1
|
Molani A, Pennati F, Ravazzani S, Scarpellini A, Storti FM, Vegetali G, Paganelli C, Aliverti A. Advances in Portable Optical Microscopy Using Cloud Technologies and Artificial Intelligence for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:6682. [PMID: 39460161 PMCID: PMC11510803 DOI: 10.3390/s24206682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
The need for faster and more accessible alternatives to laboratory microscopy is driving many innovations throughout the image and data acquisition chain in the biomedical field. Benchtop microscopes are bulky, lack communications capabilities, and require trained personnel for analysis. New technologies, such as compact 3D-printed devices integrated with the Internet of Things (IoT) for data sharing and cloud computing, as well as automated image processing using deep learning algorithms, can address these limitations and enhance the conventional imaging workflow. This review reports on recent advancements in microscope miniaturization, with a focus on emerging technologies such as photoacoustic microscopy and more established approaches like smartphone-based microscopy. The potential applications of IoT in microscopy are examined in detail. Furthermore, this review discusses the evolution of image processing in microscopy, transitioning from traditional to deep learning methods that facilitate image enhancement and data interpretation. Despite numerous advancements in the field, there is a noticeable lack of studies that holistically address the entire microscopy acquisition chain. This review aims to highlight the potential of IoT and artificial intelligence (AI) in combination with portable microscopy, emphasizing the importance of a comprehensive approach to the microscopy acquisition chain, from portability to image analysis.
Collapse
|
2
|
Wang Q, Liang T, Yang W, Xu Y, Qin C, Han H, Zhou X, Wang Y, Wang Z, Hu N. A smart tablet-phone-based high-performance pancreatic cancer cell biosensing system for drug screening. Talanta 2024; 278:126484. [PMID: 38941810 DOI: 10.1016/j.talanta.2024.126484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Exploring more efficient pancreatic cancer drug screening platforms is of significant importance for accelerating the drug development process. In this study, we developed a high-sensitivity bioluminescence system based on smartphones and smart tablets, and constructed a pancreatic cancer drug screening platform (PCDSP) by combining the pancreatic cancer cell sensing model (PCCSM) on the multiwell plates (MTP). A smart tablet was used as the light source and a smartphone as the colorimetric sensing device. The smartphone dynamically controls the color and brightness displayed on the smart tablet to achieve lower LOD and wider detection ranges. We constructed PCCSM for 24 h, 48 h, and 72 h , and performed colorimetric experiments using both PCDSP and a commercial plate reader (CPR). The results showed that the PCDSP had a lower LOD than that of CPR. Moreover, PCDSP even exhibited a lower LOD for 24 h PCCSM testing compared to CPR for 48 h PCCSM testing, effectively shortening the drug evaluation process. Additionally, the PCDSP offers higher portability and efficiency compared with CPR, making it a promising platform for efficient pancreatic cancer drug screening.
Collapse
Affiliation(s)
- Qiang Wang
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
| | - Tao Liang
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China; Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenjian Yang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Youjian Xu
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China
| | - Chunlian Qin
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Haote Han
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| | - Xiyang Zhou
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| | - Yingwei Wang
- Department of Laboratory Medicine, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China.
| | - Zhen Wang
- Department of General Surgery, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, 317200, Zhejiang, China; Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Larkey NE, Obiorah IE. Advances and Progress in Automated Urine Analyzers. Clin Lab Med 2024; 44:409-421. [PMID: 39089747 DOI: 10.1016/j.cll.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The clinical analysis of urine has classically focused on conventional chemical-based urinalysis and urine microscopy. Contemporary advances in both analysis subsets have started to employ new technologies such as automated image analysis, flow cytometry, and mass spectrometry. In addition to new detection technologies, current analyzers have incorporated more advanced imaging, automated sample handing, and machine learning analyses into their workflow. The most advanced semiautomated analyzers can be interfaced with hospital medical record systems, and in the point-of-care setting, smartphones can be used for image analysis. This review will discuss current technological advancements in the field of urinalysis and urine microscopy.
Collapse
Affiliation(s)
- Nicholas E Larkey
- Department of Pathology, Division of Clinical Chemistry, University of Virginia Health, 1215 Lee Street, Charlottesville, VA 22903, USA
| | - Ifeyinwa E Obiorah
- Department of Pathology, Division of Hematopathology, University of Virginia Health, 1215 Lee street, Charlottesville, VA 22903, USA.
| |
Collapse
|
4
|
Mirhosseini S, Nasiri AF, Khatami F, Mirzaei A, Aghamir SMK, Kolahdouz M. A digital image colorimetry system based on smart devices for immediate and simultaneous determination of enzyme-linked immunosorbent assays. Sci Rep 2024; 14:2587. [PMID: 38297148 PMCID: PMC10830485 DOI: 10.1038/s41598-024-52931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Standard enzyme-linked immunosorbent assays based on microplates are frequently utilized for various molecular sensing, disease screening, and nanomedicine applications. Comparing this multi-well plate batched analysis to non-batched or non-standard testing, the diagnosis expenses per patient are drastically reduced. However, the requirement for rather big and pricey readout instruments prevents their application in environments with limited resources, especially in the field. In this work, a handheld cellphone-based colorimetric microplate reader for quick, credible, and novel analysis of digital images of human cancer cell lines at a reasonable price was developed. Using our in-house-developed app, images of the plates are captured and sent to our servers, where they are processed using a machine learning algorithm to produce diagnostic results. Using FDA-approved human epididymis protein of ovary IgG (HE4), prostate cancer cell line (PC3), and bladder cancer cell line (5637) ELISA tests, we successfully examined this mobile platform. The accuracies for the HE4, PC3, and 5637 tests were 93%, 97.5%, and 97.2%, respectively. By contrasting the findings with the measurements made using optical absorption EPOCH microplate readers and optical absorption Tecan microplate readers, this approach was found to be accurate and effective. As a result, digital image colorimetry on smart devices offered a practical, user-friendly, affordable, precise, and effective method for quickly identifying human cancer cell lines. Thus, healthcare providers might use this portable device to carry out high-throughput illness screening, epidemiological investigations or monitor vaccination campaigns.
Collapse
Affiliation(s)
- Shaghayegh Mirhosseini
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Aryanaz Faghih Nasiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Kolahdouz
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Bazyar H. On the Application of Microfluidic-Based Technologies in Forensics: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5856. [PMID: 37447704 PMCID: PMC10346202 DOI: 10.3390/s23135856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Microfluidic technology is a powerful tool to enable the rapid, accurate, and on-site analysis of forensically relevant evidence on a crime scene. This review paper provides a summary on the application of this technology in various forensic investigation fields spanning from forensic serology and human identification to discriminating and analyzing diverse classes of drugs and explosives. Each aspect is further explained by providing a short summary on general forensic workflow and investigations for body fluid identification as well as through the analysis of drugs and explosives. Microfluidic technology, including fabrication methodologies, materials, and working modules, are touched upon. Finally, the current shortcomings on the implementation of the microfluidic technology in the forensic field are discussed along with the future perspectives.
Collapse
Affiliation(s)
- Hanieh Bazyar
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
6
|
Toma M, Namihara S, Kajikawa K. Direct detection of neuron-specific enolase using a spectrometer-free colorimetric plasmonic biosensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2755-2760. [PMID: 37254755 DOI: 10.1039/d3ay00590a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sensitive detection of a tumor marker, neuron-specific enolase (NSE), was performed by a label-free direct immunoassay based on a colorimetric plasmonic biosensor. Reflective plasmonic colors of silver nanodome arrays provided a way for a sensitive refractive index sensor based on spectrometer-free colorimetric detection. The direct detection of NSE was demonstrated by a combination of a sensitive sensor substrate and image processing. The limit of detection (LOD) for NSE was determined to be 270 pM, which is lower than the clinical threshold value of NSE used for medical diagnostics of small-cell lung cancer. Since our substrate-based colorimetric plasmonic biosensor is compatible with smartphone detection, we believe that the presented biosensor will open up a way for biosensor technology for point-of-care testing as well as mobile health applications.
