1
|
Xie X, He Z, Sun Z, Zhang S, Cao H, Hammock BD, Liu X. Shark anti-idiotypic variable new antigen receptor specific for an alpaca nanobody: Exploration of a nontoxic substitute to ochratoxin A in immunoassay. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135264. [PMID: 39032175 DOI: 10.1016/j.jhazmat.2024.135264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Nontoxic substitutes to mycotoxins can facilitate the development of eco-friendly immunoassays. To explore a novel nontoxic substitute to ochratoxin A (OTA), this study screened shark anti-idiotypic variable new antigen receptors (VNARs) against the alpaca anti-OTA nanobody Nb28 through phage display. After four rounds of biopanning of a naïve VNAR phage display library derived from six adult Chiloscyllium plagiosum sharks, one positive clone, namely, P-3, was validated through a phage enzyme-linked immunosorbent assay (phage ELISA). The recombinant anti-idiotypic VNAR AId-V3 was obtained by prokaryotic expression, and the interactions between Nb28 and AId-V3 were investigated via computer-assisted simulation. The affinity of AId-V3 for Nb28 and its heptamer Nb28-C4bpα was measured using Biacore assay. Combining Nb28-C4bpα with AId-V3, a novel direct competitive ELISA (dcELISA) was developed for OTA analysis, with a limit of detection of 0.44 ng/mL and a linear range of 1.77-32.25 ng/mL. The good selectivity, reliability, and precision of dcELISA were confirmed via cross-reaction analysis and recovery experiments. Seven commercial pepper powder samples were tested using dcELISA and validated using high-performance liquid chromatography. Overall, the shark anti-idiotypic VNAR was demonstrated as a promising nontoxic substitute to OTA, and the proposed method was confirmed as a reliable tool for detecting OTA in food.
Collapse
Affiliation(s)
- Xiaoxia Xie
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhenyun He
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhichang Sun
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Sihang Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hongmei Cao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Hao Z, Dong X, Zhang Z, Qin Z. A Nanobody of PEDV S1 Protein: Screening and Expression in Escherichia coli. Biomolecules 2024; 14:1116. [PMID: 39334881 PMCID: PMC11430113 DOI: 10.3390/biom14091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant economic losses to the pig farming industry in various countries for a long time. Currently, there are no highly effective preventive or control measures available. Research into the pathogenic mechanism of PEDV has shown that it primarily causes infection by binding the S protein to the CD13 (APN) receptor on the membrane of porcine intestinal epithelial cells. The S1 region contains three neutralization epitopes and multiple receptor-binding domains, which are closely related to viral antigenicity and ad-sorption invasion. Nanobodies are a type of single-domain antibody that have been discovered in recent years. They can be expressed on a large scale through prokaryotic expression systems, which makes them cost-effective, stable, and less immunogenic. This study used a phage display library of nanobodies against the PEDV S1 protein. After three rounds of selection and enrichment, the DNA sequence of the highly specific nanobody S1Nb1 was successfully obtained. To obtain soluble nanobody S1Nb1, its DNA sequence was inserted into the vector Pcold and a solubility-enhancing SUMO tag was added. The resulting recombinant vector, Pcold-SUMO-S1Nb1, was then transformed into E. coli BL21(DE3) to determine the optimal expression conditions for the nanobody. Following purification using Ni-column affinity chromatography, Western blot analysis confirmed the successful purification of S1Nb1 carrying the solubility-enhancing tag. ELISA results demonstrated a strong affinity between the S1Nb1 nanobody and PEDV S1 protein.
Collapse
Affiliation(s)
| | | | | | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Z.H.); (X.D.); (Z.Z.)
| |
Collapse
|
3
|
Koroleva EA, Goryainova OS, Ivanova TI, Rutovskaya MV, Zigangirova NA, Tillib SV. Anti-Idiotypic Nanobodies Mimicking an Epitope of the Needle Protein of the Chlamydial Type III Secretion System for Targeted Immune Stimulation. Int J Mol Sci 2024; 25:2047. [PMID: 38396724 PMCID: PMC10889375 DOI: 10.3390/ijms25042047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.
Collapse
Affiliation(s)
- Ekaterina A. Koroleva
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Tatiana I. Ivanova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Marina V. Rutovskaya
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Naylia A. Zigangirova
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
4
|
Lin M, Liu Y, Shen C, Meng M, Zhang X, Xu C, Jin J, Hu X, Zhu Q, Xie Y, Chen W, Liu X, Lin J. Generation of anti-idiotypic antibodies mimicking Cry2Aa toxin from an immunized mouse phage display library as potential insecticidal agents against Plutella xylostella. Biochem Biophys Res Commun 2024; 691:149308. [PMID: 38029542 DOI: 10.1016/j.bbrc.2023.149308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
This study tried to generate anti-idiotypic antibodies (Ab2s) which mimic Cry2Aa toxin using a phage-display antibody library (2.8 × 107 CFU/mL). The latter was constructed from a mouse immunized with F (ab')2 fragments digested from anti-Cry2Aa polyclonal antibodies. The F (ab')2 fragments and Plutella xylostella (P. xylostella) brush border membrane vesicles (BBMV) were utilized as targets for selection. Eight mouse phage-display single-chain variable fragments (scFvs) were isolated and identified by enzyme-linked immunoassay (ELISA), PCR and DNA sequencing after four rounds of biopanning. Among them, M3 exhibited the highest binding affinity with F (ab')2, while M4 bound the best with the toxin binding region of cadherin of P. xylostella (PxCad-TBR). Both of these two fragments were chosen for prokaryotic expression. The expressed M3 and M4 proteins with molecular weights of 30 kDa were purified. The M4 showed a binding affinity of 29.9 ± 2.4 nM with the PxCad-TBR and resulted in 27.8 ± 4.3 % larvae mortality against P. xylostella. Computer-assisted molecular modeling and docking analysis showed that mouse scFv M4 mimicked some Cry2Aa toxin binding sites when interacting with PxCad-TBR. Therefore, anti-idiotypic antibodies generated by BBMV-based screening could be useful for the development of new bio-insecticides as an alternative to Cry2Aa toxin for pest control.
