1
|
Li L, Gopinath SC, Lakshmipriya T, Subramaniam S, Anbu P. Zeolite-iron oxide integrated interdigitated electrode sensor for diagnosing cervical cancer. Heliyon 2024; 10:e31851. [PMID: 38845893 PMCID: PMC11154609 DOI: 10.1016/j.heliyon.2024.e31851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Cervical cancer is caused by changes in the cervix that lead to precancerous cells and eventually progress to cancer. Human papillomavirus (HPV) infections are the primary cause of cervical cancer. Early detection of HPV is crucial in preventing cervical cancer, and regular screening for HPV infection can identify cell changes before they develop into cancer. While Pap smear tests are reliable for cervical cancer screening, they are critical, expensive, and labor-intensive. Therefore, researchers are focusing on identifying blood-based biomarkers using biosensors for cervical cancer screening. HPV strains 16, 45, and 18 are common culprits in cervical cancer. This study aimed to develop an HPV-16 DNA biosensor on a zeolite-iron oxide (zeolite-IO) modified interdigitated electrode (IDE) sensor. The DNA probe was immobilized on the IDE through amine-modified zeolite-IO, enhancing the hybridization of the target and DNA probe. The detection limit of the DNA-DNA duplex was found to be 7.5 pM with an R2 value of 0.9868. Additionally, control experiments with single and triple mismatched sequences showed no increase in current responses, and the identification of target DNA in a serum-spiked sample indicated specific and selective target identification.
Collapse
Affiliation(s)
- Ling Li
- Obstetrics and Gynecology, Xi'an Forth Hospital, Xi'an, 710004, China
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Thangavel Lakshmipriya
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Sreeramanan Subramaniam
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Georgetown, 11800, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Periasamy Anbu
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
2
|
Gunasekaran BM, Srinivasan S, Ezhilan M, Nesakumar N. Nucleic acid-based electrochemical biosensors. Clin Chim Acta 2024; 559:119715. [PMID: 38735514 DOI: 10.1016/j.cca.2024.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Colorectal cancer, breast cancer, oxidative DNA damage, and viral infections are all significant and major health threats to human health, presenting substantial challenges in early diagnosis. In this regard, a wide range of nucleic acid-based electrochemical platforms have been widely employed as point-of-care diagnostics in health care and biosensing technologies. This review focuses on biosensor design strategies, underlying principles involved in the development of advanced electrochemical genosensing devices, approaches for immobilizing DNA on electrode surfaces, as well as their utility in early disease diagnosis, with a particular emphasis on cancer, leukaemia, oxidative DNA damage, and viral pathogen detection. Notably, the role of biorecognition elements and nanointerfaces employed in the design and development of advanced electrochemical genosensors for recognizing biomarkers related to colorectal cancer, breast cancer, leukaemia, oxidative DNA damage, and viral pathogens has been extensively reviewed. Finally, challenges associated with the fabrication of nucleic acid-based biosensors to achieve high sensitivity, selectivity, a wide detection range, and a low detection limit have been addressed. We believe that this review will provide valuable information for scientists and bioengineers interested in gaining a deeper understanding of the fabrication and functionality of nucleic acid-based electrochemical biosensors for biomedical diagnostic applications.
Collapse
Affiliation(s)
- Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Chemistry, A.V.V.M Sri Pushpam College (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli), Poondi, Thanjavur, Tamil Nadu 613 503, India
| | - Madeshwari Ezhilan
- Department of biomedical engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
3
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
4
|
Panicker LR, Kummari S, Keerthanaa MR, Rao Bommi J, Koteshwara Reddy K, Yugender Goud K. Trends and challenges in electroanalytical biosensing methodologies for infectious viral diseases. Bioelectrochemistry 2024; 156:108594. [PMID: 37984310 DOI: 10.1016/j.bioelechem.2023.108594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Viral pandemic diseases have disruptive global consequences leading to millions of deaths and a severe impact on the global economy. Inadequate preventative protocols have led to an overwhelming demand for intensive care leading to uncontrollable burdens and even breakdown of healthcare sectors across many countries. The rapid detection of viral disease helps in the understanding of the relevant intricacies, helping to tackle infection with improved guidelines. Portable biosensor devices offer promising solutions by facilitating on-site detection of viral pathogens. This review summarizes the latest innovative strategies reported using electroanalytical methods for the screening of viral antigens. The structural components of viruses and their categories are presented followed by the various recognition elements and transduction techniques involved in biosensors. Core sections focus on biosensors reported for viral genomic detection(DNA and RNA) and antigenic capsid protein. Strategies for addressing the challenges of electroanalytical biosensing of viral components are also presented. The advantages, and disadvantages of biorecognition elements and nanozymes for the detection of viral disease are highlighted. Such technical insights will help researchers working in chemistry, and biochemistry as well as clinicians working in medical diagnostics.