Collapse
Affiliation(s)
- Mana Toma
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan.
| | - Shinnosuke Namihara
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan.
| | - Kotaro Kajikawa
- Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan.
| |
Collapse
|
7
|
Yang H, Ledesma-Amaro R, Gao H, Ren Y, Deng R. CRISPR-based biosensors for pathogenic biosafety. Biosens Bioelectron 2023; 228:115189. [PMID: 36893718 DOI: 10.1016/j.bios.2023.115189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/30/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Pathogenic biosafety is a worldwide concern. Tools for analyzing pathogenic biosafety, that are precise, rapid and field-deployable, are highly demanded. Recently developed biotechnological tools, especially those utilizing CRISPR/Cas systems which can couple with nanotechnologies, have enormous potential to achieve point-of-care (POC) testing for pathogen infection. In this review, we first introduce the working principle of class II CRISPR/Cas system for detecting nucleic acid and non-nucleic acid biomarkers, and highlight the molecular assays that leverage CRISPR technologies for POC detection. We summarize the application of CRISPR tools in detecting pathogens, including pathogenic bacteria, viruses, fungi and parasites and their variants, and highlight the profiling of pathogens' genotypes or phenotypes, such as the viability, and drug-resistance. In addition, we discuss the challenges and opportunities of CRISPR-based biosensors in pathogenic biosafety analysis.
Collapse
Affiliation(s)
- Hao Yang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hong Gao
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China
| | - Yao Ren
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Schaumburg F, Pujato N, Peverengo LM, Marcipar IS, Berli CLA. Coupling ELISA to smartphones for POCT of chronic and congenital Chagas disease. Talanta 2023; 256:124246. [PMID: 36657239 DOI: 10.1016/j.talanta.2022.124246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Chagas disease (CD) affects about 7 million people worldwide, presents a large prevalence in Latin America, and is growing in the rest of the world, where congenital CD is the main mode of transmission. Point-of-care testing (POCT) methods are increasingly required to ease early diagnostics and increase treatment success. This work presents the development and validation of a smartphone-integrated ELISA-based POCT system for the detection of both chronic and congenital CD. Expensive and bulky equipment used for ELISA in conventional laboratories was replaced as follows. A miniaturized device was fabricated for incubation of commercial ELISA plates, achieving ∼±1 °C uniformity and stability. The ELISA plate reader was replaced by smartphone camera and image processing, comprising algorithms to account for variability sources and spatial light non-uniformity; thus, additional hardware like a dark-box is not required. The agreement between samples classified with this novel reading method vs. ELISA plate reader was found to be 99.7% and 95.4% for chronic and congenital CD, respectively. Furthermore, a smartphone application was designed and implemented to guide the user during the assay, provide connectivity, and access databases, facilitating patient monitoring and health-policy making. The whole system is aimed to be used as a practical diagnostic tool in primary health care settings, as well as to facilitate patients' follow-up to provide better treatment. Concerning the technology itself, the proposed POCT platform is versatile enough to be readily adapted for the detection of other infectious diseases.
Collapse
Affiliation(s)
- Federico Schaumburg
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT CONICET-Santa Fe, RN 168, Santa Fe, S3000GLN, Argentina.
| | - Nazarena Pujato
- Laboratorio de Tecnología Inmunológica (FBCB, Universidad Nacional del Litoral), Ciudad Universitaria, RN 168, Santa Fe, S3000GLN, Argentina.
| | - Luz María Peverengo
- Laboratorio de Tecnología Inmunológica (FBCB, Universidad Nacional del Litoral), Ciudad Universitaria, RN 168, Santa Fe, S3000GLN, Argentina.
| | - Iván Sergio Marcipar
- Laboratorio de Tecnología Inmunológica (FBCB, Universidad Nacional del Litoral), Ciudad Universitaria, RN 168, Santa Fe, S3000GLN, Argentina.
| | - Claudio Luis Alberto Berli
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT CONICET-Santa Fe, RN 168, Santa Fe, S3000GLN, Argentina.
| |
Collapse
|
9
|
Dikici E, Önal Acet B, Acet Ö, Odabaşı M. “Lab-on-pol” colormatic sensor platforms: Melamine detection with color change on melamine imprinted membranes. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Hou Y, Yuan S, Zhu G, You B, Xu Y, Jiang W, Shum HC, Pong PWT, Chen CH, Wang L. Photonic Crystal-Integrated Optoelectronic Devices with Naked-Eye Visualization and Digital Readout for High-Resolution Detection of Ultratrace Analytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209004. [PMID: 36478473 DOI: 10.1002/adma.202209004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The detection of ultratrace analytes is highly desirable for the non-invasive monitoring of human diseases. However, a major challenge is fast, naked-eye, high-resolution ultratrace detection. Herein, a rectangular 3D composite photonic crystal (PC)-based optoelectronic device is first designed that combines the sensitivity-enhancing effects of PCs and optoelectronic devices with fast and real-time digital monitoring. A crack-free, centimeter-scale, mechanically robust ellipsoidal composite PCs with sufficient hardness and modulus, even exceeding most plastics and aluminum alloys, are developed. The high mechanical strength of ellipsoidal composite PCs allows them to be hand-machined into rectangular geometries that can be conformally covered with the centimeter-scale flat light-detection area without interference from ambient light, easily integrating 3D composite PC-based optoelectronic devices. The PC-based device's signal-to-noise ratio increases dramatically from original 30-40 to ≈60-70 dB. Droplets of ultratrace analytes on the device are identified by fast digital readout within seconds, with detection limits down to 5 µL, enabling rapid identification of ultratrace glucose in artificial sweat and diabetes risk. The developed 3D PC-based sensor offers the advantages of small size, low cost, and high reliability, paving the way for wider implementation in other portable optoelectronic devices.
Collapse
Affiliation(s)
- Yi Hou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shuai Yuan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Guangda Zhu
- Center for Advanced Materials (CAM), Heidelberg University, 69120, Heidelberg, Germany
| | - Baihao You
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Ying Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Wenxin Jiang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Philip W T Pong
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
11
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Vu BV, Lei R, Mohan C, Kourentzi K, Willson RC. Flash Characterization of Smartphones Used in Point-of-Care Diagnostics. BIOSENSORS 2022; 12:1060. [PMID: 36551027 PMCID: PMC9776052 DOI: 10.3390/bios12121060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Rapidly growing interest in smartphone cameras as the basis of point-of-need diagnostic and bioanalytical technologies increases the importance of quantitative characterization of phone optical performance under real-world operating conditions. In the context of our development of lateral-flow immunoassays based on phosphorescent nanoparticles, we have developed a suite of tools for characterizing the temporal and spectral profiles of smartphone torch and flash emissions, and their dependence on phone power state. In this work, these tools are described and documented to make them easily available to others, and demonstrated by application to characterization of Apple iPhone 5s, iPhone 6s, iPhone 8, iPhone XR, and Samsung Note8 flash performance as a function of time and wavelength, at a variety of power settings. Flash and torch intensity and duration vary with phone state and among phone models. Flash has high variability when the battery charge is below 10%, thus, smartphone-based Point-of-Care (POC) tests should only be performed at a battery level of at least 15%. Some output variations could substantially affect the results of assays that rely on the smartphone flash.