Collapse
Affiliation(s)
- Manman Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Cheng Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meng Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jiafeng Jin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaodan Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Qing Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Wei Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Johnson Lin
- School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
5
|
Zhang T, Liu C, Zheng H, Han X, Lin H, Cao L, Sui J. The specific biopanning of single-domain antibody against haptens based on a functionalized cryogel. J Mol Recognit 2023; 36:e2999. [PMID: 36225143 DOI: 10.1002/jmr.2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022]
Abstract
Phage display technology is commonly applied for high-throughput screening of single-domain antibodies (sdAbs), and the problem of non-specific adsorption caused by carrier proteins seriously affects the biopanning of single-domain antibodies specific to haptens. In this paper, enrofloxacin (ENR)-functionalized cryogels were prepared by the ethylenediamine (EDA) and carbodiimide methods for application in the biopanning of ENR-specific phages. To improve the efficiency of biopanning, double blocking, a wash solution flow rate of 1 mL/min, and phage pre-incubation were applied to the biopanning process through single-factor experiments. Results of flat colony counting showed that the phage output of AG-ENR cryogels was 15 times higher than that of AG cryogels for the same input amount. And seven complete sequences of ENR-specific shark sdAbs were obtained by monoclonal phage ELISA and sequence alignment. All these results indicate that functionalized cryogels could be used as a novel and efficient method for phage biopanning for single-domain antibodies to haptens.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang Liu
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hongwei Zheng
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangning Han
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Limin Cao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianxin Sui
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
A Review of Potential Therapeutic Strategies for COVID-19. Viruses 2022; 14:v14112346. [PMID: 36366444 PMCID: PMC9696587 DOI: 10.3390/v14112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 02/01/2023] Open
Abstract
Coronavirus disease 2019 is a rather heterogeneous disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing pandemic is a global threat with increasing death tolls worldwide. SARS-CoV-2 belongs to lineage B β-CoV, a subgroup of Sarbecovirus. These enveloped, large, positive-sense single-stranded RNA viruses are easily spread among individuals, mainly via the respiratory system and droplets. Although the disease has been gradually controlled in many countries, once social restrictions are relaxed the virus may rebound, leading to a more severe and uncontrollable situation again, as occurred in Shanghai, China, in 2022. The current global health threat calls for the urgent development of effective therapeutic options for the treatment and prevention of SARS-CoV-2 infection. This systematic overview of possible SARS-CoV-2 therapeutic strategies from 2019 to 2022 indicates three potential targets: virus entry, virus replication, and the immune system. The information provided in this review will aid the development of more potent and specific antiviral compounds.
Collapse
|
7
|
Mills C, Campbell K. A new chapter for anti-idiotypes in low molecular weight compound immunoassays. Trends Biotechnol 2022; 40:1102-1120. [DOI: 10.1016/j.tibtech.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
|
8
|
Peltomaa R, Barderas R, Benito-Peña E, Moreno-Bondi MC. Recombinant antibodies and their use for food immunoanalysis. Anal Bioanal Chem 2022; 414:193-217. [PMID: 34417836 PMCID: PMC8380008 DOI: 10.1007/s00216-021-03619-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Life Sciences, University of Turku, 20014, Turku, Finland
- Turku Collegium for Science and Medicine, University of Turku, 20014, Turku, Finland
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
9
|
A Nanobody-Mediated Virus-Targeting Drug Delivery Platform for the Central Nervous System Viral Disease Therapy. Microbiol Spectr 2021; 9:e0148721. [PMID: 34817277 PMCID: PMC8612154 DOI: 10.1128/spectrum.01487-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viral diseases of the central nervous system (CNS) represent a major global health concern. Difficulties in treating these diseases are caused mainly by the biological tissues and barriers, which hinder the transport of drugs into the CNS. To counter this, a nanobody-mediated virus-targeting drug delivery platform (SWCNTs-P-A-Nb) is constructed for CNS viral disease therapy. Viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), is employed as a disease model. SWCNTs-P-A-Nb is successfully constructed by employing single-walled carbon nanotubes, amantadine, and NNV-specific nanobody (NNV-Nb) as the nanocarrier, anti-NNV drug, and targeting ligand, respectively. Results showed that SWCNTs-P-A-Nb has a good NNV-targeting ability in vitro and in vivo, improving the specific distribution of amantadine in NNV-infected sites under the guidance of NNV-Nb. SWCNTs-P-F-A-Nb can pass through the muscle and gill and be excreted by the kidney. SWCNTs-P-A-Nb can transport amantadine in a fast manner and prolong the action time, improving the anti-NNV activity of amantadine. Results so far have indicated that the nanobody-mediated NNV-targeting drug delivery platform is an effective method for VER therapy, providing new ideas and technologies for control of the CNS viral diseases. IMPORTANCE CNS viral diseases have resulted in many deadly epidemics throughout history and continue to pose one of the greatest threats to public health. Drug therapy remains challenging due to the complex structure and relative impermeability of the biological tissues and barriers. Therefore, development in the intelligent drug delivery platform is highly desired for CNS viral disease therapy. In the study, a nanobody-mediated virus-targeting drug delivery platform is constructed to explore the potential application of targeted therapy in CNS viral diseases. Our findings hold great promise for the application of targeted drug delivery in CNS viral disease therapy.