Collapse
Affiliation(s)
- Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | - M R Keerthanaa
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India
| | | | - K Koteshwara Reddy
- School of Material Science and Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - K Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
| |
Collapse
|
5
|
Imbriano A, Tricase A, Macchia E, Torsi L, Bollella P. Self-powered logically operated fluorescent detection of hepatitis B virus (HBV). Anal Chim Acta 2023; 1252:341037. [PMID: 36935148 DOI: 10.1016/j.aca.2023.341037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
In this study, a novel sensing strategy based on double sensing/actuating pathway is demonstrated, being capable to trigger the DNA-based AND gate for the sensitive and selective detection of hepatitis B virus DNA (HBV-DNA). Such an approach encompasses an enzymatic machinery logically operated using the variation of physiologically relevant biomarkers for liver dysfunctions. Alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) are used as inputs of an AND gate generating an output signal, namely lactate. In particular, lactate is oxidized back to pyruvate at the anodic electrode by lactate oxidase connected in mediated electron transfer through ferrocene moieties (creating an amplifying recycling mechanism). The anodic electrode is further connected with a Myrothecium verrucaria bilirubin oxidase (MvBOx) based biocathode modified with SiO2 nanoparticles (SiO2NPs) functionalized with phenyl boronic acid and trigonelline, triggering the release of quenching DNA (qDNA) upon local pH change at the electrode surface (notably, modified SiONPs gets negatively recharged upon local pH gradient releasing negatively charged DNA). Next, the released qDNA labeled with BHQ2 and detecting DNA (dDNA, labeled with FAM) are detecting HBV-DNA. The proposed biosensor can discriminate between the absence and presence of HBV-DNA setting the threshold at 0.05 fM in model buffer solutions and 1 fM in human serum. This enzymatic/DNA logic network can be of particular interest for future biomedical applications (e.g., early detection of liver cancer disease etc.). In the future development this technology could be easily integrated with a smartphone camera, allowing more user-friendly applications.
Collapse
Affiliation(s)
- Anna Imbriano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Angelo Tricase
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Eleonora Macchia
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Luisa Torsi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500, Turku, Finland
| | - Paolo Bollella
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy; Centre for Colloid and Surface Science, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
| |
Collapse
|
6
|
Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, Nagraik R, Kumar V, Pandey S. Advancements in CRISPR-Based Biosensing for Next-Gen Point of Care Diagnostic Application. BIOSENSORS 2023; 13:202. [PMID: 36831968 PMCID: PMC9953454 DOI: 10.3390/bios13020202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 05/25/2023]
Abstract
With the move of molecular tests from diagnostic labs to on-site testing becoming more common, there is a sudden rise in demand for nucleic acid-based diagnostic tools that are selective, sensitive, flexible to terrain changes, and cost-effective to assist in point-of-care systems for large-scale screening and to be used in remote locations in cases of outbreaks and pandemics. CRISPR-based biosensors comprise a promising new approach to nucleic acid detection, which uses Cas effector proteins (Cas9, Cas12, and Cas13) as extremely specialized identification components that may be used in conjunction with a variety of readout approaches (such as fluorescence, colorimetry, potentiometry, lateral flow assay, etc.) for onsite analysis. In this review, we cover some technical aspects of integrating the CRISPR Cas system with traditional biosensing readout methods and amplification technologies such as polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) and continue to elaborate on the prospects of the developed biosensor in the detection of some major viral and bacterial diseases. Within the scope of this article, we also discuss the recent COVID pandemic and the numerous CRISPR biosensors that have undergone development since its advent. Finally, we discuss some challenges and future prospects of CRISPR Cas systems in point-of-care testing.