Collapse
Affiliation(s)
- Binh V. Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Rongwei Lei
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Escuela de Medicina y Ciencias de la Salud ITESM, Monterrey 64710, NL, Mexico
| |
Collapse
|
13
|
Zhang Q, Wang G, Zong X, Sun J. Performance evaluation of Hipee S2 point-of-care testing urine dipstick analyser: a cross-sectional study. BMJ Open 2022; 12:e063781. [PMID: 36302575 PMCID: PMC9621178 DOI: 10.1136/bmjopen-2022-063781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE With advances in mobile technology, smartphone-based point-of-care testing (POCT) urinalysis hold great potential for disease screening and health management for clinicians and individual users. The purpose of this study is to evaluate the analytical performance of Hipee S2 POCT urine dipstick analyser. DESIGN A multicentre, hospital-based, cross-sectional study. SETTING Analytical performance of the POCT analyser was conducted at a clinical laboratory, and method comparison was performed at three clinical laboratories in China. PARTICIPANTS Urine samples were collected from 1603 outpatients and inpatients at three hospitals, and 5 health check-up population at one of the hospitals. OUTCOME MEASURES All tests were performed by clinical laboratory technicians. Precision, drift, carry-over, interference and method comparison of Hipee S2 were evaluated. Diagnostic accuracy of semiquantitative albumin-to-creatinine ratio (ACR) for albuminuria was carried out using quantitative ACR as the standard. RESULTS The precision for each parameter, assessed by control materials, was acceptable. No sample carry-over or drift was observed. Ascorbate solution with 1 g/L had an inhibitory effect for the haemoglobin test. Agreement for specific gravity (SG) varied between moderate to substantial (κ values 0.496-0.687), for pH was moderate (κ values 0.423-0.569) and for other parameters varied between substantial to excellent (κ values 0.669-0.991), on comparing the Hipee S2 with laboratory analysers. The semiquantitative microalbumin and creatinine were highly correlated with the quantitative results. The sensitivity of semiquantitative ACR to detect albuminuria was 87.2%-90.7%, specificity was 70.7%-78.4%, negative predictive value was 85.3%-87.9% and positive predictive value was 73.9%-83%. CONCLUSIONS Hipee S2 POCT urine analyser showed acceptable analytical performance as a semiquantitative method. It serves as a convenient alternate device for clinicians and individual users for urinalysis and health management. In addition, the POCT semiquantitative ACR would be useful in screening for albuminuria.
Collapse
Affiliation(s)
- Qiang Zhang
- Clinical Laboratory, Branch of Tianjin Third Central Hospital, Tianjin, China
| | - Guoqing Wang
- Clinical Laboratory, Tianjin Stomatological Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaolong Zong
- Clinical Laboratory, Tianjin Medical University Second Hospital, Tianjin, China
| | - Jinghua Sun
- Medical Laboratory Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Lim M, Thanasupsin SP, Thongkon N. Modification of Cotton Fabric with Molecularly Imprinted Polymer-Coated Carbon Dots as a Sensor for 17 α-methyltestosterone. Molecules 2022; 27:7257. [PMID: 36364082 PMCID: PMC9658829 DOI: 10.3390/molecules27217257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Molecularly imprinted polymers@ethylenediamine-modified carbon dots grafted on cotton fabrics (MIPs@EDA-CDs/CF) and smartphone-based fluorescence image analysis were proposed and used for the first time for the detection of 17 α-methyltestosterone (MT). The EDA-CDs were synthesized and grafted on cotton fabric before coating with the MIPs. The MIPs were synthesized using the MT as a template molecule, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and azobisisobutyronitrile (AIBN) as an initiator. The MIPs@EDA-CDs/CF were characterized using FTIR, SEM-EDS, and RGB fluorescence imaging. The fluorescence images were also taken using a smartphone and the ImageJ program was used for RGB measurement. The Δ red intensity was linearly proportional to MT concentration in the range of 100 to 1000 μg/L (R2 = 0.999) with a detection limit of 44.4 μg/L and quantification limit of 134 μg/L. The MIPs@EDA-CDs/CF could be stored at 4 °C for a few weeks and could be reused twice. The proposed method could apply for the specific determination of MT in water and sediment samples along with satisfactory recoveries of 96-104% and an acceptable relative standard deviation of 1-6% at the ppb level.
Collapse
Affiliation(s)
- Monyratanak Lim
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Sudtida Pliankarom Thanasupsin
- Chemistry for Green Society and Healthy Living Research Unit, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Nisakorn Thongkon
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
15
|
Wu J, Chen P, Chen J, Ye X, Cao S, Sun C, Jin Y, Zhang L, Du S. Integrated ratiometric fluorescence probe-based acoustofluidic platform for visual detection of anthrax biomarker. Biosens Bioelectron 2022; 214:114538. [PMID: 35820251 DOI: 10.1016/j.bios.2022.114538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
The sensitive detection of dipicolinic acid (DPA) as an excellent biomarker of Bacillus anthracis, especially through visual point-of-care testing, is significant for accurate and rapid diagnosis of anthrax to timely prevent anthrax disease or biological terrorist attack. Herein, an acoustofluidics-based colorimetric platform with the integrated ratiometric fluorescence probe (INT-probe) was fabricated, which improved the sensitivity of visual detection for DPA and overcame the poor reproducibility of the existing acoustofluidics-assisted colorimetric analysis. For the design of INT-probe, Eu3+-EDTA complex as sensing moiety was grafted onto the surface of blue organosilane-functionalized carbon dots (SiCDs)-doped SiO2 nanoparticles (NPs). Upon exposure to DPA, Eu3+ was sensitized by DPA to emit red luminescence, while the SiCDs as reference inside the SiO2 NPs still kept the blue fluorescence unchanged. Attributed to the acoustic radiation force-driven enrichment of the INT-probe, slight color changes caused by low concentration of DPA could be amplified and distinguished by naked-eyes/smartphone. With the increase of DPA concentration, obvious color variations of INT-probe/DPA aggregates from blue to pink could be observed, and the color information of the fluorescent aggregates was converted to red, green and blue values for quantitative analysis, whose lowest detectable concentration reached 100 nM that is about 2-3 orders of magnitude lower than the infectious dosage of Bacillus anthracis spores (60 μM). Importantly, benefiting from the great color signal enhancement by acoustofluidic sensing platform, the usage of Eu3+ reduced to as low as 0.273 μmol per gram of SiO2 NPs, providing a meaningful way to utilize lanthanide resource efficiently.
Collapse
Affiliation(s)
- Jiafeng Wu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Panpan Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jie Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiangxue Ye
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shurui Cao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Chuqiang Sun
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Liying Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Shuhu Du
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
16
|
Sohrabi H, Bolandi N, Hemmati A, Eyvazi S, Ghasemzadeh S, Baradaran B, Oroojalian F, Reza Majidi M, de la Guardia M, Mokhtarzadeh A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Schaumburg F, Vidocevich JP, Gerlero GS, Pujato N, Macagno J, Kler PA, Berli CLA. A free customizable tool for easy integration of microfluidics and smartphones. Sci Rep 2022; 12:8969. [PMID: 35624294 PMCID: PMC9142529 DOI: 10.1038/s41598-022-13099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
The integration of smartphones and microfluidics is nowadays the best possible route to achieve effective point-of-need testing (PONT), a concept increasingly demanded in the fields of human health, agriculture, food safety, and environmental monitoring. Nevertheless, efforts are still required to integrally seize all the advantages of smartphones, as well as to share the developments in easily adoptable formats. For this purpose, here we present the free platform appuente that was designed for the easy integration of microfluidic chips, smartphones, and the cloud. It includes a mobile app for end users, which provides chip identification and tracking, guidance and control, processing, smart-imaging, result reporting and cloud and Internet of Things (IoT) integration. The platform also includes a web app for PONT developers, to easily customize their mobile apps and manage the data of administered tests. Three application examples were used to validate appuente: a dummy grayscale detector that mimics quantitative colorimetric tests, a root elongation assay for pesticide toxicity assessment, and a lateral flow immunoassay for leptospirosis detection. The platform openly offers fast prototyping of smartphone apps to the wide community of lab-on-a-chip developers, and also serves as a friendly framework for new techniques, IoT integration and further capabilities. Exploiting these advantages will certainly help to enlarge the use of PONT with real-time connectivity in the near future.
