPFRs in drinking water, surface water, ground water and wastewater effluent samples. The instrumental detection limits of these twelve OPFRs at signal-to-noise ≥3 were in the 1.5-30 ng/L range. The method was applied for the determination of OPFRs in surface water and wastewater samples in Ontario, Canada, and BEHP, TBEP, TBP, TCEP, TCPP, TDCPP, and TEP were commonly detected.
Collapse
Affiliation(s)
- Chunyan Hao
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada.
| | - Paul A Helm
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada
| | - David Morse
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada
| | - Eric J Reiner
- Laboratory Services Branch, Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Etobicoke, Ontario, M9P 3V6, Canada
| |
Collapse
|
13
|
Petropoulou SSE, Petreas M, Park JS. Analytical methodology using ion-pair liquid chromatography-tandem mass spectrometry for the determination of four di-ester metabolites of organophosphate flame retardants in California human urine. J Chromatogr A 2016; 1434:70-80. [PMID: 26818234 DOI: 10.1016/j.chroma.2016.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/11/2015] [Accepted: 01/07/2016] [Indexed: 12/23/2022]
Abstract
Alkyl- and aryl-esters of phosphoric acid (both halogenated and non-halogenated) are mainly used as flame retardants (FRs), among other applications, in furniture and consumer products and they are collectively known as organophosphate flame retardants (OPFRs). The absorption, biotransformation or elimination of many of these chemicals in humans and their possible health effects are not yet well known. A major reason for the limited information is the nature of these compounds, which causes several technical difficulties in their isolation and sensitive determination. A novel analytical liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the accurate and sensitive determination of four urinary OPFR metabolites: bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCIPP), and diphenyl phosphate (DPhP), using mixed-mode solid phase extraction and isotope. For the first time all four analytes can be identified in one chromatographic run. An extensive investigation of method development parameters (enzymatic hydrolysis, matrix effects, process efficiency, sources of background interferences, linearity, accuracy, precision, stabilities and limits of detection and quantification) was performed in order to address previously reported method inconsistencies and select a process with the highest accuracy and sensitivity. Chromatographic separation was achieved on a Luna C18 (2) (2.00 mm × 150 mm, 3 μm) with mobile phase 80:20 v/v water: MeOH and MeOH: water 95:5 v/v, both containing 1mM tributylamine and 1mM acetic acid. Limits of detection were 0.025 ng mL(-1) for BDCIPP and BCIPP and 0.1 ng mL(-1) for DPhP and BCEP. Absolute recoveries of all four analytes and their labeled compounds were in the range of 88-107%. The method was tested on 13 adult California urine samples. BCEP was detected at 0.4-15 ng mL(-1) with a geometric mean (GM): 1.9 ng mL(-1); BDCIPP at 0.5-7.3 ng mL(-1), (GM: 2.5 ng mL(-1)) and DPhP at <MDL-5.6 ng mL(-1), (GM: 1.7 ng mL(-1)). BCIPP was detected for the first time in US samples in 92.3% of the samples with two to three times lower values (range <MDL-3.5 ng mL(-1) and GM: 0.4 ng mL(-1)) than the other OPFRs.
Collapse
Affiliation(s)
- Syrago-Styliani E Petropoulou
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States.
