1
|
Wu WC, Wu WH, Lee MF, Wu PY, Tu YK, Lin H, Chan CY, Huang CY. Comparative Efficacy and Acceptability of Non-surgical Treatments with or without Exercise for Diastasis Recti Abdominis in Postpartum Women: A Network Meta-Analysis of Randomized Controlled Trials. Sports Med 2025:10.1007/s40279-025-02179-5. [PMID: 39878918 DOI: 10.1007/s40279-025-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Diastasis recti abdominis (DRA), commonly occurring in postpartum women, is not only an aesthetic issue but is also highly associated with functional impairments. Various conservative treatment modalities have been employed in clinical practice to alleviate DRA. However, the comparative efficacy of these non-surgical treatments for improving the inter-recti distance (IRD) remains to be determined. AIM This current network meta-analysis (NMA) aims to compare the efficacy and acceptability of different non-surgical treatments with or without exercise for improving DRA in postpartum women. METHODS This NMA adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. ClinicalKey, Cochrane Library, CINAHL, Embase, PubMed, Web of Science, and ClinicalTrials.gov were systematically searched for randomized controlled trial (RCT) studies up to April 2024. The analysis included studies that met the following criteria: (1) postpartum women diagnosed with DRA defined as an IRD greater than 2 cm; (2) intervention: any non-surgical treatments for at least 2 weeks; (3) comparator: no-treatment control; and (4) outcome: changes in IRD and acceptability. The relative efficacy between the non-surgical treatments tested and the probability of treatments were evaluated. RESULTS Twenty-one RCTs comprising 1195 participants aged from 18 to 45 years old were included. The forest plot revealed that exercise coupling with neuromuscular electrical stimulation systems (NMES) [mean difference (MD) - 1.12 cm, 95% confidence interval (CI) - 1.66 to - 0.58], acupuncture (MD - 0.81 cm, 95% CI - 1.54 to - 0.08), corset (MD - 0.65 cm, 95% CI - 1.24 to - 0.06), and exercise alone (MD - 0.48 cm, 95% CI - 0.80 to - 0.16) led to significant reductions in IRD compared with control. Further, the treatment ranking indicated that the combination of NMES with exercise has the highest probability (91.0%) of being the best treatment for reducing IRD, followed by acupuncture with exercise (71.1%). Treatments combined with exercise demonstrated better rankings for reducing IRD than individual treatments without exercise. Acceptability did not significantly differ between the groups. LIMITATIONS AND IMPLICATIONS This NMA encountered limitations due to participant variability, differing measurement methods, and sparse data, necessitating careful interpretation of findings regarding postpartum DRA interventions. CONCLUSIONS This NMA suggests NMES combined with exercise as the best treatment tested for DRA in postpartum women. PROSPERO REGISTRATION CRD42024541345.
Collapse
Affiliation(s)
- Wen-Chieh Wu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Wen-Hong Wu
- Ma Kuang United Clinics of Traditional Chinese Medicine, Kaohsiung, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Pei-Yu Wu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Kang Tu
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan
- Health Data Research Center, National Taiwan University, Taipei, Taiwan
| | - Hsuan Lin
- MinYou Chinese Medicine Clinic, Kaohsiung, Taiwan
| | - Chien-Yi Chan
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Abdullahi A, Wong TWL, Ng SSM. Effects of home-based neurostimulation on outcomes after stroke: a systematic review and meta-analysis. Neurol Sci 2024; 45:5157-5179. [PMID: 38940876 PMCID: PMC11470900 DOI: 10.1007/s10072-024-07633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Home-based rehabilitation is a cost-effective means of making services available for patients. The aim of this study is to determine the evidence in the literature on the effects of home-based neurostimulation in patients with stroke. METHOD We searched PubMED, Embase, Web of Science, Scopus, and CENTRAL for randomized controlled trials on the subject matter using keywords such as stroke, electrical stimulation and transcranial direct current stimulation. Information on participants' characteristics and mean scores on the outcomes of interest were extracted. Risks of bias and methodological quality of the included studies were assessed using Cochrane Risks of bias tool and PEDro scale respectively. The data was analyzed using both narrative and quantitative syntheses. In the quantitative synthesis, meta-analysis was carried out using random effect model analysis. RESULT The results showed that, home-based neurostimulation is superior to the control at improving upper limb muscle strength (SMD = 0.72, 95% CI = 0.08 to 1.32, p = 0.03), functional mobility (SMD = -0.39, 95% CI = -0.65 to 0.14, p = 0.003) and walking endurance (SMD = 0.33, 95% CI = 0.08 to 0.59, p = 0.01) post intervention; and upper limb motor function (SMD = 0.9, 95% CI = 0.10 to 1.70, p = 0.03), functional mobility (SMD = -0.30, 95% CI = -0.56 to -0.05, p = 0.02) and walking endurance (SMD = 0.33, 95% CI = 0.08 to 0.59, p = 0.01) at follow-up. CONCLUSIONS Home-based neurostimulation can be used to improve upper and lower limb function after stroke.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Formerly, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China.
| |
Collapse
|
3
|
Rikhof CJH, Leerskov KS, Prange-Lasonder GB, Prinsen EC, Spaich EG, Dosen S, Struijk LNSA, Buurke JH, Rietman JS. Combining robotics and functional electrical stimulation for assist-as-needed support of leg movements in stroke patients: A feasibility study. Med Eng Phys 2024; 130:104216. [PMID: 39160022 DOI: 10.1016/j.medengphy.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE Rehabilitation technology can be used to provide intensive training in the early phases after stroke. The current study aims to assess the feasibility of combining robotics and functional electrical stimulation (FES), with an assist-as-needed approach to support actively-initiated leg movements in (sub-)acute stroke patients. METHOD Nine subacute stroke patients performed repetitions of ankle dorsiflexion and/or knee extension movements, with and without assistance. The assist-as-needed algorithm determined the amount and type of support needed per repetition. The number of repetitions and range of motion with and without assistance were compared with descriptive statistics. Fatigue scores were obtained using the visual analogue scale (score 0-10). RESULTS Support was required in 44 % of the repetitions for ankle dorsiflexion and in 5 % of the repetitions of knee extension, The median fatigue score was 2.0 (IQR: 0.2) and 4.0 (IQR: 1.5) for knee and ankle, respectively, indicating mild to moderate perceived fatigue. CONCLUSION This study demonstrated the feasibility of assist-as-needed assistance through combined robotic and FES support of leg movements in stroke patients. It proved particularly useful for ankle dorsiflexion. Future research should focus on implementing this approach in a clinical setting, to assess clinical applicability and potential effects on leg function.