Collapse
Affiliation(s)
- Federico Schaumburg
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), Colectora RN 168, S3000GLN, Santa Fe, Argentina.
| | - Juan P Vidocevich
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), Colectora RN 168, S3000GLN, Santa Fe, Argentina
| | - Gabriel S Gerlero
- Centro de Investigación de Métodos Computacionales (CIMEC, UNL-CONICET), Colectora RN 168, S3000GLN, Santa Fe, Argentina
| | - Nazarena Pujato
- Laboratorio de Tecnología Inmunológica (FBCB, UNL), Colectora RN 168, S3000GLN, Santa Fe, Argentina
| | - Joana Macagno
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), Colectora RN 168, S3000GLN, Santa Fe, Argentina
| | - Pablo A Kler
- Centro de Investigación de Métodos Computacionales (CIMEC, UNL-CONICET), Colectora RN 168, S3000GLN, Santa Fe, Argentina
| | - Claudio L A Berli
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC, UNL-CONICET), Colectora RN 168, S3000GLN, Santa Fe, Argentina.
| |
Collapse
|
18
|
Piranej S, Bazrafshan A, Salaita K. Chemical-to-mechanical molecular computation using DNA-based motors with onboard logic. NATURE NANOTECHNOLOGY 2022; 17:514-523. [PMID: 35347272 PMCID: PMC9119907 DOI: 10.1038/s41565-022-01080-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
DNA has become the biomolecule of choice for molecular computation that may one day complement conventional silicon-based processors. In general, DNA computation is conducted in individual tubes, is slow in generating chemical outputs in response to chemical inputs and requires fluorescence readout. Here, we introduce a new paradigm for DNA computation where the chemical input is processed and transduced into a mechanical output using dynamic DNA-based motors operating far from equilibrium. We show that DNA-based motors with onboard logic (DMOLs) can perform Boolean functions (NOT, YES, AND and OR) with 15 min readout times. Because DMOLs are micrometre-sized, massive arrays of DMOLs that are identical or uniquely encoded by size and refractive index can be multiplexed and perform motor-to-motor communication on the same chip. Finally, DMOL computational outputs can be detected using a conventional smartphone camera, thus transducing chemical information into the electronic domain in a facile manner, suggesting potential applications.
Collapse
Affiliation(s)
- Selma Piranej
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Arshavsky-Graham S, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 32435872 DOI: 10.1007/10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The recent coronavirus (COVID-19) pandemic has underscored the need to move from traditional lab-centralized diagnostics to point-of-care (PoC) settings. Lab-on-a-chip (LoC) platforms facilitate the translation to PoC settings via the miniaturization, portability, integration, and automation of multiple assay functions onto a single chip. For this purpose, paper-based assays and microfluidic platforms are currently being extensively studied, and much focus is being directed towards simplifying their design while simultaneously improving multiplexing and automation capabilities. Signal amplification strategies are being applied to improve the performance of assays with respect to both sensitivity and selectivity, while smartphones are being integrated to expand the analytical power of the technology and promote its accessibility. In this chapter, we review the main technologies in the field of LoC platforms for PoC medical diagnostics and survey recent approaches for improving these assays.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
20
|
Luka GS, Nowak E, Toyata QR, Tasnim N, Najjaran H, Hoorfar M. Portable on-chip colorimetric biosensing platform integrated with a smartphone for label/PCR-free detection of Cryptosporidium RNA. Sci Rep 2021; 11:23192. [PMID: 34853388 PMCID: PMC8636559 DOI: 10.1038/s41598-021-02580-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium, a protozoan pathogen, is a leading threat to public health and the economy. Herein, we report the development of a portable, colorimetric biosensing platform for the sensitive, selective and label/PCR-free detection of Cryptosporidium RNA using oligonucleotides modified gold nanoparticles (AuNPs). A pair of specific thiolated oligonucleotides, complementary to adjacent sequences on Cryptosporidium RNA, were attached to AuNPs. The need for expensive laboratory-based equipment was eliminated by performing the colorimetric assay on a micro-fabricated chip in a 3D-printed holder assembly. A smartphone camera was used to capture an image of the color change for quantitative analysis. The detection was based on the aggregation of the gold nanoparticles due to the hybridization between the complementary Cryptosporidium RNA and the oligonucleotides immobilized on the AuNPs surface. In the complementary RNA's presence, a distinctive color change of the AuNPs (from red to blue) was observed by the naked eye. However, in the presence of non-complementary RNA, no color change was observed. The sensing platform showed wide linear responses between 5 and 100 µM with a low detection limit of 5 µM of Cryptosporidium RNA. Additionally, the sensor developed here can provide information about different Cryptosporidium species present in water resources. This cost-effective, easy-to-use, portable and smartphone integrated on-chip colorimetric biosensor has great potential to be used for real-time and portable POC pathogen monitoring and molecular diagnostics.
Collapse
Affiliation(s)
- George S Luka
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ephraim Nowak
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Quin Robert Toyata
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Nishat Tasnim
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
21
|
Ma C, Sun X, Kong L, Wang X, Zhou S, Wei X, Kirsanov D, Legin A, Wan H, Wang P. A multi-channel handheld automatic spectrometer for wide range and on-site detection of okadaic acid based on specific aptamer binding. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4345-4353. [PMID: 34622887 DOI: 10.1039/d1ay00976a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Okadaic acid (OA) is one of the marine toxins that are widely distributed and harmful to humans. However, the current detection methods for OA involve complex procedures, need long detection time, and rely on large-scale laboratory equipment. In this work, a multi-channel handheld automatic spectrometer (MHAS) based on a spectral sensor was developed with the advantages of small size, simple operation and low cost. It could achieve rapid detection within 30 s and a wide spectral detection range of 470-780 nm with a broadband LED as the light source and a microplate containing 8 wells as a sample cell. Moreover, through the combination of gold nanoparticles (AuNPs) and aptamer-OA34, a highly sensitive and rapid system for OA detection was established with a LOD of 1.80 μg L-1 and a wide detection range of 20-10 000 μg L-1, which is comparable to a microplate reader. Compared with other studies, the proposed MHAS realized rapid on-site detection of OA with a wider detection range, shorter detection time and higher portability. Therefore, the MHAS promises to be a stable and efficient optical detection instrument for on-site detection in the fields of food safety, disease diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Shuqi Zhou
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Dmitry Kirsanov
- Laboratory of Chemical Sensors, Chemistry Department, Saint-Petersburg State University, 199034, Russia
| | - Andrey Legin
- Laboratory of Chemical Sensors, Chemistry Department, Saint-Petersburg State University, 199034, Russia
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
22
|
Zhang Z, Yang G, Fan F, Zhong C, Yuan Y, Zhang X, Chang S. Terahertz circular dichroism sensing of living cancer cells based on microstructure sensor. Anal Chim Acta 2021; 1180:338871. [PMID: 34538326 DOI: 10.1016/j.aca.2021.338871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Terahertz (THz) waves have the advantages of being noninvasive and nonionizing because of their low radiation energy, so they have potential applications in the biomedical field, but thus far, those have been limited by the strong absorption in water and low detection sensitivity. Herein, we propose a reflective THz time-domain circular dichroism (CD) sensing system and a silicon subwavelength grating as the microstructure sensor to generate and detect the THz chiral polarization states, to realize quantitative detection of living cell numbers and qualitative identification of cell kinds in a liquid environment. Three kinds of hepatoma cell proliferation and inhibition with different concentrations of aspirin were measured by this sensing method, and the experimental results show that the sensitivities for CD resonance intensity and frequency shift can reach 3.44 dB mL/106 cells and 5.88 GHz mL/106 cells, respectively, and the minimum detection concentration is in the order of 104 cells/mL for THz detection in a liquid environment for the first time. This new THz sensing system and sensing method are expected to become a broadband, label-free, noncontact, real-time detection technology that can be used for quantitative detection and qualitative identification of cells or other active biochemical materials.
