1
|
Yin P, Wang X. Progresses in the establishment, evaluation, and application of in vitro blood-brain barrier models. J Neurosci Res 2024; 102:e25359. [PMID: 38859680 DOI: 10.1002/jnr.25359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
The blood-brain barrier (BBB) is a barrier between the circulatory system and the central nervous system (CNS), contributing to CNS protection and maintaining the brain homeostasis. Establishment of in vitro BBB models that are closer to the microenvironment of the human brain is helpful for evaluating the potential and efficiency of a drug penetrating BBB and thus the clinical application value of the drug. The in vitro BBB models not only provide great convenience for screening new drugs that can access to CNS but also help people to have a deeper study on the mechanism of substances entering and leaving the brain, which makes people have greater opportunities in the treatment of CNS diseases. Up to now, although much effort has been paid to the researches on the in vitro BBB models and many progresses have been achieved, no unified method has been described for establishing a BBB model and there is much work to do and many challenges to be faced with in the future. This review summarizes the research progresses in the establishment, evaluation, and application of in vitro BBB models.
Collapse
Affiliation(s)
- Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
2
|
Gallardo-Fernandez M, Garcia AR, Hornedo-Ortega R, Troncoso AM, Garcia-Parrilla MC, Brito MA. In vitro study of the blood-brain barrier transport of bioactives from Mediterranean foods. Food Funct 2024; 15:3420-3432. [PMID: 38497922 DOI: 10.1039/d3fo04760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The Mediterranean diet (MD), characterized by olive oil, olives, fruits, vegetables, and wine intake, is associated with a reduced risk of dementia. These foods are rich in bioactives with neuroprotective and antioxidant properties, including hydroxytyrosol (HT), tyrosol (TYRS), serotonin (SER) and protocatechuic acid (PCA), a phenolic acid metabolite of anthocyanins. It remains to be established if these molecules cross the blood-brain barrier (BBB), a complex interface that strictly controls the entrance of molecules into the brain. We aimed to assess the ability of tyrosine (TYR), HT, TYRS, PCA and SER to pass through the BBB without disrupting its properties. Using Human Brain Microvascular Endothelial Cells as an in vitro model of the BBB, we assessed its integrity by transendothelial electrical resistance, paracellular permeability and immunocytochemical assays of the adherens junction protein β-catenin. The transport across the BBB was evaluated by ultra-high-performance liquid chromatography high resolution mass spectrometry. Results show that tested bioactives did not impair BBB integrity regardless of the concentration evaluated. Additionally, all of them cross the BBB, with the following percentages: HT (∼70%), TYR (∼50%), TYRS (∼30%), SER (∼30%) and PCA (∼9%). These results provide a basis for the MD neuroprotective role.
Collapse
Affiliation(s)
- Marta Gallardo-Fernandez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana Rita Garcia
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Alexandra Brito
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
3
|
Sánchez-Cano F, Hernández-Kelly LC, Ortega A. Silica Nanoparticles Decrease Glutamate Uptake in Blood-Brain Barrier Components. Neurotox Res 2024; 42:20. [PMID: 38436780 PMCID: PMC10912144 DOI: 10.1007/s12640-024-00696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Glutamate is the major excitatory amino acid in the vertebrate brain, playing an important role in most brain functions. It exerts its activity through plasma membrane receptors and transporters, expressed both in neurons and glia cells. Overstimulation of neuronal glutamate receptors is linked to cell death in a process known as excitotoxicity, that is prevented by the efficient removal of the neurotransmitter through glutamate transporters enriched in the glia plasma membrane and in the components of the blood-brain barrier (BBB). Silica nanoparticles (SiO2-NPs) have been widely used in biomedical applications and directed to enter the circulatory system; however, little is known about the potential adverse effects of SiO2-NPs exposure on the BBB transport systems that support the critical isolation function between the central nervous system (CNS) and the peripheral circulation. In this contribution, we investigated the plausible SiO2-NPs-mediated disruption of the glutamate transport system expressed by BBB cell components. First, we evaluated the cytotoxic effect of SiO2-NPs on human brain endothelial (HBEC) and Uppsala 87 Malignant glioma (U-87MG) cell lines. Transport kinetics were evaluated, and the exposure effect of SiO2-NPs on glutamate transport activity was determined in both cell lines. Exposure of the cells to different SiO2-NP concentrations (0.4, 4.8, 10, and 20 µg/ml) and time periods (3 and 6 h) did not affect cell viability. We found that the radio-labeled D-aspartate ([3H]-D-Asp) uptake is mostly sodium-dependent, and downregulated by its own substrate (glutamate). Furthermore, SiO2-NPs exposure on endothelial and astrocytes decreases [3H]-D-Asp uptake in a dose-dependent manner. Interestingly, a decrease in the transporter catalytic efficiency, probably linked to a diminution in the affinity of the transporter, was detected upon SiO2-NPs. These results favor the notion that exposure to SiO2-NPs could disrupt BBB function and by these means shed some light into our understanding of the deleterious effects of air pollution on the CNS.