Collapse
Affiliation(s)
- Cindy J H Rikhof
- Roessingh Research and Development, Roessinghsbleekweg 33b 7522AH, Enschede, The Netherlands; University of Twente, Department of Biomechanical Engineering, Faculty of Engineering Technology, Drienerlolaan 5 7522NB, Enschede, The Netherlands.
| | - Kasper S Leerskov
- Aalborg University, The neurorehabilitation Robotics and Engineering group, Center for Rehabilitation in Robotics, Department of Health Science and Technology, Gistrup 9260, Denmark
| | - Gerdienke B Prange-Lasonder
- Roessingh Research and Development, Roessinghsbleekweg 33b 7522AH, Enschede, The Netherlands; University of Twente, Department of Biomechanical Engineering, Faculty of Engineering Technology, Drienerlolaan 5 7522NB, Enschede, The Netherlands
| | - Erik C Prinsen
- Roessingh Research and Development, Roessinghsbleekweg 33b 7522AH, Enschede, The Netherlands; University of Twente, Department of Biomechanical Engineering, Faculty of Engineering Technology, Drienerlolaan 5 7522NB, Enschede, The Netherlands
| | - Erika G Spaich
- Aalborg University, Neurorehabilitation Systems group, Department of Health Science and Technology 9260, Aalborg Gistrup, Denmark
| | - Strahinja Dosen
- Aalborg University, Neurorehabilitation Systems group, Department of Health Science and Technology 9260, Aalborg Gistrup, Denmark
| | - Lotte N S Andreasen Struijk
- Aalborg University, The neurorehabilitation Robotics and Engineering group, Center for Rehabilitation in Robotics, Department of Health Science and Technology, Gistrup 9260, Denmark
| | - Jaap H Buurke
- Roessingh Research and Development, Roessinghsbleekweg 33b 7522AH, Enschede, The Netherlands; University of Twente, Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, Drienerlolaan 5 7522NB, Enschede, The Netherlands
| | - Johan S Rietman
- Roessingh Research and Development, Roessinghsbleekweg 33b 7522AH, Enschede, The Netherlands; University of Twente, Department of Biomechanical Engineering, Faculty of Engineering Technology, Drienerlolaan 5 7522NB, Enschede, The Netherlands
| |
Collapse
|
4
|
Yoshihiro N, Amimoto K, Osaki S, Tanabe J, Sakai K, Ikeda Y. Effects of Functional Electrical Stimulation on Attention and Brain Activity in Healthy Participants Using Near-Infrared Spectroscopy: An Interventional Study. Cureus 2024; 16:e57886. [PMID: 38725764 PMCID: PMC11081401 DOI: 10.7759/cureus.57886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Background Involuntary limb activation using functional electrical stimulation (FES) can improve unilateral spatial neglect. However, the impact of FES on brain activity related to spatial attention remains unclear. Thus, in this study, we aimed to examine the effects of FES on spatial attention. Methodology In this interventional study, 13 healthy right-handed participants were asked to perform the Posner task for six minutes both before and after either FES or sham stimulation during each set, resulting in a total of two sets. FES was applied to the left forearm extensor muscles, with a frequency of 25 Hz, a pulse width of 100 μs, and the intensity adjusted to reach the motor threshold. Both the energization and pause times were set to five seconds. The Posner task was used to measure reaction time to a target appearing on a computer screen. Brain activity, indicated by oxygenated hemoglobin values, was measured using near-infrared spectroscopy with 24 probes according to the International 10-20 system method. Results In the left hemisphere, oxygenated hemoglobin values in the premotor and supplementary motor areas, primary somatosensory cortex, and somatosensory association areas were significantly higher after FES than after sham stimulation. In the right hemisphere, oxygenated hemoglobin values were significantly increased in the premotor, primary, and supplementary motor areas; in the supramarginal gyrus; and in the somatosensory association areas after FES. Reaction times in the Posner task did not differ significantly between the FES and sham conditions. Conclusions Collectively, these results suggest that FES of the upper limbs can activate the ventral pathway of the visual attention network and improve stimulus-driven attention. Activation of stimulus-driven attentional function could potentially contribute to symptom improvement in patients with unilateral spatial neglect.
Collapse
Affiliation(s)
- Nao Yoshihiro
- Department of Occupational Therapy, Kansai University of Health Sciences, Osaka, JPN
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, JPN
| | - Kazu Amimoto
- Department of Physical Therapy, Sendai Seiyo Gakuin College, Miyagi, JPN
| | - Shinpei Osaki
- Department of Rehabilitation, Kansai Electric Power Hospital, Osaka, JPN
| | - Junpei Tanabe
- Department of Physical Therapy, Hiroshima Cosmopolitan University, Hiroshima, JPN
| | - Katsuya Sakai
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, JPN
| | - Yumi Ikeda
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, JPN
| |
Collapse
|
5
|
Scalia M, Borzuola R, Parrella M, Borriello G, Sica F, Monteleone F, Maida E, Macaluso A. Neuromuscular Electrical Stimulation Does Not Influence Spinal Excitability in Multiple Sclerosis Patients. J Clin Med 2024; 13:704. [PMID: 38337396 PMCID: PMC10856365 DOI: 10.3390/jcm13030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Neuromuscular electrical stimulation (NMES) has beneficial effects on physical functions in Multiple sclerosis (MS) patients. However, the neurophysiological mechanisms underlying these functional improvements are still unclear. This study aims at comparing acute responses in spinal excitability, as measured by soleus Hoffmann reflex (H-reflex), between MS patients and healthy individuals, under three experimental conditions involving the ankle planta flexor muscles: (1) passive NMES (pNMES); (2) NMES superimposed onto isometric voluntary contraction (NMES+); and (3) isometric voluntary contraction (ISO). (2) Methods: In total, 20 MS patients (MS) and 20 healthy individuals as the control group (CG) took part in a single experimental session. Under each condition, participants performed 15 repetitions of 6 s at 20% of maximal voluntary isometric contraction, with 6 s of recovery between repetitions. Before and after each condition, H-reflex amplitudes were recorded. (3) Results: In MS, H-reflex amplitude did not change under any experimental condition (ISO: p = 0.506; pNMES: p = 0.068; NMES+: p = 0.126). In CG, H-reflex amplitude significantly increased under NMES+ (p = 0.01), decreased under pNMES (p < 0.000) and was unaltered under ISO (p = 0.829). (4) Conclusions: The different H-reflex responses between MS and CG might reflect a reduced ability of MS patients in modulating spinal excitability.