Collapse
|
10
|
Sun W, Zhang Y, Ju Z. Mimotopes for Mycotoxins Diagnosis Based on Random Peptides or Recombinant Antibodies from Phage Library. Molecules 2021; 26:7652. [PMID: 34946736 PMCID: PMC8707711 DOI: 10.3390/molecules26247652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mycotoxins, the small size secondary metabolites of fungi, have posed a threat to the safety of medicine, food and public health. Therefore, it is essential to create sensitive and effective determination of mycotoxins. Based on the special affinity between antibody and antigen, immunoassay has been proved to be a powerful technology for the detection of small analytes. However, the tedious preparation and instability of conventional antibodies restrict its application on easy and fast mycotoxins detection. By virtue of simplicity, ease of use, and lower cost, phage display library provides novel choices for antibodies or hapten conjugates, and lead random peptide or recombinant antibody to becoming the promising and environmental friendly immune-reagents in the next generation of immunoassays. This review briefly describes the latest developments on mycotoxins detection using M13 phage display, mainly focusing on the recent applications of phage display technology employed in mycotoxins detection, including the introduction of phage and phage display, the types of phage displayed peptide/recombinant antibody library, random peptides/recombinant antibodies-based immunoassays, as well as simultaneous determination of multiple mycotoxins.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang 550001, China; (W.S.); (Y.Z.)
| | - Yan Zhang
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang 550001, China; (W.S.); (Y.Z.)
| | - Zhigang Ju
- Pharmacy School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
11
|
Wang L, Zhang G, Qin L, Ye H, Wang Y, Long B, Jiao Z. Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours. Recent Pat Anticancer Drug Discov 2021; 15:200-211. [PMID: 32885759 DOI: 10.2174/1574892815666200904111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours. OBJECTIVE This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours. METHODS Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents. RESULTS EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours. CONCLUSION EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.
Collapse
Affiliation(s)
- Long Wang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Gengyuan Zhang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Yan Wang
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
12
|
Brilhante-da-Silva N, de Oliveira Sousa RM, Arruda A, Dos Santos EL, Marinho ACM, Stabeli RG, Fernandes CFC, Pereira SDS. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 2021; 25:439-456. [PMID: 34146333 DOI: 10.1007/s40291-021-00533-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
Abstract
The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.
Collapse
Affiliation(s)
- Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Rosa Maria de Oliveira Sousa
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Andrelisse Arruda
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Eliza Lima Dos Santos
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil
| | - Anna Carolina Machado Marinho
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Guerino Stabeli
- Plataforma Bi-institucional de Medicina Translacional.Fundação Oswaldo Cruz-USP, Ribeirão Preto, São Paulo, Brazil
| | - Carla Freire Celedonio Fernandes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
- Plataforma de Desenvolvimento de Anticorpos e Nanocorpos, Fundação Oswaldo Cruz, Fiocruz Ceará, Eusebio, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Soraya Dos Santos Pereira
- Laboratório de Engenharia de Anticorpos, Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO, 76812-245, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil.
- Programa de Pós-graduação em Biologia Experimental, Universidade Federal de Rondônia, Porto Velho, Brazil.
| |
Collapse
|
13
|
Wang F, Li ZF, Wan DB, Vasylieva N, Shen YD, Xu ZL, Yang JY, Gettemans J, Wang H, Hammock BD, Sun YM. Enhanced Non-Toxic Immunodetection of Alternaria Mycotoxin Tenuazonic Acid Based on Ferritin-Displayed Anti-Idiotypic Nanobody-Nanoluciferase Multimers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4911-4917. [PMID: 33870684 DOI: 10.1021/acs.jafc.1c01128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The non-toxic immunoassay for mycotoxins is being paid more attention due to its advantages of higher safety and cost savings by using anti-idiotype antibodies to substitute toxins. In this study, with tenuazonic acid (TeA), a kind of highly toxic Alternaria mycotoxin as the target, an enhanced non-toxic immunoassay was developed based on the ferritin-displayed anti-idiotypic nanobody-nanoluciferase multimers. First, three specific β-type anti-idiotype nanobodies (AId-Nbs) bearing the internal image of TeA mycotoxin were selected from an immune phage display library. Then, the AId-Nb 2D with the best performance was exploited to generate a nanoluciferase (Nluc)-functionalized fusion monomer, by which a one-step non-toxic immunodetection format for TeA was established and proven to be effective. To further improve the affinity of the monomer, a ferritin display strategy was used to prepare 2D-Nluc fusion multimers. Finally, an enhanced bioluminescent enzyme immunoassay (BLEIA) was established in which the half maximal inhibitory concentration (IC50) for TeA was 6.5 ng/mL with a 10.5-fold improvement of the 2D-based enzyme-linked immunosorbent assay (ELISA). The proposed assay exhibited high selectivities and good recoveries of 80.0-95.2%. The generated AId-Nb and ferritin-displayed AId-Nb-Nluc multimers were successfully extended to the application of TeA in food samples. This study brings a new strategy for production of multivalent AId-Nbs and non-toxic immunoassays for trace toxic contaminants.
