1
|
Rozaini MNH, Semail NF, Zango ZU, Lim JW, Yahaya N, Setiabudi HD, Tong WY, Shamsuddin R, Chan YJ, Khoo KS, Suliman M, Kiatkittipong W. Advanced adsorptions of non-steroidal anti-inflammatory drugs from environmental waters in improving offline and online preconcentration techniques: An analytical review. J Taiwan Inst Chem Eng 2025; 166:105020. [DOI: 10.1016/j.jtice.2023.105020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Kalinke N, Stopper P, Völkl L, Diehl F, Huhn C. SWIEET-a salt-free alternative to QuEChERS. Anal Bioanal Chem 2024; 416:6387-6403. [PMID: 39292259 PMCID: PMC11541295 DOI: 10.1007/s00216-024-05525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024]
Abstract
The efficient extraction of various analytes from a wide spectrum of matrices with organic solvents is still a great challenge in analytical chemistry. Especially polar and charged compounds are hard to extract in combination with neutral analytes of intermediate to low polarity. The QuEChERS method is often chosen and has been adapted not only to the analysis of food samples, but also to environmental matrices (soil, wastewater) or biota. In this study, we overcome major drawbacks of QuEChERS such as low recoveries of charged analytes and impairment of downstream analysis by high salt loads. The new extraction method, applicable to liquid and solid samples, is called SWIEET (sugar water isopropanol ethyl nitrile extraction technique). Phase separation of the otherwise miscible extraction solvents water and acetonitrile is achieved by sugaring-out instead of salting-out. Extraction efficiencies were greatly improved by adding isopropanol to the acetonitrile phase. The concentrations of the additives glucose and isopropanol, as well as temperature, were optimized by a design of experiment. Further improvement was achieved through electro- or double-extractions. For all sample types tested (surface water, wastewater treatment plant effluent, tomato, soil, and oats), recoveries and precision were higher with SWIEET than with the established QuEChERS method. From wastewater treatment plant effluent, 75% recovery on average were achieved with our SWIEET method compared to 37% with QuEChERS for a model analyte mixture with polarities of logDpH7 = - 5.7 - 3.5. Higher recoveries and lower standard deviations compared to QuEChERS were achieved especially for polar and charged analytes such as metformin. Handling proved to be easy, since there was no additional solid phase and no tedious weighing of salts.
Collapse
Affiliation(s)
- Nadja Kalinke
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pascal Stopper
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Luca Völkl
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Florian Diehl
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Department of Chemistry, Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Bernier-Turpin G, Thiebault T, Alliot F, Mebold E, Guérin-Rechdaoui S, Oliveira M, Le Roux J, Moilleron R. Target and non-target screening of biomarkers in wastewater: towards a unique analytical methodology for sample preparation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6241-6256. [PMID: 39211955 DOI: 10.1039/d4ay00843j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study aims to optimize a single preparation methodology based on solid-phase extraction (SPE) that could fit both target and non-target screening of organic biomarkers in raw wastewater, allowing the cross-comparison of results obtained from a same dataset. The efficiency of SPE sorbents used alone (HLB) or in combination in a multilayer cartridge was evaluated based on (i) the extraction recovery and matrix effect in environmental samples (surface water and wastewater) for a list of biomarkers (pharmaceuticals, licit and illicit drugs, artificial sweeteners, isoprostanes, polyphenols) and (ii) a number of detected features and their intensity in HRMS. The selected method uses a combination of three SPE sorbents mixed together (HLB, X-AW and X-CW) and seems to take full advantage of each, providing satisfactory validation parameters (recovery, instrumental limit of detection, linearity range and limit of quantification) over a large range of physico-chemical properties while ensuring promising results for non-target screening applications. Of the 65 targeted compounds, nearly all of them (47) were detected in wastewater influent samples with concentration above the limit of quantification, while at the same time over 10 000 features were recorded according to the high resolution mass spectrometry (HRMS) fingerprint, holding out the promise that a common protocol for these two analyses, with their very contrasting constraints and objectives, is possible.
Collapse
Affiliation(s)
- Gauthier Bernier-Turpin
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | - Thomas Thiebault
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | - Fabrice Alliot
- METIS, Sorbonne Univ, CNRS, EPHE, PSL Univ, UMR 7619, F-75005 Paris, France
| | | | | | | | - Julien Le Roux
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
| | - Régis Moilleron
- Leesu - Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France.
| |
Collapse
|
4
|
Margoum C, Bedos C, Munaron D, Nélieu S, Achard AL, Pesce S. Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34945-9. [PMID: 39279021 DOI: 10.1007/s11356-024-34945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Collapse
Affiliation(s)
| | - Carole Bedos
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | - Sylvie Nélieu
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | | |
Collapse
|
5
|
Wabnitz C, Canavan A, Chen W, Reisbeck M, Bakkour R. Quartz Crystal Microbalance as a Holistic Detector for Quantifying Complex Organic Matrices during Liquid Chromatography: 1. Coupling, Characterization, and Validation. Anal Chem 2024; 96:7429-7435. [PMID: 38683884 PMCID: PMC11099895 DOI: 10.1021/acs.analchem.3c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A matrix in highly complex samples can cause adverse effects on the trace analysis of targeted organic compounds. A suitable separation of the target analyte(s) and matrix before the instrumental analysis is often a vital step for which chromatographic cleanup methods remain one of the most frequently used strategies, particularly high-performance liquid chromatography (HPLC). The lack of a simple real-time detection technique that can quantify the entirety of the matrix during this step, especially with gradient solvents, renders optimization of the cleanup challenging. This paper, along with a companion one, explores the possibilities and limitations of quartz crystal microbalance (QCM) dry-mass sensing for quantifying complex organic matrices during gradient HPLC. To this end, this work coupled a QCM and a microfluidic spray dryer with a commercial HPLC system using a flow splitter and developed a calibration and data processing strategy. The system was characterized in terms of detection and quantification limits, with LOD = 4.3-15 mg/L and LOQ = 16-52 mg/L, respectively, for different eluent compositions. Validation of natural organic matter in an environmental sample against offline total organic carbon analysis confirmed the approach's feasibility, with an absolute recovery of 103 ± 10%. Our findings suggest that QCM dry-mass sensing could serve as a valuable tool for analysts routinely employing HPLC cleanup methods, offering potential benefits across various analytical fields.