Collapse
Affiliation(s)
- Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Giovanna Borriello
- Neurology Unit, San Pietro Fatebenefratelli Hospital, MS Centre, 00189 Rome, Italy
| | - Francesco Sica
- Santa Maria Goretti Hospital, 04100 Latina, Italy; (F.S.); (F.M.)
| | | | - Elisabetta Maida
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| |
Collapse
|
6
|
Almutairi SM, Khalil ME, Almutairi N, Alsaadoon SM, Alharbi DS, Al Assadi SD, Alghamdi SF, Albattah SN, Alenazi AM. Effects of Neuromuscular Electrical Stimulation on Spasticity and Walking Performance among Individuals with Chronic Stroke: A Pilot Randomized Clinical Trial. Healthcare (Basel) 2023; 11:3137. [PMID: 38132027 PMCID: PMC10742606 DOI: 10.3390/healthcare11243137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Stroke and its associated complications are a major cause of long-term disability worldwide, with spasticity being a common and severe issue. Physical therapy, involving stretching exercises and electrical stimulation, is crucial for managing spasticity. Therefore, this study aimed to evaluate the effects of neuromuscular electrical stimulation (NMES) combined with a conventional rehabilitation program (CRP) on plantarflexor muscle spasticity and walking performance among individuals with chronic stroke. METHODS A pilot randomized clinical trial (RCT) with two groups (active NMES and placebo) was conducted at the physical therapy departments of King Fahad Specialist Hospital, Buraydah, and Sultan Bin Abdulaziz Humanitarian City, Riyadh, Saudi Arabia (November 2020). The assessor and participants were blinded for the group assignment. The active NMES group received exercise and stimulation at the dorsiflexor muscles on the paretic leg for 30 min for 12 sessions. The placebo group received exercise and sham stimulation at the same position and duration as the active group. Of interest were the outcomes for plantarflexor muscle spasticity measured by the modified Ashworth scale (MAS), gait speed measured by 10 m walk test (10-MWT), and functional mobility measured by functional ambulatory category (FAC). RESULTS Nineteen participants were randomized into active NMES (n = 10) and sham NMES (n = 9) groups, with no significant baseline differences. Within the active NMES group, significant improvements were observed in MAS (p = 0.008), 10-MWT (p = 0.028), and FAC (p = 0.046), while only 10-MWT time improved significantly in the sham NMES group (p = 0.011). Between-group analysis showed that only MAS was significantly lower in the active NMES group (p = 0.006). Percent change analysis indicated a significantly higher increase in percent change for MAS in the active NMES group compared to the sham NMES group (p = 0.035), with no significant differences in other outcome measures. CONCLUSIONS This study showed that NMES in the active group led to significant improvements in spasticity, walking performance, and functional ambulation. Further research is needed to determine the ideal parameters, protocols, and patient selection criteria for NMES interventions in stroke rehabilitation.
Collapse
Affiliation(s)
- Sattam M. Almutairi
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah 52571, Saudi Arabia; (M.E.K.); (S.N.A.)
| | - Mohamed E. Khalil
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah 52571, Saudi Arabia; (M.E.K.); (S.N.A.)
| | | | - Saud M. Alsaadoon
- Department of Rehabilitation Services and Programs, Sultan Bin Abdulaziz Humanitarian City, Riyadh 13571, Saudi Arabia; (S.M.A.); (D.S.A.); (S.D.A.A.); (S.F.A.)
| | - Dalal S. Alharbi
- Department of Rehabilitation Services and Programs, Sultan Bin Abdulaziz Humanitarian City, Riyadh 13571, Saudi Arabia; (S.M.A.); (D.S.A.); (S.D.A.A.); (S.F.A.)
| | - Sultan D. Al Assadi
- Department of Rehabilitation Services and Programs, Sultan Bin Abdulaziz Humanitarian City, Riyadh 13571, Saudi Arabia; (S.M.A.); (D.S.A.); (S.D.A.A.); (S.F.A.)
| | - Salem F. Alghamdi
- Department of Rehabilitation Services and Programs, Sultan Bin Abdulaziz Humanitarian City, Riyadh 13571, Saudi Arabia; (S.M.A.); (D.S.A.); (S.D.A.A.); (S.F.A.)
| | - Sahar N. Albattah
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah 52571, Saudi Arabia; (M.E.K.); (S.N.A.)
| | - Aqeel M. Alenazi
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| |
Collapse
|
7
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Demchenko I, Desai N, Iwasa SN, Gholamali Nezhad F, Zariffa J, Kennedy SH, Rule NO, Cohn JF, Popovic MR, Mulsant BH, Bhat V. Manipulating facial musculature with functional electrical stimulation as an intervention for major depressive disorder: a focused search of literature for a proposal. J Neuroeng Rehabil 2023; 20:64. [PMID: 37193985 DOI: 10.1186/s12984-023-01187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Major Depressive Disorder (MDD) is associated with interoceptive deficits expressed throughout the body, particularly the facial musculature. According to the facial feedback hypothesis, afferent feedback from the facial muscles suffices to alter the emotional experience. Thus, manipulating the facial muscles could provide a new "mind-body" intervention for MDD. This article provides a conceptual overview of functional electrical stimulation (FES), a novel neuromodulation-based treatment modality that can be potentially used in the treatment of disorders of disrupted brain connectivity, such as MDD. METHODS A focused literature search was performed for clinical studies of FES as a modulatory treatment for mood symptoms. The literature is reviewed in a narrative format, integrating theories of emotion, facial expression, and MDD. RESULTS A rich body of literature on FES supports the notion that peripheral muscle manipulation in patients with stroke or spinal cord injury may enhance central neuroplasticity, restoring lost sensorimotor function. These neuroplastic effects suggest that FES may be a promising innovative intervention for psychiatric disorders of disrupted brain connectivity, such as MDD. Recent pilot data on repetitive FES applied to the facial muscles in healthy participants and patients with MDD show early promise, suggesting that FES may attenuate the negative interoceptive bias associated with MDD by enhancing positive facial feedback. Neurobiologically, the amygdala and nodes of the emotion-to-motor transformation loop may serve as potential neural targets for facial FES in MDD, as they integrate proprioceptive and interoceptive inputs from muscles of facial expression and fine-tune their motor output in line with socio-emotional context. CONCLUSIONS Manipulating facial muscles may represent a mechanistically novel treatment strategy for MDD and other disorders of disrupted brain connectivity that is worthy of investigation in phase II/III trials.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, M5B 1M4, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Naaz Desai
- Krembil Research Institute - University Health Network, Toronto, ON, M5T 0S8, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Stephanie N Iwasa
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, M5G 2A2, Canada
- CRANIA, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, M5B 1M4, Canada
| | - José Zariffa
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, M5G 2A2, Canada
- CRANIA, University Health Network, Toronto, ON, M5G 2C4, Canada
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1V7, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, M5B 1M4, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Nicholas O Rule
- Department of Psychology, Faculty of Arts & Science , University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Jeffrey F Cohn
- Department of Psychology, Kenneth P. Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Milos R Popovic
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, M5G 2A2, Canada
- CRANIA, University Health Network, Toronto, ON, M5G 2C4, Canada
- Institute of Biomedical Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M6J 1H4, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital - Unity Health Toronto, Toronto, ON, M5B 1M4, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Krembil Research Institute - University Health Network, Toronto, ON, M5T 0S8, Canada.