Collapse
Affiliation(s)
- Fredy Sánchez-Cano
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Luisa C Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, 07300 CDMX, México.
| |
Collapse
|
4
|
Chen HW, Zhang YG, Zhang WJ, Su J, Wu H, Fu ZF, Cui M. Palmitoylation of hIFITM1 inhibits JEV infection and contributes to BBB stabilization. Int J Biol Macromol 2024; 262:129731. [PMID: 38278394 DOI: 10.1016/j.ijbiomac.2024.129731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Human brain microvascular endothelial cells (hBMECs) are the main component cells of the blood-brain barrier (BBB) and play a crucial role in responding to viral infections to prevent the central nervous system (CNS) from viral invasion. Interferon-inducible transmembrane protein 1 (IFITM1) is a multifunctional membrane protein downstream of type-I interferon. In this study, we discovered that hIFITM1 expression was highly upregulated in hBMECs during Japanese encephalitis virus (JEV) infection. Depletion of hIFITM1 with CRISPR/Cas9 in hBMECs enhanced JEV replication, while overexpression of hIFITM1 restricted the viruses. Additionally, overexpression of hIFITM1 promoted the monolayer formation of hBMECs with a better integrity and a higher transendothelial electrical resistance (TEER), and reduced the penetration of JEV across the BBB. However, the function of hIFITM1 is governed by palmitoylation. Mutations of palmitoylation residues in conserved CD225 domain of hIFITM1 impaired its antiviral capacity. Moreover, mutants retained hIFITM1 in the cytoplasm and lessened its interaction with tight junction protein Occludin. Taken together, palmitoylation of hIFITM1 is essential for its antiviral activity in hBMECs, and more notably, for the maintenance of BBB homeostasis.
Collapse
Affiliation(s)
- Hao-Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ya-Ge Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei-Jia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen-Fang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Min Cui
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
5
|
Blood brain barrier-on-a-chip to model neurological diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Sánchez-Martínez JD, Garcia AR, Alvarez-Rivera G, Valdés A, Brito MA, Cifuentes A. In Vitro Study of the Blood-Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. Int J Mol Sci 2022; 24:ijms24010533. [PMID: 36613976 PMCID: PMC9820279 DOI: 10.3390/ijms24010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Ana Rita Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| |
Collapse
|
7
|
miR-602 Activates NRF2 Antioxidant Pathways to Protect HBMECs from OGD/R-Induced Oxidative Stress via Targeting KEAP1 and HRD1. DISEASE MARKERS 2022; 2022:6967573. [PMID: 36193504 PMCID: PMC9526584 DOI: 10.1155/2022/6967573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Blood brain barrier (BBB) dysfunction is a critical complication of diabetes mellitus type 2 (T2DM), and the oxidative stress-induced apoptosis of human brain microvascular endothelial cells (HBMECs) is a main cause of BBB dysfunction. In this study, oxygen and glucose deprivation/reoxygenation (OGD/R) models were established with HBMECs to analyze the effects of miR-602 on the apoptosis of HMBECs. Western Blot, qRT-PCR, CCK-8, flow cytometry assay, ROS detection assay, and dual-luciferase reporter gene assay were used to measure the expression levels of corresponding factors and changes in intracellular environment. The results showed that miR-602 was overexpressed in HBMECs after OGD/R treatment, and miR-602 could reduce ROS level of OGD/R-induced HBMECs and promote cells survival via increasing the expression level of NRF2 and the transcription activity of NRF2/ARE. Besides, it was found that KEAP1 and HRD1 were downstream factors of miR-602, and the increase of both KEAP1 and HRD1 could reverse the effects of miR-602 on the OGD/R-induced HMBECs. Therefore, miR-602 may be a potential target for research and treatment of the oxidative stress injury induced by apoptosis in HMBECs.
