1
|
Liu S, Liao Y, Shu R, Sun J, Zhang D, Zhang W, Wang J. Evaluation of the Multidimensional Enhanced Lateral Flow Immunoassay in Point-of-Care Nanosensors. ACS NANO 2024; 18:27167-27205. [PMID: 39311085 DOI: 10.1021/acsnano.4c06564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Point-of-care (POC) nanosensors with high screening efficiency show promise for user-friendly manipulation in the ever-increasing on-site analysis demand for illness diagnosis, environmental monitoring, and food safety. Currently, inspired by the merits of integrating advanced nanomaterials, molecular biology, machine learning, and artificial intelligence, lateral flow immunoassay (LFIA)-based POC nanosensors have been devoted to satisfying the commercial demands in terms of sensitivity, specificity, and practicality. Herein, we examine the use of multidimensional enhanced LFIA in various fields over the past two decades, focusing on introducing advanced nanomaterials to improve the acquisition capability of small order of magnitude targets through engineering transformations and emphasizing interdomain fusion to collaboratively address the inherent challenges in current commercial applications, such as multiplexing, development of detectors for quantitative analysis, more practical on-site monitoring, and sensitivity enhancement. Specifically, this comprehensive review encompasses the latest advances in comprehending LFIA with an alternative signal transduction pattern, aiming to achieve rapid, ultrasensitive, and "sample-to-answer" available options with progressive applications for POC nanosensors. In summary, through the cross-collaboration development of disciplines, LFIA has the potential to break the barriers toward commercialization and achieve laboratory-level POC nanosensors, thus leading to the emergence of the next generation of LFIA.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yangjun Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Park DG, Kwon JG, Ha ES, Kang B, Choi I, Kwak JE, Choi J, Lee W, Kim SH, Kim SH, Park J, Lee JH. Novel next generation sequencing panel method for the multiple detection and identification of foodborne pathogens in agricultural wastewater. Front Microbiol 2023; 14:1179934. [PMID: 37520347 PMCID: PMC10374199 DOI: 10.3389/fmicb.2023.1179934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Detecting and identifying the origins of foodborne pathogen outbreaks is a challenging. The Next-Generation Sequencing (NGS) panel method offers a potential solution by enabling efficient screening and identification of various bacteria in one reaction. In this study, new NGS panel primer sets that target 18 specific virulence factor genes from six target pathogens (Bacillus cereus, Yersinia enterocolitica, Staphylococcus aureus, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus) were developed and optimized. The primer sets were validated for specificity and selectivity through singleplex PCR, confirming the expected amplicon size. Crosscheck and multiplex PCR showed no interference in the primer set or pathogenic DNA mixture. The NGS panel analysis of spiked water samples detected all 18 target genes in a single reaction, with pathogen concentrations ranging from 108 to 105 colony-forming units (CFUs) per target pathogen. Notably, the total sequence read counts from the virulence factor genes showed a positive association with the CFUs per target pathogen. However, the method exhibited relatively low sensitivity and occasional false positive results at low pathogen concentrations of 105 CFUs. To validate the detection and identification results, two sets of quantitative real-time PCR (qPCR) analyses were independently performed on the same spiked water samples, yielding almost the same efficiency and specificity compared to the NGS panel analysis. Comparative statistical analysis and Spearman correlation analysis further supported the similarity of the results by showing a negative association between the NGS panel sequence read counts and qPCR cycle threshold (Ct) values. To enhance NGS panel analysis for better detection, optimization of primer sets and real-time NGS sequencing technology are essential. Nonetheless, this study provides valuable insights into applying NGS panel analysis for multiple foodborne pathogen detection, emphasizing its potential in ensuring food safety.
Collapse
Affiliation(s)
- Dong-Geun Park
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Joon-Gi Kwon
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Eun-Su Ha
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Byungcheol Kang
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Iseul Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Jeong-Eun Kwak
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jinho Choi
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Seung Hwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Soon Han Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Republic of Korea
| | - Jeongwoong Park
- Research and Development Center, Sanigen Co., Ltd, Anyang, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Zhao Y, Sang J, Fu Y, Guo J, Guo J. Magnetic nanoprobe-enabled lateral flow assays: recent advances. Analyst 2023. [PMID: 37365935 DOI: 10.1039/d3an00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In recent years, magnetic nanoparticle sensor technologies have attracted considerable interest in the point-of-care-testing (POCT) field, especially in lateral flow immunoassays (LFIAs). Although the visual signal of magnetic nanoparticles is reduced during an inspection, it can be compensated for by magnetic induction, and detection results can be quantified by magnetic sensors. Sensors that use magnetic nanoparticles (MNPs) as markers can overcome the high background noise of complex samples. In this study, MNP signal detection strategies are described from the perspectives of magnetoresistance, magnetic flux, frequency mixing technology, and magnetic permeability, and the principles and development of each technology are introduced in detail. Typical applications of magnetic nanoparticle sensor technologies are introduced. By describing the advantages and limitations of different sensing strategies, we highlight the development and improvement directions of different sensing strategies. In general, the future development of magnetic nanoparticle sensor technologies will be toward intelligent, convenient, and mobile high-performance detection equipment.