Collapse
Affiliation(s)
- Feng Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhen-Feng Li
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- Guangzhou Nabo Antibody Technology Co. Ltd., Guangzhou 510530, P. R. China
| | - De-Bin Wan
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yu-Dong Shen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhen-Lin Xu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jin-Yi Yang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Yuan-Ming Sun
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
14
|
Li P, Deng S, Zech Xu Z. Toxicant substitutes in immunological assays for mycotoxins detection: A mini review. Food Chem 2020; 344:128589. [PMID: 33246689 DOI: 10.1016/j.foodchem.2020.128589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Recurring mycotoxins contamination has posedaseriousthreatto food safety worldwide. Competitive immunoassays are widely used techniques for high-throughput mycotoxins detection in agricultural products and foods. However, the inevitable introduction of mycotoxin conjugates produced by chemical conjugation usually results in complicated by-products, large batch errors and threats to operators and environment. Biologically derived surrogates of mycotoxin conjugates or mycotoxin standards are renewable immunoreagents. They can serve the same function as the responding counterparts in the immunoassays. The substitute-based immunoassays exhibit satisfactory sensitivity, pose less health threats to operators and environment, and contribute to the standardization of immunoassays for mycotoxins. This review focuses on the current applications of substitute-based immunoassays, clarifies their underlying mechanisms and provides a careful comparison. Challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shengliang Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang 330096, China.
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
15
|
Li Y, Hu Y, Tu Z, Ning Z, He Q, Fu J. Research on the Mechanism of Action of a Citrinin and Anti-Citrinin Antibody Based on Mimotope X27. Toxins (Basel) 2020; 12:toxins12100655. [PMID: 33066313 PMCID: PMC7602013 DOI: 10.3390/toxins12100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Immunoassays are developed based on antigen–antibody interactions. A mimotope is an effective recognition receptor used to study the mechanism of action of antigens and antibodies, and is used for improving the sensitivity of the antibody. In this study, we built a 3D structure of the citrinin (CIT) mimotope X27 and anti-CIT single-chain antibody fragment (ScFv) through a “homologous modeling” strategy. Then, CIT and X27 were respectively docked to anti-CIT ScFv by using the “molecular docking” program. Finally, T28, F29, N30, R31, and Y32 were confirmed as the key binding sites in X27. Furthermore, the result of the phage-ELISA showed that the mutational phage lost the binding activity to the anti-CIT ScFv when the five amino acids were mutated to “alanine”, thereby proving the correctness of the molecular docking model. Lastly, a site-directed saturation strategy was adopted for the sites (T28, F29, N30, R31, and Y32). Eighteen different amino acids were introduced to each site on average. The activities of all mutants were identified by indirect competitive ELISA. The sensitivities of mutants T28F, T28I, F29I, F29V, N30T, and N30V were 1.83-, 1.37-, 1.70-, 2.96-, 1.31-, and 2.01-fold higher than that of the wild-type, respectively. In conclusion, the binding model between the CIT and antibody was elaborated for the first time based on the mimotope method, thereby presenting another strategy for improving the sensitivity of citrinin detection in immunoassays.
Collapse
Affiliation(s)
- Yanping Li
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China; (Y.L.); (Z.T.); (Q.H.)
| | - Yucheng Hu
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.H.); (Z.N.)
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China; (Y.L.); (Z.T.); (Q.H.)
| | - Zhenqiang Ning
- College of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.H.); (Z.N.)
| | - Qinghua He
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China; (Y.L.); (Z.T.); (Q.H.)
| | - Jinheng Fu
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China; (Y.L.); (Z.T.); (Q.H.)
- Correspondence:
| |
Collapse
|
16
|
Application of phage-display developed antibody and antigen substitutes in immunoassays for small molecule contaminants analysis: A mini-review. Food Chem 2020; 339:128084. [PMID: 33152875 DOI: 10.1016/j.foodchem.2020.128084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Toxic small molecule contaminants (SMCs) residues in food threaten human health. Immunoassays are popular and simple techniques for SMCs analysis. However, immunoassays based on polyclonal antibodies, monoclonal antibodies and chemosynthetic antigens have some defects, such as complicated preparation of antibodies, risk of toxic haptens using for antigen chemosynthesis and so on. Phage-display technique has been proven to be an attractive alternative approach to producing antibody and antigen substitutes of SMCs, and opened up new realms for developing immunoassays of SMCs. These substitutes contain five types, including anti-idiotypic recombinant antibody (AIdA), anti-immune complex peptide (AIcP), anti-immune complex recombinant antibody (AIcA) and anti-SMC recombinant antibody (anti-SMC RAb). In this review, the principle of immunoassays based on the five types of substitutes, as well as their application and advantages are summarized and discussed.