Collapse
Affiliation(s)
- Christopher Wabnitz
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Aoife Canavan
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Wei Chen
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Mathias Reisbeck
- TUM School of Computation, Information and Technology, Heinz Nixdorf Chair of Biomedical Electronics, Technical University of Munich, Munich 81675, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
6
|
Musatadi M, Alvarez-Mora I, Baciero-Hernandez I, Prieto A, Anakabe E, Olivares M, Etxebarria N, Zuloaga O. Sample preparation for suspect screening of persistent, mobile and toxic substances and their phase II metabolites in human urine by mixed-mode liquid chromatography. Talanta 2024; 271:125698. [PMID: 38262128 DOI: 10.1016/j.talanta.2024.125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Persistent, mobile and toxic substances have drawn attention nowadays due to their particular properties, but they are overlooked in human monitorization works, limiting the knowledge of the human exposome. In that sense, human urine is an interesting matrix since not only parent compounds are eliminated, but also their phase II metabolites that could act as biomarkers. In this work, 11 sample preparation procedures involving preconcentration were tested to ensure maximum analytical coverage in human urine using mixed-mode liquid chromatography coupled with high-resolution tandem mass spectrometry. The optimized procedure consisted of a combination of solid-phase extraction and salt-assisted liquid-liquid extraction and it was employed for suspect screening. Additionally, a non-discriminatory dilute-and-shoot approach was also evaluated. After evaluating the workflow in terms of limits of identification and type II errors (i.e., false negatives), a pooled urine sample was analysed. From a list of 1450 suspects and in-silico simulated 1568 phase II metabolites (i.e. sulphates, glucuronides, and glycines), 44 and 14 substances were annotated, respectively. Most of the screened suspects were diverse industrial chemicals, but biocides, natural products and pharmaceuticals were also detected. Lastly, the complementarity of the sample preparation procedures, columns, and analysis conditions was assessed. As a result, dilute-and-shoot and the Acclaim Trinity P1 column at pH = 3 (positive ionization) and pH = 7 (negative ionization) allowed the maximum coverage since almost 70 % of the total suspects could be screened using those conditions.
Collapse
Affiliation(s)
- Mikel Musatadi
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain.
| | - Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Ines Baciero-Hernandez
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Eneritz Anakabe
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| |
Collapse
|
7
|
Kochale K, Cunha R, Teutenberg T, Schmidt TC. Development of a column switching for direct online enrichment and separation of polar and nonpolar analytes from aqueous matrices. J Chromatogr A 2024; 1714:464554. [PMID: 38065029 DOI: 10.1016/j.chroma.2023.464554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Trace substances in surface waters may threaten health and pose a risk for the aquatic environment. Moreover, separation and detection by instrumental analysis is challenging due to the low concentration and the wide range of polarities. Separation of polar and nonpolar analytes can be achieved by using stationary phases with different selectivity. Lower limits of detection of trace substances can be obtained by offline enrichment on solid phase materials. However, these practices require substantial effort and are time consuming and costly. Therefore, in this study, a column switching was developed to enrich and separate both polar and nonpolar analytes by an on-column large volume injection of aqueous samples. The column switching can significantly reduce the effort and time for analyzing trace substances without compromising on separation and detection. A reversed phase (RP) column is used to trap the nonpolar analytes. The polar analytes are enriched on a porous graphitized carbon column (PGC) coupled serially behind the RP column. A novel valve switching system is implemented to enable elution of the nonpolar analytes from the RP column and, subsequently, elution of polar analytes from the PGC column and separation on a hydrophilic interaction liquid chromatography (HILIC) column. To enable separation of polar analytes dissolved in an aqueous matrix by HILIC, the water plug that is flushed from the PGC column is diluted by dosing organic solvent directly upstream of the HILIC column. The developed method was tested by applying target analysis and non-target screening, highlighting the advantage to effectively separate and detect both polar and nonpolar compounds in a single chromatographic run. In the target analysis, the analytes, with a logD at pH 3 ranging from -2.8 to + 4.5, could be enriched and separated. Besides the 965 features in the RP phase, 572 features from real wastewater were observed in the HILIC phase which would otherwise elute in the void time in conventional one-dimensional RP methods.
Collapse
Affiliation(s)
- Kjell Kochale
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229 Duisburg, Germany; Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Ricardo Cunha
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), Bliersheimer Str. 58-60, 47229 Duisburg, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
8
|
Pardon M, Reis R, de Witte P, Chapel S, Cabooter D. Detailed comparison of in-house developed and commercially available heart-cutting and selective comprehensive two-dimensional liquid chromatography systems. J Chromatogr A 2024; 1713:464565. [PMID: 38096685 DOI: 10.1016/j.chroma.2023.464565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024]
Abstract
Recently, two-dimensional liquid chromatography (2D-LC) has become a popular approach to analyze complex samples. This is partly due to the introduction of commercial 2D-LC systems. In the past, 2D-LC was carried out on in-house developed setups, typically consisting of several switching valves and sample loops as the interface between the two dimensions. Commercial systems usually offer different 2D-LC modes in combination with specialized software to operate the instrument and analyze the data. This makes them highly user-friendly, however, at an increased cost compared to in-house developed setups. This study aims to make a comparison between an in-house developed 2D-LC setup and a commercially available 2D-LC instrument. The comparison is made based on experimental differences, in addition to more general differences, including cost price, flexibility, and ease of operation. Special attention is also paid to the different strategies to deal with the mobile phase incompatibility between the highly orthogonal separation mechanisms considered in this work: hydrophilic interaction liquid chromatography (HILIC) and reversed-phase LC (RPLC). For the commercial 2D-LC instrument, this is done using active solvent modulation (ASM), a valve-based approach allowing the on-line dilution of the effluent eluting from the first dimension column before transfer to the second dimension (2D) column. For the in-house developed setup, a combination of restriction capillaries and a trap column is used. Using a sample of 28 compounds with a large polarity range, peak shapes and recoveries of the 2D-chromatograms are compared for both setups. For early eluting compounds, the selective comprehensive approach, currently only possible on the commercial 2D-LC instrument, results in the best peak shapes and recoveries, however, at the cost of an increased analysis time. In general, depending on the analytical goal (single heart-cut versus full-comprehensive 2D-LC), an in-house developed system can be satisfactory for the analysis of specific target compounds/samples. For more complex problems, it can be interesting to use a more specialized commercial 2D-LC instrument. Overall, this comparison study provides advice for analytical scientists, who are considering to use 2D-LC, on the type of equipment to consider, depending on the needs of their particular applications.
Collapse
Affiliation(s)
- Marie Pardon
- Laboratory for Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 824, 3000 Leuven, Belgium; Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 824, 3000 Leuven, Belgium
| | - Rafael Reis
- Laboratory for Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 824, 3000 Leuven, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 824, 3000 Leuven, Belgium
| | - Soraya Chapel
- Laboratory for Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 824, 3000 Leuven, Belgium
| | - Deirdre Cabooter
- Laboratory for Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 824, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
Musatadi M, Zumalabe J, Mijangos L, Prieto A, Olivares M, Zuloaga O. Dilute-and-shoot coupled to mixed mode liquid chromatography-tandem mass spectrometry for the analysis of persistent and mobile organic compounds in human urine. J Chromatogr A 2023; 1705:464141. [PMID: 37364523 DOI: 10.1016/j.chroma.2023.464141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
In this work, a comprehensive method for the simultaneous determination of 33 diverse persistent and mobile organic compounds (PMOCs) in human urine was developed by dilute-and-shoot (DS) followed by mixed-mode liquid chromatography coupled with tandem mass spectrometry (MMLC-MS/MS). In the sample preparation step, DS was chosen since it allowed the quantification of all targets in comparison to lyophilization. For the chromatographic separation, Acclaim Trinity P1 and P2 trimodal columns provided greater capacity for retaining PMOCs than reverse phase and hydrophilic interaction liquid chromatography. Therefore, DS was validated at 5 and 50 ng/mL in urine with both mixed mode columns at pH = 3 and 7. Regarding figures of merit, linear calibration curves (r2 > 0.999) built between instrumental quantification limits (mostly below 5 ng/mL) and 500 ng/mL were achieved. Despite only 60% of the targets were recovered at 5 ng/mL because of the dilution, all PMOCs were quantified at 50 ng/mL. Using surrogate correction, apparent recoveries in the 70-130% range were obtained for 91% of the targets. To analyse human urine samples, the Acclaim Trinity P1 column at pH = 3 and 7 was selected as a consensus between analytical coverage (i.e. 94% of the targets) and chromatographic runs. In a pooled urine sample, industrial chemicals (acrylamide and bisphenol S), biocides and their metabolites (2-methyl-4-isothiazolin-3-one, dimethyl phosphate, 6-chloropyridine-3-carboxylic acid, and ammonium glufosinate) and an artificial sweetener (aspartame) were determined at ng/mL levels. The outcomes of this work showed that humans are also exposed to PMOCs due to their persistence and mobility, and therefore, further human risk assessment is needed.