Collapse
Affiliation(s)
- Ying Zhao
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jingwei Sang
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yusheng Fu
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jiuchuan Guo
- University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
4
|
Younes N, Yassine HM, Kourentzi K, Tang P, Litvinov D, Willson RC, Abu-Raddad LJ, Nasrallah GK. A review of rapid food safety testing: using lateral flow assay platform to detect foodborne pathogens. Crit Rev Food Sci Nutr 2023; 64:9910-9932. [PMID: 37350754 DOI: 10.1080/10408398.2023.2217921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
The detrimental impact of foodborne pathogens on human health makes food safety a major concern at all levels of production. Conventional methods to detect foodborne pathogens, such as live culture, high-performance liquid chromatography, and molecular techniques, are relatively tedious, time-consuming, laborious, and expensive, which hinders their use for on-site applications. Recurrent outbreaks of foodborne illness have heightened the demand for rapid and simple technologies for detection of foodborne pathogens. Recently, Lateral flow assays (LFA) have drawn attention because of their ability to detect pathogens rapidly, cheaply, and on-site. Here, we reviewed the latest developments in LFAs to detect various foodborne pathogens in food samples, giving special attention to how reporters and labels have improved LFA performance. We also discussed different approaches to improve LFA sensitivity and specificity. Most importantly, due to the lack of studies on LFAs for the detection of viral foodborne pathogens in food samples, we summarized our recent research on developing LFAs for the detection of viral foodborne pathogens. Finally, we highlighted the main challenges for further development of LFA platforms. In summary, with continuing improvements, LFAs may soon offer excellent performance at point-of-care that is competitive with laboratory techniques while retaining a rapid format.
Collapse
Affiliation(s)
- Nadin Younes
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | - Patrick Tang
- Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Dmitri Litvinov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, Texas, USA
| | - Richard C Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Laith J Abu-Raddad
- Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- World Health Organization Collaborating Centre for Disease Epidemiology Analytics on HIV/AIDS, Sexually Transmitted Infections, and Viral Hepatitis, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar
- Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
6
|
Mazur F, Tjandra AD, Zhou Y, Gao Y, Chandrawati R. Paper-based sensors for bacteria detection. NATURE REVIEWS BIOENGINEERING 2023; 1:180-192. [PMID: 36937095 PMCID: PMC9926459 DOI: 10.1038/s44222-023-00024-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
The detection of pathogenic bacteria is essential to prevent and treat infections and to provide food security. Current gold-standard detection techniques, such as culture-based assays and polymerase chain reaction, are time-consuming and require centralized laboratories. Therefore, efforts have focused on developing point-of-care devices that are fast, cheap, portable and do not require specialized training. Paper-based analytical devices meet these criteria and are particularly suitable to deployment in low-resource settings. In this Review, we highlight paper-based analytical devices with substantial point-of-care applicability for bacteria detection and discuss challenges and opportunities for future development.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| |
Collapse
|
7
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
An all-in-one nucleic acid enrichment and isothermal amplification platform for rapid detection of Listeria monocytogenes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Du J, Liu K, Liu J, Zhao D, Bai Y. A novel lateral flow immunoassay strip based on a label-free magnetic Fe 3O 4@UiO-66-NH 2 nanocomposite for rapid detection of Listeria monocytogenes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2423-2430. [PMID: 35674012 DOI: 10.1039/d2ay00506a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes (L. monocytogenes) is one of the most lethal pathogenic bacteria. Although the traditional microbial culture method has high sensitivity and selectivity for the diagnosis of L. monocytogenes, it is time-consuming and not suitable for on-site detection. A rapid, convenient and visualized on-site detection method is particularly needed. In this work, Fe3O4@UiO-66-NH2 was prepared for both magnetic separation and lateral flow immunoassay (LFIA) for the detection of L. monocytogenes by taking advantage of the easy separation of the magnetic core Fe3O4 and the high surface area of the outer layer UiO-66-NH2. Fe3O4@UiO-66-NH2 with a high surface area and good water-dispersibility and optical properties was synthesized by a simple hydrothermal process. It could directly adsorb on the surface of target bacteria and form Fe3O4@UiO-66-NH2-bacteria conjugates, without the labeling of an antibody. After magnetic separation and concentration, the Fe3O4@UiO-66-NH2-bacteria conjugates were detected by the antibody on the test line of the LFIA strip, resulting in a visible orange band. The capture efficiency and LFIA detection of Fe3O4@UiO-66-NH2 were optimized in this study. Under the optimal conditions, a good linear correlation between the test line intensity and the concentration of L. monocytogenes was obtained in the range of 105-108 CFU mL-1, and the limit of detection was 2.2 × 106 CFU mL-1 by the naked eye. The Fe3O4@UiO-66-NH2-based LFIA strip showed strong specificity for L. monocytogenes, and the detection took 45 min without culture enrichment. Therefore, the proposed Fe3O4@UiO-66-NH2-based strip showed the advantages of simple synthesis, being label-free, low cost, good selectivity and convenience.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Kai Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Jialei Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Dianbo Zhao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
10
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Sohrabi H, Majidi MR, Fakhraei M, Jahanban-Esfahlan A, Hejazi M, Oroojalian F, Baradaran B, Tohidast M, Guardia MDL, Mokhtarzadeh A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022; 243:123330. [DOI: 10.1016/j.talanta.2022.123330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
12
|
Zheng C, Jiang Q, Wang K, Li T, Zheng W, Cheng Y, Ning Q, Cui D. Nanozyme enhanced magnetic immunoassay for dual-mode detection of gastrin-17. Analyst 2022; 147:1678-1687. [DOI: 10.1039/d2an00063f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A lateral flow detection was developed for dual-mode detection of gastrin-17, including nanozyme-enhanced chromatographic detection and magnetic quantification.