Collapse
Affiliation(s)
- Ziyang Zhang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, China.
| | - Changzhi Zhong
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China
| | - Ying Yuan
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China; Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Shengjiang Chang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China; Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin, 300350, China
| |
Collapse
|
23
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
24
|
Non-invasive in vivo spectroscopy using a monitor calibrator: A case of planarian feeding and digestion statuses. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Cuny AP, Rudolf F, Ponti A. pyPOCQuant - A tool to automatically quantify Point-Of-Care Tests from images. SOFTWAREX 2021; 15:100710. [PMID: 36568894 PMCID: PMC9758393 DOI: 10.1016/j.softx.2021.100710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 06/17/2023]
Abstract
Lateral flow Point-Of-Care Tests (POCTs) are a valuable tool for rapidly detecting pathogens and the associated immune response in humans and animals. In the context of the SARS-CoV-2 pandemic, they offer rapid on-site diagnostics and can relieve centralized laboratory testing sites, thus freeing resources that can be focused on especially vulnerable groups. However, visual interpretation of the POCT test lines is subjective, error prone and only qualitative. Here we present pyPOCQuant, an open-source tool implemented in Python 3 that can robustly and reproducibly analyze POCTs from digital images and return an unbiased and quantitative measurement of the POCT test lines.
Collapse
Affiliation(s)
- Andreas P Cuny
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstr. 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Fabian Rudolf
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstr. 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, Mattenstr. 26, 4058 Basel, Switzerland
| | - Aaron Ponti
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstr. 26, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Thompson M. The geographies of digital health - Digital therapeutic landscapes and mobilities. Health Place 2021; 70:102610. [PMID: 34174771 DOI: 10.1016/j.healthplace.2021.102610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022]
Abstract
Digital technologies have long impacted the field of health, causing fundamental changes for the geographies of the production, movement, and consumption of health. Despite this, there is limited health geography engagement with digital health, and an understanding of how digital health affects the spatialities of health remains underdeveloped. Here, using autoethnography, I reflect on personal encounters with digital health in the UK to initiate analytical attention into the geographies of digital health. I demonstrate that digital health technologies are interconnected and increasingly structure access to health, impacting the equality of health; and that digital health disrupts existing, and creates new, therapeutic landscapes and mobilities.
Collapse
Affiliation(s)
- Maddy Thompson
- Keele University, School of Geography, Geology and the Environment, William Smith Building, ST5 5BG, United Kingdom.
| |
Collapse
|
27
|
Öndeş B, Evli S, Uygun M, Aktaş Uygun D. Boron nitride nanosheet modified label-free electrochemical immunosensor for cancer antigen 125 detection. Biosens Bioelectron 2021; 191:113454. [PMID: 34171737 DOI: 10.1016/j.bios.2021.113454] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
In this presented study, a new boron nitride nanosheets modified label-free electrochemical immunosensors were prepared for early detection of cancer antigen 125 (CA125). To aim for, boron nitride (BN) nanosheets were synthesized by conventional sonication-assisted method and then characterized. BN nanosheets were used for the surface modification of the working electrode of the screen-printed electrode (SPE). Anti CA125 antibody was then directly immobilized onto the electrode surface due to its natural affinity towards BN nanosheets. Modified electrodes were blocked with BSA and finally protected with Nafion. The newly synthesized label-free immunosensor demonstrated good detection properties to CA125 with a linear range of 5-100 U and a detection limit of 1.18 U/mL. The developed immunosensor also showed excellent reproducibility, selectivity, and stability profiles. Additionally, this immunosensor was successfully used for the detection of CA125 in artificial human serum samples along with the interfering agents. Also, it is expected that the prepared immunosensor should carry the good potential for point-of-care diagnosis in real cases.
Collapse
Affiliation(s)
- Baha Öndeş
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Sinem Evli
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey
| | - Murat Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey
| | - Deniz Aktaş Uygun
- Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey; Adnan Menderes University, Nanotechnology Application and Research Center, Aydın, Turkey.
| |
Collapse
|
28
|
Pirbhai M, Albrecht C, Tirrell C. A multispectral-sensor-based colorimetric reader for biological assays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:064103. [PMID: 34243509 DOI: 10.1063/5.0040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Tests that depend on changes in color are commonly used in biosensing. Here, we report on a colorimetric reader for such applications. The device is simple to construct and operate, making it ideal for research laboratories with limited resources or skilled personnel. It consists of a commercial multispectral sensor interfaced with a Raspberry Pi and a touchscreen. Unlike camera-based readers, this instrument requires no calibration of wavelengths by the user or extensive image processing to obtain results. We demonstrate its potential for colorimetric biosensing by applying it to the birefringent enzyme-linked immunosorbent assay. It was able to prevent certain false positives that the assay is susceptible to and lowered its limit of detection for glucose by an order of magnitude.
Collapse
Affiliation(s)
- M Pirbhai
- Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA
| | - C Albrecht
- Department of Physics, University of Oregon, 1585 E 13th Ave., Eugene, Oregon 97403, USA
| | - C Tirrell
- Department of Physics, St. Lawrence University, 23 Romoda Dr., Canton, New York 13617, USA
| |
Collapse
|
29
|
Abstract
During the past few decades, there has been a growing trend towards the use of smartphone-based analysis systems. This is mainly due to its ubiquity, its increasing computing capacity, its relatively low cost and the ability to acquire and process data at the same time. Furthermore, there are many sensors integrated into a smartphone, for example a complementary metal-oxide semiconductor (CMOS) sensor. A CMOS sensor enables optical analysis for example by using it as a colorimeter, photometer or spectrometer. This review explores the current state-of-the-art smartphone-based optical analysis systems in various areas of application. It is organized into three sections, each of which investigates one class of smartphone-based devices: (i) smartphone-based colorimeters (ii) smartphone-based photo- and spectrometers and (iii) smartphone-based fluorimeters.
Collapse
Affiliation(s)
- Sarah Di Nonno
- TU Kaiserslautern, Chair of Bioprocess Engineering, Kaiserslautern, Germany.
| | - Roland Ulber
- TU Kaiserslautern, Chair of Bioprocess Engineering, Kaiserslautern, Germany.
| |
Collapse
|
30
|
Zhang D, Wang Z, Yang J, Yi L, Liao L, Xiao X. Development of a method for the detection of Cu 2+ in the environment and live cells using a synthesized spider web-like fluorescent probe. Biosens Bioelectron 2021; 182:113174. [PMID: 33831692 DOI: 10.1016/j.bios.2021.113174] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 02/02/2023]
Abstract
A macrocyclic Schiff base fluorescent probe [1,2-phenylenediamine-2,6-pyridinedialdehyde macrocyclic Schiff base] (BP-MSB) based on 2,6-pyridinedialdehyde was synthesized for use in the detection of Cu2+ in environmental water samples and live cells imaging by the method of specific recognition. The free fluorescent probe BP-MSB shows strong fluorescence in DMSO/H2O. The probe shows high sensitivity and selectivity for Cu2+ through "turn-off" fluorescence response in DMSO/H2O buffer solution (pH = 6.5), with a detection limit of 0.83 nM, which is far below the maximum allowable drinking water content of 20.0 μM specified by the US Environmental Protection Agency. The BP-MSB fluorescence quenching method was used for the determination of Cu2+ in Xiang Jiang water samples and tap-water. Furthermore, addition of the same number of moles of ethylene diamine tetraacetic acid (EDTA) can realize the reversible recognition of Cu2+ by the probe BP-MSB. Most importantly, the fluorescence imaging of live cells after incubation of BP-MSB with GM12878 cells showed good imaging performance, confirming the sensitivity of the fluorescent probe BP-MSB in vivo. The probe was also used to form an analog logic gate. This probe has the advantages of good stability, simple operation and high selectivity, which provides a broad prospect for environmental monitoring, intracellular detection and practical application of POCT.
