1
|
Coppolino C, Trovato E, Salerno TMG, Cucinotta L, Sciarrone D, Donato P, Mondello L. Parallel coupling of gas chromatography to mass spectrometry and solid deposition Fourier transform infrared spectroscopy: an innovative approach to address challenging identifications. Anal Bioanal Chem 2024; 416:5595-5604. [PMID: 39153104 DOI: 10.1007/s00216-024-05482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
The request for novel hyphenated instruments and techniques, capable of affording exhaustive information and results, is a focus continuously watched out. In this context, the present work aimed at the development of an integrated system combining gas chromatographic (GC) separation with mass spectrometry (MS) and (solid deposition) Fourier transform infrared spectroscopy (FTIR) detection. An external transfer line was designed in the lab for the parallel coupling of the two detectors, in such a way to obtain complementary analytical information consisting of an MS spectrum, an IR spectrum and linear retention indices (LRI), within a single analysis. The instrument performance was demonstrated for the analysis of a commercial mixture consisting of 139 hydrocarbons, comprising linear, branched, unsaturated and aromatic compounds. A 100-m poly(dimethylsiloxane) column was employed for the separation, and the outlet flow was split 95:5 between the IR and MS detectors using two uncoated capillaries. The IR spectra were acquired from solid deposits on a zinc selenide disc (-90 °C), over a spot (detector area) of about 0.1 mm2, in the range of 4000-700 cm-1 and at a resolution of 4 cm-1. Final identification of the separated compounds by a library search was achieved by excluding incorrect results, sequentially using a three-filter approach (85% similarity against reference MS and IR library spectra and ±10 LRI unit tolerance). Based on these preliminary results, the GC-MS/sd-FTIR system is a promising tool for the characterization of complex matrix constituents, for which identification is cumbersome, by using only one detection technique.
Collapse
Affiliation(s)
- Carmelo Coppolino
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy
| | - Emanuela Trovato
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy
| | - Tania M G Salerno
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy.
| | - Lorenzo Cucinotta
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy
| | - Danilo Sciarrone
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy
| | - Paola Donato
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168, Messina, Italy
| |
Collapse
|
2
|
Kloudová B, Vrkoslav V, Polášek M, Bosáková Z, Cvačka J. Structural characterization of wax esters using ultraviolet photodissociation mass spectrometry. Anal Bioanal Chem 2024; 416:5497-5512. [PMID: 39030399 PMCID: PMC11427557 DOI: 10.1007/s00216-024-05434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
Wax esters play critical roles in biological systems, serving functions from energy storage to chemical signaling. Their diversity is attributed to variations in alcohol and acyl chains, including their length, branching, and the stereochemistry of double bonds. Traditional analysis by mass spectrometry with collisional activations (CID, HCD) offers insights into acyl chain lengths and unsaturation level. Still, it falls short in pinpointing more nuanced structural features like the position of double bonds. As a solution, this study explores the application of 213-nm ultraviolet photodissociation (UVPD) for the detailed structural analysis of wax esters. It is shown that lithium adducts provide unique fragments as a result of Norrish and Norrish-Yang reactions at the ester moieties and photoinduced cleavages of double bonds. The product ions are useful for determining chain lengths and localizing double bonds. UVPD spectra of various wax esters are presented systematically, and the effect of activation time is discussed. The applicability of tandem mass spectrometry with UVPD is demonstrated for wax esters from natural sources. The UHPLC analysis of jojoba oil proves the compatibility of MS2 UVPD with the chromatography time scale, and a direct infusion is used to analyze wax esters from vernix caseosa. Data shows the potential of UVPD and its combination with CID or HCD in advancing our understanding of wax ester structures.
Collapse
Affiliation(s)
- Barbora Kloudová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic
| | - Miroslav Polášek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague 6, Czech Republic.
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic.
| |
Collapse
|
3
|
Ribeiro FM, Silva-Oliveira D, Cervi G, Koyanagui ED, Correra TC. Isomeric Speciation of Bisbenzoxazine Intermediates by Ion Spectroscopy and Ion Mobility Mass Spectrometry. ACS OMEGA 2024; 9:40932-40940. [PMID: 39372032 PMCID: PMC11447905 DOI: 10.1021/acsomega.4c06205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024]
Abstract
Bisbenzoxazines (BisBz) are a relevant model for the diverse bifunctional benzoxazines that are used to increase the polybenzoxazines cross-linking extensions and modulate the final resin properties for various usages. The presence of side products and intermediates during monomer formation can influence the resin characteristics by inducing chain termination and ramifications, affecting the polymerization and cure processes. This work investigated the diverse isomeric intermediates and side products that are present during the BisBz formation from bisphenol A, aniline, and formaldehyde by ion mobility coupled to tandem mass spectrometry (MS/MS) and ion spectroscopy techniques. The species detected in this work suggest that these multifunctional phenols open diverse concurrent reaction pathways based on two main reactive steps: (i) the imine/iminium phenol attack to form a phenylamino intermediate and (ii) the formaldehyde attack followed by dehydration to form the oxazine ring. The species observed also support previous studies of the benzoxazine formation mechanism and showcase the application of advanced analytical techniques in studying complex chemical systems.