Collapse
Affiliation(s)
- Chujun Zheng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent Diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Kan Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent Diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
| | - Tangan Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent Diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
| | - Wei Zheng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent Diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
| | - Yuemeng Cheng
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent Diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
| | - Qihong Ning
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent Diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent Diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China
| |
Collapse
|
13
|
Huang Q. Simultaneous quantitative analysis of Listeria monocytogenes and Staphylococcus aureus based on antibiotic-introduced lateral flow immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5866-5874. [PMID: 34877941 DOI: 10.1039/d1ay01467f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food poisoning caused by microorganisms has caused widespread concern. Herein, a highly sensitive on-site screening test strip for the detection of different pathogenic microorganisms (Listeria monocytogenes and Staphylococcus aureus) was designed. In this analysis platform, colloidal gold-coupled vancomycin was used as a signal unit to label Gram-positive bacteria, and highly sensitive polyclonal antibodies were used as recognition molecules to capture these specific strains. Compared with the traditional dual-antibody sandwich model, this new type of antibiotic-pathogen-antibody sandwich model is low-cost and can simultaneously detect multiple microorganisms. Under optimal conditions, this strategy showed satisfactory sensitivity and a wide linear range (L. monocy and S. aure could be directly assayed within linear ranges of 5 × 104 to 107 and 5 × 102 to 107 CFU mL-1, and the visual detection limits were 105 and 103 CFU mL-1, respectively). The analytical performance and practicability of this sensor system have been further studied. This developed biosensor was applied to bacteria-contaminated water, milk and broth with satisfactory results. All of these attractive characteristics make the assay possess potential applications in food safety, medical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Qiong Huang
- Shanxi Technology and Business College, 030006 Taiyuan, Shanxi Province, People's Republic of China.
| |
Collapse
|
14
|
Sheikhzadeh E, Beni V, Zourob M. Nanomaterial application in bio/sensors for the detection of infectious diseases. Talanta 2021; 230:122026. [PMID: 33934756 PMCID: PMC7854185 DOI: 10.1016/j.talanta.2020.122026] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a potential risk for public health and the global economy. Fast and accurate detection of the pathogens that cause these infections is important to avoid the transmission of the diseases. Conventional methods for the detection of these microorganisms are time-consuming, costly, and not applicable for on-site monitoring. Biosensors can provide a fast, reliable, and point of care diagnostic. Nanomaterials, due to their outstanding electrical, chemical, and optical features, have become key players in the area of biosensors. This review will cover different nanomaterials that employed in electrochemical, optical, and instrumental biosensors for infectious disease diagnosis and how these contributed to enhancing the sensitivity and rapidity of the various sensing platforms. Examples of nanomaterial synthesis methods as well as a comprehensive description of their properties are explained. Moreover, when available, comparative data, in the presence and absence of the nanomaterials, have been reported to further highlight how the usage of nanomaterials enhances the performances of the sensor.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author
| | - Valerio Beni
- Digital Systems, Department Smart Hardware, Unit Bio–& Organic Electronics, RISE Acreo, Research Institutes of Sweden, Norrkoping, 60221, Sweden
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia,King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia,Corresponding author. Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| |
Collapse
|
15
|
Antibody- and nucleic acid-based lateral flow immunoassay for Listeria monocytogenes detection. Anal Bioanal Chem 2021; 413:4161-4180. [PMID: 34041576 DOI: 10.1007/s00216-021-03402-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Listeria monocytogenes is an invasive opportunistic foodborne pathogen and its routine surveillance is critical for protecting the food supply and public health. The traditional detection methods are time-consuming and require trained personnel. Lateral flow immunoassay (LFIA), on the other hand, is an easy-to-perform, rapid point-of-care test and has been widely used as an inexpensive surveillance tool. In recent times, nucleic acid-based lateral flow immunoassays (NALFIA) are also developed to improve sensitivity and specificity. A significant improvement in lateral flow-based assays has been reported in recent years, especially the ligands (antibodies, nucleic acids, aptamers, bacteriophage), labeling molecules, and overall assay configurations to improve detection sensitivity, specificity, and automated interpretation of results. In most commercial applications, LFIA has been used with enriched food/environmental samples to ensure detection of live cells thus prolonging the assay time to 24-48 h; however, with the recent improvement in LFIA sensitivity, results can be obtained in less than 8 h with shortened and improved enrichment practices. Incorporation of surface-enhanced Raman spectroscopy and/or immunomagnetic separation could significantly improve LFIA sensitivity for near-real-time point-of-care detection of L. monocytogenes for food safety and public health applications.