| | - Myrto Petreas
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Ave., Suite 100, Berkeley, CA 94710, United States
| |
Collapse
|
14
|
Marie C, Vendittelli F, Sauvant-Rochat MP. Obstetrical outcomes and biomarkers to assess exposure to phthalates: A review. ENVIRONMENT INTERNATIONAL 2015; 83:116-36. [PMID: 26118330 DOI: 10.1016/j.envint.2015.06.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 05/23/2023]
Abstract
Studies of the effects on pregnancy outcomes of in utero exposure to phthalates, contaminants that are widely present in the environment, have yielded conflicting results. In addition, the mode of assessment of exposure varies between studies. The aim of this review was therefore to establish a current state of knowledge of the phthalates and metabolites involved in unfavorable pregnancy outcomes. Extant data were analyzed to determine which biomarker is the best suited to assess the relation between in utero exposure to phthalates and pregnancy outcomes. This review of the literature was conducted using the database of PubMed. A search was made of studies investigating exposure to phthalates and the following birth outcomes: preterm birth (gestational age <37 weeks), change in gestational age, change in body size at birth (birth weight, length, head circumference), anti-androgenic function, decreased anogenital distance, cryptorchidism, hypospadias and congenital malformation. The methodological approach adopted in each study was examined, in particular the methods used for exposure assessment (biomarkers and/or questionnaire). Thirty-five studies were included. Premature birth and decreased anogenital distance were the most commonly reported outcomes resulting from a moderate level of exposure to phthalates. The principal metabolites detected and involved were primary metabolites of di-2(ethylhexyl)-phthalate (DEHP) and di-n-butyl-phthalate (DnBP). No clear conclusion could be drawn with regard to gestational age at birth, body size at birth and congenital malformations. In epidemiological studies, maternal urine is the most suitable matrix to assess the association between in utero exposure to phthalates and pregnancy outcomes: in contrast to other matrices (cord blood, amniotic fluid, meconium and milk), sampling is easy, non-invasive and, can be repeated to assess exposure throughout pregnancy. Oxidative metabolites are the most relevant biomarkers since they are not prone to external contamination. Further epidemiological studies are required during pregnancy to i) determine the role of phthalates other than DEHP [currently replaced by various substitution products, in particular diisononyl-phthalate (DiNP)]; ii) establish the effect of phthalates on other outcomes (body size adjusted for gestational age, and congenital malformations); iii) determine the pathophysiological pathways; and iv) identify the most suitable time for biomarker determination of in utero exposure to phthalates.
Collapse
Affiliation(s)
- Cécile Marie
- Centre Hospitalier Universitaire de Clermont-Ferrand, 58 Rue Montalembert, 63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, EA 4681, PEPRADE (Périnatalité, grossesse, Environnement, PRAtiques médicales et DEveloppement), 28 place Henri-Dunant BP 38, 63001 Clermont-Ferrand, France.
| | - Françoise Vendittelli
- Centre Hospitalier Universitaire de Clermont-Ferrand, 58 Rue Montalembert, 63000 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, EA 4681, PEPRADE (Périnatalité, grossesse, Environnement, PRAtiques médicales et DEveloppement), 28 place Henri-Dunant BP 38, 63001 Clermont-Ferrand, France; AUDIPOG (Association des Utilisateurs de Dossiers informatisés en Pédiatrie, Obstétrique et Gynécologie) RTH Laennec Medical University, 7 rue Guillaume Paradin, 69372 Lyon Cedex 08, France
| | - Marie-Pierre Sauvant-Rochat
- Clermont Université, Université d'Auvergne, EA 4681, PEPRADE (Périnatalité, grossesse, Environnement, PRAtiques médicales et DEveloppement), 28 place Henri-Dunant BP 38, 63001 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Faculté de Pharmacie, Département Santé Publique et Environnement, 28 place Henri-Dunant BP 38, 63001 Clermont-Ferrand, France
| |
Collapse
|
15
|
PINO F, IVANDINI TA, NAKATA K, FUJISHIMA A, MERKOÇI A, EINAGA Y. Magnetic Enzymatic Platform for Organophosphate Pesticide Detection Using Boron-doped Diamond Electrodes. ANAL SCI 2015; 31:1061-8. [DOI: 10.2116/analsci.31.1061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Flavio PINO
- Nanobioelectronics & Biosensors Group, ICN2 - Institut Català de Nanociencia i Nanotecnologia (CERCA-CSIC-UAB)
| | - Tribidasari A. IVANDINI
- Department of Chemistry, Faculty of Mathematics and Science, University of Indonesia, Kampus UI Depok
| | - Kazuya NAKATA
- Research Institute for Science and Technology, Photocatalysis International Research Center, Tokyo University of Science
| | - Akira FUJISHIMA
- Research Institute for Science and Technology, Photocatalysis International Research Center, Tokyo University of Science
| | - Arben MERKOÇI
- Nanobioelectronics & Biosensors Group, ICN2 - Institut Català de Nanociencia i Nanotecnologia (CERCA-CSIC-UAB)
- ICREA, Institució Catalana de Recerca i Estudis Avançats
| | | |
Collapse
|
16
|
A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography–high resolution mass spectrometry. Anal Chim Acta 2014; 845:98-104. [DOI: 10.1016/j.aca.2014.06.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 11/18/2022]
|
17
|
Pal A, He Y, Jekel M, Reinhard M, Gin KYH. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. ENVIRONMENT INTERNATIONAL 2014; 71:46-62. [PMID: 24972248 DOI: 10.1016/j.envint.2014.05.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 05/23/2023]
Abstract
The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs.