Collapse
|
17
|
Xiong L, Zhang X, Xu Y, Li Y, Liu D, Tu Z, He Q. Anti-idiotypic VHH mediated environmentally friendly immunoassay for citrinin without mycotoxin. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1795631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Liang Xiong
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
- Department of Preventive Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xueqin Zhang
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Yanping Li
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Deguang Liu
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Qinghua He
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
18
|
|
19
|
Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115861] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Liu R, Shi R, Zou W, Chen W, Yin X, Zhao F, Yang Z. Highly sensitive phage-magnetic-chemiluminescent enzyme immunoassay for determination of zearalenone. Food Chem 2020; 325:126905. [PMID: 32387950 DOI: 10.1016/j.foodchem.2020.126905] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 11/15/2022]
Abstract
Here we demonstrate a novel phage-magnetic-chemiluminescent enzyme immunoassay (P-MCLEIA) for detection of zearalenone (ZEN). The P-MCLEIA was more efficient than conventional ELISA through several improvements. In the P-MCLEIA, magnetic nanoparticles were replaced of microplates as solid phases to reduce the whole incubation time within 40 min. Phage-mimotope was replaced of chemosynthetic antigen to improve the sensitivity of immunoassay. Chemiluminescence substrate was replaced of chromogenic substrate to further improve the sensitivity. The IC50 value of P-MCLEIA was 31.4 pg/mL, which was about 11 times lower than that of phage-magnetic-enzyme linked immunosorbent assay (P-MELISA) and 72 times lower than that of conventional ELISA. The LOD of P-MCLEIA was 4.3 pg/mL. Recovery study of P-MCLEIA was performed by analyzing ZEN levels in spiked corn samples, intra- and inter-assay recoveries were 80.0-119.8% and 82.7-112.7%, respectively. Furthermore, parallel analysis of natural corn samples showed a good correlation between the P-MCLEIA and high performance liquid chromatography.
Collapse
Affiliation(s)
- Ruxia Liu
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China
| | - Ruirui Shi
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China
| | - Wenting Zou
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China
| | - Wenhua Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianchao Yin
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fengchun Zhao
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China.
| | - Zhengyou Yang
- College of Life Science, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
21
|
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food Chem Toxicol 2020; 137:111161. [PMID: 32014537 DOI: 10.1016/j.fct.2020.111161] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Mycotoxins are considered to be a major risk factor affecting human and animal health as they are one of the most dangerous contaminants of food and feed. This review aims to compile the research developed up to date on the toxicological effects that mycotoxins can induce on human health, through the examination of a selected number of studies in vivo. AFB1 shows to be currently the most studied mycotoxin in vivo, followed by DON, ZEA and OTA. Scarce data was found for FBs, PAT, CIT, AOH and Fusarium emerging mycotoxins. The majority of them concerned the investigation of immunotoxicity, whereas the rest consisted in the study of genotoxicity, oxidative stress, hepatotoxicity, cytotoxicity, teratogenicity and neurotoxicity. In order to assess the risk, a wide range of different techniques have been employed across the reviewed studies: qPCR, ELISA, IHC, WB, LC-MS/MS, microscopy, enzymatic assays, microarray and RNA-Seq. In the last decade, the attention has been drawn to immunologic and transcriptomic aspects of mycotoxins' action, confirming their toxicity at molecular level. Even though, more in vivo studies are needed to further investigate their mechanism of action on human health.
Collapse
Affiliation(s)
- A Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain.
| | - M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Avinguda Vicent Andrés Estellés S/n, 46100, Burjassot, Spain
| |
Collapse
|
22
|
Hao J, Li Y, Wang J, Xu C, Gao M, Chen W, Zhang X, Hu X, Liu Y, Liu X. Screening and activity identification of an anti-idiotype nanobody for Bt Cry1F toxin from the camelid naive antibody phage display library. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1691156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jia Hao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Yihang Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Jingxuan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Meijing Gao
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Wei Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Xiaodan Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Yuan Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| | - Xianjin Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agri-product Safety and Quality, Ministry of Agriculture, and Institute of Agricultural Product Quality Safety and Nutrition Research, Jiangsu Academy of Agricultural Sciences, Nanjing People’s Republic of China
| |
Collapse
|
23
|
Huang W, Tu Z, Ning Z, He Q, Li Y. Development of Real-Time Immuno-PCR Based on Phage Displayed an Anti-Idiotypic Nanobody for Quantitative Determination of Citrinin in Monascus. Toxins (Basel) 2019; 11:toxins11100572. [PMID: 31575068 PMCID: PMC6832940 DOI: 10.3390/toxins11100572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Citrinin (CIT) is a mycotoxin that has been detected in agricultural products, feedstuff, and Monascus products. At present, research has been performed to develop methods for CIT detection, mainly through TLC, HPLC, biosensor, and immunoassay. The immunoassay method is popular with researchers because of its speed, economy, simplicity, and ease of control. However, mycotoxins are inevitably introduced during the determination. Immunoassays require the use of toxins coupled to carrier proteins or enzymes to make competitive antigens. In this study, anti-idiotypic nanobody X27 as CIT mimetic antigen was used as non-toxic surrogate reagents in immunoassay. Therefore, the X27-based real-time immuno-PCR (rtIPCR) method had been established after optimal experiments of annealing temperature and amplification efficiency of real-time PCR, concentration of coating antibody, phage X27, and methyl alcohol. The IC50 value of the established method in the present study is 9.86 ± 2.52 ng/mL, which is nearly equivalent to the traditional phage ELISA method. However, the linear range is of 0.1-1000 ng/mL, which has been broadened 10-fold compared to the phage ELISA method. Besides, the X27-based rtIPCR method has no cross-reactivity to the common mycotoxins, like aflatoxin B1 (AFB1), deoxynivalenol (DON), ochratoxin A (OTA), and zearalenone (ZEN). The method has also been applied to the determination of CIT in rice flour and flour samples, and the recovery was found to be in the range of 90.0-104.6% and 75.8-110.0% respectively. There was no significant difference in the results between the rtIPCR and UPLC-MS. The anti-idiotypic nanobody as a non-toxic surrogate of CIT makes rtIPCR a promising method for actual CIT analysis in Monascus products.