Collapse
|
16
|
Lopes-Luz L, Mendonça M, Bernardes Fogaça M, Kipnis A, Bhunia AK, Bührer-Sékula S. Listeria monocytogenes: review of pathogenesis and virulence determinants-targeted immunological assays. Crit Rev Microbiol 2021; 47:647-666. [PMID: 33896354 DOI: 10.1080/1040841x.2021.1911930] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Listeria monocytogenes is one of the most invasive foodborne pathogens and is responsible for numerous outbreaks worldwide. Most of the methods to detect this bacterium in food require selective enrichment using traditional bacterial culture techniques that can be time-consuming and labour-intensive. Moreover, molecular methods are expensive and need specific technical knowledge. In contrast, immunological approaches are faster, simpler, and user-friendly alternatives and have been developed for the detection of L. monocytogenes in food, environmental, and clinical samples. These techniques are dependent on the constitutive expression of L. monocytogenes antigens and the specificity of the antibodies used. Here, updated knowledge on pathogenesis and the key immunogenic virulence determinants of L. monocytogenes that are used for the generation of monoclonal and polyclonal antibodies for the serological assay development are summarised. In addition, immunological approaches based on enzyme-linked immunosorbent assay, immunofluorescence, lateral flow immunochromatographic assays, and immunosensors with relevant improvements are highlighted. Though the sensitivity and specificity of the assays were improved significantly, methods still face many challenges that require further validation before use.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns, Brasil
| | | | - André Kipnis
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| | - Arun K Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Samira Bührer-Sékula
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
17
|
Zhang M, Bu T, Tian Y, Sun X, Wang Q, Liu Y, Bai F, Zhao S, Wang L. Fe3O4@CuS-based immunochromatographic test strips and their application to label-free and dual-readout detection of Escherichia coli O157:H7 in food. Food Chem 2020; 332:127398. [DOI: 10.1016/j.foodchem.2020.127398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
|
18
|
Augustine R, Das S, Hasan A, S A, Abdul Salam S, Augustine P, Dalvi YB, Varghese R, Primavera R, Yassine HM, Thakor AS, Kevadiya BD. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. J Clin Med 2020; 9:E3372. [PMID: 33096742 PMCID: PMC7589650 DOI: 10.3390/jcm9103372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The aggressive outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as COVID-19 (coronavirus disease-2019) pandemic demands rapid and simplified testing tools for its effective management. Increased mass testing and surveillance are crucial for controlling the disease spread, obtaining better pandemic statistics, and developing realistic epidemiological models. Despite the advantages of nucleic acid- and antigen-based tests such as accuracy, specificity, and non-invasive approaches of sample collection, they can only detect active infections. Antibodies (immunoglobulins) are produced by the host immune system within a few days after infection and persist in the blood for at least several weeks after infection resolution. Antibody-based tests have provided a substitute and effective method of ultra-rapid detection for multiple contagious disease outbreaks in the past, including viral diseases such as SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome). Thus, although not highly suitable for early diagnosis, antibody-based methods can be utilized to detect past infections hidden in the population, including asymptomatic ones. In an active community spread scenario of a disease that can provide a bigger window for mass detections and a practical approach for continuous surveillance. These factors encouraged researchers to investigate means of improving antibody-based rapid tests and employ them as reliable, reproducible, sensitive, specific, and economic tools for COVID-19 mass testing and surveillance. The development and integration of such immunoglobulin-based tests can transform the pandemic diagnosis by moving the same out of the clinics and laboratories into community testing sites and homes. This review discusses the principle, technology, and strategies being used in antibody-based testing at present. It also underlines the immense prospect of immunoglobulin-based testing and the efficacy of repeated planned deployment in pandemic management and post-pandemic sustainable screenings globally.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Suvarthi Das
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA;
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Abhilash S
- Department of Microbiology, Majlis Arts and Science College, Puramannur, Malappuram, Kerala 676552, India;
| | - Shaheen Abdul Salam
- Department of Biosciences, MES College Marampally, Aluva, Ernakulam, Kerala 683107, India;
| | - Priya Augustine
- Department of Zoology, Providence Women’s College, Kozhikode, Kerala 673009, India;
| | - Yogesh Bharat Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | | | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | - Bhavesh D. Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| |
Collapse
|
19
|
Semi-quantitative analysis of drugs of abuse in human urine by end-point dilution flow immunochromatographic assay. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Horspool AM, Wang T, Scaringella YS, Taub ME, Chan TS. Human Liver Microsomes Immobilized on Magnetizable Beads: A Novel Approach to Study In Vitro Drug Metabolism. Drug Metab Dispos 2020; 48:645-654. [PMID: 32474441 PMCID: PMC7370995 DOI: 10.1124/dmd.120.090696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023] Open
Abstract
Human liver microsomes (HLM) are a commonly used tool to study drug metabolism in vitro. Typical experiments conducted using suspensions of HLM can be challenging to separate from the incubation solution without lengthy ultracentrifugation steps. Magnetizable beads coated with silica (MGBS) were found to bind strongly to HLM, which could then be isolated and purified using a magnet. Binding of HLM to the MGBS (HLM-MGBS) was demonstrated to be mediated by strong interactions between microsomal phospholipids and MGBS, as artificially prepared phosphatidylcholine (PC) liposomes could be more efficiently captured by the MGBS. HLM-MGBS complexes retained functional cytochrome P450 and uridine-diphosphate-glucuronosyltransferase (UGT) activity as indicated by CYP2C8-mediated amodiaquine de-ethylation, CYP3A4-mediated midazolam 1'hydroxylation, UGT1A1-mediated glucuronidation of estradiol, UGT1A9-mediated glucuronidation of propofol, and UGT2B7-mediated glucuronidation of zidovudine. When comparing suspension HLM alone with HLM-MGBS complexes containing equivalent amounts of HLM, the intrinsic clearance (CLint) of CYP450 substrates was comparable; however, CLint of UGT1A1, UGT1A9, and UGT2B7 was increased in the HLM-MGBS system between 1.5- and 6-fold. HLM-MGBS used in an incubation could also be readily replaced with fresh HLM-MGBS to maintain the presence of active enzymes. Thus, HLM-MGBS demonstrate increased in vitro metabolic efficiency and manipulability, providing a new platform for determination of accurate metabolic parameters. SIGNIFICANCE STATEMENT: The following work describes the strong binding of HLM to magnetizable beads. In addition, the preservation of enzyme activity on the bound HLM provides a novel means to conduct preclinical metabolism studies.