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, M5G 2A2, Canada.
- CRANIA, University Health Network, Toronto, ON, M5G 2C4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
9
|
Mijic M, Schoser B, Young P. Efficacy of functional electrical stimulation in rehabilitating patients with foot drop symptoms after stroke and its correlation with somatosensory evoked potentials-a crossover randomised controlled trial. Neurol Sci 2023; 44:1301-1310. [PMID: 36544079 PMCID: PMC10023639 DOI: 10.1007/s10072-022-06561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The connectivity between somatosensory evoked potentials (SEPs) and cortical plasticity remains elusive due to a lack of supporting data. This study investigates changes in pathological latencies and amplitudes of SEPs caused by an acute stroke after 2 weeks of rehabilitation with functional electrical stimulation (FES). Furthermore, changes in SEPs and the efficacy of FES against foot drop (FD) stroke symptoms were correlated using the 10-m walk test and foot-ankle strength. METHODS A randomised controlled two-period crossover design plus a control group (group C) was designed. Group A (n = 16) was directly treated with FES, while group B (n = 16) was treated after 2 weeks. The untreated control group of 20 healthy adults underwent repeated SEP measurements for evaluation only. RESULTS The repeated-measures ANOVA showed a decrease in tibial nerve (TN) P40 and N50 latencies in group A after the intervention, followed by a decline in non-paretic TN SEP in latency N50 (p < 0.05). Moreover, compared to groups B and C from baseline to 4 weeks, group A showed a decrease in paretic TN latency P40 and N50 (p < 0.05). An increase in FD strength and a reduction in step cadence in group B (p < 0.05) and a positive tendency in FD strength (p = 0.12) and step cadence (p = 0.08) in group A were observed after the treatment time. The data showed a moderate (r = 0.50-0.70) correlation between non-paretic TN latency N50 and step cadence in groups A and B after the intervention time. CONCLUSION The FES intervention modified the pathological gait in association with improved SEP afferent feedback. Registered on 25 February 2021 on ClinicalTrials.gov under identifier number: NCT04767360.
Collapse
Affiliation(s)
- Marko Mijic
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany.
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Young
- Clinic for Neurology, Medical Park, Reithof 1, 83075, Bad Feilnbach, Germany
| |
Collapse
|
10
|
Ueda K, Umemoto Y, Kamijo YI, Sakurai Y, Araki S, Ise M, Yoshioka I, Banno M, Mochida S, Iwahashi T, Shimokawa T, Nishimura Y, Tajima F. Effects of Combination of Functional Electric Stimulation and Robotic Leg Movement Using Dynamic Tilt Table on Walking Characteristics in Post-Stroke Patients with Spastic Hemiplegia: A Randomized Crossover-Controlled Trial. J Clin Med 2022; 11:jcm11236911. [PMID: 36498486 PMCID: PMC9738196 DOI: 10.3390/jcm11236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Spastic hemiplegia causes slow and unstable walking in post-stroke patients. Dynamic tilt table with robotic leg movement (DTTRLM) is safe and effective in improving walking. Functional electric stimulation (FES) improves walking speed in post-stroke patients with spastic hemiplegia. The aim of this study was to determine the effects of combined DTTRLM + FES on walking speed compared with DTTRLM alone. METHODS Twenty post-stroke patients were randomly assigned to receive either a single session of stepping + FES treatment or a single session of stepping alone treatment. After a one-week washout period, the same two groups underwent a single session of the other treatment, and the same measurements were taken. We measured walking speed, cadence, and the number of steps in a 10 m walking test (10MWT) and assessed Modified Ashworth Scale (MAS), Fugl-Meyer Assessment (FMA), and range of motion (ROM) before and after the intervention. RESULTS Stepping + FES significantly improved walking speed, number of steps, and ankle inversion ROM, compared with stepping alone. Adverse events were not observed in any subject. CONCLUSIONS Robotic stepping therapy combined with FES significantly improved 10 m walking speed (10MWS) compared with stepping only in patients with post-stroke and spastic hemiplegia. Further studies are needed to determine the long-term effects of the combination treatment.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
- Correspondence: ; Tel.: +81-(73)-441-0664; Fax: +81-(73)-446-6475
| | - Yoshi-ichiro Kamijo
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Saitama 343-8555, Japan
| | - Yuta Sakurai
- Nachi-Katsuura Research Center of Sports Medicine and Balneology, Nachikatsuura Balneologic Town Hospital, Wakayama 649-5331, Japan
| | - Shohei Araki
- Nachi-Katsuura Research Center of Sports Medicine and Balneology, Nachikatsuura Balneologic Town Hospital, Wakayama 649-5331, Japan
| | - Masato Ise
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Izumi Yoshioka
- Nachi-Katsuura Research Center of Sports Medicine and Balneology, Nachikatsuura Balneologic Town Hospital, Wakayama 649-5331, Japan
| | - Motohiko Banno
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Satoshi Mochida
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Takaya Iwahashi
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Toshio Shimokawa
- Clinical Study Support Center, Wakayama Medical University Hospital, Wakayama 641-8509, Japan
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, School of Medicine, Iwate Medical University, Morioka 028-3695, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, School of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| |
Collapse
|
11
|
Mijic M, Jung A, Schoser B, Young P. Use of peripheral electrical stimulation on healthy individual and patients after stroke and its effects on the somatosensory evoked potentials. A systematic review. Front Neurol 2022; 13:1036891. [PMID: 36468059 PMCID: PMC9716063 DOI: 10.3389/fneur.2022.1036891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/20/2022] [Indexed: 10/17/2023] Open
Abstract
INTRODUCTION To date, a few studies have used somatosensory evoked potentials (SEP) to demonstrate cortical sensory changes among healthy subjects or to estimate cortical plasticity and rehabilitation prognosis in stroke patients after peripheral electrical stimulation (PES) intervention. The primary aim was to systematically review whether PES has a role in changing latencies and amplitudes of SEPs in healthy subjects and stroke patients. Moreover, we searched for a correlation between sensory and motor function assessments and changes in SEP components of included studies. METHODS The following databases were searched: Pubmed/MEDLINE, Scopus/ScienceDirect, Web of Science/Clarivate, Cochrane Library, The Physiotherapy Evidence Database (PEDro), and ClinicalTrials.gov. Titles and abstracts, as well as full-text reports, were screened for eligibility by two independent reviewers according to a priori defined eligibility criteria. There were no study limitations concerning the treatment of the upper limb, lower limb, or torso with PES. RESULTS The final systematic search resulted in 11,344 records, however only 10 were evaluated. We could not find enough evidence to confirm use of SEP as a predictor to estimate the rehabilitation prognosis after stroke. However, we found a correlation between different sensory and motor function assessments and changes in SEP components. The stroke studies involving PES that initiate a voluntary contraction used for a specific movement or task indicate a positive relationship and correlation to assessments of motor function. It could be indicated that PES have a predictive impact of sensory reorganization, as mirrored by the change in SEP amplitude and latency. However, it is not possible to verify the degree of connectivity between SEP and cortical plasticity. To confirm this hypothesis, we propose the conduction of randomized controlled trials in healthy volunteers and stroke patients. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.17605/OSF.IO/U7PSY.