Collapse
Affiliation(s)
- Akash Kumaran
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Nathan Jude Serpes
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Tisha Gupta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, Himachal Pradesh, India
| | - Vaneet Kumar
- Department of Natural Science, CT University, Ludhiana 142024, Punjab, India
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
7
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
8
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
9
|
Babaei A, Pouremamali A, Rafiee N, Sohrabi H, Mokhtarzadeh A, de la Guardia M. Genosensors as an alternative diagnostic sensing approaches for specific detection of various certain viruses: a review of common techniques and outcomes. Trends Analyt Chem 2022; 155:116686. [PMID: 35611316 PMCID: PMC9119280 DOI: 10.1016/j.trac.2022.116686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/19/2022]
Abstract
Viral infections are responsible for the deaths of millions of people throughout the world. Since outbreak of highly contagious and mutant viruses such as contemporary sars-cov-2 pandemic, has challenged the conventional diagnostic methods, the entity of a thoroughly sensitive, specific, rapid and inexpensive detecting technique with minimum level of false-positivity or -negativity, is desperately needed more than any time in the past decades. Biosensors as minimized devices could detect viruses in simple formats. So far, various nucleic acid, immune- and protein-based biosensors were designed and tested for recognizing the genome, antigen, or protein level of viruses, respectively; however, nucleic acid-based sensing techniques, which is the foundation of constructing genosensors, are preferred not only because of their ultra-sensitivity and applicability in the early stages of infections but also for their ability to differentiate various strains of the same virus. To date, the review articles related to genosensors are just confined to particular pathogenic diseases; In this regard, the present review covers comprehensive information of the research progress of the electrochemical, optical, and surface plasmon resonance (SPR) genosensors that applied for human viruses' diseases detection and also provides a well description of viruses' clinical importance, the conventional diagnosis approaches of viruses and their disadvantages. This review would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Abouzar Babaei
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Tan G, Fei Z, Wei R, Wu X, Xiao P. Development of a Novel Bioluminescence Pyrophosphate Assay for the High-Sensitivity Detection of Hepatitis B Virus. Appl Biochem Biotechnol 2022; 194:725-736. [PMID: 34519921 DOI: 10.1007/s12010-021-03655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
The transmission of bloodborne viruses through transfusion remains a major blood supply-related safety concern, with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) being the most important pathogens in this context. Real-time bioluminescent pyrophosphate testing has been developed as a means of readily detecting bacterial cells within particular sample types without requiring the use of expensive or complex instrumentation. The sensitivity of this approach, however, is often limited such that it is not compatible with many potential applications. In this study, we sought to overcome the limitations of this pyrophosphate bioluminescent assay format by using 2-deoxyadenosine-5-(α-thio)-triphosphate (dATPαS) in place of dATP for PCR amplification, thereby dramatically reducing background signal levels. We leveraged this combination PCR and bioluminescent pyrophosphate assay approach to facilitate HBV detection. This assay yielded a limit of detection of 500 copies/mL, making it more sensitive than traditional bioluminescent assays, about 1000 times more sensitive than that of PCR product analysis by agarose gel electrophoresis, and roughly as sensitive as qPCR as a means of detecting viral DNA. We then used this assay to analyze 100 serum samples, with qPCR being used for result validation. The assay required 100 min to complete, and was able to detect as few as 500 copies/mL of viral DNA. Overall, our approach was rapid, sensitive, and simple, enabling users to readily detect HBV in a reliable and efficient manner.
Collapse
Affiliation(s)
- Guolei Tan
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Lu 1#, Gulou District, Nanjing, 210003, China
| | - Zhongjie Fei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Xuanwu District, Nanjing, 210096, China
| | - Rongbin Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Xuanwu District, Nanjing, 210096, China
| | - Xuping Wu
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Lu 1#, Gulou District, Nanjing, 210003, China.
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Xuanwu District, Nanjing, 210096, China.
| |
Collapse
|
11
|
Sensory analysis of hepatitis B virus DNA for medicinal clinical diagnostics based on molybdenum doped ZnO nanowires field effect transistor biosensor; a comparative study to PCR test results. Anal Chim Acta 2022; 1195:339442. [DOI: 10.1016/j.aca.2022.339442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
|
12
|
Toropov N, Osborne E, Joshi LT, Davidson J, Morgan C, Page J, Pepperell J, Vollmer F. SARS-CoV-2 Tests: Bridging the Gap between Laboratory Sensors and Clinical Applications. ACS Sens 2021; 6:2815-2837. [PMID: 34392681 PMCID: PMC8386036 DOI: 10.1021/acssensors.1c00612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
This review covers emerging biosensors for SARS-CoV-2 detection together with a review of the biochemical and clinical assays that are in use in hospitals and clinical laboratories. We discuss the gap in bridging the current practice of testing laboratories with nucleic acid amplification methods, and the robustness of assays the laboratories seek, and what emerging SARS-CoV-2 sensors have currently addressed in the literature. Together with the established nucleic acid and biochemical tests, we review emerging technology and antibody tests to determine the effectiveness of vaccines on individuals.