Collapse
Affiliation(s)
- Alexander M Horspool
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Ting Wang
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Young-Sun Scaringella
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| |
Collapse
|
21
|
Wang L, Lin J. Recent advances on magnetic nanobead based biosensors: From separation to detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115915] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Moyano A, Serrano-Pertierra E, Salvador M, Martínez-García JC, Rivas M, Blanco-López MC. Magnetic Lateral Flow Immunoassays. Diagnostics (Basel) 2020; 10:E288. [PMID: 32397264 PMCID: PMC7278001 DOI: 10.3390/diagnostics10050288] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
A new generation of magnetic lateral flow immunoassays is emerging as powerful tool for diagnostics. They rely on the use of magnetic nanoparticles (MNP) as detecting label, replacing conventional gold or latex beads. MNPs can be sensed and quantified by means of external devices, allowing the development of immunochromatographic tests with a quantitative capability. Moreover, they have an added advantage because they can be used for immunomagnetic separation (IMS), with improvements in selectivity and sensitivity. In this paper, we have reviewed the current knowledge on magnetic-lateral flow immunoassay (LFIA), coupled with both research and commercially available instruments. The work in the literature has been classified in two categories: optical and magnetic sensing. We have analysed the type of magnetic nanoparticles used in each case, their size, coating, crystal structure and the functional groups for their conjugation with biomolecules. We have also taken into account the analytical characteristics and the type of transduction. Magnetic LFIA have been used for the determination of biomarkers, pathogens, toxins, allergens and drugs. Nanocomposites have been developed as alternative to MNP with the purpose of sensitivity enhancement. Moreover, IMS in combination with other detection principles could also improve sensitivity and limit of detection. The critical analysis in this review could have an impact for the future development of magnetic LFIA in fields requiring both rapid separation and quantification.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - M. Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/ Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.)
| |
Collapse
|
23
|
Wang L, Zhao P, Si X, Li J, Dai X, Zhang K, Gao S, Dong J. Rapid and Specific Detection of Listeria monocytogenes With an Isothermal Amplification and Lateral Flow Strip Combined Method That Eliminates False-Positive Signals From Primer-Dimers. Front Microbiol 2020; 10:2959. [PMID: 32117075 PMCID: PMC7025549 DOI: 10.3389/fmicb.2019.02959] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogenic bacterium that is explicitly threatening public health and food safety. Rapid, simple, and sensitive detection methods for this pathogen are of urgent need for the increasing on-site testing demands. Application of the isothermal recombinase polymerase amplification (RPA) and the lateral flow strip (LFS) in the detection is promising for fast speed, high sensitivity, and little dependency on equipment and trained personnel. However, the simplicity comes with an intrinsic and non-negligible risk, the false-positive signals from primer–dimers. In this study, an improved RPA–LFS system was established for detection of L. monocytogenes that eliminated false-positive signals from primer–dimers. Primer candidates were carefully selected from the entire L. monocytogenes genome sequence and rigorously screened for specific amplifications in PCR and RPA reactions. For the optimal primer pairs, probes that matched the targeted fragment sequences, although had the smallest chance to form cross-dimers with the primers, were designed and screened. The intelligent use of the probe successfully linked the positive signal to the actual amplification product. This RPA–LFS system was highly specific to L. monocytogenes and was able to detect as low as 1 colony-forming unit of the bacterium per reaction (50 μl) without DNA purification, or 100 fg of the genomic DNA/50 μl. The amplification could be conducted under the temperature between 37 and 42°C, and the whole detection finished within 25 min. Test of artificially contaminated milk gave 100% accuracy of detection without purification of the samples. Various food samples spiked with 10 colony-forming unit of L. monocytogenes per 25 g or 25 ml were successfully detected after an enrichment time period of 6 h. The RPA–LFS system established in this study is a rapid, simple, and specific detection method for L. monocytogenes that has eliminated false-positive results from primer–dimers. In addition, this study has set a good example of eliminating the false-positive risk from primer–dimers in isothermal amplification-based detection methods, which is applicable to the development of detection technologies for other pathogens.
Collapse
Affiliation(s)
- Lei Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Juan Li
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Xiaofang Dai
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Kunxiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Song Gao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
24
|
Tominaga T, Ishii M. Detection of microorganisms with lateral flow test strips. METHODS IN MICROBIOLOGY 2020. [DOI: 10.1016/bs.mim.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Zhan Z, Li H, Liu J, Xie G, Xiao F, Wu X, Aguilar ZP, Xu H. A competitive enzyme linked aptasensor with rolling circle amplification (ELARCA) assay for colorimetric detection of Listeria monocytogenes. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Liu HB, Chen CY, Zhang CN, Du XJ, Li P, Wang S. Functionalized Au MBA @Ag Nanoparticles as an Optical and SERS Dual Probe in a Lateral Flow Strip for the Quantitative Detection of Escherichia coli O157:H7. J Food Sci 2019; 84:2916-2924. [PMID: 31502678 DOI: 10.1111/1750-3841.14766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
A method combining surface-enhanced Raman scattering (SERS) with a lateral flow strip (LFS) was developed for the quantitative and sensitive analysis of Escherichia coli O157:H7. AuMBA @Ag nanoparticles were prepared as SERS probes, and 4-methylthiobenzoic acid (MBA) as a Raman reporter was inserted into the interior gap of the Au@Ag core-shell nanoparticles, which replaced the Au nanoparticles that serve as SERS nanotags in traditional LFS. Using this developed SERS-LFS, the presence of the target bacteria could be tested through the appearance of a red band on the test line. Furthermore, quantitative analysis of E. coli O157:H7 was achieved by measuring the specific Raman intensity of MBA on the test line. The sensitivity of this SERS-LFS biosensor is 5 × 104 CFU/mL of E. coli O157:H7, which is 10-fold higher than that of a naked eye-based colorimetric LFS. This quantitative detection of E. coli O157:H7 ( Y = 1993.86 X - 6812.17, R2 = 0.9947) was obtained with a wide linear range (5 × 104 to 5 × 108 ) due to the signal enhancement of the SERS nanotags. In addition, the SERS-LFS could differentiate E. coli O157:H7 from closely related bacterial species or nontarget contaminants, suggesting high specificity of this assay. The applicability of SERS-LFS to the analysis of E. coli O157:H7 in milk, chicken breast, and beef was also validated, indicating that the sensitivity was not disturbed by the food matrix. In summary, the SERS-LFS developed in this study could be a powerful tool for the quantitative and sensitive screening of E. coli O157:H7 in a food matrix. PRACTICAL APPLICATION: This study demonstrates that a surface-enhanced Raman scattering (SERS)-based lateral flow strip (LFS) could be used as a rapid and sensitive method for Escherichia coli O157:H7 detection. Furthermore, this SERS-based LFS could achieve quantitative detection of the target, eliminating the defect of the traditional colloidal gold LFS, which is not quantifiable.