Collapse
Affiliation(s)
- Marko Mijic
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Andres Jung
- Institute of Health Sciences, Universität zu Lübeck, Luebeck, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Universität, Ludwig-Maximilians-University, Munich, Germany
| | - Peter Young
- Clinic for Neurology, Medical Park, Bad Feilnbach, Germany
| |
Collapse
|
12
|
Zhang Y, Chen W, Lin CL, Pei Z, Chen J, Wang D. Synchronous analyses between electroencephalogram and surface electromyogram based on motor imagery and motor execution. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:115114. [PMID: 36461556 DOI: 10.1063/5.0110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The functional coupling of the cerebral cortex and muscle contraction indicates that electroencephalogram (EEG) and surface electromyogram (sEMG) signals are coherent. The objective of this study is to clearly describe the coupling relationship between EEG and sEMG through a variety of analysis methods. We collected the EEG and sEMG data of left- or right-hand motor imagery and motor execution from six healthy subjects and six stroke patients. To enhance the coherence coefficient between EEG and sEMG signals, the algorithm of EEG modification based on the peak position of sEMG signals is proposed. Through analyzing a variety of signal synchronization analysis methods, the most suitable coherence analysis algorithm is selected. In addition, the wavelet coherence analysis method based on time spectrum estimation was used to study the linear correlation characteristics of the frequency domain components of EEG and sEMG signals, which verified that wavelet coherence analysis can effectively describe the temporal variation characteristics of EEG-sEMG coherence. In the task of motor imagery, the significant EEG-sEMG coherence is mainly in the imagination process with the frequency distribution of the alpha and beta frequency bands; in the task of motor execution, the significant EEG-sEMG coherence mainly concentrates before and during the task with the frequency distribution of the alpha, beta, and gamma frequency bands. The results of this study may provide a theoretical basis for the cooperative working mode of neurorehabilitation training and introduce a new method for evaluating the functional state of neural rehabilitation movement.
Collapse
Affiliation(s)
- Yue Zhang
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Weihai Chen
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Chun-Liang Lin
- Department of Electrical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Zhongcai Pei
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Jianer Chen
- Department of Geriatric Rehabilitation, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Daming Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
13
|
Solomons CD, Shanmugasundaram V, Balasubramanian S. Encoder-Controlled Functional Electrical Stimulator for Bilateral Wrist Activities—Design and Evaluation. Bioengineering (Basel) 2022; 9:bioengineering9100501. [PMID: 36290469 PMCID: PMC9598413 DOI: 10.3390/bioengineering9100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Upper limb impairment following stroke is often characterized by limited voluntary control in the affected arm. In addition, significant motor coordination problems occur on the unaffected arm due to avoidance of performing bilateral symmetrical activities. Rehabilitation strategies should, therefore, not only aim at improving voluntary control on the affected arm, but also contribute to synchronizing activity from both upper limbs. The encoder-controlled functional electrical stimulator, described in this paper, implements precise contralateral control of wrist flexion and extension with electrical stimulation. The stimulator is calibrated for each individual to obtain a table of stimulation parameters versus wrist angle. This table is used to set stimulation parameters dynamically, based on the difference in wrist angle between the set and stimulated side, which is continuously monitored. This allows the wrist on the stimulated side to follow flexion and extension patterns on the set side, thereby mirroring wrist movements of the normal side. This device also gives real-time graphical feedback on how the stimulated wrist is performing in comparison to the normal side. A study was performed on 25 normal volunteers to determine how closely wrist movements on the set side were being followed on the stimulated side. Graphical results show that there were minor differences, which were quantified by considering the peak angles of flexion and extension on the set and stimulated side for each participant. The mean difference in peak flexion and extension range of movement was 2.3 degrees and 1.9 degrees, respectively, with a mean time lag of 1 s between the set and the stimulated angle graphs.
Collapse
Affiliation(s)
- Cassandra D. Solomons
- Department of Instrumentation and Control, School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Vivekanandan Shanmugasundaram
- Department of Instrumentation and Control, School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Correspondence:
| | - Sivakumar Balasubramanian
- Department of Bioengineering, Christian Medical College and Hospital, Bagayam, Vellore 632002, Tamil Nadu, India
| |
Collapse
|
14
|
Toh SFM, Chia PF, Fong KNK. Effectiveness of home-based upper limb rehabilitation in stroke survivors: A systematic review and meta-analysis. Front Neurol 2022; 13:964196. [PMID: 36188398 PMCID: PMC9521568 DOI: 10.3389/fneur.2022.964196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background Home-based training is an alternative option to provide intensive rehabilitation without costly supervised therapy. Though several studies support the effectiveness of home-based rehabilitation in improving hemiparetic upper limb function in stroke survivors, a collective evaluation of the evidence remains scarce. Objectives This study aims to determine the effects of home-based upper limb rehabilitation for hemiparetic upper limb recovery in stroke survivors. Methods The databases of the Cochrane Library, MEDLINE, CINAHL, and Web of Science were systematically searched from January 2000 to September 2020. Only randomized, controlled, and cross-over trials that evaluated the effects of home-based upper limb interventions were selected. The Pedro scale was used to assess the methodological quality of the studies. A meta-analysis of the upper limb function outcomes was performed by calculating the mean difference/standardized mean difference using a fixed/random effect model. Results An initial search yielded 1,049 articles. Twenty-six articles were included in the review. The pooled evidence of the meta-analysis showed that home-based upper limb intervention was more effective in improving upper limb function [SMD: 0.28, 95% CI (0.12, 0.44), I2 = 0%, p < 0.001, fixed effect model] than conventional therapy. When comparing two types of home-based interventions, subgroup analysis revealed that home-based technology treatment—electrical stimulation—provided more significant improvement in upper limb function than treatment without the use of technology (SMD: 0.64, 95% CI (0.21, 1.07), I2 = 0%, p = 0.003, random effect model). Conclusion The beneficial effects of home-based upper limb interventions were superior to conventional therapy in improving function and perceived use of the hemiparetic upper limb in daily activities. Among the home-based interventions, home-based electrical stimulation seemed to provide the most optimal benefits.