Collapse
Affiliation(s)
- Wenping Huang
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Zhenqiang Ning
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Qinghua He
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Yanping Li
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
24
|
Zhang C, Zhang Q, Tang X, Zhang W, Li P. Development of an Anti-Idiotypic VHH Antibody and Toxin-Free Enzyme Immunoassay for Ochratoxin A in Cereals. Toxins (Basel) 2019; 11:toxins11050280. [PMID: 31137467 PMCID: PMC6563187 DOI: 10.3390/toxins11050280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/11/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) test kits have been widely used for the determination of mycotoxins in agricultural products and foods, however, this test uses toxin standards with high toxicity and carcinogenicity that seriously threaten human health. In this work, the anti-idiotypic nanobody VHH 2-24 was first developed and then, using it as a surrogate standard, a toxin-free enzyme immunoassay for ochratoxin A (OTA) was established. The IC50 value of the VHH 2-24 surrogate standard-based ELISA was 0.097 µg/mL, with a linear range of 0.027–0.653 µg/mL. The average recoveries were tested by spike-and-recovery experiments, and ranged from 81.8% to 105.0%. The accuracy of the developed ELISA for detecting OTA was further verified by using the high performance liquid chromatography (HPLC) method, and an excellent correlation was observed. In summary, the toxin-free ELISA established in this study proves the latent use of the anti-idiotypic VHH as a surrogate calibrator for other mycotoxins and highly toxic small molecule analysis to improve assay properties for highly sensitive analyte determination in agricultural products.
Collapse
Affiliation(s)
- Caixia Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China.
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China.
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Xiaoqian Tang
- School of Life Sciences, Hubei University, Wuhan 430062, China.
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Wen Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China.
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Peiwu Li
- School of Life Sciences, Hubei University, Wuhan 430062, China.
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
25
|
A novel nanobody and mimotope based immunoassay for rapid analysis of aflatoxin B1. Talanta 2018; 195:55-61. [PMID: 30625581 DOI: 10.1016/j.talanta.2018.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/24/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022]
Abstract
Mimotopes could replace mycotoxins and their conjugates to develop immunoassay methods. The mimotopes obtained by phage display technology were mainly using monoclonal antibodies or polyclonal antibodies as targets. However, the mimotope of recombinant antibody has not been selected and applied to immunoassay for mycotoxin. The purpose of this study was to prove that an immunoassay for mycotoxin could be developed based on both recombinant antibody and its mimotope. Using aflatoxin B1 (AFB1) as a model system, mimotopes of an aflatoxin nanobody Nb28 were screened by phage display. A rapid magnetic beads-based directed competitive ELISA (MB-dcELISA) was developed utilizing Nb28 and its mimotope ME17. The 50% inhibitory concentration and the detection limit of the MB-dcELISA were 0.75 and 0.13 ng/mL, respectively, with a linear range of 0.24-2.21 ng/mL. Further validation study indicated good recovery (84.2-116.2%) with low coefficient of variable (2.2%-15.9%) in spiked corn, rice, peanut, feedstuff, corn germ oil and peanut oil samples. The developed immunoassay based on nanobody and mimotope provides a new strategy for the monitoring of AFB1 and other toxic small molecular weight compounds.
Collapse
|
26
|
Development of a Sensitive Enzyme-Linked Immunosorbent Assay and Rapid Gold Nanoparticle Immunochromatographic Strip for Detecting Citrinin in Monascus Fermented Food. Toxins (Basel) 2018; 10:toxins10090354. [PMID: 30200526 PMCID: PMC6162752 DOI: 10.3390/toxins10090354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022] Open
Abstract
Antibodies against citrinin (CTN) were generated from rabbits, which were injected with CTN-keyhole limpet hemocyanin (KLH). This work involved the development of a sensitive competitive direct enzyme-linked immunosorbent assay (cdELISA) and a rapid gold nanoparticle immunochromatographic strip (immunostrip) method for analyzing CTN in Monascus-fermented food. CTN at a concentration of 5.0 ng/mL caused 50% inhibition (IC50) of CTN-horseradish peroxidase (CTN-HRP) binding to the antibodies in the cdELISA. The capable on-site detection of CTN was accomplished by a rapid antibody-gold nanoparticle immunostrip with a detection limit of 20 ng/mL and that was completed within 15 min. A close inspection of 19 Monascus-fermented foods by cdELISA confirmed that 14 were contaminated with citrinin at levels from 28.6⁻9454 ng/g. Further analysis with the immunostrip is consistent with those results obtained using cdELISA. Both means are sensitive enough for the rapid examination of CTN in Monascus-fermented food products.