Collapse
Affiliation(s)
- Nikita Toropov
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Eleanor Osborne
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | - James Davidson
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Caitlin Morgan
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Joseph Page
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Justin Pepperell
- Somerset
Lung Centre, Musgrove Park Hospital, Parkfield Drive, Taunton TA1 5DA, United Kingdom
| | - Frank Vollmer
- Living
Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
13
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
14
|
Shariati M, Vaezjalali M, Sadeghi M. Ultrasensitive and easily reproducible biosensor based on novel doped MoS 2 nanowires field-effect transistor in label-free approach for detection of hepatitis B virus in blood serum. Anal Chim Acta 2021; 1156:338360. [PMID: 33781462 DOI: 10.1016/j.aca.2021.338360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
An ultrasensitive field-effect transistor (FET) for hepatitis B virus deoxyribonucleic acid (HBV DNA) detection in label free approach and easily reproducible setup was reported. The fabricated FET biosensor was materialized by ZnO doped MoS2 nanowires (NWs). This report introduced a novel structure of the MoS2 in bio-sensing approach. Because of unique electrical and structural properties of MoS2, HBV biosensor could demonstrate the high sensitivity and showed the detection limit of 1 fM. The MoS2 NWs fabrication was materialized through ZnO based vapor-liquid-solid (VLS) technique. The fabricated device could measure the DNA targets in a linear concentration range from 0.5 pM to 50 μM. The dynamic response time of FET biosensor was 25 s. The functionality of the NWs biosensor for label-free measurements could be repeated for several times without any significant malfunction and biosensor could retain 96% of its initial response after eight weeks maintenance. The HBV biosensor showed high selectivity by discrimination the complementary DNA oligonucleotides from non-complementary and the mismatch (1, 2 and 3 bases) oligonucleotides. The materialized platform was desirably reproduced for HBV concentrations in human serum. The specificity of the biosensor was evaluated against several different types of DNAs and the fabricated device showed the outstanding performance. In order to optimize the device functionality, the biosensor was checked for two different human samples and device could distinguish the samples from each other in the same manner.
Collapse
Affiliation(s)
- Mohsen Shariati
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran.
| |
Collapse
|
15
|
Ertas YN, Mahmoodi M, Shahabipour F, Jahed V, Diltemiz SE, Tutar R, Ashammakhi N. Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). EMERGENT MATERIALS 2021; 4:35-55. [PMID: 33748672 PMCID: PMC7962632 DOI: 10.1007/s42247-021-00165-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Recently emerged novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting corona virus disease 2019 (COVID-19) led to urgent search for methods to prevent and treat COVID-19. Among important disciplines that were mobilized is the biomaterials science and engineering. Biomaterials offer a range of possibilities to develop disease models, protective, diagnostic, therapeutic, monitoring measures, and vaccines. Among the most important contributions made so far from this field are tissue engineering, organoids, and organ-on-a-chip systems, which have been the important frontiers in developing tissue models for viral infection studies. Also, due to low bioavailability and limited circulation time of conventional antiviral drugs, controlled and targeted drug delivery could be applied alternatively. Fortunately, at the time of writing this paper, we have two successful vaccines and new at-home detection platforms. In this paper, we aim to review recent advances of biomaterial-based platforms for protection, diagnosis, vaccination, therapeutics, and monitoring of SARS-CoV-2 and discuss challenges and possible future research directions in this field.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Mahboobeh Mahmoodi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Fahimeh Shahabipour
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
- Skin Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Jahed
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI USA
| |
Collapse
|
16
|
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 has spread since the end of 2019 and has resulted in a pandemic with unprecedented socioeconomic consequences. This situation has created enormous demand for the improvement of current diagnostic methods and the development of new diagnostic methods for fast, low-cost and user-friendly confirmation of SARS-CoV-2 infection. This critical review focuses on viral electrochemical biosensors that are promising for the development of rapid medical COVID-19 diagnostic tools. The molecular biological properties of SARS-CoV-2 as well as currently known biochemical attributes of infection necessary for biosensor development are outlined. The advantages and drawbacks of conventional diagnostic methods, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR), are critically discussed. Electrochemical biosensors focusing on viral nucleic acid and whole viral particle detection are highlighted and discussed in detail. Finally, future perspectives on viral electrochemical biosensor development are briefly mentioned.
Collapse
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Petr Michalek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Lada Ilieva
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00, Brno, Czech Republic
| |
Collapse
|