Collapse
Affiliation(s)
- Francisco
W. M. Ribeiro
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Danilo Silva-Oliveira
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Gustavo Cervi
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Eduardo D. Koyanagui
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| | - Thiago C. Correra
- Department of Fundamental Chemistry,
Institute of Chemistry, University of São
Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
4
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
5
|
Hohenwallner K, Lamp LM, Peng L, Nuske M, Hartler J, Reid GE, Rampler E. FAIMS Shotgun Lipidomics for Enhanced Class- and Charge-State Separation Complemented by Automated Ganglioside Annotation. Anal Chem 2024; 96. [PMID: 39028917 PMCID: PMC11295132 DOI: 10.1021/acs.analchem.4c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The analysis of gangliosides is extremely challenging, given their structural complexity, lack of reference standards, databases, and software solutions. Here, we introduce a fast 6 min high field asymmetric ion mobility spectrometry (FAIMS) shotgun lipidomics workflow, along with a dedicated software solution for ganglioside detection. By ramping FAIMS compensation voltages, ideal ranges for different ganglioside classes were obtained. FAIMS revealed both class- and charge-state separation behavior based on the glycan headgroup moiety. The number of sialic acids attached to the glycan moiety correlates positively with their preferred charge states, i.e., trisialylated gangliosides were mainly present as [M - 3H]3- ions, whereas [M - 4H]4- and [M - 5H]5- ions were observed for GQ1 and GP1. For data evaluation, we developed a shotgun/FAIMS extension for the open-source Lipid Data Analyzer (LDA), enabling automated annotation of gangliosides up to the molecular lipid species level. This extension utilized combined orthogonal fragmentation spectra from CID, HCD, and 213 nm UVPD ion activation methods and covers 29 ganglioside classes, including acetylated and fucosylated modifications. With our new workflow and software extension 117 unique gangliosides species were identified in porcine brain extracts. While conventional shotgun lipidomics favored the observation of singly charged ganglioside species, the utilization of FAIMS made multiply charged lipid species accessible, resulting in an increased number of detected species, primarily due to an improved signal-to-noise ratio arising from FAIMS charge state filtering. Therefore, this FAIMS-driven workflow, complemented by new software capabilities, offers a promising strategy for complex ganglioside and glycosphingolipid characterization in shotgun lipidomics.
Collapse
Affiliation(s)
- Katharina Hohenwallner
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| | - Leonida M. Lamp
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
| | - Liuyu Peng
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Madison Nuske
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jürgen Hartler
- Institute
of Pharmaceutical Sciences, University of
Graz, Graz 8010, Austria
- Field
of Excellence BioHealth, University of Graz, Graz 8010, Austria
| | - Gavin E. Reid
- School
of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Pharmacology, University
of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna 1090, Austria
| |
Collapse
|
6
|
Bonney JR, Prentice BM. Structural Elucidation and Relative Quantification of Fatty Acid Double Bond Positional Isomers in Biological Tissues Enabled by Gas-Phase Charge Inversion Ion/Ion Reactions. ANALYSIS & SENSING 2024; 4:e202300063. [PMID: 38827423 PMCID: PMC11139046 DOI: 10.1002/anse.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/04/2024]
Abstract
Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
7
|
Xia T, Jin X, Zhang D, Wang J, Jian R, Yin H, Xia Y. Alternative fatty acid desaturation pathways revealed by deep profiling of total fatty acids in RAW 264.7 cell line. J Lipid Res 2023; 64:100410. [PMID: 37437845 PMCID: PMC10407907 DOI: 10.1016/j.jlr.2023.100410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
In-depth structural characterization of lipids provides a new means to investigate lipid metabolism. In this study, we have conducted deep profiling of total fatty acids (FAs) from RAW 264.7 macrophages by utilizing charge-tagging Paternò-Büchi derivatization of carbon-carbon double bond (C=C) and reversed-phase liquid chromatography-tandem mass spectrometry. A series of FAs exhibiting unusual site(s) of unsaturation was unearthed, with their identities being confirmed by observing anticipated compositional alterations upon desaturase inhibition. The data reveal that FADS2 Δ 6-desaturation can generate n-11 C=C in the odd-chain monounsaturated fatty acids (MUFAs) as well as n-10 and n-12 families of even-chain MUFAs. SCD1 Δ 9-desaturation yields n-6, n-8, and n-10 of odd-chain MUFAs, as well as n-5, n-7, and n-9 families of even-chain MUFAs. Besides n-3 and n-6 families of polyunsaturated fatty acids (PUFAs), the presence of n-7 and n-9 families of PUFAs indicates that the n-7 and n-9 isomers of FA 18:1 can be utilized as substrates for further desaturation and elongation. The n-7 and n-9 families of PUFAs identified in RAW 264.7 macrophages are noteworthy because their C=C modifications are achieved exclusively via de novo lipogenesis. Our discovery outlines the metabolic plasticity in fatty acid desaturation which constitutes an unexplored rewiring in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xue Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Jitong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ruijun Jian
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
9
|
Cheng S, Zhang D, Feng J, Hu Q, Tan A, Xie Z, Chen Q, Huang H, Wei Y, Ouyang Z, Ma X. Metabolic Pathway of Monounsaturated Lipids Revealed by In-Depth Structural Lipidomics by Mass Spectrometry. RESEARCH (WASHINGTON, D.C.) 2023; 6:0087. [PMID: 36951803 PMCID: PMC10026824 DOI: 10.34133/research.0087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The study of lipid metabolism relies on the characterization of the lipidome, which is quite complex due to the structure variations of the lipid species. New analytical tools have been developed recently for characterizing fine structures of lipids, with C=C location identification as one of the major improvements. In this study, we studied the lipid metabolism reprograming by analyzing glycerol phospholipid compositions in breast cancer cell lines with structural specification extended to the C=C location level. Inhibition of the lipid desaturase, stearoyl-CoA desaturase 1, increased the proportion of n-10 isomers that are produced via an alternative fatty acid desaturase 2 pathway. However, there were different variations of the ratio of n-9/n-7 isomers in C18:1-containing glycerol phospholipids after stearoyl-CoA desaturase 1 inhibition, showing increased tendency in MCF-7 cells, MDA-MB-468 cells, and BT-474 cells, but decreased tendency in MDA-MB-231 cells. No consistent change of the ratio of n-9/n-7 isomers was observed in SK-BR-3 cells. This type of heterogeneity in reprogrammed lipid metabolism can be rationalized by considering both lipid desaturation and fatty acid oxidation, highlighting the critical roles of comprehensive lipid analysis in both fundamental and biomedical applications.