Collapse
|
8
|
Schreiner TG, Creangă-Murariu I, Tamba BI, Lucanu N, Popescu BO. In Vitro Modeling of the Blood–Brain Barrier for the Study of Physiological Conditions and Alzheimer’s Disease. Biomolecules 2022; 12:biom12081136. [PMID: 36009030 PMCID: PMC9405874 DOI: 10.3390/biom12081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential structure for the maintenance of brain homeostasis. Alterations to the BBB are linked with a myriad of pathological conditions and play a significant role in the onset and evolution of neurodegenerative diseases, including Alzheimer’s disease. Thus, a deeper understanding of the BBB’s structure and function is mandatory for a better knowledge of neurodegenerative disorders and the development of effective therapies. Because studying the BBB in vivo imposes overwhelming difficulties, the in vitro approach remains the main possible way of research. With many in vitro BBB models having been developed over the last years, the main aim of this review is to systematically present the most relevant designs used in neurological research. In the first part of the article, the physiological and structural–functional parameters of the human BBB are detailed. Subsequently, available BBB models are presented in a comparative approach, highlighting their advantages and limitations. Finally, the new perspectives related to the study of Alzheimer’s disease with the help of novel devices that mimic the in vivo human BBB milieu gives the paper significant originality.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
- Correspondence:
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Nicolae Lucanu
- Department of Applied Electronics and Intelligent Systems, Faculty of Electronics, Telecommunications and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
9
|
Gil E, Venturini C, Stirling D, Turner C, Tezera LB, Ercoli G, Baker T, Best K, Brown JS, Noursadeghi M. Pericyte derived chemokines amplify neutrophil recruitment across the cerebrovascular endothelial barrier. Front Immunol 2022; 13:935798. [PMID: 35967327 PMCID: PMC9371542 DOI: 10.3389/fimmu.2022.935798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive neutrophil extravasation can drive immunopathology, exemplified in pyogenic meningitis caused by Streptococcus pneumoniae infection. Insufficient knowledge of the mechanisms that amplify neutrophil extravasation has limited innovation in therapeutic targeting of neutrophil mediated pathology. Attention has focussed on neutrophil interactions with endothelia, but data from mouse models also point to a role for the underlying pericyte layer, as well as perivascular macrophages, the only other cell type found within the perivascular space in the cerebral microvasculature. We tested the hypothesis that human brain vascular pericytes (HBVP) contribute to neutrophil extravasation in a transwell model of the cerebral post-capillary venule. We show that pericytes augment endothelial barrier formation. In response to inflammatory cues, they significantly enhance neutrophil transmigration across the endothelial barrier, without increasing the permeability to small molecules. In our model, neither pericytes nor endothelia responded directly to bacterial stimulation. Instead, we show that paracrine signalling by multiple cytokines from monocyte derived macrophages drives transcriptional upregulation of multiple neutrophil chemokines by pericytes. Pericyte mediated amplification of neutrophil transmigration was independent of transcriptional responses by endothelia, but could be mediated by direct chemokine translocation across the endothelial barrier. Our data support a model in which microbial sensing by perivascular macrophages generates an inflammatory cascade where pericytes serve to amplify production of neutrophil chemokines that are translocated across the endothelial barrier to act directly on circulating neutrophils. In view of the striking redundancy in inflammatory cytokines that stimulate pericytes and in the neutrophil chemokines they produce, we propose that the mechanism of chemokine translocation may offer the most effective therapeutic target to reduce neutrophil mediated pathology in pyogenic meningitis.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Cristina Venturini
- Infection, Immunity and Inflammation Department, Institute for Child Health, University College London, London, United Kingdom
| | - David Stirling
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Carolin Turner
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Liku B. Tezera
- Division of Infection and Immunity, University College London, London, United Kingdom
- NIHR Biomedical Research Center, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Tina Baker
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Katharine Best
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
10
|
Simöes Da Gama C, Morin-Brureau M. Study of BBB Dysregulation in Neuropathogenicity Using Integrative Human Model of Blood-Brain Barrier. Front Cell Neurosci 2022; 16:863836. [PMID: 35755780 PMCID: PMC9226644 DOI: 10.3389/fncel.2022.863836] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier (BBB) is a cellular and physical barrier with a crucial role in homeostasis of the brain extracellular environment. It controls the imports of nutrients to the brain and exports toxins and pathogens. Dysregulation of the blood-brain barrier increases permeability and contributes to pathologies, including Alzheimer's disease, epilepsy, and ischemia. It remains unclear how a dysregulated BBB contributes to these different syndromes. Initial studies on the role of the BBB in neurological disorders and also techniques to permit the entry of therapeutic molecules were made in animals. This review examines progress in the use of human models of the BBB, more relevant to human neurological disorders. In recent years, the functionality and complexity of in vitro BBB models have increased. Initial efforts consisted of static transwell cultures of brain endothelial cells. Human cell models based on microfluidics or organoids derived from human-derived induced pluripotent stem cells have become more realistic and perform better. We consider the architecture of different model generations as well as the cell types used in their fabrication. Finally, we discuss optimal models to study neurodegenerative diseases, brain glioma, epilepsies, transmigration of peripheral immune cells, and brain entry of neurotrophic viruses and metastatic cancer cells.
Collapse
Affiliation(s)
- Coraly Simöes Da Gama
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Mélanie Morin-Brureau
- Inserm, Sorbonne University, UMRS 938 Saint-Antoine Research Center, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| |
Collapse
|
11
|
Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Brain-Penetration and Neuron-Targeting DNA Nanoflowers Co-Delivering miR-124 and Rutin for Synergistic Therapy of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107534. [PMID: 35182016 DOI: 10.1002/smll.202107534] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Alzheimer disease (AD) is the leading cause of dementia that affects millions of old people. Despite significant advances in the understanding of AD pathobiology, no disease modifying treatment is available. MicroRNA-124 (miR-124) is the most abundant miRNA in the normal brain with great potency to ameliorate AD-like pathology, while it is deficient in AD brain. Herein, the authors develop a DNA nanoflowers (DFs)-based delivery system to realize exogenous supplementation of miR-124 for AD therapy. The DFs with well-controlled size and morphology are prepared, and a miR-124 chimera is attached via hybridization. The DFs are further modified with RVG29 peptide to simultaneously realize brain-blood barrier (BBB) penetration and neuron targeting. Meanwhile, Rutin, a small molecular ancillary drug, is co-loaded into the DFs structure via its intercalation into the double stranded DNA region. Interestingly, Rutin could synergize miR-124 to suppress the expression of both BACE1 and APP, thus achieving a robust inhibition of amyloid β generation. The nanosystem could pro-long miR-124 circulation in vivo, promote its BBB penetration and neuron targeting, resulting in a significant increase of miR-124 in the hippocampus of APP/PS1 mice and robust therapeutic efficacy in vivo. Such a bio-derived therapeutic system shows promise as a biocompatible nanomedicine for AD therapy.