Collapse
Affiliation(s)
- Amrita Pal
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin Jekel
- Technical University of Berlin, Department of Water Quality Control, Strasse des 17. Juni, 10623 Berlin, Germany
| | - Martin Reinhard
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| |
Collapse
|
18
|
Petropoulou SSE, Duong W, Petreas M, Park JS. Fast liquid chromatographic-tandem mass spectrometric method using mixed-mode phase chromatography and solid phase extraction for the determination of 12 mono-hydroxylated brominated diphenyl ethers in human serum. J Chromatogr A 2014; 1356:138-47. [PMID: 25001336 DOI: 10.1016/j.chroma.2014.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/02/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed from the oxidative metabolism of polybrominated diphenyl ethers (PBDEs) in humans, rats and mice, but their quantitation in human blood and other matrices with liquid chromatography-mass spectrometric techniques has been a challenge. In this study, a novel analytical method was developed and validated using only 250 μL of human serum for the quantitation of twelve OH-PBDEs, fully chromatographically separated in a 15 min analytical run. This method includes two novel approaches: an enzymatic hydrolysis procedure and a chromatographic separation using a mixed mode chromatography column. The enzymatic hydrolysis (EH) was found critical for 4'-OH-BDE17, which was not detectable without it. For the sample clean up, a solid phase extraction protocol was developed and validated for the extraction of the 12 congeners from human serum. In addition, for the first time baseline resolution of two components was achieved that correspond to a single peak previously identified as 6'-OH-BDE99. The method was validated for linearity, accuracy, precision, matrix effects, limit of quantification, limit of detection, sample stability and overall efficiency. Recoveries (absolute and relative) ranged from 66 to 130% with relative standard deviations <21% for all analytes. Limit of detection and quantitation ranged from 4 to 90 pg mL(-1) and 6-120 pg mL(-1), respectively, with no carry over effects. This method was applied in ten commercially available human serum samples from the general US population. The mean values of the congeners detected in all samples are 4'-OH-BDE17 (34.2 pg mL(-1)), 4-OH-BDE42 (33.9 pg mL(-1)), 5-OH-BDE47 (17.5 pg mL(-1)) and 4'-OH-BDE49 (12.4 pg mL(-1)).
Collapse
Affiliation(s)
- Syrago-Styliani E Petropoulou
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States.
| | - Wendy Duong
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States
| | - Myrto Petreas
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States
| |
Collapse
|
19
|
Human biomonitoring of emerging pollutants through non-invasive matrices: state of the art and future potential. Anal Bioanal Chem 2014; 406:4063-88. [DOI: 10.1007/s00216-014-7748-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/24/2014] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
|
20
|
Faniband M, Lindh CH, Jönsson BAG. Human biological monitoring of suspected endocrine-disrupting compounds. Asian J Androl 2014; 16:5-16. [PMID: 24369128 PMCID: PMC3901881 DOI: 10.4103/1008-682x.122197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/14/2013] [Indexed: 01/16/2023] Open
Abstract
Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends.
Collapse
Affiliation(s)
- Moosa Faniband
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Christian H Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Bo AG Jönsson
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Crimmins BS, Pagano JJ, Milligan MS, Holsen TM. Environmental Mass Spectrometry in the North American Great Lakes Fish Monitoring and Surveillance Program. Aust J Chem 2013. [DOI: 10.1071/ch13166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Great Lakes Fish Monitoring and Surveillance Program (GLFMSP) has served to protect the Laurentian Great Lakes of North America for decades. Top predator fish from each lake are employed as bioindicators of chemical stressors within each lake. While a vast database has been created for legacy contaminants, such as polychlorinated biphenyls and organochlorine pesticides, a recent programmatic shift has transformed GLFMSP into a more proactive new chemical discovery/screening endeavour to capture the burden of more contemporary chemicals in the environment. The transition prompted the need for advanced instrumentation and the evaluation of mass spectrometric approaches beyond traditional electron capture detection and unit mass resolution mass spectrometers. Here the advances in detection methods are documented and the current direction of the program in creating a living database of anthropogenic chemicals affecting Great Lakes fish is highlighted.
Collapse
|
22
|
Organotin Compounds from Snails to Humans. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2013. [DOI: 10.1007/978-3-319-02387-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|