1
|
Martin-Willett R, Skrzynski CJ, Taylor EM, Sempio C, Klawitter J, Bidwell LC. The Interplay of Exogenous Cannabinoid Use on Anandamide and 2-Arachidonoylglycerol in Anxiety: Results from a Quasi-Experimental Ad Libitum Study. Pharmaceuticals (Basel) 2024; 17:1335. [PMID: 39458976 PMCID: PMC11509978 DOI: 10.3390/ph17101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The public is increasingly reporting using cannabis for anxiety relief. Both cannabis use and the endocannabinoid system have been connected with anxiety relief/anxiolytic properties, but these relationships are complex, and the underlying mechanisms for them are unclear. Background/Objectives: Work is needed to understand how the endocannabinoid system, including the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), may be impacted by the main constituents of cannabis, Δ9-tetrahydrocannabinol (THC), and cannabidiol (CBD). Methods: The current study examined how the ab libitum use of products differing in THC and CBD affected AEA and 2-AG among 292 individuals randomly assigned to THC-dominant use (N = 92), CBD-dominant use (N = 97), THC + CBD use (N = 74), or non-use (N = 29). Results: The findings suggest that AEA levels do not change differently based on 4 weeks of cannabis use or by cannabinoid content, as AEA similarly increased across all conditions from study weeks 2 to 4. In contrast, AEA decreased at an acute administration session with product conditions containing any THC having greater AEA levels on average than the non-use condition. With regard to 2-AG, its levels appeared to primarily be affected by THC-dominant use, both acutely and over 4 weeks, when controlling for baseline cannabis use and examining study product use frequency among use conditions. Conclusions: Overall, the results continue to shed light on the complicated relationship between cannabinoid content and endocannabinoid production, and highlight the need for continued research on their interplay in human subjects.
Collapse
Affiliation(s)
- Renée Martin-Willett
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Carillon J. Skrzynski
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Ethan M. Taylor
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
| | - Cristina Sempio
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.); (J.K.)
| | - Jost Klawitter
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.S.); (J.K.)
| | - L. Cinnamon Bidwell
- Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (R.M.-W.); (C.J.S.); (E.M.T.)
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Haddad NM, De Jesus LP, Serpa M, Van De Bilt M, Talib L, Costa A, Gattaz W, Loch AA. Endocannabinoid system alterations in schizophrenia: association with cannabis use and antipsychotic medication. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01788-x. [PMID: 38502208 DOI: 10.1007/s00406-024-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Determining peripheral modulation of the endocannabinoid system (ECS) may be important for differentiating individuals with schizophrenia. Such differentiation can also be extended to subgroups of individuals, those who use cannabis and antipsychotic medications, particularly those who are treatment resistant. Patients and controls were recruited from the outpatient clinic of the Psychosis Group of the University of São Paulo, Brazil. A final sample of 93 individuals was divided into 3 groups: patients with schizophrenia using clozapine (treatment-resistant) (n = 29), patients with schizophrenia using another antipsychotic (n = 31), and controls (n = 33). By measuring the proteins and metabolites involved in the ECS pathways in the peripheral blood, AEA (anandamide), 2-AG (2-arachidonoyl ethanolamine), and CB2 receptor (peripheral) were quantified. Individuals reporting lifetime cannabis use had lower 2-AG plasma levels (p = 0.011). Regarding the CB2 receptor, the values of patients with schizophrenia and controls were similar, but those of patients using antipsychotics other than clozapine differed (p = 0.022). In generalized linear models to control for confounders, the use of cannabis remained the only factor that significantly influenced 2-AG levels. The relationship for non-clozapine antipsychotics as the only factor related to CB2 changes was marginally significant. We found for the first time that cannabis use and non-clozapine antipsychotic medication are potentially involved in the modulation of the ECS, specifically influencing 2-AG endocannabinoid and CB2 receptor levels. More studies regarding the ECS are needed since it has been increasingly related to the physiopathology of schizophrenia.