Collapse
Affiliation(s)
- Mikel Musatadi
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Plentzia, Basque Country 48620, Spain.
| | - Jon Zumalabe
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country 48940, Spain
| | - Leire Mijangos
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Plentzia, Basque Country 48620, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Plentzia, Basque Country 48620, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Plentzia, Basque Country 48620, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country 48940, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), Plentzia, Basque Country 48620, Spain
| |
Collapse
|
10
|
Li D, Huang W, Huang R. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131952. [PMID: 37399723 DOI: 10.1016/j.jhazmat.2023.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.
Collapse
Affiliation(s)
- Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Ivankovic K, Jambrosic K, Mikac I, Kapetanovic D, Ahel M, Terzic S. Multiclass determination of drug residues in water and fish for bioaccumulation potential assessment. Talanta 2023; 264:124762. [PMID: 37276678 DOI: 10.1016/j.talanta.2023.124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
In this work, a wide-scope liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of environmental levels of multiclass drugs and their metabolites in water and fish samples was developed. The method allowed the reliable determination of 44 drugs, covering a rather wide range of chemistries and physicochemical characteristics. In order to obtain a reliable and robust analytical protocol, different combinations of extraction and cleanup techniques were systematically examined. Aqueous samples were extracted using a simple Oasis HLB SPE enrichment protocol with pH-optimized sample percolation (pH 3). The extraction of cryo-homogenized biota samples was performed using double extraction with MeOH basified with 0.5% NH3, which allowed high extraction recoveries for all target analytes. The problem of the coextracted lipid matrix, which is known to be the key obstacle for reliable biota analysis, was systematically examined in a series of model cleanup experiments. A combination of cryo-precipitation, filtration, and HLB SPE cleanup was proposed as a protocol, which allowed reliable and robust analysis of all target compounds at low ng/g levels. At the final conditions, the method which was validated at three concentration levels showed high extraction recoveries (68-97%), acceptable matrix effects (12 to -32%), accuracies (81-129%), and reproducibilities (3-32%) for all analytes. The developed method was used to determine drug concentrations in river water and in feral freshwater fish, including whole fish and muscle tissue, from the Sava River (Croatia), in order to estimate their corresponding bioaccumulation potential. With respect to bioaccumulation potential in whole fish and fish muscle, the most relevant drugs were lisinopril, sertraline, terbinafine, torsemide, diazepam, desloratadine, and loratadine with estimated bioaccumulation factors ranging from 20 to 838 and from 1 to 431, respectively.
Collapse
Affiliation(s)
- Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Iva Mikac
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Damir Kapetanovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
12
|
Mo H, Li X, Zhou X, Jia X, Wang H, Xu Z, Wei X. Preparation of bifunctional monomer molecularly imprinted polymer filled solid-phase extraction for sensitivity improvement of quantitative analysis of sulfonamide in milk. J Chromatogr A 2023; 1700:464046. [PMID: 37167804 DOI: 10.1016/j.chroma.2023.464046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
To solve the problems of unstable adsorption performance and high organic solvent consumption of traditional molecular imprinting materials, we developed a water-resistant and highly adsorptive molecularly imprinted sulfamethazine polymer (MIP) through a novel synthetic strategy consisting of the application of mixed functional monomers combined with hydrophobic crosslinkers. The results showed that the imprinting factor of the prepared MIP was increased from 0.93 to 4.38, and that the relative selection coefficient k' was 5.59. With the application of the material to be developed as a solid-phase extraction (SPE) filler for sulfonamides (SAs) in milk combined with UPLC-MS/MS, the validated method showed a sensitive quantification limit (0.89 µg/kg), a steady recovery (95.55%-97.97%) and an excellent precision (0.08%-2.92% RSD). Moreover, after 5 times usage, the recovery rate of MIP-SPE was still above 90%. Therefore, the prepared materials showed high performance of molecular adsorption and were water-resistant, which was also considered an excellent filler of SPE for SAs extraction in food or other fields.
Collapse
Affiliation(s)
- Huixin Mo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuying Zhou
- Zhongshan agricultural product quality and Safety Inspection Institute, Zhongshan, 528403, China
| | - Xiaofei Jia
- Zhongshan agricultural product quality and Safety Inspection Institute, Zhongshan, 528403, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqun Wei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Géhin C, Fowler SJ, Trivedi DK. Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022. ANALYTICAL SCIENCE ADVANCES 2023; 4:104-131. [PMID: 38715925 PMCID: PMC10989624 DOI: 10.1002/ansa.202300009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 11/17/2024]
Abstract
Lipids are biological molecules that play vital roles in all living organisms. They perform many cellular functions, such as 1) forming cellular and subcellular membranes, 2) storing and using energy, and 3) serving as chemical messengers during intra- and inter-cellular signal transduction. The large-scale study of the pathways and networks of cellular lipids in biological systems is called "lipidomics" and is one of the fastest-growing omics technologies of the last two decades. With state-of-the-art mass spectrometry instrumentation and sophisticated data handling, clinical studies show how human lipid composition changes in health and disease, thereby making it a valuable medium to collect for clinical applications, such as disease diagnostics, therapeutic decision-making, and drug development. This review gives a comprehensive overview of current workflows used in clinical research, from sample collection and preparation to data and clinical interpretations. This is followed by an appraisal of applications in 2022 and a perspective on the exciting future of clinical lipidomics.