Collapse
Affiliation(s)
- Qin Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Kai Liu
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Postdoctoral Research Station of Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Huiyin Deng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yuan Le
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wen Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Wenhu Zhou
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
12
|
Todorovski T, Mendonça DA, Fernandes-Siqueira LO, Cruz-Oliveira C, Guida G, Valle J, Cavaco M, Limas FIV, Neves V, Cadima-Couto Í, Defaus S, Veiga AS, Da Poian AT, Castanho MARB, Andreu D. Targeting Zika Virus with New Brain- and Placenta-Crossing Peptide-Porphyrin Conjugates. Pharmaceutics 2022; 14:738. [PMID: 35456572 PMCID: PMC9032516 DOI: 10.3390/pharmaceutics14040738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Viral disease outbreaks affect hundreds of millions of people worldwide and remain a serious threat to global health. The current SARS-CoV-2 pandemic and other recent geographically- confined viral outbreaks (severe acute respiratory syndrome (SARS), Ebola, dengue, zika and ever-recurring seasonal influenza), also with devastating tolls at sanitary and socio-economic levels, are sobering reminders in this respect. Among the respective pathogenic agents, Zika virus (ZIKV), transmitted by Aedes mosquito vectors and causing the eponymous fever, is particularly insidious in that infection during pregnancy results in complications such as foetal loss, preterm birth or irreversible brain abnormalities, including microcephaly. So far, there is no effective remedy for ZIKV infection, mainly due to the limited ability of antiviral drugs to cross blood-placental and/or blood-brain barriers (BPB and BBB, respectively). Despite its restricted permeability, the BBB is penetrable by a variety of molecules, mainly peptide-based, and named BBB peptide shuttles (BBBpS), able to ferry various payloads (e.g., drugs, antibodies, etc.) into the brain. Recently, we have described peptide-porphyrin conjugates (PPCs) as successful BBBpS-associated drug leads for HIV, an enveloped virus in which group ZIKV also belongs. Herein, we report on several brain-directed, low-toxicity PPCs capable of targeting ZIKV. One of the conjugates, PP-P1, crossing both BPB and BBB, has shown to be effective against ZIKV (IC50 1.08 µM) and has high serum stability (t1/2 ca. 22 h) without altering cell viability at all tested concentrations. Peptide-porphyrin conjugation stands out as a promising strategy to fill the ZIKV treatment gap.
Collapse
Affiliation(s)
- Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Diogo A. Mendonça
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Lorena O. Fernandes-Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Christine Cruz-Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Giuseppina Guida
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Javier Valle
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Fernanda I. V. Limas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Íris Cadima-Couto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.O.F.-S.); (F.I.V.L.)
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (D.A.M.); (C.C.-O.); (M.C.); (V.N.); (Í.C.-C.); (A.S.V.)
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (T.T.); (G.G.); (J.V.); (S.D.)
| |
Collapse
|
13
|
Zhao J, Li K, Wang Y, Li D, Wang Q, Xie S, Wang J, Zuo Z. Enhanced anti-amnestic effect of donepezil by Ginkgo biloba extract (EGb 761) via further improvement in pro-cholinergic and antioxidative activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113711. [PMID: 33352242 DOI: 10.1016/j.jep.2020.113711] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/27/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE EGb 761 is a standardized dry extract of Ginkgo biloba L. leaves traditionally used by Eastern Asia and has been associated with beneficial effects on neurodegeneration disorders, including Alzheimer's disease. AIM OF THE STUDY Since beneficial interactions between EGb 761 and donepezil have been observed in previous clinical studies, the current study was proposed aiming to further explore related mechanisms from both pharmacokinetics and pharmacodynamics aspects. MATERIALS AND METHODS Pharmacodynamic interactions were studied in scopolamine-induced cognitive impairment rats received two-weeks treatment of vehicle, EGb 761 and/or donepezil by the Morris water maze test and ex vivo evaluation of biomarkers of cholinergic transmission and oxidative stress in rat brain. In the meantime, pharmacokinetic profiles of donepezil and bilobalide were obtained and compared among all treatment groups. In addition, impact of the bioavailable EGb 761 components on donepezil brain penetration was evaluated with the hCMEC/D3 cell monolayer model. RESULTS Scopolamine-induced rats with co-treatment of EGb 761 and donepezil had significantly improved cognitive function in the Morris water maze test with increased brain levels of superoxide dismutase and decreased brain levels of acetylcholinesterase and malondialdehyde than that with treatment of only EGb 761 or donepezil. Despite such beneficial pharmacodynamics outcomes, the two-week co-treatment of EGb 761 and donepezil did not alter the plasma pharmacokinetics and brain uptake of donepezil or bilobalide, which was further verified in the hCMEC/D3 monolayer model. CONCLUSION Co-administration of EGb 761 and donepezil exerted better anti-amnestic effect via further enhanced pro-cholinergic and antioxidative effects of EGb 761 or donepezil in scopolamine-induced cognitive impairment rat without alteration in their systemic/brain exposure.