Collapse
Affiliation(s)
- Hai-Bin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin Univ. of Science and Technology, Tianjin, 300457, China.,School of Life Sciences, North China Univ. of Science and Technology, Tangshan, 063000, China
| | - Chun-Yang Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Chen-Ning Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin Univ. of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin Univ. of Science and Technology, Tianjin, 300457, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ. (BTBU), Beijing, 100048, China
| |
Collapse
|
27
|
Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. LAB ON A CHIP 2019; 19:2486-2499. [PMID: 31251312 DOI: 10.1039/c9lc00104b] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral flow assays (LFAs) are rapid, inexpensive, easy-to-manufacture and -use tests widely employed in medical and environmental applications, particularly in low resource settings. Historically, LFAs have been stigmatized as having limited sensitivity. However, as their global usage expands, extensive research has demonstrated that it is possible to substantially improve LFA sensitivity without sacrificing their advantages. In this critical review, we have compiled state-of-the-art approaches to LFA sensitivity enhancement. Moreover, we have organized and evaluated these approaches from a system-level perspective, as we have observed that the advantages and disadvantages of each approach have arisen from the integrated and tightly interconnected chemical, physical, and optical properties of LFAs.
Collapse
Affiliation(s)
| | - Helen V Hsieh
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA.
| | | | - Bernhard H Weigl
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA. and Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
28
|
Urusov AE, Zherdev AV, Dzantiev BB. Towards Lateral Flow Quantitative Assays: Detection Approaches. BIOSENSORS 2019; 9:E89. [PMID: 31319629 PMCID: PMC6784366 DOI: 10.3390/bios9030089] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Point-of-care (POC) or bedside analysis is a global trend in modern diagnostics. Progress in POC testing has largely been provided by advanced manufacturing technology for lateral flow (immunochromatographic) test strips. They are widely used to rapidly and easily control a variety of biomarkers of infectious diseases and metabolic and functional disorders, as well as in consumer protection and environmental monitoring. However, traditional lateral flow tests rely on visual assessment and qualitative conclusion, which limit the objectivity and information output of the assays. Therefore, there is a need for approaches that retain the advantages of lateral flow assays and provide reliable quantitative information about the content of a target compound in a sample mixture. This review describes the main options for detecting, processing, and interpreting immunochromatographic analysis results. The possibilities of modern portable detectors that register colored, fluorescent, magnetic, and conductive labels are discussed. Prospects for further development in this direction are also examined.
Collapse
Affiliation(s)
- Alexandr E Urusov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| |
Collapse
|
29
|
Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19495-19505. [PMID: 31058488 DOI: 10.1021/acsami.9b03920] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid and early diagnosis of respiratory viruses is key to preventing infections from spreading and guiding treatments. Here, we developed a sensitive and quantitative surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of influenza A H1N1 virus and human adenovirus (HAdV) by using Fe3O4@Ag nanoparticles as magnetic SERS nanotags. The new type of Fe3O4@Ag magnetic tags, which were conjugated with dual-layer Raman dye molecules and target virus-capture antibodies, performs the following functions: specific recognition and magnetic enrichment of target viruses in the solution and SERS detection of the viruses on the strip. Based on this strategy, the magnetic SERS strip can directly be used for real biological samples without any sample pretreatment steps. The limits of detection for H1N1 and HAdV were 50 and 10 pfu/mL, respectively, which were 2000 times more sensitive than those from the standard colloidal gold strip method. Moreover, the proposed strip is easy to operate, rapid, stable, and can achieve high throughput and is thus a potential tool for early detection of virus infection.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Xiaolong Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| | - Keli Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yanhui Zhu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Zhen Rong
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | | | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
30
|
Huang Z, Hu S, Xiong Y, Wei H, Xu H, Duan H, Lai W. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019; 202:96-110. [PMID: 31171232 DOI: 10.1016/j.talanta.2019.04.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Along with the considerable potential and increasing demand of the point-of-care testing (POCT), corresponding detection platforms have attracted great interest in both academic and practical fields. The first few generations of conventional detection devices tend to be costly, complicated to operate and hard to move on account of early limitations in the level of technological development and relatively high requirement of performance. Owing to the requirements for rapidity, simplicity, accuracy and cost controlling in the POCT, reader systems are urgently needed to be developed, upgraded and modified constantly, realizing on-site testing and healthcare management without a specific place or cumbersome operation. Accordingly, numerous rapid detection platforms with diverse size and performance have emerged such as bench-top apparatuses, handheld devices and intelligent detection devices. This review discusses various devices developed mainly for the detection of lateral flow test strips (LFTSs) or microfluidic strips in the POCT and summarizes these devices by size and portability. Furthermore, on the basis of various detection methods and diverse probes usually containing specific nanoparticles composites, three most common aspects of detection rationale in the POCT are selected to elaborate each kind of detection platforms in this paper: colorimetric assay, luminescent detection and magnetic signal detection. Herein, we focus on their structures, detection mechanisms and assay results, accompany with discussions and comments on the performances, costs and potential application, as well as advantages and limitations of each technique. In addition, perspectives on the future advances of detection platforms and some conclusions are proposed.