Collapse
Affiliation(s)
- Sharon Fong Mei Toh
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Rehabilitation, Yishun Community Hospital, Singapore, Singapore
| | - Pei Fen Chia
- Department of Occupational Therapy, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Kenneth N. K. Fong
| |
Collapse
|
15
|
Xu R, Zhao X, Wang Z, Zhang H, Meng L, Ming D. A Co-driven Functional Electrical Stimulation Control Strategy by Dynamic Surface Electromyography and Joint Angle. Front Neurosci 2022; 16:909602. [PMID: 35898409 PMCID: PMC9309284 DOI: 10.3389/fnins.2022.909602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Functional electrical stimulation (FES) is widely used in neurorehabilitation to improve patients’ motion ability. It has been verified to promote neural remodeling and relearning, during which FES has to produce an accurate movement to obtain a good efficacy. Therefore, many studies have focused on the relationship between FES parameters and the generated movements. However, most of the relationships have been established in static contractions, which leads to an unsatisfactory result when applied to dynamic conditions. Therefore, this study proposed a FES control strategy based on the surface electromyography (sEMG) and kinematic information during dynamic contractions. The pulse width (PW) of FES was determined by a direct transfer function (DTF) with sEMG features and joint angles as the input. The DTF was established by combing the polynomial transfer functions of sEMG and joint torque and the polynomial transfer functions of joint torque and FES. Moreover, the PW of two FES channels was set based on the muscle synergy ratio obtained through sEMG. A total of six healthy right-handed subjects were recruited in this experiment to verify the validity of the strategy. The PW of FES applied to the left arm was evaluated based on the sEMG of the right extensor carpi radialis (ECR) and the right wrist angle. The coefficient of determination (R2) and the normalized root mean square error (NRMSE) of FES-included and voluntary wrist angles and torques were used to verify the performance of the strategy. The result showed that this study achieved a high accuracy (R2 = 0.965 and NRMSE = 0.047) of joint angle and a good accuracy (R2 = 0.701 and NRMSE = 0.241) of joint torque reproduction during dynamic movements. Moreover, the DTF in real-time FES system also had a nice performance of joint angle fitting (R2 = 0.940 and NRMSE = 0.071) and joint torque fitting (R2 = 0.607 and NRMSE = 0.303). It is concluded that the proposed strategy is able to generate proper FES parameters based on sEMG and kinematic information for dynamic movement reproduction and can be used in a real-time FES system combined with bilateral movements for better rehabilitation.
Collapse
Affiliation(s)
- Rui Xu
- Laboratory of Motor Rehabilitation, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Xinyu Zhao
- Laboratory of Motor Rehabilitation, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Ziyao Wang
- Laboratory of Motor Rehabilitation, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hengyu Zhang
- Laboratory of Motor Rehabilitation, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lin Meng
- Laboratory of Motor Rehabilitation, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Lin Meng,
| | - Dong Ming
- Laboratory of Motor Rehabilitation, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Dong Ming,
| |
Collapse
|
16
|
Sousa ASP, Moreira J, Silva C, Mesquita I, Macedo R, Silva A, Santos R. Usability of Functional Electrical Stimulation in Upper Limb Rehabilitation in Post-Stroke Patients: A Narrative Review. SENSORS 2022; 22:s22041409. [PMID: 35214311 PMCID: PMC8963083 DOI: 10.3390/s22041409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022]
Abstract
Stroke leads to significant impairment in upper limb (UL) function. The goal of rehabilitation is the reestablishment of pre-stroke motor stroke skills by stimulating neuroplasticity. Among several rehabilitation approaches, functional electrical stimulation (FES) is highlighted in stroke rehabilitation guidelines as a supplementary therapy alongside the standard care modalities. The aim of this study is to present a comprehensive review regarding the usability of FES in post-stroke UL rehabilitation. Specifically, the factors related to UL rehabilitation that should be considered in FES usability, as well a critical review of the outcomes used to assess FES usability, are presented. This review reinforces the FES as a promising tool to induce neuroplastic modifications in post-stroke rehabilitation by enabling the possibility of delivering intensive periods of treatment with comparatively less demand on human resources. However, the lack of studies evaluating FES usability through motor control outcomes, specifically movement quality indicators, combined with user satisfaction limits the definition of FES optimal therapeutical window for different UL functional tasks. FES systems capable of integrating postural control muscles involving other anatomic regions, such as the trunk, during reaching tasks are required to improve UL function in post-stroke patients.
Collapse
Affiliation(s)
- Andreia S. P. Sousa
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.M.); (C.S.); (R.M.); (A.S.)
- Correspondence: or ; Tel.: +351-222-061-000
| | - Juliana Moreira
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.M.); (C.S.); (R.M.); (A.S.)
| | - Cláudia Silva
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.M.); (C.S.); (R.M.); (A.S.)
| | - Inês Mesquita
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Functional Sciences, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
| | - Rui Macedo
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.M.); (C.S.); (R.M.); (A.S.)
| | - Augusta Silva
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.M.); (C.S.); (R.M.); (A.S.)
| | - Rubim Santos
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physics, School of Health, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal;
| |
Collapse
|
17
|
Effectiveness of a Novel Contralaterally Controlled Neuromuscular Electrical Stimulation for Restoring Lower Limb Motor Performance and Activities of Daily Living in Stroke Survivors: A Randomized Controlled Trial. Neural Plast 2022; 2022:5771634. [PMID: 35069728 PMCID: PMC8767388 DOI: 10.1155/2022/5771634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background Contralaterally controlled neuromuscular electrical stimulation (CCNMES) is a novel electrical stimulation treatment for stroke; however, reports on the efficacy of CCNMES on lower extremity function after stroke are scarce. Objective To compare the effects of CCNMES versus NMES on lower extremity function and activities of daily living (ADL) in subacute stroke patients. Methods Forty-four patients with a history of subacute stroke were randomly assigned to a CCNMES group and a NMES group (n = 22 per group). Twenty-one patients in each group completed the study per protocol, with one subject lost in follow-up in each group. The CCNMES group received CCNMES to the tibialis anterior (TA) and the peroneus longus and brevis muscles to induce ankle dorsiflexion motion, whereas the NMES group received NMES. The stimulus current was a biphasic waveform with a pulse duration of 200 μs and a frequency of 60 Hz. Patients in both groups underwent five 15 min sessions of electrical stimulation per week for three weeks. Indicators of motor function and ADL were measured pre- and posttreatment, including the Fugl–Meyer assessment of the lower extremity (FMA-LE) and modified Barthel index (MBI). Surface electromyography (sEMG) assessments included average electromyography (aEMG), integrated electromyography (iEMG), and root mean square (RMS) of the paretic TA muscle. Results Values for the FMA-LE, MBI, aEMG, iEMG, and RMS of the affected TA muscle were significantly increased in both groups after treatment (p < 0.01). Patients in the CCNMES group showed significant improvements in all the measurements compared with the NMES group after treatment. Within-group differences in all post- and pretreatment indicators were significantly greater in the CCNMES group than in the NMES group (p < 0.05). Conclusion CCNMES improved motor function and ADL ability to a greater extent than the conventional NMES in subacute stroke patients.