Collapse
Affiliation(s)
- Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Kun Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Yingying Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Qianwen Wang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Shengsheng Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China; Institute of Integrated Chinese and Western Medicine, Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
14
|
Hinkel S, Mattern K, Dietzel A, Reichl S, Müller-Goymann CC. Parametric investigation of static and dynamic cell culture conditions and their impact on hCMEC/D3 barrier properties. Int J Pharm 2019; 566:434-444. [PMID: 31163193 DOI: 10.1016/j.ijpharm.2019.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
In brain research, the hCMEC/D3 cell line is widely used for the establishment of a human in vitro blood-brain barrier (BBB) model. However, its barrier integrity seems to be insufficient for drug permeability studies, represented by rather low transendothelial electrical resistance (TEER) and high permeability of small molecules. Therefore, this study covers a parametric investigation of static and dynamic cell culture conditions to improve barrier functionality of hCMEC/D3. The effect of basal media was investigated by analyzing changes in proliferation rate, barrier integrity and gene expression of cellular junction proteins. The cells were able to grow in different cell culture media, including serum-free media. However, none of these media enhanced strongly the growth rate or barrier integrity compared to the microvascular endothelial cell growth medium-2 (EGM™-2 MV). Furthermore, hCMEC/D3 cells did not respond positively regarding TEER to any tested parameter neither supplements, coating materials nor co-cultures with the human immortalized astrocyte cell line SVGmm. Furthermore, the impact of dynamic conditions was examined by using the Dynamic Micro Tissue Engineering System (DynaMiTES). Cultivation conditions were successfully adapted to the DynaMiTES design and no negative effect was detected by analyzing cell viability and cell count, albeit TEER remained also unchanged. Consequently, the hCMEC/D3 model has considerable limitations and further improvements or alternative cell lines are required.
Collapse
Affiliation(s)
- S Hinkel
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - K Mattern
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - A Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - S Reichl
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - C C Müller-Goymann
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
15
|
Sato K. [Consideration for future in vitro BBB models - technical development to investigate the drug delivery to the CNS]. Nihon Yakurigaku Zasshi 2019; 152:287-294. [PMID: 30531099 DOI: 10.1254/fpj.152.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood vessels in the central nervous system (CNS) limit the material exchange between blood and parenchyma by blood brain barrier (BBB). At present, no appropriate in vitro BBB models are available for the investigation whether or not the candidate compounds for new drugs could be delivered to the CNS. This causes huge difficulties of the development of CNS drugs and prediction of CNS adverse effects. In this review, I first outline the structures and functions of BBB, together with the parameters used for the quantification of BBB functions. I also introduce the history of in vitro BBB models used in the drug development so far, i.e., the transition from non-cell models to the models using primary culture of rodent cells, porcine, bovine, cell lines, etc. More recently, the application of human cells differentiated from human induced pluripotent stem cells and microfluidic engineering have already started. BBB is essential for the maintenance of brain homeostasis and the mechanisms of the BBB development will be clarified by reproducing functional BBB on the dish. The new in vitro models and the data may provide accurate prediction of drug delivery to the CNS and the improvement of the evaluation system for toxicity and safety, thereby leading to successful launch of new drugs on the market.
Collapse
|
16
|
Chaturvedi S, Rashid M, Malik MY, Agarwal A, Singh SK, Gayen JR, Wahajuddin M. Neuropharmacokinetics: a bridging tool between CNS drug development and therapeutic outcome. Drug Discov Today 2019; 24:1166-1175. [PMID: 30898661 DOI: 10.1016/j.drudis.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
WHO classified neurological disorders to be among 6.3% of the global disease burden. Among the most central aspects of CNS drug development is the ability of novel molecules to cross the blood-brain barrier (BBB) to reach the target site over a desired time period for therapeutic action. Based on various aspects, brain pharmacokinetics is considered to be one of the foremost perspectives for the higher attrition rate of CNS biologics. Although drug traits are important, the BBB and blood-cerebrospinal fluid barrier together with transporters become the mechanistic approach behind CNS drug delivery. The present review emphasizes neuropharmacokinetic parameters, their importance, an assessment approach and the vast effect of transporters to brain drug distribution for CNS drug discovery.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Mohd Yaseen Malik
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun Agarwal
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sandeep K Singh
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
17
|
Dayton JR, Franke MC, Yuan Y, Cruz-Orengo L. Straightforward method for singularized and region-specific CNS microvessels isolation. J Neurosci Methods 2019; 318:17-33. [PMID: 30797797 DOI: 10.1016/j.jneumeth.2019.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Current methods for murine brain microvasculature isolation requires the pooling of brain cortices while disregarding the rest of the CNS, making the analysis of single individuals non feasible. NEW METHOD Efficient isolation of brain microvessels requires the elimination of meninges, vessels of high caliber vessels and choroid plexus, commonly done by rolling the over filter paper, but can't be done on other CNS regions. We overcome this hurdle by using a double-pronged pick, as well as elution and filtration through cell strainers after centrifugation. RESULTS We were able to develop a region-specific murine CNS microvessels isolation, that allows for the comparison of the neurovascular unit from these regions both within the same individual and between multiple individuals and/or treatment groups without pooling. Additionally, we were able to adapt this method to macaque CNS tissue. COMPARISON WITH EXISTING METHOD(S) Although similar to a previously published method that requires no enzymatic dissociation and no ultracentrifugation, it does differ in its ability to isolate from a single experimental animal and from non-cortical tissues. However, it relies heavily on the researcher dissecting skills and careful elution and filtration of re-suspended samples. CONCLUSIONS CNS region-specific microvessels comparison can inform of molecular and/or cellular differences that would otherwise be obscured by excluding non-cortical tissue. Additionally, it allows for the unmasking of variations between individuals that remained hidden when pooling of multiple samples is the norm. Lastly, isolation of region-specific microvessels for non-human primate CNS allows for more translationally relevant studies of the BBB.