Collapse
|
27
|
He T, Zhu J, Nie Y, Hu R, Wang T, Li P, Zhang Q, Yang Y. Nanobody Technology for Mycotoxin Detection in the Field of Food Safety: Current Status and Prospects. Toxins (Basel) 2018; 10:E180. [PMID: 29710823 PMCID: PMC5983236 DOI: 10.3390/toxins10050180] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/18/2023] Open
Abstract
Mycotoxins, which are toxic, carcinogenic, and/or teratogenic, have posed a threat to food safety and public health. Sensitive and effective determination technologies for mycotoxin surveillance are required. Immunoassays have been regarded as useful supplements to chromatographic techniques. However, conventional antibodies involved in immunoassays are difficult to be expressed recombinantly and are susceptible to harsh environments. Nanobodies (or VHH antibodies) are antigen-binding sites of the heavy-chain antibodies produced from Camelidae. They are found to be expressed easily in prokaryotic or eukaryotic expression systems, more robust in extreme conditions, and facile to be used as surrogates for artificial antigens. These properties make them the promising and environmentally friendly immunoreagents in the next generation of immunoassays. This review briefly describes the latest developments in the area of nanobodies used in mycotoxin detection. Moreover, by integrating the introduction of the principle of nanobodies production and the critical assessment of their performance, this paper also proposes the prospect of nanobodies in the field of food safety in the foreseeable future.
Collapse
Affiliation(s)
- Ting He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yao Nie
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Ting Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
28
|
Wang J, Mukhtar H, Ma L, Pang Q, Wang X. VHH Antibodies: Reagents for Mycotoxin Detection in Food Products. SENSORS 2018; 18:s18020485. [PMID: 29415506 PMCID: PMC5855929 DOI: 10.3390/s18020485] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/28/2018] [Accepted: 02/02/2018] [Indexed: 01/23/2023]
Abstract
Mycotoxins are the toxic secondary metabolites produced by fungi and they are a worldwide public health concern. A VHH antibody (or nanobody) is the smallest antigen binding entity and is produced by heavy chain only antibodies. Compared with conventional antibodies, VHH antibodies overcome many pitfalls typically encountered in clinical therapeutics and immunodiagnostics. Likewise, VHH antibodies are particularly useful for monitoring mycotoxins in food and feedstuffs, as they are easily genetic engineered and have superior stability. In this review, we summarize the efforts to produce anti-mycotoxins VHH antibodies and associated assays, presenting VHH as a potential tool in mycotoxin analysis.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hina Mukhtar
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qian Pang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Qiu Y, Li P, Dong S, Zhang X, Yang Q, Wang Y, Ge J, Hammock BD, Zhang C, Liu X. Phage-Mediated Competitive Chemiluminescent Immunoassay for Detecting Cry1Ab Toxin by Using an Anti-Idiotypic Camel Nanobody. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:950-956. [PMID: 29293334 PMCID: PMC7314401 DOI: 10.1021/acs.jafc.7b04923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cry toxins have been widely used in genetically modified organisms for pest control, raising public concern regarding their effects on the natural environment and food safety. In this work, a phage-mediated competitive chemiluminescent immunoassay (c-CLIA) was developed for determination of Cry1Ab toxin using anti-idiotypic camel nanobodies. By extracting RNA from camels' peripheral blood lymphocytes, a naive phage-displayed nanobody library was established. Using anti-Cry1Ab toxin monoclonal antibodies (mAbs) against the library for anti-idiotypic antibody screening, four anti-idiotypic nanobodies were selected and confirmed to be specific for anti-Cry1Ab mAb binding. Thereafter, a c-CLIA was developed for detection of Cry1Ab toxin based on anti-idiotypic camel nanobodies and employed for sample testing. The results revealed a half-inhibition concentration of developed assay to be 42.68 ± 2.54 ng/mL, in the linear range of 10.49-307.1 ng/mL. The established method is highly specific for Cry1Ab recognition, with negligible cross-reactivity for other Cry toxins. For spiked cereal samples, the recoveries of Cry1Ab toxin ranged from 77.4% to 127%, with coefficient of variation of less than 9%. This study demonstrated that the competitive format based on phage-displayed anti-idiotypic nanobodies can provide an alternative strategy for Cry toxin detection.