Collapse
Affiliation(s)
- Simin Cheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Donghui Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Jiaxin Feng
- Department of Chemistry,
Tsinghua University, Beijing 100084, China
| | - Qingyuan Hu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Aolei Tan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Zhuoning Xie
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, Guangdong 518101, China
| | - Huimin Huang
- Sinopharm Dongfeng General Hospital,
Hubei University of Medicine, Experiment center of medicine, Shiyan, Hubei 442008, China
| | - Ying Wei
- Sinopharm Dongfeng General Hospital,
Hubei University of Medicine, Experiment center of medicine, Shiyan, Hubei 442008, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Ma
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument,
Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Kirschbaum C, Young RSE, Greis K, Menzel JP, Gewinner S, Schöllkopf W, Meijer G, von Helden G, Causon T, Narreddula VR, Poad BLJ, Blanksby SJ, Pagel K. Establishing carbon-carbon double bond position and configuration in unsaturated fatty acids by gas-phase infrared spectroscopy. Chem Sci 2023; 14:2518-2527. [PMID: 36908944 PMCID: PMC9993887 DOI: 10.1039/d2sc06487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Fatty acids are an abundant class of lipids that are characterised by wide structural variation including isomeric diversity arising from the position and configuration of functional groups. Traditional approaches to fatty acid characterisation have combined chromatography and mass spectrometry for a description of the composition of individual fatty acids while infrared (IR) spectroscopy has provided insights into the functional groups and bond configurations at the bulk level. Here we exploit universal 3-pyridylcarbinol ester derivatization of fatty acids to acquire IR spectra of individual lipids as mass-selected gas-phase ions. Intramolecular interactions between the protonated pyridine moiety and carbon-carbon double bonds present highly sensitive probes for regiochemistry and configuration through promotion of strong and predictable shifts in IR resonances. Gas-phase IR spectra obtained from unsaturated fatty acids are shown to discriminate between isomers and enable the first unambiguous structural assignment of 6Z-octadecenoic acid in human-derived cell lines. Compatibility of 3-pyridylcarbinol ester derivatization with conventional chromatography-mass spectrometry and now gas-phase IR spectroscopy paves the way for comprehensive structure elucidation of fatty acids that is sensitive to regio- and stereochemical variations and with the potential to uncover new pathways in lipid metabolism.
Collapse
Affiliation(s)
- Carla Kirschbaum
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Kim Greis
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Jan Philipp Menzel
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Sandy Gewinner
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Wieland Schöllkopf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Gert von Helden
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| | - Tim Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences Vienna 1190 Vienna Austria
| | - Venkateswara R Narreddula
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology Brisbane QLD 4000 Australia
- Central Analytical Research Facility, Queensland University of Technology Brisbane QLD 4000 Australia
- Centre for Materials Science, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Kevin Pagel
- Institut für Chemie und Biochemie, Freie Universität Berlin Altensteinstraße 23a 14195 Berlin Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6 14195 Berlin Germany
| |
Collapse
|
11
|
Chen C, Li R, Wu H. Recent progress in the analysis of unsaturated fatty acids in biological samples by chemical derivatization-based chromatography-mass spectrometry methods. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123572. [PMID: 36565575 DOI: 10.1016/j.jchromb.2022.123572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Unsaturated fatty acids (UFAs) are essential fatty acids that execute various biological functions in the human body. Therefore, the qualitative and quantitative analysis of UFAs in biological samples can help to clarify their roles in the occurrence and development of diseases, so to reveal the mechanisms of pathogenesis and potential drug intervention strategies. Chromatography-mass spectrometry is one of the most commonly used techniques for the analysis of UFAs in biological samples. However, due to factors such as the complex structural information of UFAs (the number and specific location of CC double bonds) and the low concentration of UFAs in biological samples, it is still difficult to conduct accurate qualitative and/or quantitative studies of UFAs in complex biological samples. In recent years, the integration and application of chemical derivatization and chromatography-mass spectrometry has been widely used in the detection of UFAs. Based on this overview, we reviewed recent developments and application progress for chemical derivatization-based chromatography-mass spectrometry methods for the qualitative and/or quantitative analysis of UFAs in biological samples over the past ten years. Potential trends for the design and improvement of novel derivatization reagents were proposed.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
12
|
Computational mass spectrometry accelerates C = C position-resolved untargeted lipidomics using oxygen attachment dissociation. Commun Chem 2022; 5:162. [PMID: 36698019 PMCID: PMC9814143 DOI: 10.1038/s42004-022-00778-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry-based untargeted lipidomics has revealed the lipidome atlas of living organisms at the molecular species level. Despite the double bond (C = C) position being a crucial factor in biological system, the C = C defined structures have not yet been characterized comprehensively. Here, we present an approach for C = C position-resolved untargeted lipidomics using a combination of oxygen attachment dissociation and computational mass spectrometry to increase the annotation rate. We validated the accuracy of our platform as per the authentic standards of 85 lipids and the biogenic standards of 52 molecules containing polyunsaturated fatty acids (PUFAs) from the cultured cells fed with various fatty acid-enriched media. By analyzing human and mice-derived samples, we characterized 648 unique lipids with the C = C position-resolved level encompassing 24 lipid subclasses defined by LIPIDMAPS. Our platform also illuminated the unique profiles of tissue-specific lipids containing n-3 and/or n-6 very long-chain PUFAs (carbon [Formula: see text] 28 and double bonds [Formula: see text] 4) in the eye, testis, and brain of the mouse.