Collapse
|
18
|
Almutairi SM, Khalil ME, Almutairi N, Alenazi AM. Effects of Neuromuscular Electrical Stimulation on Plantarflexors Spasticity, Gait Performance, and Self-Reported Health Outcomes in People With Chronic Stroke: A Study Protocol for a Double-Blinded Randomized Clinical Trial. Front Neurol 2021; 12:770784. [PMID: 34925217 PMCID: PMC8672659 DOI: 10.3389/fneur.2021.770784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Rehabilitation approaches have been used for people with stroke to decrease spasticity and improve functions, but little is known about the effect of neuromuscular electrical stimulation (NMES) in this population. Therefore, the primary purpose of this study was to establish a protocol for a double-blinded randomized clinical trial to examine using NMES on plantarflexors spasticity, dorsiflexor muscle strength, physical functions, and self-reported health outcomes in people with chronic stroke in Saudi Arabia. Material and Methods: This randomized clinical trial with two arms and double-blinded registered in ClinicalTrials (NCT04673045) will enroll 44 participants with chronic stroke and randomized them into either the experimental group (EG), including electrical stimulation (ES) with conventional therapy or the control sham group (NMESsham) including placebo electrical stimulation with conventional therapy. The frequency will be set at 80 Hz for 30 min. The intervention will be three times a week for 4 weeks for both groups. Data collection for pre- and post-intervention outcomes will include measurements for the primary outcomes including paretic limb (plantarflexor spasticity, ankle range of motion, and dorsiflexor muscles strength), and gait speed using 10-m walk test (10-MWT). The secondary outcomes including mobility function using Timed Up and Go (TUG), walking endurance using 6 Minutes Walk Test (6-MWT), activity of daily living using the Arabic version of Barthel Index (BI), and self-reported health measures such as quality of life using the Medical Outcomes Survey (Short Form 36, SF-36), physical activity using Rapid Assessment of Physical Activity (RAPA), depression symptoms using Patient Health Questionnaire-9 (PHQ-9), fatigue level using Fatigue Severity Scale (FSS), and risk of fall using Fall Efficacy Scale International (FES-I). An independent t-test will be utilized to examine the effect of the intervention on the outcome measures. Results: The recruitment has started and is ongoing. Conclusions: Using 4 weeks of NMES will provide information about its effect in improving plantarflexor spasticity, dorsiflexor muscles strength, gait speed, mobility functions, and other self-reported health outcomes in people with chronic stroke when compared to NMESsham.
Collapse
Affiliation(s)
- Sattam M Almutairi
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah, Saudi Arabia
| | - Mohamed E Khalil
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah, Saudi Arabia
| | - Nadiah Almutairi
- Medical Rehabilitation Center, King Fahad Specialist Hospital, Buraydah, Saudi Arabia
| | - Aqeel M Alenazi
- College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| |
Collapse
|
19
|
Varas-Diaz G, Bhatt T. Application of neuromuscular electrical stimulation on the support limb during reactive balance control in persons with stroke: a pilot study. Exp Brain Res 2021; 239:3635-3647. [PMID: 34609544 DOI: 10.1007/s00221-021-06209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to investigate the effect of the application of neuromuscular electrical stimulation to the quadriceps muscle of the paretic limb during externally induced stance perturbations on reactive balance control and on fall outcomes in people with chronic stroke. Ten participants experienced 12 stance treadmill perturbation trails, 6 forward balance perturbation trials and 6 backward balance perturbation trials. For each perturbation condition, three perturbation trials were delivered synchronized with neuromuscular electrical stimulation applied to the quadriceps of the paretic limb and three perturbation trials were delivered without stimulation. Behavioral outcome measures, such as incidence of laboratory falls and number of compensatory steps, kinematic outcome measures, such as margin of stability and minimum hip high values after the perturbation, step initiation time, step execution time and step length of the stepping leg were analyzed. The application of neuromuscular electrical stimulation on the paretic quadriceps between the range of 50 and 500 ms after stance forward and backward perturbations reduced the laboratory falls incidence (p < 0.05), improved stability values (p < 0.05) and reduced the hip height descent (p < 0.05) compared to the experimental condition in which participants were exposed to stance perturbations without neuromuscular electrical stimulation. Additionally, step initiation time of the recovery step was lower in neuromuscular electrical stimulation condition during the forward balance perturbation protocol. Our results showed that the application of neuromuscular electrical stimulation on the knee extensor muscles of the paretic limb reduces the incidence of laboratory falls, enhances reactive stability control and reduces vertical limb collapse after stance forward and backward perturbations in people with chronic stroke.
Collapse
Affiliation(s)
- Gonzalo Varas-Diaz
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W, Taylor Street, Chicago, IL, 60612, USA.,School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago, 1919 W, Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
20
|
Conforto AB, Machado AG, Ribeiro NHV, Plow EB, Liew SL, da Costa Leite C, Zavaliangos-Petropulu A, Menezes I, Dos Anjos SM, Luccas R, Peckham PH, Cohen LG. Repetitive Peripheral Sensory Stimulation as an Add-On Intervention for Upper Limb Rehabilitation in Stroke: A Randomized Trial. Neurorehabil Neural Repair 2021; 35:1059-1064. [PMID: 34587830 DOI: 10.1177/15459683211046259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Repetitive peripheral sensory stimulation (RPSS) followed by 4-hour task-specific training (TST) improves upper limb motor function in subjects with stroke who experience moderate to severe motor upper limb impairments. Here, we compared effects of RPSS vs sham followed by a shorter duration of training in subjects with moderate to severe motor impairments in the chronic phase after stroke. METHODS This single-center, randomized, placebo-controlled, parallel-group clinical trial compared effects of 18 sessions of either 1.5 h of active RPSS or sham followed by a supervised session that included 45 min of TST of the paretic upper limb. In both groups, subjects were instructed to perform functional tasks at home, without supervision. The primary outcome measure was the Wolf Motor Function Test (WMFT) after 6 weeks of treatment. Grasp and pinch strength were secondary outcomes. RESULTS In intention-to-treat analysis, WMFT improved significantly in both active and sham groups at 3 and 6 weeks of treatment. Grasp strength improved significantly in the active, but not in the sham group, at 3 and 6 weeks. Pinch strength improved significantly in both groups at 3 weeks, and only in the active group at 6 weeks. CONCLUSIONS The between-group difference in changes in WMFT was not statistically significant. Despite the short duration of supervised treatment, WMFT improved significantly in subjects treated with RPSS or sham. These findings are relevant to settings that impose constraints in duration of direct contact between therapists and patients. In addition, RPSS led to significant gains in hand strength.Trial Registry Name: Peripheral Nerve Stimulation and Motor Training in Stroke Clinical Trials.gov identifier: NCT0265878 https://clinicaltrials.gov/ct2/show/NCT02658578.