Collapse
Affiliation(s)
- Jinchuan Yang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China.
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| |
Collapse
|
32
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
33
|
Yan W, Wang K, Xu H, Huo X, Jin Q, Cui D. Machine Learning Approach to Enhance the Performance of MNP-Labeled Lateral Flow Immunoassay. NANO-MICRO LETTERS 2019; 11:7. [PMID: 34137967 PMCID: PMC7770769 DOI: 10.1007/s40820-019-0239-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/29/2018] [Indexed: 05/04/2023]
Abstract
The use of magnetic nanoparticle (MNP)-labeled immunochromatography test strips (ICTSs) is very important for point-of-care testing (POCT). However, common diagnostic methods cannot accurately analyze the weak magnetic signal from ICTSs, limiting the applications of POCT. In this study, an ultrasensitive multiplex biosensor was designed to overcome the limitations of capturing and normalization of the weak magnetic signal from MNPs on ICTSs. A machine learning model for sandwich assays was constructed and used to classify weakly positive and negative samples, which significantly enhanced the specificity and sensitivity. The potential clinical application was evaluated by detecting 50 human chorionic gonadotropin (HCG) samples and 59 myocardial infarction serum samples. The quantitative range for HCG was 1-1000 mIU mL-1 and the ideal detection limit was 0.014 mIU mL-1, which was well below the clinical threshold. Quantitative detection results of multiplex cardiac markers showed good linear correlations with standard values. The proposed multiplex assay can be readily adapted for identifying other biomolecules and also be used in other applications such as environmental monitoring, food analysis, and national security.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Hao Xu
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xuyang Huo
- Department of Biomedical Engineering, JiLin Medical University, JiLin, 132013, People's Republic of China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
- Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
34
|
Luo K, Kim HY, Oh MH, Kim YR. Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities. Crit Rev Food Sci Nutr 2018; 60:157-170. [PMID: 30311773 DOI: 10.1080/10408398.2018.1516623] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As a representative colorimetic biosnesor, paper-based LFSA have emerged as a promising and robust tool that can easily and instansly detect the presence of target biological components in food sample. Recently, LFSAs have gained a considerable attention as an alternative method for rapid diagnosis of foodborne pathogens to the conventional culture-based assays such as plate counting and PCR. One major drawback of the current LFSAs for the detection of pathogenic bacteria is the low sensitivity, limiting its practical applications in POCT. Not like many other protein-based biomarkers that are present in nM or pM range, the number of pathogenic bacteria that cause disease can be as low as few CFU/ml. Here, we review current advances in LFSAs for the detection of pathogenic bacteria in terms of chromatic agents and analyte types. Furthermore, recent approaches for signal enhancement and modifications of the LFSA architecture for multiplex detection of pathogenic bacteria are included in this review, together with the advantages and limitations of each techniques. Finally, the technological challenges and future prospect of LFSA-based POCT for the detection of pathogenic bacteria are discussed.
Collapse
Affiliation(s)
- Ke Luo
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju 55365 Korea
| | - Young-Rok Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104 Korea
| |
Collapse
|
35
|
Huang H, Zhao G, Dou W. Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay. Biosens Bioelectron 2018; 107:266-271. [DOI: 10.1016/j.bios.2018.02.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 01/23/2023]
|
36
|
Urusov AE, Petrakova AV, Zherdev AV, Dzantiev BB. Application of Magnetic Nanoparticles in Immunoassay. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s1995078017050135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Wang C, Guan D, Chen C, He S, Liu X, Wang C, Wu H. Rapid detection of unconjugated estriol in the serum via superparamagnetic lateral flow immunochromatographic assay. Anal Bioanal Chem 2017; 410:123-130. [DOI: 10.1007/s00216-017-0699-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
|
38
|
|
39
|
Li Q, Zhang S, Cai Y, Yang Y, Hu F, Liu X, He X. Rapid detection ofListeria monocytogenesusing fluorescence immunochromatographic assay combined with immunomagnetic separation technique. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qianru Li
- College of Food Sciences; South China University of Technology; Guangzhou 510640 China
- Fisheries College; Guangdong Ocean University; Zhanjiang 524088 China
| | - Sai Zhang
- National & Local United Engineering Lab of Rapid Diagnostic Test; Guangzhou Wondfo Biotech Co., Ltd.; Guangzhou 5l0663 China
| | - Yanxue Cai
- College of Food Sciences; South China University of Technology; Guangzhou 510640 China
| | - Yuexi Yang
- National & Local United Engineering Lab of Rapid Diagnostic Test; Guangzhou Wondfo Biotech Co., Ltd.; Guangzhou 5l0663 China
| | - Fei Hu
- National & Local United Engineering Lab of Rapid Diagnostic Test; Guangzhou Wondfo Biotech Co., Ltd.; Guangzhou 5l0663 China
| | - Xiaoyun Liu
- National & Local United Engineering Lab of Rapid Diagnostic Test; Guangzhou Wondfo Biotech Co., Ltd.; Guangzhou 5l0663 China
| | - Xiaowei He
- College of Food Sciences; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
40
|
Connolly R, O' Kennedy R. Magnetic lateral flow immunoassay test strip development - Considerations for proof of concept evaluation. Methods 2017; 116:132-140. [PMID: 28213280 DOI: 10.1016/j.ymeth.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 11/15/2022] Open
Abstract
Lateral flow immunoassays (LFIA) have grown to become the predominant test device format for the diagnostics and point-of-care industries. The demand for robust and reproducible LFIAs has been facilitated through scale-up production methods using specialized and automated instruments. However, the feasibility of a LFIA device can still be evaluated in a small-scale laboratory setting through controlled manual preparation methods. The advent of super-paramagnetic (SPMP) labels for use in lateral flow has heralded the possibility of highly sensitive and stable LFIAs. The methods used for the preparation of a magnetic LFIA prototype device using a reserved suite of laboratory equipment are described.