Collapse
|
13
|
Hynds HM, Hines KM. Ion Mobility Shift Reagents for Lipid Double Bonds Based on Paternò-Büchi Photoderivatization with Halogenated Acetophenones. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1982-1989. [PMID: 36126229 DOI: 10.1021/jasms.2c00211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Paternò-Büchi (PB) reaction is a cycloaddition reaction between a carbon-carbon double bond (C═C) and a photochemically excited carbonyl-containing compound. The constrained ring formed between the C═C bond and the PB reagent is more susceptible to fragmentation by collision-induced dissociation, which facilitates identification of the C═C position within the fatty acyl tails of lipids. Although the original PB reaction using acetone had a low yield of derivatized lipids and therefore a low yield of diagnostic ions, a new generation of PB reagents based on halogenated acetophenones has improved the reaction yield substantially. In this study, we investigated the use of halogenated PB reagents and ion mobility to improve the identification of PB-derivatized lipids by shifting them out of the densely populated lipid region of ion mobility-mass spectrometry (IM-MS) space. Several halogenated PB reagents containing fluorine, chlorine and bromine were investigated for their ability to decrease the collision cross-section (CCS) values of derivatized lipids and yield sufficient intensity for both the derivatized lipid and its diagnostic ions. We found that 4'-chloro-2',6'-difluoroacetophenone (CDFAP) displayed the best performance, with an average decrease in CCS of 4.4% and yield of derivatized lipids and diagnostic ions comparable to the trifluorinated acetophenone reagent proposed by the Xia group. The unique isotope pattern resulting from the chlorine substituent aided in identification of the derivatized lipids and their diagnostic ions, as well. We further demonstrate that derivatization with CDFAP preserves the separation of lipids classes in IM-MS space.
Collapse
Affiliation(s)
- Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Ma X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules 2022; 27:6466. [PMID: 36235003 PMCID: PMC9572214 DOI: 10.3390/molecules27196466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS) has become the central technique that is extensively used for the analysis of molecular structures of unknown compounds in the gas phase. It manipulates the molecules by converting them into ions using various ionization sources. With high-resolution MS, accurate molecular weights (MW) of the intact molecular ions can be measured so that they can be assigned a molecular formula with high confidence. Furthermore, the application of tandem MS has enabled detailed structural characterization by breaking the intact molecular ions and protonated or deprotonated molecules into key fragment ions. This approach is not only used for the structural elucidation of small molecules (MW < 2000 Da), but also crucial biopolymers such as proteins and polypeptides; therefore, MS has been extensively used in multiomics studies for revealing the structures and functions of important biomolecules and their interactions with each other. The high sensitivity of MS has enabled the analysis of low-level analytes in complex matrices. It is also a versatile technique that can be coupled with separation techniques, including chromatography and ion mobility, and many other analytical instruments such as NMR. In this review, we aim to focus on the technical advances of MS-based structural elucidation methods over the past five years, and provide an overview of their applications in complex mixture analysis. We hope this review can be of interest for a wide range of audiences who may not have extensive experience in MS-based techniques.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Yoon JH, Seo Y, Jo YS, Lee S, Cho E, Cazenave-Gassiot A, Shin YS, Moon MH, An HJ, Wenk MR, Suh PG. Brain lipidomics: From functional landscape to clinical significance. SCIENCE ADVANCES 2022; 8:eadc9317. [PMID: 36112688 PMCID: PMC9481132 DOI: 10.1126/sciadv.adc9317] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 05/23/2023]
Abstract
Lipids are crucial components of cellular function owing to their role in membrane formation, intercellular signaling, energy storage, and homeostasis maintenance. In the brain, lipid dysregulations have been associated with the etiology and progression of neurodegeneration and other neurological pathologies. Hence, brain lipids are emerging as important potential targets for the early diagnosis and prognosis of neurological diseases. This review aims to highlight the significance and usefulness of lipidomics in diagnosing and treating brain diseases. We explored lipid alterations associated with brain diseases, paying attention to organ-specific characteristics and the functions of brain lipids. As the recent advances in brain lipidomics would have been impossible without advances in analytical techniques, we provide up-to-date information on mass spectrometric approaches and integrative analysis with other omic approaches. Last, we present the potential applications of lipidomics combined with artificial intelligence techniques and interdisciplinary collaborative research for treating brain diseases with clinical heterogeneities.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Youngsuk Seo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Yong-Seung Shin
- Laboratory Solutions Sales, Agilent Technologies Korea Ltd., Seoul, 06621, Republic of Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| |
Collapse
|
16
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
17
|
Investigation of fragmentation behaviors of steroidal drugs with Li+, Na+, K+ adducts by tandem mass spectrometry aided with computational analysis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
18
|
Mass Spectrometry Imaging Techniques Enabling Visualization of Lipid Isomers in Biological Tissues. Anal Chem 2022; 94:4889-4900. [PMID: 35303408 DOI: 10.1021/acs.analchem.1c05108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Feature focuses on a review of recent developments in mass spectrometry imaging (MSI) of lipid isomers in biological tissues. The tandem MS techniques utilizing online and offline chemical derivatization procedures, ion activation techniques such as ozone-induced dissociation (OzID), ultraviolet photodissociation (UVPD), or electron-induced dissociation (EID), and other techniques such as coupling of ion mobility with MSI are discussed. The importance of resolving lipid isomers in diseases is highlighted.