Collapse
Affiliation(s)
- Caroline Géhin
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| | - Stephen J. Fowler
- Department of Respiratory MedicineManchester University Hospitals NHS Foundation TrustManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Biomedical Research CentreManchester University Hospitals NHS Foundation TrustManchesterUK
| | - Drupad K. Trivedi
- Manchester Institute of Biotechnology, Department of ChemistryUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
Optimizing transfer and dilution processes when using active solvent modulation in on-line two-dimensional liquid chromatography. Anal Chim Acta 2023; 1252:341040. [PMID: 36935135 DOI: 10.1016/j.aca.2023.341040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Two-dimensional liquid chromatography (2D-LC) is becoming increasingly popular for the analysis of complex samples, which is partly due to the recent introduction of commercial 2D-LC systems. To deal with the mobile phase incompatibility between highly orthogonal retention mechanisms, such as hydrophilic interaction liquid chromatography (HILIC) and reversed-phase LC (RPLC), several strategies have been introduced over the years. One of these strategies is active solvent modulation (ASM), a valve-based approach allowing the on-line dilution of the effluent eluting from the first dimension before transfer to the second dimension. This strategy has gained a lot of attention and holds great potential, however, no clear guidelines are currently in place for its use. Therefore, this study aims to investigate how the ASM process can be optimized when using highly incompatible LC combinations, such as HILIC and RPLC, in a simplified selective comprehensive 2D-LC set-up (sHILIC x RPLC) to suggest guidelines for future users. Using a representative sample, the dilution factor (DF), the duration of the ASM phase, the filling percentage of the sample loops, and their unloading configuration are investigated and optimized. It is observed that a DF of 10 with an optimal ASM phase duration, a sample loop filling of maximum 25%, and an unloading configuration in backflush mode, result in the best peak shapes, intensities, and recoveries for early eluting compounds, while keeping the total analysis time minimal. Based on these results, some general recommendations are made that could also be applied in other 2D-LC modes, such as comprehensive 2D-LC (LC x LC), heart-cutting 2D-LC (LC-LC), and other chromatographic combinations with mobile phase incompatibility issues.
Collapse
|
15
|
Vitek R, Masini JC. Nonlinear regression for treating adsorption isotherm data to characterize new sorbents: Advantages over linearization demonstrated with simulated and experimental data. Heliyon 2023; 9:e15128. [PMID: 37082625 PMCID: PMC10112023 DOI: 10.1016/j.heliyon.2023.e15128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This paper demonstrates that determining adsorption capacity and affinity through data fitting of adsorption isotherms by nonlinear regression (NLR) is more accurate than linearized Langmuir equations. Linearization errors and the subjective choice of data points used to apply the linear regression analysis may deviate the fitted adsorption parameters (constants and adsorption capacities) from the expected values. The deviation magnitude increases for heterogeneous sorbents such as environmental particles and molecularly imprinted polymers, which adsorb by more than one sorption mechanism or adsorption sites of diverse chemical natures. For instance, Lineweaver-Burk linearization of isotherms simulated considering the presence of two adsorption sites (distinct adsorption energies) provides excellent linear regression fittings but for only one kind of adsorption site. Contrary, Scatchard and Eadie-Hoffsiee's equations indicate the presence of more than one kind of adsorption site, but if the difference between the adsorption constants is not significant, the choice of points used to perform the computation becomes subjective. On the contrary, NLR analysis considers all the adsorption points (experimental or simulated), providing objective criteria to define if more than one kind of site or retention mechanism rules the adsorbed amounts of analyte. The fitted constants have smaller deviations from the expected values than those obtained by linearization. In addition to the simulated data, the enhanced robustness of the NLR was demonstrated in the determination of the adsorption capacity and adsorption affinity of a humic acid sample towards Cu2+ at different pH.
Collapse
Affiliation(s)
- Renan Vitek
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso, Cuiabá, Brazil
| | - Jorge C. Masini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Pestes 748, 05508-000 São Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
16
|
AlThikrallah MKI, Idris AM, Elbashir AA, Elgorashe REE, Buzid A, Alnajjar AO. Development of Capillary Zone Electrophoresis Method for the Simultaneous Separation and Quantification of Metformin and Pioglitazone in Dosage Forms; and Comparison with HPLC Method. Molecules 2023; 28:1184. [PMID: 36770850 PMCID: PMC9919060 DOI: 10.3390/molecules28031184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
A capillary zone electrophoretic (CZE) method was developed, validated, and applied for the assay of metformin (MET) and pioglitazone (PIO) in pharmaceutical formulations. The optimum running buffer composition was found to be 75 mmol/L phosphate buffer containing 30% acetonitrile (ACN) at pH 4.0. The optimum instrumental conditions were found to be injection time, 10 s; applied voltage, 25 kV; hydrodynamic injection pressure, 0.5 psi for 10 s, capillary temperature, 25 °C; and the detection wavelength, 210 nm. The quantifications were calculated based on the ratio of the peak areas of analytes to atenolol as an internal standard. The CZE method was validated in terms of accuracy (98.21-104.81%), intra- and inter-day precision of migration time and peak area (relative standard deviation ≤ 5%), linearity (correlation coefficients ≥ 0.9985), limit of detection (≤0.277 μg/mL), and limit of quantitation (≤0.315 μg/mL). The proposed method was applied for the analysis of PIO and MET both individually and in a combined dosage tablet formulation. All electrophoretic parameters were calculated and evaluated. A previously reported high-performance liquid chromatographic (HPLC) method was also applied to the same samples. A comprehensive comparison was then carried out for the analytical features of both methods CZE and HPLC. Comparable results were obtained with the advantage of reagent consumption and separation efficiency of CZE over HPLC and shorter analysis time by HPLC compared with CZE.
Collapse
Grants
- This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151) This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151)
- This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151) This research was supported by Deanship of Scientific Research, King Faisal University, Hofuf, Saudi Arabia (GRNT 2151)
Collapse
Affiliation(s)
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Abdalla Ahmed Elbashir
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rafea E. E. Elgorashe
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed O. Alnajjar
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Werner J, Kohut K, Frankowski R, Zgoła-Grześkowiak A. Application of phosphonium deep eutectic solvents as extractants in ultrasound-assisted dispersive liquid-liquid microextraction for preconcentration of trace amounts of herbicides in drainage ditches waters. J Sep Sci 2023; 46:e2200682. [PMID: 36373174 DOI: 10.1002/jssc.202200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
In this study, an efficient preconcentration method was presented that is based on dispersive liquid-liquid microextraction taking the advantage of newly synthesized phosphonium deep eutectic solvents used as extractants and ultrasound probe as a dispersing agent. The extracts obtained were analyzed by high-performance liquid chromatography. To optimize the five most important factors for the microextraction procedure a central composite design plan was used. Under optimal conditions (140 μl of extractant, 60 mg of NaCl, pH = 2.0, 120 s of extraction time with ultrasound probe as the dispersing agent, 16 min of centrifugation for phase separation), the proposed method allowed to achieve good precision with RSD between 3.2% and 9.7% at 1.0, 5.0 and 40.0 ng ml levels. The preconcentration factors were equal to 42, 39, and 41, and the limits of detection 0.128, 0.103, and 0.135 ng/ml for dicamba, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid, respectively. The proposed method was successfully applied for the determination of chlorophenoxy acid herbicides in water samples from drainage ditches with a good recovery in the range of 70%-93%.