Collapse
Affiliation(s)
- Di Zhang
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, School of Pharmaceutical Science, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhimei Wang
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, School of Pharmaceutical Science, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Jing Yang
- Hengyang Market Supervision & Inspection and Testing Center, Hengyang City, 421001, Hunan Province, PR China
| | - Lan Yi
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, School of Pharmaceutical Science, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, School of Pharmaceutical Science, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, School of Pharmaceutical Science, University of South China, Hengyang City, Hunan Province, 421001, PR China; Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang City, Hunan, 421001, PR China.
| |
Collapse
|
31
|
An innovative and user-friendly smartphone-assisted molecular diagnostic approach for rapid detection of canine vector-borne diseases. Parasitol Res 2021; 120:1799-1809. [PMID: 33649963 PMCID: PMC7920752 DOI: 10.1007/s00436-021-07077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/01/2021] [Indexed: 11/17/2022]
Abstract
Present-day diagnostic tools and technologies for canine diseases and other vector-borne parasitic diseases hardly meet the requirements of an efficient and rapid diagnostic tool, which can be suitable for use at the point-of-care in resource-limited settings. Loop-mediated isothermal amplification (LAMP) technique has been always a method of choice in the development and validation of quick, precise, and sensitive diagnostic assays for pathogen detection and to reorganize point-of-care (POC) molecular diagnostics. In this study, we have demonstrated an efficient detection system for parasitic vector-borne pathogens like Ehrlichia canis and Hepatozoon canis by linking the LAMP assay to a smartphone via a simple, inexpensive, and a portable “LAMP box,” All the components of the LAMP box were connected to each other wirelessly. This LAMP box was made up of an isothermal heating pad mounted below an aluminum base which served as a platform for the reaction tubes and LAMP assay. The entire setup could be connected to a smartphone via an inbuilt Wi-Fi that allowed the user to establish the connection to control the LAMP box. A 5 V USB power source was used as a power supply. The sensitivity of the LAMP assay was estimated to be up to 10−6 dilution limit using the amplified, purified, and quantified specific DNA templates. It can also serve as an efficient diagnostic platform for many other veterinary infectious or parasitic diseases of zoonotic origin majorly towards field-based diagnostics.
Collapse
|
32
|
A Mobile Analytical Device for On-Site Quantitation of Anthocyanins in Fruit Beverages. MICROMACHINES 2021; 12:mi12030246. [PMID: 33670979 PMCID: PMC7997336 DOI: 10.3390/mi12030246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
Anthocyanins are antioxidant and anti-inflammatory ingredients in various fruit beverages, for which their conservation and quantitation are important for the food industry. In this paper, we report a simple, portable device for accurate on-site determination of total monomeric anthocyanins in fruit beverages employing a Wi-Fi scanner coupled with a flexible microchip and a free mobile app. The detection principle is based on the pH-induced colorimetric reactions of anthocyanins performed in a specially designed microchip and validated with standard spectrophotometric measurements. The microchip with multiple testing vials was prepared with the benchtop molding method with a common PDMS elastomer and a transparency film; the photo of the scanned microchip is wirelessly sent to a smartphone and the RGB values of individual reaction vials in the microchip are analyzed with a free mobile app to determine the corresponding concentrations. It was demonstrated that the quantitation performance of this POCT device is comparable with conventional spectrophotometry in the determination of total anthocyanins in both standard solutions and fruit beverages.
Collapse
|
33
|
Zhang X, Wang Y, Deng H, Xiong X, Zhang H, Liang T, Li C. An aptamer biosensor for CA125 quantification in human serum based on upconversion luminescence resonance energy transfer. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Manmana Y, Kubo T, Otsuka K. Recent developments of point-of-care (POC) testing platform for biomolecules. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Dastidar MG, Roy S. Public health management during COVID-19 and applications of point-of-care based biomolecular detection approaches. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237533 DOI: 10.1016/b978-0-323-85780-2.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The emergence of the novel human coronavirus, characterized as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a worldwide pandemic. The outbreak of SARS-CoV-2 was first reported at a local wet market in the city of Wuhan in the Hubei province of China at a local wet market. This virus is highly contagious, which gives it the potential for rapid transmission across the world. The transmission of SARS-CoV-2 can be triggered via respiratory droplets in the air from an infected individual to a healthy individual. Thus, to restrict the transmission of the virus, proper public health management and early diagnosis of infected individual is extremely essential. Considering this, the development of various point-of-care (POC) biomolecular assays lead to the importance of early diagnoses at a larger scale during this pandemic situation. Detecting a minimum level of specific target analytes to a particular disease with less instrumentation and minimum reagents, as well as immidiate outcomes, has appeared a challenging path for researchers. Apart from early-stage diagnosis, public awareness is also important to prevent the spread of the virus. Proper intensive care units, isolation rooms, maintaining hygiene, and wearing masks in public areas are necessary. In this chapter, we have discussed the public health management steps and current clinical diagnostics processes and various advanced technology including, molecular, serological, and nanobiosensing approaches for SARS-CoV-2 detection. Furthermore, we have highlighted the various challenges and limitations associated with health management and early diagnostics technologies during SARS-CoV-2 pandemic. Additionally, we have summarized various technical aspects of the development of such POC strategies including biomarkers selections, sensing platforms, unit fabrication, and device incorporation.
Collapse
|
36
|
Syedmoradi L, Norton ML, Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2020; 225:122002. [PMID: 33592810 DOI: 10.1016/j.talanta.2020.122002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Early and timely diagnosis of cancer plays a decisive role in appropriate treatment and improves clinical outcomes, improving public health. Significant advances in biosensor technologies are leading to the development of point-of-care (POC) diagnostics, making the testing process faster, easier, cost-effective, and suitable for on-site measurements. Moreover, the incorporation of various nanomaterials into the sensing platforms has yielded POC testing (POCT) platforms with enhanced sensitivity, cost-effectiveness and simplified detection schemes. POC cancer diagnostic devices provide promising platforms for cancer biomarker detection as compared to conventional in vitro diagnostics, which are time-consuming and require sophisticated instrumentation, centralized laboratories, and experienced operators. Current innovative approaches in POC technologies, including biosensors, smartphone interfaces, and lab-on-a-chip (LOC) devices are expected to quickly transform the healthcare landscape. However, only a few cancer POC devices (e.g. lateral flow platforms) have been translated from research laboratories to clinical care, likely due to challenges include sampling procedures, low levels of sensitivity and specificity in clinical samples, system integration and signal readout requirements. In this review, we emphasize recent advances in POC diagnostic devices for cancer biomarker detection and discuss the critical challenges which must be surmounted to facilitate their translation into clinical settings.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Zhang W, Bu S, Bai H, Ma C, Ma L, Wei H, Liu X, Li Z, Wan J. A sensitive biosensor for determination of pathogenic bacteria using aldehyde dehydrogenase signaling system. Anal Bioanal Chem 2020; 412:7955-7962. [PMID: 32879993 DOI: 10.1007/s00216-020-02928-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022]
Abstract
Aldehyde dehydrogenase (ALDH) was first developed as an enzymatic signaling system of a biosensor for sensitive point-of-care detection of pathogenic bacteria. ALDH and specific aptamers to Salmonella typhimurium (S. typhimurium), as organic components, were embedded in organic-inorganic nanocomposites as a biosensor signal label, integrating the functions of signal amplification and target recognition. The biosensing mechanism is based on the fact that ALDH can catalyze rapid oxidation of acetaldehyde into acetic acid, resulting in pH change with portable pH meter readout. The altered pH exhibited a linear relationship with the logarithm of S. typhimurium from 102 to 108 CFU/mL and detection limit of 46 CFU/mL. Thus, the proposed biosensor has potential application in the diagnosis of pathogenic bacteria.