Collapse
|
19
|
Sanders JD, Shields SW, Escobar EE, Lanzillotti MB, Butalewicz JP, James VK, Blevins MS, Sipe SN, Brodbelt JS. Enhanced Ion Mobility Separation and Characterization of Isomeric Phosphatidylcholines Using Absorption Mode Fourier Transform Multiplexing and Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:4252-4259. [PMID: 35239318 DOI: 10.1021/acs.analchem.1c04711] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural diversity of phospholipids plays a critical role in cellular membrane dynamics, energy storage, and cellular signaling. Despite its importance, the extent of this diversity has only recently come into focus, largely owing to advances in separation science and mass spectrometry methodology and instrumentation. Characterization of glycerophospholipid (GP) isomers differing only in their acyl chain configurations and locations of carbon-carbon double bonds (C═C) remains challenging due to the need for both effective separation of isomers and advanced tandem mass spectrometry (MS/MS) technologies capable of double-bond localization. Drift tube ion mobility spectrometry (DTIMS) coupled with MS can provide both fast separation and accurate determination of collision cross section (CCS) of molecules but typically lacks the resolving power needed to separate phospholipid isomers. Ultraviolet photodissociation (UVPD) can provide unambiguous double-bond localization but is challenging to implement on the timescales of modern commercial drift tube time-of-flight mass spectrometers. Here, we present a novel method for coupling DTIMS with a UVPD-enabled Orbitrap mass spectrometer using absorption mode Fourier transform multiplexing that affords simultaneous localization of double bonds and accurate CCS measurements even when isomers cannot be fully resolved in the mobility dimension. This method is demonstrated on two- and three-component mixtures and shown to provide CCS measurements that differ from those obtained by individual analysis of each component by less than 1%.
Collapse
Affiliation(s)
- James D Sanders
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Samuel W Shields
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael B Lanzillotti
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Molly S Blevins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Macias LA, Brodbelt JS. Enhanced Characterization of Cardiolipins via Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2022; 94:3268-3277. [PMID: 35135194 PMCID: PMC9284920 DOI: 10.1021/acs.analchem.1c05071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiolipins (CLs) constitute a structurally complex class of glycerophospholipids with a unique tetraacylated structure accompanied by distinctive functional roles. Aberrations in the composition of this lipid class have been associated with disease states, spurring interest in the development of new approaches to differentiate the structures of diverse CLs in complex mixtures. The structural characterization of these complex lipids using conventional methods, however, suffers from limited resolution and frequently proves unable to discern subtle yet biologically significant features such as unsaturation sites or acyl chain position assignments. Here, we describe the synergistic use of chemical derivatization and hybrid dissociation techniques to characterize CL from complex biological mixtures with both double bond and sn positional isomer resolution in a shotgun mass spectrometry strategy. Utilizing (trimethylsilyl)diazomethane (TMSD), CL phosphate groups were methylated to promote positive-mode ionization by the production of metal-cationized lipids, enabling structural interrogation via hybrid higher-energy collisional activation/ultraviolet photodissociation (HCD/UVPD). This combination of TMSD derivatization and HCD/UVPD fragmentation results in diagnostic product ions that permit distinction and relative quantitation of sn-stereoisomers and the localization of double bonds. Applying this strategy to a total lipid extract from a thyroid carcinoma revealed a previously unreported 18:2/18:1 motif, elucidating a structural feature unique to the lipid class.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
21
|
Zaikin VG, Borisov RS. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [PMCID: PMC8693159 DOI: 10.1134/s1061934821140094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is devoted to the consideration of mass spectrometric platforms as applied to omics sciences. The most significant attention is paid to omics related to life sciences (genomics, proteomics, meta-bolomics, lipidomics, glycomics, plantomics, etc.). Mass spectrometric approaches to solving the problems of petroleomics, polymeromics, foodomics, humeomics, and exosomics, related to inorganic sciences, are also discussed. The review comparatively presents the advantages of various principles of separation and mass spectral techniques, complementary derivatization, used to obtain large arrays of various structural and quantitative information in the mentioned omics sciences.
Collapse
Affiliation(s)
- V. G. Zaikin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - R. S. Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
- Core Facility Center “Arktika,” Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
22
|
Lin Q, Li P, Fang M, Zhang D, Xia Y. Deep Profiling of Aminophospholipids Reveals a Dysregulated Desaturation Pattern in Breast Cancer Cell Lines. Anal Chem 2021; 94:820-828. [PMID: 34931817 DOI: 10.1021/acs.analchem.1c03494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylethanolamines (PEs), ether-PEs, and phosphatidylserines (PSs) are glycerophospholipids harboring a primary amino group in their headgroups. They are key components of mammalian cell membranes and play pivotal roles in cell signaling and apoptosis. In this study, a liquid chromatography-mass spectrometry (LC-MS) workflow for deep profiling of PEs, ether-PEs, and PSs has been developed by integrating two orthogonal derivatizations: (1) derivatization of the primary amino group by 4-trimethylammoniumbutyryl-N-hydroxysuccinimide (TMAB-NHS) for enhanced LC separation and MS detection and (2) the Paternò-Büchi (PB) reaction for carbon-carbon double bond (C═C) derivatization and localization. Significant improvement of the limit of identification down to the C═C location has been achieved for the standards of PSs (3 nM) and ether-PEs (20 nM). This workflow facilitates an identification of more than 200 molecular species of aminophospholipids in the porcine brain, two times more than those identified without TMAB-NHS derivatization. Importantly, we discovered that the n-10 isomers in C16:1 and C18:1 of aminophospholipids showed elevated contribution among other isomers, which correlated well with an increased transcription of the corresponding desaturase (FADS2) in the human breast cancer cell line (MDA-MB-231) relative to that in the normal cell line (HMEC). The abovementioned data suggest that lipid reprograming via forming different C═C location isomers might be an alternative mechanism in cancer cells.