Collapse
Affiliation(s)
- Justyna Werner
- Department of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Karolina Kohut
- Department of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Robert Frankowski
- Department of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Department of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
18
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Graf HG, Rudisch BM, Ude L, Müller L, Huhn C. Picomolar detection limits for glyphosate by two-dimensional column-coupled isotachophoresis/capillary zone electrophoresis-mass spectrometry. J Sep Sci 2022; 45:3887-3899. [PMID: 35998068 DOI: 10.1002/jssc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
Capillary electrophoresis-mass spectrometry often lacks sufficient limits of detection for trace substances in the environment due to its low loadability. To overcome this problem, we conducted a feasibility study for column-coupling isotachophoresis to capillary electrophoresis-mass spectrometry. The first dimension isotachophoresis preconcentrated the analytes. The column-coupling of both dimensions was achieved by a hybrid capillary microfluidic chip setup. Reliable analyte transfer by voltage switching was enabled by an in-chip capacitively coupled contactless conductivity detector placed around the channel of the common section between two T-shaped crossings in the chip connecting both dimensions. This eliminated the need to calculate the moment of analyte transfer. A commercial capillary electrophoresis-mass spectrometry instrument with easily installable adaptations operated the setup. Prior to coupling isotachophoresis with capillary zone electrophoresis-mass spectrometry, both dimensions were optimized individually by simulations and verified experimentally. Both dimensions were able to stack/separate all degradation products of glyphosate, the most important herbicide applied worldwide. The first dimension isotachophoresis also removed phosphate, which is a critical matrix component in many environmental samples. Enrichment and separation of glyphosate and its main degradation product aminomethylphosphonic acid by the 2D setup provided an excellent limit of detection of 150 pM (25 ng/L) for glyphosate. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hannes Georg Graf
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Lukas Ude
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Linda Müller
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Shahhoseini F, Azizi A, S.Bottaro C. A critical evaluation of molecularly imprinted polymer (MIP) coatings in solid phase microextraction devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Quantum Dots and Double Surfactant-Co-modified Electromembrane Extraction of Polar Aliphatic Bioamines in Water Samples Followed by Capillary Electrophoresis with Contactless Conductivity Detection. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Performance of free-flow field-step electrophoresis as cleanup step for the non-target analysis of environmental water samples. Anal Bioanal Chem 2022; 414:2189-2204. [PMID: 35099581 PMCID: PMC8821473 DOI: 10.1007/s00216-021-03856-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
For the analysis of low concentrations of micropollutants in environmental water samples, efficient sample enrichment and cleanup are necessary to reduce matrix effects and to reach low detection limits. For analytes of low and medium polarity, solid-phase extraction is used, but robust methods for the preconcentration of highly polar or ionizable analytes are scarce. In this work, field-step electrophoresis (FSE) was developed as an environmental sample cleanup technique for ionizable micropollutants and ionic transformation products. The FSE electrolyte system preconcentrated 15 acidic model analytes (pKa from −2.2 to 9.1) present in aqueous samples in two fractions by factors of 5–10. Simultaneously, highly mobile matrix compounds were removed including inorganic ions such as sulfate and chloride. The fractions were either directly injected for downstream analysis by reversed-phase liquid chromatography (RPLC) or further processed by evaporative preconcentration with subsequent reconstitution in an organic solvent suitable for separation methods like hydrophilic interaction chromatography. The FSE/RPLC-MS method exhibited high quantitative precision with RSDs of 3–6%. The method was successfully applied to a spiked river water sample and its performance compared with common solid-phase extraction and evaporative concentration, demonstrating a high analyte coverage. FSE combined with non-target screening by RPLC-MS revealed a strong reduction in matrix load especially at low retention times. Seventeen compounds were identified in the FSE fractions sampled at the field step boundary by retention time, accurate mass, and mass fragments. Suspect screening by FSE/RPLC-MS was facilitated by FSE’s selectivity for anionic compounds.
Collapse
|
23
|
Eie LV, Pedersen-Bjergaard S, Hansen FA. Electromembrane extraction of polar substances - Status and perspectives. J Pharm Biomed Anal 2022; 207:114407. [PMID: 34634529 DOI: 10.1016/j.jpba.2021.114407] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
In this article, the scientific literature on electromembrane extraction (EME) of polar substances (log P < 2) is reviewed. EME is an extraction technique based on electrokinetic migration of analyte ions from an aqueous sample, across an organic supported liquid membrane (SLM), and into an aqueous acceptor solution. Because extraction is based on voltage-assisted partitioning, EME is fundamentally suitable for extraction of polar and ionizable substances that are challenging in many other extraction techniques. The article provides an exhaustive overview of papers on EME of polar substances. From this, different strategies to improve the mass transfer of polar substances are reviewed and critically discussed. These strategies include different SLM chemistries, modification of supporting membranes, sorbent additives, aqueous solution chemistry, and voltage/current related strategies. Finally, the future applicability of EME for polar substances is discussed. We expect EME in the coming years to be developed towards both very selective targeted analysis, as well as untargeted analysis of polar substances in biomedical applications such as metabolomics and peptidomics.
Collapse
Affiliation(s)
- Linda Vårdal Eie
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
24
|
Ethane-bridge periodic mesoporous organosilica materials as a novel fiber coating in headspace solid-phase microextraction of phthalate esters from saliva and PET container samples. Anal Bioanal Chem 2022; 414:2285-2296. [PMID: 34985710 DOI: 10.1007/s00216-021-03868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
|
25
|
Schmitt M, Egorycheva M, Seubert A. Mixed-acidic cation-exchange material for the separation of underivatized amino acids. J Chromatogr A 2021; 1664:462790. [PMID: 34999304 DOI: 10.1016/j.chroma.2021.462790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/17/2021] [Accepted: 12/25/2021] [Indexed: 12/01/2022]
Abstract
Mixed-acidic cation-exchange (MCX) columns with both strongly (SCX) and weakly (WCX) acidic functional groups were developed for the separation of standard amino acids. The resins were prepared by carboxylation of highly crosslinked monodisperse poly(styrene-divinylbenzene) copolymer particles with performic acid and subsequent sulfonation with sulfuric acid. The degree of functionalization was varied independently for each processing step and controlled by measuring pH dependent retention of the obtained resins. A series of mixed-acidic resins with different SCX/WCX-ratios was chromatographically characterized by variation of formic acid and acetonitrile concentration in the aqueous eluent. The overall cation-exchange capacity was varied from 33 to 68 µmol/mL. The comparison with two commercial columns (Metrohm Metrosep C6, WCX and Hamilton PRP X-200, SCX) revealed the additive character of the different functional group properties within MCX columns and a unique selectivity which can be adjusted by both eluent composition and SCX/WCX-ratio of the resin. The retention window between neutral and basic amino acids was altered by varying the amount of sulfonic acid groups attached to the polymer. Orthogonality plots demonstrated constant selectivity for neutral amino acids. Correlating the retention data with log P data demonstrated the influence of non-ionic hydrophobic and π-π-interactions for the separation of amino acids on PS/DVB-based cation-exchangers. An isocratic IC-ESI-MS method was developed to separate and quantitate 20 underivatized standard amino acids within 30 min. Limits of detection were between 4 and 64 nmol L-1 and a high linearity of calibration curves was obtained for all analytes. The method was validated by comparing a certified reference standard with external calibration data.