Collapse
Affiliation(s)
- R Connolly
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - R O' Kennedy
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
41
|
Etayash H, Thundat T, Kaur K. Bacterial Detection Using Peptide-Based Platform and Impedance Spectroscopy. Methods Mol Biol 2017; 1572:113-124. [PMID: 28299684 DOI: 10.1007/978-1-4939-6911-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides have the ability to function as bio-recognition elements in the detection of bacteria. For instance, we showed that Leucocin A, an antimicrobial peptide from class IIa bacteriocins, binds gram-positive Listeria monocytogenes with higher affinity than other gram-positive bacteria like S. aureus, L. innocua, and E. faecalis. The binding was detected using impedance spectroscopy when Leucocin A immobilized on impedance electrodes binds bacteria from a sample. Here we highlight the strength of utilizing Leucocin A as a bio-recognition probe in biosensor platforms and provide details on its application in real-time bacterial detection using electrochemical impedance spectroscopy. A simple new generation impedance array analyzer is utilized that works at very low frequencies to identify interactions between peptide and the target bacteria.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E1
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E1.
- Chapman University School of Pharmacy (CUSP), Chapman University, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA.
| |
Collapse
|
42
|
Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2028-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Wang W, Liu L, Song S, Xu L, Zhu J, Kuang H. Gold nanoparticle-based paper sensor for multiple detection of 12 Listeria spp. by P60-mediated monoclonal antibody. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1263986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Wenbin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Jianping Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, People’s Republic of China
| |
Collapse
|
44
|
Xiao K, Wang K, Qin W, Hou Y, Lu W, Xu H, Wo Y, Cui D. Use of quantum dot beads-labeled monoclonal antibody to improve the sensitivity of a quantitative and simultaneous immunochromatographic assay for neuron specific enolase and carcinoembryonic antigen. Talanta 2016; 164:463-469. [PMID: 28107959 DOI: 10.1016/j.talanta.2016.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 01/11/2023]
Abstract
Detection of multiplex tumor markers was of great importance for cancer diagnosis. Immunochromatographic test strip (ICTS) was the most frequently-used point-of-care detection means. Herein, a convenient and fast method for simultaneous quantitative detection of neuron specific enolase (NSE) and carcinoembryonic antigen (CEA) was developed based on ICTS using quantum dot beads (QBs) as marking material. Good monodispersity, high colloidal stability and carboxyl-modified (COOH-) QBs were used. For this method, two test lines were applied to the NC membrane for simultaneous analysis of CEA and NSE respectively. The ideal limit of CEA and NSE detection was 0.0378ng/mL and 0.0426ng/mL with scarcely any cross-reactivity. Moreover, the fluorescent signal intensity of the nitrocellulose membrane could be easily read out in the cooperation of the "Handing" system without professional operators. The possible clinical utilization of this platform was demonstrated by detecting 100 clinic human serums. The result showed that the platform had sensitivity of 99% and 97% for CEA and NSE, while the specificity was 97% and 100% respectively. Our results indicated that the QBs based ICTS not only owning the ability of sensitive and specific simultaneous detection of CEA and NSE, but also showing the potential in developing this ICTS into a routine part of early lung cancer diagnosis.
Collapse
Affiliation(s)
- Kun Xiao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, China.
| | - Weijian Qin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yafei Hou
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenting Lu
- Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong 510280, China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Wo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200011, China.
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai 200240, China.
| |
Collapse
|
45
|
Zangheri M, Di Nardo F, Mirasoli M, Anfossi L, Nascetti A, Caputo D, De Cesare G, Guardigli M, Baggiani C, Roda A. Chemiluminescence lateral flow immunoassay cartridge with integrated amorphous silicon photosensors array for human serum albumin detection in urine samples. Anal Bioanal Chem 2016; 408:8869-8879. [DOI: 10.1007/s00216-016-9991-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/02/2016] [Accepted: 09/29/2016] [Indexed: 01/27/2023]
|
46
|
Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species. PLoS One 2016; 11:e0160544. [PMID: 27489951 PMCID: PMC4973958 DOI: 10.1371/journal.pone.0160544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
Collapse
|
47
|
Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli. Anal Bioanal Chem 2016; 408:6071-8. [DOI: 10.1007/s00216-016-9715-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/04/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
|
48
|
Park J, Shin JH, Park JK. Pressed Paper-Based Dipstick for Detection of Foodborne Pathogens with Multistep Reactions. Anal Chem 2016; 88:3781-8. [DOI: 10.1021/acs.analchem.5b04743] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juhwan Park
- Department of Bio and Brain
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Joong Ho Shin
- Department of Bio and Brain
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Je-Kyun Park
- Department of Bio and Brain
Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
49
|
Tu Z, Chen Q, Li Y, Xiong Y, Xu Y, Hu N, Tao Y. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Anal Biochem 2016; 493:1-7. [DOI: 10.1016/j.ab.2015.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
50
|
Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 2015; 73:47-63. [DOI: 10.1016/j.bios.2015.05.050] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
|