Collapse
Affiliation(s)
- Wenguang Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.,Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Shengjun Bu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Huasong Bai
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Chengyou Ma
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, 130026, Jilin, China
| | - Li Ma
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Hongguo Wei
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Xiu Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China
| | - Zehong Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| | - Jiayu Wan
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, Jilin, China.
| |
Collapse
|
38
|
Jin R, Zhao L, Yan X, Han X, Liu M, Chen Y, Li Q, Su D, Liu F, Sun P, Liu X, Wang C, Lu G. Lab in hydrogel portable kit: On-site monitoring of oxalate. Biosens Bioelectron 2020; 167:112457. [PMID: 32818749 DOI: 10.1016/j.bios.2020.112457] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 11/25/2022]
Abstract
Oxalate is commonly employed as adjuvant of pesticide agent, causing renal injury of human even in trace residues. Despite the great achievements of the existing point-of-care testing (POCT) technology, accurate on-site screening of oxalate remains a tricky issue. To this aim, we proposed a "lab in a tube" platform which integrated portable hydrogel kit with smartphone for real-time monitoring of oxalate to achieve quantitatively precise analysis. In this work, a stimuli-responsive hydrogel-based kit was constructed via embedding manganese dioxide (MnO2) nanosheets into sodium alginate hydrogel system. Based on the intrinsic oxidase-like activity, MnO2 nanosheets-based nanozyme triggered color reaction by introducing a common sensing probe 3,3',5,5'-tetramethylbenzidine. Meanwhile, the presence of oxalate would decompose MnO2 nanosheets, inducing the decrease of nanozyme activity, which resulted in the color response of portable kit. Coupling with ImageJ software, the image information of kit captured via smartphone could be transduced into the hue intensity, which provided a directly quantitative tool to detect oxalate with a detection limit of 8.0 μmol L-1. This portable smartphone biosensor was successfully applied for screening urine sample within 10 min for high-throughput analysis (twelve samples) without the need for any advanced analytical instruments. Based on the merits of simple operation, cost-efficiency, and good selectivity, the availability of the miniaturized biosensor platform for POCT will achieve the requirements of routine screening and disease prevention.
Collapse
Affiliation(s)
- Rui Jin
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Lianjing Zhao
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China.
| | - Xiaosong Han
- College of Computer Science and Technology, Jilin University, Changchun, 130012, People's Republic of China
| | - Mengqi Liu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Qingyun Li
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Dandan Su
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory on Advanced Gas Sensor, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
39
|
Seok Y, Batule BS, Kim MG. Lab-on-paper for all-in-one molecular diagnostics (LAMDA) of zika, dengue, and chikungunya virus from human serum. Biosens Bioelectron 2020; 165:112400. [PMID: 32729520 DOI: 10.1016/j.bios.2020.112400] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/23/2023]
Abstract
Several tropical fever viruses transmitted by mosquitoes including zika, dengue, and chikungunya, are becoming a serious problem in global public health. Simple diagnostic tools in early stages are strongly required to monitor and prevent these diseases. Paper diagnostic platforms can provide a solution for these needs, with integration of fluidic control techniques and isothermal amplification methods. Here, we demonstrate a Lab-on-paper for all-in-one molecular diagnostics of zika, dengue, and chikungunya virus from human serum. The entire process of nucleic acid testing that involves sampling, extraction, amplification, and detection is simply operated on a single paper chip. Based on the engineered structure of paper materials and dried chemicals on the all-in-one chip, serum samples containing the target virus RNA were simply added by automatic flow from distilled water injection. Target RNA molecules were concentrated on the binding pad with chitosan and then transported to reaction pads following a pH increase for specific reverse transcription loop-mediated isothermal amplification with fluorescence signal generation. Three targets, zika virus, dengue virus, and chikungunya virus, in human serum were simultaneously detected on the all-in-one paper chip within 60 min at 65 °C. The all-in-one paper chip can be used as a real-time quantitative assay for 5-5000 copies of zika virus RNA. This all-in-one device was successfully used with 5 clinical specimens of zika and dengue virus from real patients. We believe that the proposed all-in-one paper chip can provide a portable, low-cost, user-friendly, sensitive, and specific NAT platform with great potential in point-of-care diagnostics.
Collapse
Affiliation(s)
- Youngung Seok
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, 233 Towne Building, 220 S. 33rd Street, Philadelphia, PA, 19104, USA
| | - Bhagwan S Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Gwangju, 500-712, Republic of Korea; Boditech Med Inc., 43, Geodudanji 1-gil, Dongnae-myeon, Chuncheon-si, Gangwon-do, 24398, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Gwangju, 500-712, Republic of Korea.
| |
Collapse
|
40
|
Muñoz HE, Riche CT, Kong JE, van Zee M, Garner OB, Ozcan A, Di Carlo D. Fractal LAMP: Label-Free Analysis of Fractal Precipitate for Digital Loop-Mediated Isothermal Nucleic Acid Amplification. ACS Sens 2020; 5:385-394. [PMID: 31902202 DOI: 10.1021/acssensors.9b01974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleic acid amplification assays including loop-mediated isothermal amplification (LAMP) are routinely used in diagnosing diseases and monitoring water and food quality. The results of amplification in these assays are commonly measured with an analog fluorescence readout, which requires specialized optical equipment and can lack quantitative precision. Digital analysis of amplification in small fluid compartments based on exceeding a threshold fluorescence level can enhance the quantitative precision of nucleic acid assays (i.e., digital nucleic acid amplification assays), but still requires specialized optical systems for fluorescence readout and the inclusion of a fluorescent dye. Here, we report Fractal LAMP, an automated method to detect amplified DNA in subnanoliter scale droplets following LAMP in a label-free manner. Our computer vision algorithm achieves high accuracy detecting DNA amplification in droplets by identifying LAMP byproducts that form fractal structures observable in brightfield microscopy. The capabilities of Fractal LAMP are further realized by developing a Bayesian model to estimate DNA concentrations for unknown samples and a bootstrapping method to estimate the number of droplets required to achieve target limits of detection. This digital, label-free assay has the potential to lower reagent and reader cost for nucleic acid measurement while maintaining high quantitative accuracy over 3 orders of magnitude of concentration.
Collapse
Affiliation(s)
- Hector E. Muñoz
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Carson T. Riche
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Janay E. Kong
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Omai B. Garner
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
41
|
Anti-p53 Autoantibody Detection in Automatic Glass Capillary Immunoassay Platform for Screening of Oral Cavity Squamous Cell Carcinoma. SENSORS 2020; 20:s20040971. [PMID: 32054134 PMCID: PMC7070657 DOI: 10.3390/s20040971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 11/26/2022]
Abstract
The incidence of oral squamous cell carcinoma (OSCC), which is one of the most common cancers worldwide, has been increasing. Serum anti-p53 autoantibody is one of the most sensitive biomarkers for OSCC. Currently, the most commonly used method on clinical screening platforms is the enzyme-linked immunosorbent assay, owing to its high specificity and repeatability. However, conducting immunoassays on 96-well plates is typically time consuming, thereby limiting its clinical applications for fast diagnosis and immediate prognosis of rapidly progressive diseases. The present study performed immunoassays in glass capillaries of 1-mm internal diameter, which increases the surface to volume ratio of the reaction, to shorten the time needed for immunoassay. The immunoassay was automated while using linear motorized stages and a syringe pump. The results indicated that, when compared with the 96-well plate immunoassay, the glass capillary immunoassay decreased the reaction time from typical 120 min to 45 min, reduced the amount of reagent from typical 50 µL to 15 µL, and required only simple equipment setup. Moreover, the limit of detection for glass capillary anti-p53 autoantibody immunoassay was 0.46 ng mL−1, which is close to the 0.19 ng mL−1 value of the conventional 96-well plate assay, and the glass capillary method had a broader detection range. The apparatus was used to detect the serum anti-p53 autoantibody concentration in clinical patients and compare its results with the conventional 96-well plate method results, which suggested that both of the methods detect the same trend in the relative concentration of serum anti-p53 autoantibody in healthy individuals or patients with OSCC.