Collapse
Affiliation(s)
- Jacquelyn Rose Dayton
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Marissa Cindy Franke
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Yinyu Yuan
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Lillian Cruz-Orengo
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| |
Collapse
|
18
|
Puech C, Hodin S, Forest V, He Z, Mismetti P, Delavenne X, Perek N. Assessment of HBEC-5i endothelial cell line cultivated in astrocyte conditioned medium as a human blood-brain barrier model for ABC drug transport studies. Int J Pharm 2018; 551:281-289. [PMID: 30240829 DOI: 10.1016/j.ijpharm.2018.09.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
Endothelial cells are main components of the Blood-Brain Barrier (BBB) and form a tight monolayer that regulates the passage of molecules, with the ATP-Binding Cassette (ABC) transporters efflux pumps. We have developed a human in vitro model of HBEC-5i endothelial cells cultivated alone or with human astrocytes conditioned medium on insert. HBEC-5i cells showed a tight monolayer within 14 days, expressing ZO-1 and claudin 5, a low apparent permeability to small molecules, with a TEER stability during five days. The P-gp, BCRP, MRPs transporters were well expressed and functional. Accumulation and efflux ratio measurement with different ABC transporters substrates (Rhodamine 123, BCECF AM, Hoechst 33342) and inhibitors (verapamil, Ko143, probenecid and cyclosporin A) were conducted. At barrier level, the functionality of ABC transporters was three-fold enhanced in astrocyte conditioned medium. We validated our model by the transport of pharmacological substrates: caffeine, rivaroxaban, and methotrexate. The rivaroxaban and methotrexate were released with an efflux ratio >3 and were decreased by more than half with inhibitors. HBEC-5i model could be used as relevant tool in preclinical studies for assessing the permeability of therapeutic molecules to cross human BBB.
Collapse
Affiliation(s)
- Clémentine Puech
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France.
| | - Sophie Hodin
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Zhiguo He
- Université de Lyon, Saint-Etienne, F-42023, France; EA 2521 Biologie, Ingénierie et Imagerie de la Greffe de Cornée (BIIGC), Saint-Etienne, France
| | - Patrick Mismetti
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Unité de Recherche Clinique Innovation et Pharmacologie, CHU de Saint-Etienne, F-42055 Saint Etienne, France
| | - Xavier Delavenne
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Laboratoire de Pharmacologie Toxicologie, CHU Saint-Etienne, F-42055 Saint-Etienne, France
| | - Nathalie Perek
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| |
Collapse
|
19
|
Gril B, Paranjape AN, Woditschka S, Hua E, Dolan EL, Hanson J, Wu X, Kloc W, Izycka-Swieszewska E, Duchnowska R, Pęksa R, Biernat W, Jassem J, Nayyar N, Brastianos PK, Hall OM, Peer CJ, Figg WD, Pauly GT, Robinson C, Difilippantonio S, Bialecki E, Metellus P, Schneider JP, Steeg PS. Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases. Nat Commun 2018; 9:2705. [PMID: 30006619 PMCID: PMC6045677 DOI: 10.1038/s41467-018-05030-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/07/2018] [Indexed: 02/08/2023] Open
Abstract
Brain metastases are devastating complications of cancer. The blood-brain barrier (BBB), which protects the normal brain, morphs into an inadequately characterized blood-tumor barrier (BTB) when brain metastases form, and is surrounded by a neuroinflammatory response. These structures contribute to poor therapeutic efficacy by limiting drug uptake. Here, we report that experimental breast cancer brain metastases of low- and high permeability to a dextran dye exhibit distinct microenvironmental gene expression patterns. Astrocytic sphingosine-1 phosphate receptor 3 (S1P3) is upregulated in the neuroinflammatory response of the highly permeable lesions, and is expressed in patients' brain metastases. S1P3 inhibition functionally tightens the BTB in vitro and in vivo. S1P3 mediates its effects on BTB permeability through astrocytic secretion of IL-6 and CCL2, which relaxes endothelial cell adhesion. Tumor cell overexpression of S1P3 mimics this pathway, enhancing IL-6 and CCL-2 production and elevating BTB permeability. In conclusion, neuroinflammatory astrocytic S1P3 modulates BTB permeability.