Collapse
Affiliation(s)
- Matthias Schmitt
- Faculty of Chemistry, Analytical Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Marina Egorycheva
- Faculty of Chemistry, Analytical Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, University of Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany.
| |
Collapse
|
26
|
Membrane-based liquid-phase microextraction of basic pharmaceuticals - A study on the optimal extraction window. J Chromatogr A 2021; 1664:462769. [PMID: 34998024 DOI: 10.1016/j.chroma.2021.462769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
The present paper defines the optimal extraction window (OEW) for three-phase membrane-based liquid-phase microextraction (MP-LPME) in terms of analyte polarity (log P), and anchors this to existing theories for equilibrium partitioning and kinetics. Using deep eutectic solvents (DES) as supported liquid membranes (SLM), we investigated how the OEW was affected by ionic-, hydrogen bond and π-π interactions between the SLM and analyte. Eleven basic model analytes in the range -0.4 < log P < 5.0 were extracted by MB-LPME in a 96-well format. Extraction was performed from 250 µL standard solution in 25 mM phosphate buffer (pH 7.0) into 50 µL of 10 mM HCl acceptor solution (pH 2.0) with mixtures of coumarin, camphor, DL-menthol, and thymol, with and without the ionic carrier di(2-ethylhexyl) phosphate (DEHP), as the SLM. The OEW with pure DES was in the range 2 < log P < 5, and low SLM aromaticity was favorable for the extraction of non-polar analytes. Here, extraction recoveries up to 98% were obtained. Upon addition of DEHP to the SLMs, the OEW shifted to the range -0.5 < log P < 2, and a combination of 5% DEHP and moderate aromaticity resulted in extraction recoveries up to 80% for the polar analytes. Extraction with ionic carrier was inefficient for the non-polar analytes, due to excessive trapping in the SLM. The results from our study show that LPME performs optimally in a relatively narrow log P-window of ≈ 2-3 units and that the OEW is primarily affected by ionic carrier and aromaticity.
Collapse
|
27
|
Gupta N, Liang YN, Chew JW, Hu X. Highly Robust Interfacially Polymerized PA Layer on Thermally Responsive Semi-IPN Hydrogel: Toward On-Demand Tuning of Porosity and Surface Charge. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60590-60601. [PMID: 34726903 DOI: 10.1021/acsami.1c16639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogel composites with skin layer that allows fast and selective rejection of molecules possess high potential for numerous applications, including sample preconcentration for point-of-use detection and analysis. The stimuli-responsive hydrogels are particularly promising due to facile regenerability. However, poor adhesion of the skin layer due to swelling-degree difference during continuous swelling/deswelling of the hydrogel hinders its further development. In this work, a polyamide skin layer with strong adhesion was fabricated via gel-liquid interfacial polymerization (GLIP) of branched polyethyleneimine (PEI) with trimesoyl chloride (TMC) on a cross-linked N-isopropyl acrylamide hydrogel network containing dispersed poly sodium acrylate (PSA), while the traditional m-phenylenediamine (MPD)-TMC polyamide layer readily delaminates. We investigated the mechanistic design principle, which not only resulted in strong anchoring of the polyamide layer to the hydrogel surface but also enabled manipulation of the surface morphology, porosity, and surface charge by tailoring interfacial reaction conditions. The polyamide/hydrogel composite was able to withstand 100 cycles of swelling/deswelling without any delamination or a significant decrease in its rejection performance of the model dye, i.e., methylene blue. Regeneration can be done by deswelling the swollen beads at 60 °C, which also releases any loosely bound molecules together with absorbed water. This work provides insights into the development of a physically and chemically robust skin layer on various types of hydrogels for applications such as preconcentration, antifouling-coating, selective compound extraction, etc.
Collapse
Affiliation(s)
- Nupur Gupta
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Yen Nan Liang
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Jia Wei Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xiao Hu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore
| |
Collapse
|
28
|
Dufour V, Wiest L, Slaby S, Le Cor F, Auger L, Cardoso O, Curtet L, Pasquini L, Dauchy X, Vulliet E, Banas D. Miniaturization of an extraction protocol for the monitoring of pesticides and polar transformation products in biotic matrices. CHEMOSPHERE 2021; 284:131292. [PMID: 34198062 DOI: 10.1016/j.chemosphere.2021.131292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Monitoring pesticides in the environment requires the use of sensitive analytical methods. However, existing methods are generally not suitable for analyzing small organisms, as they require large matrix masses. This study explores the development of a miniaturized extraction protocol for the monitoring of small organisms, based on only 30 mg of matrix. The miniaturized sample preparation was developed using fish and macroinvertebrate matrices. It allowed the characterization of 41 pesticides and transformation products (log P from -1.9 to 4.8) in small samples with LC-MS/MS, based on European guidelines (European Commission DG-SANTE, 2019). Quantification limits ranged from 3 to 460 ng g-1 dry weight (dw) for fish and from 0.1 to 356 ng g-1 dw for invertebrates, with most below 60 ng g-1 dw. Extraction rates ranged from 70% to 120% for 35 molecules in fish. Recoveries ranged from 70% to 120% for 37 molecules in macroinvertebrates. Inter-day precision was below 30% for 32 molecules at quantification limits. The method was successfully applied to 17 fish and 19 macroinvertebrates collected from two ponds of the French region of Dombes in November and May 2018, respectively. Both sample matrices were nearly always contaminated with benzamide, imidacloprid-desnitro, and prosulfocarb at respective concentrations of 42-237, 3, and 30-165 ng g-1 dw in fish, and 62-438, 2-6, and 15-29 ng g-1 dw in macroinvertebrates. Results show that this method is an effective tool for characterizing polar pesticides in small biotic samples.
Collapse
Affiliation(s)
- Vincent Dufour
- Université de Lorraine, INRAE, URAFPA, F-54000, Nancy, France; Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Sylvain Slaby
- Université de Lorraine, INRAE, URAFPA, F-54000, Nancy, France
| | - François Le Cor
- Université de Lorraine, INRAE, URAFPA, F-54000, Nancy, France; LHN, Laboratoire d'Hydrologie de Nancy, ANSES, 40 rue Lionnois, F-54000, Nancy, France
| | - Lucile Auger
- Université de Lorraine, INRAE, URAFPA, F-54000, Nancy, France; Office Français de la Biodiversité, Montfort, F-01330, Birieux, France
| | - Olivier Cardoso
- Office Français de la Biodiversité, 9 Avenue Buffon, F-45071, Orléans, France
| | - Laurence Curtet
- Office Français de la Biodiversité, Montfort, F-01330, Birieux, France
| | - Laure Pasquini
- LHN, Laboratoire d'Hydrologie de Nancy, ANSES, 40 rue Lionnois, F-54000, Nancy, France
| | - Xavier Dauchy
- LHN, Laboratoire d'Hydrologie de Nancy, ANSES, 40 rue Lionnois, F-54000, Nancy, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Damien Banas
- Université de Lorraine, INRAE, URAFPA, F-54000, Nancy, France.