Collapse
|
42
|
A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid. Anal Chim Acta 2020; 1093:150-159. [DOI: 10.1016/j.aca.2019.09.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
|
43
|
Arshavsky-Graham S, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:247-265. [PMID: 32435872 DOI: 10.1007/10_2020_127] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent coronavirus (COVID-19) pandemic has underscored the need to move from traditional lab-centralized diagnostics to point-of-care (PoC) settings. Lab-on-a-chip (LoC) platforms facilitate the translation to PoC settings via the miniaturization, portability, integration, and automation of multiple assay functions onto a single chip. For this purpose, paper-based assays and microfluidic platforms are currently being extensively studied, and much focus is being directed towards simplifying their design while simultaneously improving multiplexing and automation capabilities. Signal amplification strategies are being applied to improve the performance of assays with respect to both sensitivity and selectivity, while smartphones are being integrated to expand the analytical power of the technology and promote its accessibility. In this chapter, we review the main technologies in the field of LoC platforms for PoC medical diagnostics and survey recent approaches for improving these assays.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.,Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel. .,The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
44
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
45
|
Hosu O, Lettieri M, Papara N, Ravalli A, Sandulescu R, Cristea C, Marrazza G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta 2019; 204:525-532. [DOI: 10.1016/j.talanta.2019.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/27/2022]
|
46
|
A Fluorescence Sensing Method with Reduced DNA Typing and Low-Cost Instrumentation for Detection of Sample Tampering Cases in Urinalysis. Ann Biomed Eng 2019; 48:644-654. [PMID: 31624980 DOI: 10.1007/s10439-019-02386-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
This work presents a method to unequivocally detect urine sample tampering in cases where integrity of the sample needs to be verified prior to urinalysis. The technique involves the detection of distinct patterns of a triplex short tandem repeats system in DNA extracted from human urine. The analysis is realized with single-dye fluorescence detection and using a regular smartphone camera. The experimental results had demonstrated the efficacy of the analytical approach to obtaining distinct profiles of amplicons in urine from different sample providers. Reproducibility tests with fresh and stored urine have revealed a maximum variation in the profiles within an interval of 5 to 9%. Cases of urine sample tampering via mixture were simulated in the study, and the experiments have identified patterns of mixed genotypes from dual mixtures of urine samples. Moreover, sample adulteration by mixing a non-human fluid with urine in a volume ratio over 25% can be detected. The low cost of the approach is accompanied by the compatibility of the technique to use with different DNA sample preparation protocols and PCR instrumentation. Furthermore, the possibility of realizing the method in an integrated microchip system open great perspectives to conducting sample integrity tests at the site of urine sample reception and/or at resource-limited settings.
Collapse
|
47
|
Vennemann B, Obrist D, Rösgen T. Automated diagnosis of heart valve degradation using novelty detection algorithms and machine learning. PLoS One 2019; 14:e0222983. [PMID: 31557196 PMCID: PMC6762068 DOI: 10.1371/journal.pone.0222983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022] Open
Abstract
The blood flow through the major vessels holds great diagnostic potential for the identification of cardiovascular complications and is therefore routinely assessed with current diagnostic modalities. Heart valves are subject to high hydrodynamic loads which render them prone to premature degradation. Failing native aortic valves are routinely replaced with bioprosthetic heart valves. This type of prosthesis is limited by a durability that is often less than the patient's life expectancy. Frequent assessment of valvular function can therefore help to ensure good long-term outcomes and to plan reinterventions. In this article, we describe how unsupervised novelty detection algorithms can be used to automate the interpretation of blood flow data to improve outcomes through early detection of adverse cardiovascular events without requiring repeated check-ups in a clinical environment. The proposed method was tested in an in-vitro flow loop which allowed simulating a failing aortic valve in a laboratory setting. Aortic regurgitation of increasing severity was deliberately introduced with tube-shaped inserts, preventing complete valve closure during diastole. Blood flow recordings from a flow meter at the location of the ascending aorta were analyzed with the algorithms introduced in this article and a diagnostic index was defined that reflects the severity of valvular degradation. The results indicate that the proposed methodology offers a high sensitivity towards pathological changes of valvular function and that it is capable of automatically identifying valvular degradation. Such methods may be a step towards computer-assisted diagnostics and telemedicine that provide the clinician with novel tools to improve patient care.
Collapse
Affiliation(s)
- Bernhard Vennemann
- Institute of Fluid Dynamics, ETH Zürich, Zürich, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Thomas Rösgen
- Institute of Fluid Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
48
|
Rabha D, Sarmah A, Nath P. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications. J Microsc 2019; 276:13-20. [PMID: 31498428 DOI: 10.1111/jmi.12829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
Abstract
Portable, low-cost smartphone platform microscopic systems have emerged as a potential tool for imaging of various micron and submicron scale particles in recent years (Ozcan; Pirnstill and Coté; Breslauer et al.; Zhu et al.). In most of the reported works, it involves either the use of sophisticated optical set-ups along with a high-end computational tool for postprocessing of the captured images, or it requires a high-end configured smartphone to obtain enhanced imaging of the sample. Present work reports the working of a low-cost, field-portable 520× optical microscope using a smartphone. The proposed smartphone microscopic system has been designed by attaching a 3D printed compact optical set-up to the rear camera of a regular smartphone. By using cloud-based services, an image processing algorithm has been developed which can be accessed anytime through a mobile broadband network. Using this facility, the quality of the captured images can be further enhanced, thus obviating the need for dedicated computational tools for postprocessing of the images. With the designed microscopic system, an optical resolution ∼2 µm has been obtained. Upon postprocessing, the resolution of the captured images can be improved further. It is envisioned that with properly designed optical set-up in 3D printer and by developing an image processing application in the cloud, it is possible to obtain a low-cost, user-friendly, field-portable optical microscope on a regular smartphone that performs at par with that of a laboratory-grade microscope. LAY DESCRIPTION: With the ever-improving features both in hardware and software part, smartphone becomes ubiquitous in the modern civilised society with approximately 8.1 billion cell phone users across the world, and ∼40% of them can be considered as smartphones. This technology is undoubtedly the leading technology of the 21st century. Very recently, various researchers across the globe have utilised different sensing components embedded in the smartphone to convert it into a field-portable low-cost and user-friendly tool which can be used for different sensing and imaging purposes. By using simple optical components such as lens, pinhole, diffuser etc. and the camera of the smartphone, various groups have converted the phone into a microscopic imaging system. Again, by removing the camera lenses of the phone, holography images of microscopic particles by directly casting its shadows on the CMOS sensor on the phone has been demonstrated. The holographic images have subsequently been processed using the dedicated computational tool, and the original photos of the samples can be obtained. All the reported smartphone-based microscopic systems either suffer from relatively low field-of-view (FOV), resolution or it needs a high computational platform. Present work, demonstrate an alternative approach by which a reasonably good resolution (<2 µm) along with high optical magnification (520×) and a large FOV (150 µm) has been obtained on a regular smartphone. For postprocessing of the captured images an image processing algorithm has been developed in the cloud and the same can be accessed by the smartphone application, obviating the need of dedicated computational tool and a high-end configured smartphone for the proposed microscope. For the development of the proposed microscopic system, a simple optical set-up has been fabricated in a 3D printer. The set-up houses all the required optical components and the sample specimen with the 3D-printed XY stage, and it can be attached easily to the rear camera of the smartphone. Using the proposed microscopic system, enhanced imaging of USAF target and red blood cells have been successfully demonstrated. With the readily available optical components and a regular smartphone, the net cost involvement is significantly low (less than $250, including the smartphone). We envisioned that the designed system could be utilised for point-of-care diagnosis in resource-poor settings where access to the laboratory facilities is very limited.
Collapse
Affiliation(s)
- D Rabha
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Sonitpur, Assam, India
| | - A Sarmah
- Department of Pathology, Tezpur Medical College and Hospital, Sonitpur, Assam, India
| | - P Nath
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Sonitpur, Assam, India
| |
Collapse
|
49
|
Tran MV, Susumu K, Medintz IL, Algar WR. Supraparticle Assemblies of Magnetic Nanoparticles and Quantum Dots for Selective Cell Isolation and Counting on a Smartphone-Based Imaging Platform. Anal Chem 2019; 91:11963-11971. [DOI: 10.1021/acs.analchem.9b02853] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michael V. Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kimihiro Susumu
- KeyW Corporation, Hanover, Maryland 21076, United States
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - W. Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
50
|
Determination of Ethanol in Beers Using a Flatbed Scanner and Automated Digital Image Analysis. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01611-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|