Collapse
Affiliation(s)
- Brunilde Gril
- Women's Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA.
| | | | - Stephan Woditschka
- Women's Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, 601 South College Road, Wilmington, NC, 28403, USA
| | - Emily Hua
- Women's Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA
| | - Emma L Dolan
- Women's Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA
| | - Jeffrey Hanson
- Laboratory of Pathology, CCR, NCI, Bethesda, 20892, MD, USA
| | - Xiaolin Wu
- Genomics Laboratory, Frederick National Laboratory for Cancer Research, Frederick, 21702, MD, USA
| | - Wojciech Kloc
- Department of Neurology & Neurosurgery, Varmia & Masuria University, Olsztyn, 10-719, Poland
- Department of Neurosurgery, Copernicus Hospital Gdańsk, Gdańsk, 80-803, Poland
| | - Ewa Izycka-Swieszewska
- Department of Pathology & Neuropathology, Medical University of Gdańsk, Gdańsk, 80-210, Poland
- Department of Pathomorphology, Copernicus Hospital Gdańsk, Gdańsk, 80-803, Poland
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, Warsaw, 04-141, Poland
| | - Rafał Pęksa
- Department of Pathology, Medical University of Gdańsk, 7 Dębinki St, 80-211, Gdańsk, Poland
| | - Wojciech Biernat
- Department of Pathology, Medical University of Gdańsk, 7 Dębinki St, 80-211, Gdańsk, Poland
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Gdańsk, 80-211, Poland
| | - Naema Nayyar
- Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, 02114, MA, USA
| | - Priscilla K Brastianos
- Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, 02114, MA, USA
| | - O Morgan Hall
- Genitourinary Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA
| | - Cody J Peer
- Genitourinary Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA
| | - William D Figg
- Genitourinary Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA
| | - Gary T Pauly
- Chemical Biology Laboratory, CCR, NCI, Frederick, 21702, MD, USA
| | - Christina Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, 21702, MD, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, 21702, MD, USA
| | - Emilie Bialecki
- Département de Neurochirurgie, Hôpital Privé Clairval, Ramsay Général de Santé, Marseille, 13009, France
| | - Philippe Metellus
- Département de Neurochirurgie, Hôpital Privé Clairval, Ramsay Général de Santé, Marseille, 13009, France
- Institut de Neurophysiopathologie-UMR 7051, Aix-Marseille Université, Marseille, 13344, France
| | - Joel P Schneider
- Chemical Biology Laboratory, CCR, NCI, Frederick, 21702, MD, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, CCR, NCI, Bethesda, 20892, MD, USA.
| |
Collapse
|
20
|
The expected characteristics of an in vitro human Blood Brain Barrier model derived from cell lines, for studying how ABC transporters influence drug permeability. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Figueira I, Tavares L, Jardim C, Costa I, Terrasso AP, Almeida AF, Govers C, Mes JJ, Gardner R, Becker JD, McDougall GJ, Stewart D, Filipe A, Kim KS, Brites D, Brito C, Brito MA, Santos CN. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study. Eur J Nutr 2017; 58:113-130. [PMID: 29151137 DOI: 10.1007/s00394-017-1576-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/31/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. METHODS BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. RESULTS Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. CONCLUSIONS BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.
Collapse
Affiliation(s)
- Inês Figueira
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Lucélia Tavares
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Carolina Jardim
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Inês Costa
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Ana P Terrasso
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Andreia F Almeida
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Coen Govers
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen Food & Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Rui Gardner
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | | | - Derek Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.,School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, Scotland, UK.,NIBIO, Norwegian Institute of Bioeconomy Research, Pb 115, 1431, Ås, Norway
| | - Augusto Filipe
- Medical Department, Grupo Tecnimede, 2710-089, Sintra, Portugal
| | - Kwang S Kim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street Park 256, Baltimore, MD, 21287, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Brito
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - M Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Cláudia N Santos
- Instituto de Tecnologia Quı́mica e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal. .,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| |
Collapse
|
22
|
Chen X, Slättengren T, de Lange ECM, Smith DE, Hammarlund-Udenaes M. Revisiting atenolol as a low passive permeability marker. Fluids Barriers CNS 2017; 14:30. [PMID: 29089037 PMCID: PMC5664587 DOI: 10.1186/s12987-017-0078-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood-brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB. METHODS To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis. RESULTS The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., Kp,uu,brain) was 3.5% ± 0.4%, a value much less than unity. The unbound volume of distribution in brain (Vu, brain) of S-atenolol was also calculated as 0.69 ± 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction (fu,brain) of 0.88 ± 0.07. CONCLUSIONS It is concluded, based on Kp,uu,brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Pharmaceutical Biosciences, Translational PKPD Research Group, Uppsala University, Box 591, SE-75124, Uppsala, Sweden.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tim Slättengren
- Department of Pharmaceutical Biosciences, Translational PKPD Research Group, Uppsala University, Box 591, SE-75124, Uppsala, Sweden
| | - Elizabeth C M de Lange
- Department of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Margareta Hammarlund-Udenaes
- Department of Pharmaceutical Biosciences, Translational PKPD Research Group, Uppsala University, Box 591, SE-75124, Uppsala, Sweden.