| |
Collapse
|
29
|
Ahmed MA, Quirino JP. Micelle to cyclodextrin stacking in open-tubular liquid chromatography using capillaries coated with surfactant admicelles. Anal Bioanal Chem 2021; 414:1415-1423. [PMID: 34773144 DOI: 10.1007/s00216-021-03773-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022]
Abstract
In-line sample concentration by micelle to cyclodextrin stacking (MCDS) in open-tubular liquid chromatography (OT-LC) with UV detection is described. OT-LC of two sets of analytes (small-molecule drugs and neutral alkenylbenzenes) was by the use of a fused-silica capillary that was coated with admicelles of didodecyldimethyl ammonium bromide (DDAB). These admicelles acted as a stationary chromatographic pseudophase. The mobile phase was 25 mM sodium tetraborate in 10% methanol, pH 9.2. MCDS was by long pressure injection of samples prepared in 10 mM hexadecyltrimethyl ammonium bromide (CTAB) in 25 mM sodium tetraborate, pH 9.2 (buffer), followed by injection of 50 mM α-CD in buffer (CD solution). Stacking was by application of voltage at -20 kV prior to pressure-driven OT-LC. The factors that influenced MCDS such as type and concentration of CD, concentration of CTAB in the sample, injection time ratio of the sample and the CD solution and stacking time were studied. Under optimised conditions, sensitivity enhancement factors (SEFs) were between 19 and 23, linear ranges were between 0.5 and 10 µg/mL with r2 > 0.99 and inter-day/intra-day repeatability in retention time and peak area were ≤5.6% for the model small-molecule drugs. Application to real samples was by the determination of potentially toxic alkenylbenzenes (SEFs = 10 to 12) in basil-leaf and whole-clove extracts. The assay results were comparable to those obtained from an in-house high-performance liquid chromatography-UV method.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research On Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Hobart, TAS, 7001, Australia.
| |
Collapse
|
30
|
Moyo B, Tavengwa NT. Critical review of solid phase extraction for multiresidue clean-up and pre-concentration of antibiotics from livestock and poultry manure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:229-241. [PMID: 34732110 DOI: 10.1080/19440049.2021.1989497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The release of antibiotics into the environment from agricultural industries has received tremendous attention in recent years. Nonpoint source contamination of the terrestrial environment by these compounds can result from fertilisation of agricultural soils with manure. The presence of antibiotics and their metabolites in manure may pose a threat to agro-ecosystems. This may result in the emergence of antibiotic resistance bacteria in humans through the food chain and this is a major concern globally at the moment. Therefore, monitoring of manure for antibiotic residues is of vital importance in order to assess the risks of environmental pollution to human health by these drugs. Several sample pre-treatment techniques have been developed for the extraction of antibiotic residues from complex matrices including manure over the years. Despite new developments in recent years in separation science where the common trend is miniaturisation and green approaches, solid-phase extraction is still the most widely used technique in the extraction of antibiotics from agricultural wastes such as manure. In view of this, the aim of this review was to give a critical overview of studies that have been conducted in the past 6 years on the extraction of antibiotic residues from manure employing solid-phase extraction based on Oasis HLB and Strata-X. Adsorption mechanisms of these sorbents were also briefly discussed.
Collapse
Affiliation(s)
- Babra Moyo
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa.,Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou, South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
31
|
Raabová H, Erben J, Chvojka J, Solich P, Švec F, Šatínský D. The role of pKa, log P of analytes, and protein matrix in solid-phase extraction using native and coated nanofibrous and microfibrous polymers prepared via meltblowing and combined meltblowing/electrospinning technologies. Talanta 2021; 232:122470. [PMID: 34074440 DOI: 10.1016/j.talanta.2021.122470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Effect of physicochemical properties including dissociation constant (pKa) and partition coefficient (log P) of the compounds on their extraction efficiency in sample preparation using fibrous polymer sorbents has been demonstrated. Poly-ε-caprolactone as meltblown/electrospun composite fibers, and polypropylene, polyethylene, poly(3-hydroxybutyrate), poly(lactic acid), and polyamide 6 in the meltblown fiber format were used as sorbents in solid-phase extraction. In addition, the polycaprolactone fibers were coated with dopamine, dopamine combined with heparin, and tannin, respectively, to modify their extraction properties. These fibers that were not yet used for extractions and the unique combination of sorbents and analytes significantly extends the scope of nanofibrous extraction. The extraction efficiency was determined using model pharmaceuticals including acetylsalicylic acid, moxonidine, metoprolol, propranolol, propafenone, diltiazem, atorvastatin, and amiodarone. These model compounds displayed the widest differences in both pKa and log P values. The extraction efficiency of some of the fibers reached 96.64%. Coating of polycaprolactone fibers with dopamine significantly improved extraction efficiency of slightly retained metoprolol while moxonidine was not retained on any sorbent. The fibrous sorbents were also tested for extraction of pharmaceuticals in bovine serum albumin and human serum, respectively, to demonstrate their capability to extract them from a complex protein-containing matrix. The clean-up efficiency of our fibers was compared with that of a commercial restricted access media (RAM) C-18 alkyl-diol silica column. Our technique is in accordance with the requirements of modern sample preparation techniques.
Collapse
Affiliation(s)
- Hedvika Raabová
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jakub Erben
- The Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Jiří Chvojka
- The Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens and Nanofibrous Materials, Studentská 1402/2, 46001, Liberec 1, Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - František Švec
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Dalibor Šatínský
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Analytical Chemistry, Akademika Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
32
|
Dong B, Mansour N, Huang TX, Huang W, Fang N. Single molecule fluorescence imaging of nanoconfinement in porous materials. Chem Soc Rev 2021; 50:6483-6506. [PMID: 34100033 DOI: 10.1039/d0cs01568g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers recent progress in using single molecule fluorescence microscopy imaging to understand the nanoconfinement in porous materials. The single molecule approach unveils the static and dynamic heterogeneities from seemingly equal molecules by removing the ensemble averaging effect. Physicochemical processes including mass transport, surface adsorption/desorption, and chemical conversions within the confined space inside porous materials have been studied at nanometer spatial resolution, at the single nanopore level, with millisecond temporal resolution, and under real chemical reaction conditions. Understanding these physicochemical processes provides the ability to quantitatively measure the inhomogeneities of nanoconfinement effects from the confining properties, including morphologies, spatial arrangement, and trapping domains. Prospects and limitations of current single molecule imaging studies on nanoconfinement are also discussed.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | | | | | |
Collapse
|
33
|
Peltomaa R, Benito-Peña E, Gorris HH, Moreno-Bondi MC. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021; 146:13-32. [PMID: 33205784 DOI: 10.1039/d0an01883j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food safety and quality regulations inevitably call for sensitive and accurate analytical methods to detect harmful contaminants in food and to ensure safe food for the consumer. Both novel and well-established biorecognition elements, together with different transduction schemes, enable the simple and rapid analysis of various food contaminants. Upconversion nanoparticles (UCNPs) are inorganic nanocrystals that convert near-infrared light into shorter wavelength emission. This unique photophysical feature, along with narrow emission bandwidths and large anti-Stokes shift, render UCNPs excellent optical labels for biosensing because they can be detected without optical background interferences from the sample matrix. In this review, we show how this exciting technique has evolved into biosensing platforms for food quality and safety monitoring and highlight recent applications in the field.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Department of Biochemistry/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
34
|
Minkus S, Bieber S, Letzel T. (Very) polar organic compounds in the Danube river basin: a non-target screening workflow and prioritization strategy for extracting highly confident features. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2044-2054. [PMID: 33955981 DOI: 10.1039/d1ay00434d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently, more and more research has been focused on the analysis of polar organic compounds as they tend to be persistent and mobile in the aquatic environment. The serial coupling of reversed-phase and hydrophilic interaction liquid chromatography allows the separation of analytes of an extended polarity range within a single run. The non-target screening approach was driven by high-resolution mass spectrometry and is able to detect unexpected compounds. It is therefore capable of complementing regular monitoring of surface water. Non-target screening, however, can produce massive data sets. Here, a data processing method is presented focusing on unravelling tentative polar compounds from the full scan data of 51 samples of the Danube river and its tributaries. The feature extraction method was optimized to 34 reference compounds at two concentration levels and was then applied to real samples. Features were matched by accurate mass with anthropogenic substances stored in the compound database STOFF-IDENT located on the FOR-IDENT platform. In order to extract polar candidates, the retention time interval corresponding to the HILIC separation was connected to compounds with a negative log D value. As a result, 67 candidates were detected which were found to be plausible. Finally, features were prioritized based on an identification certainty classification system as well as their frequency of occurrence. Therefore, several feature-candidate compound pairs could be suggested for confirmation via reference materials. The presented non-target screening strategy followed by a database query is transferrable to other sample sets and other data evaluation tools.