Collapse
Affiliation(s)
- Qiaohong Lin
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| | - Pengyun Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Mengxuan Fang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China.,School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Donghui Zhang
- Department of Precision Instrument, Tsinghua University, Beijing 10084, China
| | - Yu Xia
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 10084, China
| |
Collapse
|
23
|
Pathmasiri KC, Nguyen TTA, Khamidova N, Cologna SM. Mass spectrometry-based lipid analysis and imaging. CURRENT TOPICS IN MEMBRANES 2021; 88:315-357. [PMID: 34862030 DOI: 10.1016/bs.ctm.2021.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.
Collapse
Affiliation(s)
- Koralege C Pathmasiri
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T A Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Nigina Khamidova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States; Laboratory of Integrated Neuroscience, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
24
|
Macias LA, Garza KY, Feider CL, Eberlin LS, Brodbelt JS. Relative Quantitation of Unsaturated Phosphatidylcholines Using 193 nm Ultraviolet Photodissociation Parallel Reaction Monitoring Mass Spectrometry. J Am Chem Soc 2021; 143:14622-14634. [PMID: 34486374 PMCID: PMC8579512 DOI: 10.1021/jacs.1c05295] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural characterization of glycerophospholipids beyond the fatty acid level has become a major endeavor in lipidomics, presenting an opportunity to advance the understanding of the intricate relationship between lipid metabolism and disease state. Distinguishing subtle lipid structural features, however, remains a major challenge for high-throughput workflows that implement traditional tandem mass spectrometry (MS/MS) techniques, stunting the molecular depth of quantitative strategies. Here, reversed phase liquid chromatography is coupled to parallel reaction mass spectrometry utilizing the double bond localization capabilities of ultraviolet photodissociation (UVPD) mass spectrometry to produce double bond isomer specific responses that are leveraged for relative quantitation. The strategy provides lipidomic characterization at the double bond level for phosphatidylcholine phospholipids from biological extracts. In addition to quantifying monounsaturated lipids, quantitation of phospholipids incorporating isomeric polyunsaturated fatty acids is also achieved. Using this technique, phosphatidylcholine isomer ratios are compared across human normal and tumor breast tissue to reveal significant structural alterations related to disease state.
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyana Y Garza
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Zhao J, Fang M, Xia Y. A liquid chromatography-mass spectrometry workflow for in-depth quantitation of fatty acid double bond location isomers. J Lipid Res 2021; 62:100110. [PMID: 34437891 PMCID: PMC8441088 DOI: 10.1016/j.jlr.2021.100110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 01/31/2023] Open
Abstract
Tracing compositional changes of fatty acids (FAs) is frequently used as a means of monitoring metabolic alterations in perturbed biological states. Given that more than half of FAs in the mammalian lipidome are unsaturated, quantitation of FAs at a carbon-carbon double bond (C=C) location level is necessary. The use of 2-acetylpiridine (2-acpy) as the charge-tagging PB reagent led to a limit of identification in the subnanomolar range for mono- and polyunsaturated as well as conjugated FAs. Conjugated free FAs of low abundance such as FA 18:2 (n-7, n-9) and FA 18:2 (n-6, n-8) were quantified at concentrations of 0.61 ± 0.05 and 0.05 ± 0.01 mg per 100 g in yak milk powder, respectively. This workflow also enabled deep profiling of eight saturated and 37 unsaturated total FAs across a span of four orders of magnitude in concentration, including ten groups of C=C location isomers in pooled human plasma. A pilot survey on total FAs in plasma from patients with type 2 diabetes revealed that the relative compositions of FA 16:1 (n-10) and FA 18:1 (n-10) were significantly elevated compared with that of normal controls. In this work, we have developed a workflow for global quantitation of FAs, including C=C location isomers, via charge-tagging Paternò-Büchi (PB) derivatization and liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Mengxuan Fang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China; School of Chemistry, University of Melbourne, Melbourne, Victoria, Australia
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
26
|
Tu A, Garrard KP, Said N, Muddiman DC. In situ detection of fatty acid C=C positional isomers by coupling on-tissue mCPBA epoxidation with infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9119. [PMID: 33942403 PMCID: PMC8988907 DOI: 10.1002/rcm.9119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Unsaturated fatty acids (UFAs) play vital roles in regulating cellular functions. In-depth structural characterization of UFAs such as localizing carbon-carbon double bonds is fundamentally important but poses considerable challenges in mass spectrometry (MS) given that the most widely accessible ion activation method, low-energy collision-induced dissociation (CID), primarily generates uninformative fragments (e.g., neutral loss of CO2 ) that are not suggestive of the double-bond positions. METHODS m-Chloroperoxybenzoic acid (mCPBA) was uniformly deposited onto the sample slides using a TM Sprayer, converting the carbon-carbon double bonds into epoxides under ambient conditions. The epoxidation product was ionized in situ by infrared matrix-assisted laser desorption electrospray ionization mass spectrometry (IR-MALDESI-MS), and subsequently cleaved via CID, generating a diagnostic ion pair associated with the double-bond position. The reaction efficiency, sensitivity and relative quantification capability of the method were validated with five UFA standards dried on glass slides, and then this strategy was demonstrated on thin tissue sections of rat liver and human bladder. RESULTS The mCPBA reaction yielded conversion rates in the range of 44-60% in 10 min with high specificity and sensitivity. Further tandem mass spectrometry (MS/MS) of the mono-epoxidized products generated informative fragment ions specific to the double-bond positions, and relative quantification of positional isomers in binary mixtures was performed across a wide mole fraction from 0 to 1. An innovative spiral scan pattern was utilized during data acquisition, elucidating the major isomeric compositions of multiple UFAs from a tissue section in a single run. CONCLUSIONS The on-tissue mCPBA epoxidation was implemented into an ambient MS imaging workflow to offer a rapid and simple way for in situ identification and relative quantification of double-bond positional isomers without the requirement for instrument modification. The method can be readily implemented on many other MS platforms to reveal the role of double-bond positional isomers in lipid biology and to discover potential biomarkers.