Collapse
Affiliation(s)
- Natalia Mansur Haddad
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil.
| | - Leonardo Peroni De Jesus
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Mauricio Serpa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Martinus Van De Bilt
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Leda Talib
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alana Costa
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| | - Alexandre Andrade Loch
- Laboratório de Neurociências (LIM 27), Instituto de Psiquiatria, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, 4 Andar Ala Norte Sala 4N60, Sao Paulo, SP, CEP 05403-010, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, Brazil
| |
Collapse
|
5
|
Klawitter J, Weissenborn W, Gvon I, Walz M, Klawitter J, Jackson M, Sempio C, Joksimovic SL, Shokati T, Just I, Christians U, Todorovic SM. β-Caryophyllene Inhibits Monoacylglycerol Lipase Activity and Increases 2-Arachidonoyl Glycerol Levels In Vivo: A New Mechanism of Endocannabinoid-Mediated Analgesia? Mol Pharmacol 2024; 105:75-83. [PMID: 38195158 PMCID: PMC10794982 DOI: 10.1124/molpharm.123.000668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/11/2024] Open
Abstract
The mechanisms of β-caryophyllene (BCP)-induced analgesia are not well studied. Here, we tested the efficacy of BCP in an acute postsurgical pain model and evaluated its effect on the endocannabinoid system. Rats were treated with vehicle and 10, 25, 50, and 75 mg/kg BCP. Paw withdrawal responses to mechanical stimuli were evaluated using an electronic von Frey anesthesiometer. Endocannabinoids, including 2-arachidonoylglycerol (2-AG), were also evaluated in plasma and tissues using high-performance liquid chromatography-tandem mass spectrometry. Monoacylglycerol lipase (MAGL) activity was evaluated in vitro as well as ex vivo. We observed a dose-dependent and time-dependent alleviation of hyperalgesia in incised paws up to 85% of the baseline value at 30 minutes after administration of BCP. We also observed dose-dependent increases in the 2-AG levels of about threefold after administration of BCP as compared with vehicle controls. Incubations of spinal cord tissue homogenates from BCP-treated rats with isotope-labeled 2-arachidonoylglycerol-d8 revealed a reduced formation of the isotope-labeled MAGL product 2-AG-d8 as compared with vehicle controls, indicating MAGL enzyme inhibition. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 15.8 µM for MAGL inhibition using BCP. These data showed that BCP inhibits MAGL activity in vitro and in vivo, causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose that 2-AG-mediated cannabinoid receptor activation contributes to BCP's mechanism of analgesia. SIGNIFICANCE STATEMENT: β-Caryophyllene (BCP) consumption is relatively safe and is approved by the Food and Drug Administration as a flavoring agent, which can be used in cosmetic and food additives. BCP is a potent anti-inflammatory agent that showed substantial antihyperalgesic properties in this study of acute pain suggesting that BCP might be an alternative to opioids. This study shows an additive mechanism (monoacylglycerol lipase inhibition) by which BCP might indirectly alter CB1 and CB2 receptor activity and exhibit its pharmacological properties.
Collapse
Affiliation(s)
- Jost Klawitter
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Wiebke Weissenborn
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Iuliia Gvon
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Mackenzie Walz
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Jelena Klawitter
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Matthew Jackson
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Cristina Sempio
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Sonja L Joksimovic
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Touraj Shokati
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Ingo Just
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Uwe Christians
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| | - Slobodan M Todorovic
- Departments of Anesthesiology (J.K., W.W., I.G., M.W., J.K., M.J., C.S., S.L.J., T.S., U.C., S.M.T.) and Psychiatry (J.K.), School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Pharmacology and Toxicology, Medizinische Hochschule Hannover, Hannover, Germany (W.W., I.G., I.J., U.C.); and Neuroscience Graduate Program, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado (S.M.T.)
| |
Collapse
|
7
|
Villate A, San Nicolas M, Aizpurua-Olaizola O, Olivares M, Usobiaga A, Etxebarria N. Quantification of Endocannabinoids in Human Plasma. Methods Mol Biol 2023; 2687:107-126. [PMID: 37464166 DOI: 10.1007/978-1-0716-3307-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The determination of the concentration of endocannabinoids and related compounds in human plasma has become a matter of interest due to their implication in physiological processes and, thus, their possible relation with physiological conditions or illnesses. The analysis of these compounds though has to be carefully designed as they are found in very low concentrations, and some of them degrade easily once blood is collected. In this chapter, a simple method based on a liquid-liquid extraction and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) is described to determine the concentration of eight of the most relevant endocannabinoids in plasma.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain.
| | - Markel San Nicolas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain
| | | | - Maitane Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|