Collapse
Affiliation(s)
- Susanne Minkus
- Technical University of Munich (Chair of Urban Water Systems Engineering), Garching, Germany
| | | | | |
Collapse
|
35
|
Bruggink C, Jensen D. Combining ion chromatography with mass spectrometry and inductively coupled plasma-mass spectrometry: Annual review 2020. ANALYTICAL SCIENCE ADVANCES 2021; 2:238-249. [PMID: 38716451 PMCID: PMC10989527 DOI: 10.1002/ansa.202000120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2024]
Abstract
The demand for analyzing low molecular weight polar and ionic components in body fluids, pharmaceutical formulations, food, environmental samples, and drinking water is increasing. Ion chromatography (IC) offers significant advantages over RPLC and HILIC due to a complementary chromatographic selectivity, a different retention mechanism, and a high tolerance toward complex matrices. A continuously regenerated membrane desalter simplifies the combination of IC-applications with MS- or MS/MS-detection, improving the sensitivity and specificity. Analytical workflows are streamlined, providing higher sample throughput. Combining IC with ICP-MS simplifies the speciation analysis of inorganic and organic polar components. The knowledge about the distribution of an element among chemical species in a sample is essential due to significantly different toxicological or environmental properties. This annual review evaluates the literature published from late 2019 until November 2020.
Collapse
|
36
|
Li Z, Jiang D, Dai Y, Dai Z, Jin Y, Fu Q, Liang X. Isolation of three polyoxins by reversed-phase liquid chromatography with pure aqueous mobile phase. J Sep Sci 2021; 44:2020-2028. [PMID: 33629802 DOI: 10.1002/jssc.202001181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Developing methods for the isolation of highly polar compounds from complex samples is of great significance. In this study, three polyoxins were successfully isolated from a complex sample (PN1-1# ) by preparative high-performance liquid chromatography. Separation was carried out on five polar reversed-phase stationary phases, using pure aqueous as mobile phase, where the C18HC column can provide the best performance for PN1-1# . Next, the effects of the mobile phase composition were studied. It was found that adding NaClO4 can enhance the retention and resolution, and adding NaH2 PO4 was beneficial to maintain good peak shapes when the sample loading increased. Therefore, the optimized mobile phase consisting of 20 mmol NaH2 PO4 and 20 mmol NaClO4 (adding H3 PO4 to adjust pH 2) was used to separate PN1-1# . This method of using 100% aqueous phase can effectively improve both the retention and the solubility of polar samples. Eventually, through further purification, three compounds, namely, polyoxins B, D, and G, were obtained. This paper provided an effective and eco-friendly strategy for the preparative-scale separation of polar samples.
Collapse
Affiliation(s)
- Zhidong Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Zhuoshun Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, P. R. China.,Key Laboratory of Separation Science for Analytical Chemistry, Key Laboratory of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
37
|
Hansen FA, Pedersen-Bjergaard S. Electromembrane extraction of streptomycin from biological fluids. J Chromatogr A 2021; 1639:461915. [PMID: 33535115 DOI: 10.1016/j.chroma.2021.461915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
In this fundamental study, streptomycin was extracted successfully from urine and plasma using electromembrane extraction (EME). Streptomycin is an aminoglycoside with log P -7.6 and was selected as an extremely polar model analyte. EME is a microextraction technique, where charged analytes are extracted under the influence of an electrical field, from sample, through a supported liquid membrane (SLM), and into an acceptor solution. The SLM comprised 2-nitrophenyl pentyl ether (NPPE) mixed with bis(2-ethylhexyl) phosphate (DEHP). DEHP served as ionic carrier and facilitated transfer of streptomycin across the SLM. For EME from urine and protein precipitated plasma, the optimal DEHP content in the SLM was 45-50% w/w. From untreated plasma, the content of DEHP was increased to 75% w/w in order to suppress interference from plasma proteins. Most endogenous substances with UV absorbance were not extracted into the acceptor. Proteins and phospholipids were also discriminated, with <0.6% of proteins and <0.02% of phospholipids found in the acceptor after EME. Thus, despite the fact that the SLM was permeable to more polar molecules, the EME still provided very efficient sample cleanup. Extraction process efficiencies of 98% and 61% were achieved from urine and plasma, respectively, with linear calibration (R2 > 0.9929), absence of significant matrix effects (94-112%), accuracy of 94-125%, and RSD ≤ 15% except at LLOQ. The average current during extractions was 67 µA or less. The findings of this paper demonstrated that EME is feasible for extraction of basic analytes of extreme polarity.
Collapse
Affiliation(s)
- Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
38
|
Sadutto D, Picó Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020; 25:E5204. [PMID: 33182304 PMCID: PMC7664861 DOI: 10.3390/molecules25215204] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) are abundantly used by people, and some of them are excreted unaltered or as metabolites through urine, with the sewage being the most important source to their release to the environment. These compounds are in almost all types of water (wastewater, surface water, groundwater, etc.) at concentrations ranging from ng/L to µg/L. The isolation and concentration of the PPCPs from water achieves the appropriate sensitivity. This step is mostly based on solid-phase extraction (SPE) but also includes other approaches (dispersive liquid-liquid microextraction (DLLME), buckypaper, SPE using multicartridges, etc.). In this review article, we aim to discuss the procedures employed to extract PPCPs from any type of water sample prior to their determination via an instrumental analytical technique. Furthermore, we put forward not only the merits of the different methods available but also a number of inconsistencies, divergences, weaknesses and disadvantages of the procedures found in literature, as well as the systems proposed to overcome them and to improve the methodology. Environmental applications of the developed techniques are also discussed. The pressing need for new analytical innovations, emerging trends and future prospects was also considered.
Collapse
Affiliation(s)
- Daniele Sadutto
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| |
Collapse
|