Collapse
Affiliation(s)
- Anqi Tu
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA
| | - Neveen Said
- Departments of Cancer Biology, Pathology, and Urology, Wake Forest University School of Medicine, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, 27157, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
27
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
28
|
Lillja J, Duncan KD, Lanekoff I. Determination of Monounsaturated Fatty Acid Isomers in Biological Systems by Modeling MS 3 Product Ion Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2479-2487. [PMID: 32677833 DOI: 10.1021/jasms.0c00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unsaturated free fatty acids are natively present in biological samples as isomers, where double bonds can be situated on different carbons in the acyl chain. While these isomers can have different actions and impacts on biological systems, they are inherently difficult to identify and differentiate by mass spectrometry alone. To address this challenge, several techniques for derivatization of the double bond or metal cationization at the carboxylic group have yielded diagnostic product ions for the respective isomer in tandem mass spectrometry. However, diagnostic product ions do not necessarily reflect quantitative isomeric ratios since fatty acid isomers have different ionization and fragmentation efficiencies. Here, we introduce a simple and rapid approach to predict the quantitative ratio of isomeric monounsaturated fatty acids. Specifically, empirically derived MS3 product ion patterns from fatty acid silver adducts are modeled using a stepwise linear model. This model is then applied to predict the proportion oleic and vaccenic acid in chemically complex samples at individual concentrations between 0.45 and 5.25 μM, with an average accuracy and precision below 2 and 5 mol %, respectively. We show that by simply including silver ions in the electrospray solvent, isomeric ratios are rapidly predicted in neat standards, rodent plasma, and tissue extract. Furthermore, we use the method to directly map isomeric ratios in tissue sections using nanospray desorption electrospray ionization MS3 imaging without any sample preparation or modification to the instrumental setup. Ultimately, this approach provides a simple and rapid solution to differentiate monounsaturated fatty acids using commonly available commercial mass spectrometers without any instrumental modifications.
Collapse
Affiliation(s)
- Johan Lillja
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Kyle D Duncan
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
29
|
West H, Reid GE. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M] +. Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal Chim Acta 2020; 1141:100-109. [PMID: 33248642 DOI: 10.1016/j.aca.2020.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Sterols are a class of lipid molecules that include cholesterol, oxysterols, and sterol esters. Sterol lipids play critical functional roles in mammalian biology, including the dynamic regulation of cell membrane fluidity, as precursors for the synthesis of bile acids, steroid hormones and vitamin D, as regulators of gene expression in lipid metabolism, and for cholesterol transport and storage. The most common method employed for sterol analysis is high performance liquid chromatography coupled with tandem mass spectrometry (MS/MS). However, conventional collision induced dissociation (CID) methods used for ion activation during MS/MS typically fail to provide sufficient structural information for unambiguous assignment of sterol species based on their fragmentation behaviour alone. This places a significant burden on the efficiency of the chromatographic separation methods for the effective separation of isomeric sterols. Here, toward developing an improved analysis strategy for sterol lipids, we have explored the novel use of 213 nm photodissociation MS/MS and hybrid multistage-MS/MS (i.e., MSn) data acquisition approaches for the improved structural characterization of cholesterol, representative isomeric oxysterols, and cholesteryl esters. Most notably, UVPD-MS/MS of ammoniated, lithiated and sodiated adducts of cholesterol, several representative oxysterol species, and an oxosterol lipid, are shown to give rise to abundant [M]+. radical cation products, that subsequently fragment during collision induced MS3 to yield extensive structurally informative product ions, similar to those observed by Electron Ionization, and that enable their unambiguously assignment, including isomeric differentiation of oxysterols. For cholesterol esters, a reversed hybrid collision induced-MS/MS and UVPD-MS3 approach is shown to enable assignment of the sterol backbone, and localization of the site(s) of unsaturation within esterified fatty acyl chains.
Collapse
Affiliation(s)
- Henry West
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia; Bio 21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
30
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
31
|
Buenger EW, Reid GE. Shedding light on isomeric FAHFA lipid structures using 213 nm ultraviolet photodissociation mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:311-323. [PMID: 32957827 DOI: 10.1177/1469066720960341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) are a recently discovered class of biological active lipids with anti-diabetic and anti-inflammatory functions. Given that structure and function are intimately related, we report here the use of direct infusion multi-stage hybrid tandem mass spectrometry involving sequential Collisional Activated Dissociation (CAD) and 213 nm UltraViolet PhotoDissociation (UVPD), as a novel technique for the unambiguous denovo identification and detailed structural characterisation of FAHFA lipid ions, including determination of the esterified fatty acid identity, the hydroxy fatty acid identity and position of esterification, and localization of the site(s) of endogenous unsaturations, without need for chromatographic separation or authentic reference standards. The utility of this approach is demonstrated for the identification of individual FAHFA lipids introduced to the mass spectrometer in positive ionization mode as their lithiated adducts, as well as from mixtures containing isomeric FAHFA species with differing esterification sites, including those that are not resolved by current liquid chromatography methods.