| |
Collapse
|
23
|
Figueira I, Garcia G, Pimpão RC, Terrasso AP, Costa I, Almeida AF, Tavares L, Pais TF, Pinto P, Ventura MR, Filipe A, McDougall GJ, Stewart D, Kim KS, Palmela I, Brites D, Brito MA, Brito C, Santos CN. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci Rep 2017; 7:11456. [PMID: 28904352 PMCID: PMC5597593 DOI: 10.1038/s41598-017-11512-6] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related complications such as neurodegenerative disorders are increasing and remain cureless. The possibility of altering the progression or the development of these multifactorial diseases through diet is an emerging and attractive approach with increasing experimental support. We examined the potential of known bioavailable phenolic sulfates, arising from colonic metabolism of berries, to influence hallmarks of neurodegenerative processes. In silico predictions and in vitro transport studies across blood-brain barrier (BBB) endothelial cells, at circulating concentrations, provided evidence for differential transport, likely related to chemical structure. Moreover, endothelial metabolism of these phenolic sulfates produced a plethora of novel chemical entities with further potential bioactivies. Pre-conditioning with phenolic sulfates improved cellular responses to oxidative, excitotoxicity and inflammatory injuries and this attenuation of neuroinflammation was achieved via modulation of NF-κB pathway. Our results support the hypothesis that these small molecules, derived from dietary (poly)phenols may cross the BBB, reach brain cells, modulate microglia-mediated inflammation and exert neuroprotective effects, with potential for alleviation of neurodegenerative diseases.
Collapse
Affiliation(s)
- I Figueira
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - G Garcia
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - R C Pimpão
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - A P Terrasso
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - I Costa
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - A F Almeida
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - L Tavares
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - T F Pais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - P Pinto
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Escola Superior Agrária, Instituto Politécnico de Santarém, Qta do Galinheiro, Santarém, Portugal
| | - M R Ventura
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal
| | - A Filipe
- Medical Department, Grupo Tecnimede, 2710-089, Sintra, Portugal
| | - G J McDougall
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, United Kingdom
| | - D Stewart
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, United Kingdom.,Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS, Scotland, United Kingdom.,NIBIO, Norwegian Institute of Bioeconomy Research, Pb 115, NO-1431, Ås, Norway
| | - K S Kim
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 600 North Wolfe Street Park 256, Baltimore, MD21287, USA
| | - I Palmela
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - D Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - M A Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - C Brito
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal.,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - C N Santos
- Instituto de Tecnologia Quı́mica e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, 2781-901, Oeiras, Portugal. .,Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
| |
Collapse
|
24
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
25
|
Validation of UHPLC–MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies. J Pharm Biomed Anal 2016; 128:264-274. [DOI: 10.1016/j.jpba.2016.05.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
|
26
|
Eigenmann DE, Dürig C, Jähne EA, Smieško M, Culot M, Gosselet F, Cecchelli R, Helms HCC, Brodin B, Wimmer L, Mihovilovic MD, Hamburger M, Oufir M. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs. Eur J Pharm Biopharm 2016; 103:118-126. [PMID: 27018328 DOI: 10.1016/j.ejpb.2016.03.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 11/19/2022]
Abstract
The alkaloid piperine from black pepper (Piper nigrum L.) and several synthetic piperine analogs were recently identified as positive allosteric modulators of γ-aminobutyric acid type A (GABAA) receptors. In order to reach their target sites of action, these compounds need to enter the brain by crossing the blood-brain barrier (BBB). We here evaluated piperine and five selected analogs (SCT-66, SCT-64, SCT-29, LAU397, and LAU399) regarding their BBB permeability. Data were obtained in three in vitro BBB models, namely a recently established human model with immortalized hBMEC cells, a human brain-like endothelial cells (BLEC) model, and a primary animal (bovine endothelial/rat astrocytes co-culture) model. For each compound, quantitative UHPLC-MS/MS methods in the range of 5.00-500ng/mL in the corresponding matrix were developed, and permeability coefficients in the three BBB models were determined. In vitro predictions from the two human BBB models were in good agreement, while permeability data from the animal model differed to some extent, possibly due to protein binding of the screened compounds. In all three BBB models, piperine and SCT-64 displayed the highest BBB permeation potential. This was corroborated by data from in silico prediction. For the other piperine analogs (SCT-66, SCT-29, LAU397, and LAU399), BBB permeability was low to moderate in the two human BBB models, and moderate to high in the animal BBB model. Efflux ratios (ER) calculated from bidirectional permeability experiments indicated that the compounds were likely not substrates of active efflux transporters.
Collapse
Affiliation(s)
- Daniela Elisabeth Eigenmann
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Carmen Dürig
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Evelyn Andrea Jähne
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Martin Smieško
- Molecular Modeling, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Maxime Culot
- Univ. Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), F-62300 Lens Cedex, France
| | - Fabien Gosselet
- Univ. Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), F-62300 Lens Cedex, France
| | - Romeo Cecchelli
- Univ. Artois, EA 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), F-62300 Lens Cedex, France
| | - Hans Christian Cederberg Helms
- Drug Transporters in ADME, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Birger Brodin
- Drug Transporters in ADME, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laurin Wimmer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Matthias Hamburger
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Mouhssin Oufir
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|