Collapse
Affiliation(s)
- Yulou Qiu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pan Li
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaoshuai Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qianru Yang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Ge
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bruce D. Hammock
- Laboratory of Pesticide & Biotechnology, Department of Entomology, University of California, Davis, CA 95616, USA
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Corresponding author at: Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Tel.:+86-25-8439 0401; (C. Zhang)
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
30
|
Peltomaa R, Benito-Peña E, Moreno-Bondi MC. Bioinspired recognition elements for mycotoxin sensors. Anal Bioanal Chem 2017; 410:747-771. [PMID: 29127461 DOI: 10.1007/s00216-017-0701-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
Abstract
Mycotoxins are low molecular weight molecules produced as secondary metabolites by filamentous fungi that can be found as natural contaminants in many foods and feeds. These toxins have been shown to have adverse effects on both human and animal health, and are the cause of significant economic losses worldwide. Sensors for mycotoxin analysis have traditionally applied elements of biological origin for the selective recognition purposes. However, since the 1970s there has been an exponential growth in the use of genetically engineered or synthetic biomimetic recognition elements that allow some of the limitations associated with the use of natural receptors for the analyses of these toxins to be circumvented. This review provides an overview of recent advances in the application of bioinspired recognition elements, including recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, to the development of sensors for mycotoxins based on different transduction elements. Graphical abstract Novel analytical methods based on bioinspired recognition elements, such as recombinant antibodies, peptides, aptamers, and molecularly imprinted polymers, can improve the detection of mycotoxins and provide better tools than their natural counterparts to ensure food safety.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - María C Moreno-Bondi
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
31
|
Xiong S, Zhou Y, Huang X, Yu R, Lai W, Xiong Y. Ultrasensitive direct competitive FLISA using highly luminescent quantum dot beads for tuning affinity of competing antigens to antibodies. Anal Chim Acta 2017; 972:94-101. [DOI: 10.1016/j.aca.2017.03.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 01/07/2023]
|
32
|
Bazin I, Tria SA, Hayat A, Marty JL. New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 2016; 87:285-298. [PMID: 27568847 DOI: 10.1016/j.bios.2016.06.083] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/24/2022]
Abstract
Biological and synthetic recognition elements are at the heart of the majority of modern bioreceptor assays. Traditionally, enzymes and antibodies have been integrated in the biosensor designs as a popular choice for the detection of toxin molecules. But since 1970s, alternative biological and synthetic binders have been emerged as a promising alternative to conventional biorecognition elements in detection systems for laboratory and field-based applications. Recent research has witnessed immense interest in the use of recombinant enzymatic methodologies and nanozymes to circumvent the drawbacks associated with natural enzymes. In the area of antibody production, technologies based on the modification of in vivo synthesized materials and in vitro approaches with development of "display "systems have been introduced in the recent years. Subsequently, molecularly-imprinted polymers and Peptide nucleic acid (PNAs) were developed as an attractive receptor with applications in the area of sample preparation and detection systems. In this article, we discuss all alternatives to conventional biomolecules employed in the detection of various toxin molecules We review recent developments in modified enzymes, nanozymes, nanobodies, aptamers, peptides, protein scaffolds and DNazymes. With the advent of nanostructures and new interface materials, these recognition elements will be major players in future biosensor development.
Collapse
Affiliation(s)
- Ingrid Bazin
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France.
| | - Scherrine A Tria
- École des Mines d'Alès, 6 Avenuede Clavières, 30100 Alès Cedex, France
| | - Akhtar Hayat
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France; Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology (CIIT), Lahore, Pakistan
| | - Jean-Louis Marty
- BAE (Biocapteurs-Analyses-Environnement), Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan Cedex 66860, France
| |
Collapse
|
33
|
Wang Y, Li P, Zhang Q, Hu X, Zhang W. A toxin-free enzyme-linked immunosorbent assay for the analysis of aflatoxins based on a VHH surrogate standard. Anal Bioanal Chem 2016; 408:6019-26. [DOI: 10.1007/s00216-016-9370-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 01/30/2023]
|
34
|
Tu Z, Chen Q, Li Y, Xiong Y, Xu Y, Hu N, Tao Y. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Anal Biochem 2016; 493:1-7. [DOI: 10.1016/j.ab.2015.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
35
|
Qiu YL, He QH, Xu Y, Wang W, Liu YY. Modification of a deoxynivalenol-antigen-mimicking nanobody to improve immunoassay sensitivity by site-saturation mutagenesis. Anal Bioanal Chem 2015; 408:895-903. [PMID: 26608283 DOI: 10.1007/s00216-015-9181-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
A nanobody (N-28) which can act as a deoxynivalenol (DON) antigen has been generated, and its residues Thr102-Ser106 were identified to bind with anti-DON monoclonal antibody by alanine-scanning mutagenesis. Site-saturation mutagenesis was used to analyze the plasticity of five residues and to improve the sensitivity of the N-28-based immunoassay. After mutagenesis, three mutants were selected by phage immunoassay and were sequenced. The half-maximal inhibitory concentrations of the immunoassay based on mutants N-28-T102Y, N-28-V103L, and N-28-Y105F were 24.49 ± 1.0, 51.83 ± 2.5, and 35.65 ± 1.6 ng/mL, respectively, showing the assay was, respectively, 3.2, 1.5, and 2.2 times more sensitive than the wild-type-based assay. The best mutant, N-28-T102Y, was used to develop a competitive phage ELISA to detect DON in cereals with high specificity and accuracy. In addition, the structural properties of N-28-T102Y and N-28 were investigated, revealing that the affinity of N-28-T102Y decreased because of increased steric hindrance with the large side chain. The lower-binding-affinity antigen mimetic may contribute to the improvement of the sensitivity of competitive immunoassays. These results demonstrate that nanobodies would be a favorable tool for engineering. Moreover, our results have laid a solid foundation for site-saturation mutagenesis of antigen-mimicking nanobodies to improve immunoassay sensitivity for small molecules.
Collapse
Affiliation(s)
- Yu-Lou Qiu
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Wei Wang
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China
| | - Yuan-Yuan Liu
- State Key Laboratory of Food Science and Technology, Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China
| |
Collapse
|