Collapse
Affiliation(s)
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
32
|
Wäldchen F, Mohr F, Wagner AH, Heiles S. Multifunctional Reactive MALDI Matrix Enabling High-Lateral Resolution Dual Polarity MS Imaging and Lipid C═C Position-Resolved MS 2 Imaging. Anal Chem 2020; 92:14130-14138. [PMID: 32924439 DOI: 10.1021/acs.analchem.0c03150] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Local lipid variations in tissues are readily revealed with mass spectrometry imaging (MSI) methods, and the resulting lipid distributions serve as bioanalytical signatures to reveal cell- or tissue-specific lipids. Comprehensive MSI lipid mapping requires measurements in both ion polarities. Additionally, structural lipid characterization is necessary to link the lipid structure to lipid function. Whereas some structural elements of lipids are readily derived from high-resolution mass spectrometry (MS) and tandem-MS (MSn), the localization of C═C double bonds (DBs) requires specialized fragmentation and/or functionalization methods. In this work, we identify a multifunctional matrix-assisted laser desorption/ionization (MALDI) matrix for spatially resolved lipidomics investigations that reacts with lipids in Paternò-Büchi (PB) reactions during laser irradiation facilitating DB-position assignment and allows dual-polarity high-resolution MALDI-MSI and MALDI MS2I studies. By screening 12 compounds for improved ionization efficiency in positive-/negative-ion mode and the functionalization yield compared to the previously introduced reactive MALDI matrix benzophenone, 2-benzoylpyridine (BzPy) is identified as the best candidate. The new matrix enables DB localization of authentic standards belonging to 12 lipid classes and helps to assign 133/58 lipid features in positive-/negative-ion mode from mouse cerebellum tissue. The analytical capabilities of BzPy as a multifunctional MALDI-MSI matrix are demonstrated by imaging endogenous and PB-functionalized lipids in mouse kidney sections with 7 μm lateral resolution in both ion modes. Tracking diagnostic lipid DB-position fragment ions in mouse pancreatic tissue with down to 10 μm pixel size allows us to identify the islets of Langerhans associated with lipid isomer upregulation and depletion.
Collapse
Affiliation(s)
- Fabian Wäldchen
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| | - Franziska Mohr
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, 35392 Giessen, Germany
| |
Collapse
|
33
|
Blevins MS, James VK, Herrera CM, Purcell AB, Trent MS, Brodbelt JS. Unsaturation Elements and Other Modifications of Phospholipids in Bacteria: New Insight from Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2020; 92:9146-9155. [PMID: 32479092 PMCID: PMC7384744 DOI: 10.1021/acs.analchem.0c01449] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycerophospholipids (GPLs), one of the main components of bacterial cell membranes, exhibit high levels of structural complexity that are directly correlated with biophysical membrane properties such as permeability and fluidity. This structural complexity arises from the substantial variability in the individual GPL structural components such as the acyl chain length and headgroup type and is further amplified by the presence of modifications such as double bonds and cyclopropane rings. Here we use liquid chromatography coupled to high-resolution and high-mass-accuracy ultraviolet photodissociation mass spectrometry for the most in-depth study of bacterial GPL modifications to date. In doing so, we unravel a diverse array of unexplored GPL modifications, ranging from acyl chain hydroxyl groups to novel headgroup structures. Along with characterizing these modifications, we elucidate general trends in bacterial GPL unsaturation elements and thus aim to decipher some of the biochemical pathways of unsaturation incorporation in bacterial GPLs. Finally, we discover aminoacyl-PGs not only in Gram-positive bacteria but also in Gram-negative C. jejuni, advancing our knowledge of the methods of surface charge modulation that Gram-negative organisms may adopt for antibiotic resistance.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carmen M Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - Alexandria B Purcell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States
- Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia 30602, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Feider CL, Macias LA, Brodbelt JS, Eberlin LS. Double Bond Characterization of Free Fatty Acids Directly from Biological Tissues by Ultraviolet Photodissociation. Anal Chem 2020; 92:8386-8395. [PMID: 32421308 PMCID: PMC7433749 DOI: 10.1021/acs.analchem.0c00970] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Free fatty acids (FA) are a vital component of cells and are critical to cellular structure and function, so much so that alterations in FA are often associated with cell malfunction and disease. Analysis of FA from biological samples can be achieved by mass spectrometry (MS), but these analyses are often not capable of distinguishing the fine structural alterations within FA isomers and often limited to global profiling of lipids without spatial resolution. Here, we present the use of ultraviolet photodissociation (UVPD) for the characterization of double bond positional isomers of charge inverted dication·FA complexes and the subsequent implementation of this method for online desorption electrospray ionization (DESI) MS imaging of FA isomers from human tissue sections. This method allows relative quantification of FA isomers from heterogeneous biological tissue sections, yielding spatially resolved information about alterations in double bond isomers within these samples. Applying this method to the analysis of the monounsaturated FA 18:1 within breast cancer subtypes uncovered a correlation between double bond positional isomer abundance and the hormone receptor status of the tissue sample, an important factor in the prognosis and treatment of breast cancer patients. This result further validates similar studies that suggest FA synthase activity and FA isomer abundances are significantly altered within breast cancer tissue.
Collapse
Affiliation(s)
- Clara L Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Luis A Macias
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|