Collapse
Affiliation(s)
- Adriana B Conforto
- Neurology Clinical Division, Hospital Das Clínicas, 117265São Paulo University and Fundação Faculdade de Medicina, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil.,Núcleo de Apoio à Pesquisa Em Neurociências (Center for Interdisciplinary Research on Applied Neurosciences: NAPNA), São Paulo University, São Paulo, Brazil
| | - André G Machado
- Departament of Neurosciences, 583189Lerner Reasearch Institute, Cleveland Clinic, Cleveland, OH, USA.,2546Case Western Reserve University, Cleveland, OH, USA
| | - Nathalia H V Ribeiro
- Neurology Clinical Division, Hospital Das Clínicas, 117265São Paulo University and Fundação Faculdade de Medicina, São Paulo, Brazil
| | - Ela B Plow
- Departament of Neurosciences, 583189Lerner Reasearch Institute, Cleveland Clinic, Cleveland, OH, USA.,2546Case Western Reserve University, Cleveland, OH, USA
| | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology; USC Stevens Neuroimaging and Informatics Institute, 5116University of Southern California, Los Angeles, CA, USA
| | - Claudia da Costa Leite
- Núcleo de Apoio à Pesquisa Em Neurociências (Center for Interdisciplinary Research on Applied Neurosciences: NAPNA), São Paulo University, São Paulo, Brazil.,LIM 44. Department of Radiology of Oncology, 37884Faculdade de Medicina, Hospital Das Clínicas/São Paulo University, São Paulo, Brazil
| | - Artemis Zavaliangos-Petropulu
- Chan Division of Occupational Science and Occupational Therapy, Biokinesiology and Physical Therapy, Biomedical Engineering, and Neurology; USC Stevens Neuroimaging and Informatics Institute, 5116University of Southern California, Los Angeles, CA, USA
| | - Isabella Menezes
- Neurology Clinical Division, Hospital Das Clínicas, 117265São Paulo University and Fundação Faculdade de Medicina, São Paulo, Brazil
| | - Sarah M Dos Anjos
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafael Luccas
- Neurology Clinical Division, Hospital Das Clínicas, 117265São Paulo University and Fundação Faculdade de Medicina, São Paulo, Brazil
| | | | - Leonardo G Cohen
- Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Zhao Y, Yao J, Wu X, Chen L, Wang X, Zhang X, Hou W. Event-Related Beta EEG Changes Induced by Various Neuromuscular Electrical Stimulation: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1206-1212. [PMID: 34129499 DOI: 10.1109/tnsre.2021.3089478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous results demonstrated that neuromuscular electrical stimulation (NMES) with various configurations could induce different activity at both the central and peripheral levels. Although NMES generating different peripheral movements have been studied, it is still unclear whether the difference in NMES-induced cortical activity is due to movement- or stimulation- related differences. Because NMES-induced cortical activity impacts motor function recovery, it is essential to know when NMES with various configurations evoke the same movement, whether the induced cortical activity is still different. Four NMES configurations: 1) Eight-let Frequency Trains, 2) Doublet frequency trains (DFT), 3) Constant-frequency trains with narrow-pulse, and 4) wide-pulse, were delivered to the right biceps brachii muscle in nine healthy young adults. We adjusted the intensities of these NMES to evoke the same elbow flexion and compared the cortical activities over sensorimotor regions. Our results showed that the four NMES patterns induced different beta-band Event-Related Desynchronization (ERD), with the DFT providing the strongest ERD value given the same NMES-induced elbow flexion (p < 0.05). This difference is possibly due to NMES with different configuration activated in the amount of afferent proprioceptive fibers. Our pilot study suggests that the NMES-induced beta-band ERD may be an additional factor to consider when selecting the NMES configuration for a better motor function recovery.
Collapse
|
22
|
A randomised clinical trial comparing 35 Hz versus 50 Hz frequency stimulation effects on hand motor recovery in older adults after stroke. Sci Rep 2021; 11:9131. [PMID: 33911100 PMCID: PMC8080700 DOI: 10.1038/s41598-021-88607-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/13/2021] [Indexed: 11/08/2022] Open
Abstract
More solid data are needed regarding the application of neuromuscular electrical stimulation (NMES) in the paretic hand following a stroke. A randomised clinical trial was conducted to compare the effects of two NMES protocols with different stimulation frequencies on upper limb motor impairment and function in older adults with spastic hemiparesis after stroke. Sixty nine outpatients were randomly assigned to the control group or the experimental groups (NMES with 50 Hz or 35 Hz). Outcome measures included motor impairment tests and functional assessment. They were collected at baseline, after 4 and 8 weeks of treatment, and after a follow-up period. NMES groups showed significant changes (p < 0.05) with different effect sizes in range of motion, grip and pinch strength, the Modified Ashworth Scale, and the muscle electrical activity in the extensors of the wrist. The 35 Hz NMES intervention showed a significant effect on Barthel Index. Additionally, there were no significant differences between the groups in the Box and Block Test. Both NMES protocols proved evidence of improvements in measurements related to hand motor recovery in older adults following a stroke, nevertheless, these findings showed that the specific stimulation frequency had different effects depending on the clinical measures under study.
Collapse
|
23
|
Gould L, Kress S, Neudorf J, Gibb K, Persad A, Meguro K, Norton J, Borowsky R. An fMRI, DTI and Neurophysiological Examination of Atypical Organization of Motor Cortex in Ipsilesional Hemisphere Following Post-Stroke Recovery. J Stroke Cerebrovasc Dis 2021; 30:105593. [PMID: 33434816 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES We report a 61-year-old woman who developed left hemiparesis following a right frontal stroke. She underwent rehabilitation and regained function of the left side of her body. Three years after her first stroke, she developed a large left subdural hematoma and again presented with left hemiparesis. MATERIALS AND METHODS Prior to the cranioplasty, an fMRI scan involving left and right hand movement, arm movement, and foot peddling were conducted in order to determine whether the patient showed ipsilateral activation for the motor tasks, thus explaining the left hemiparesis following the left subdural hematoma. Diffusion tensor imaging (DTI) tractography was also collected to visualize the motor and sensory tracts. RESULTS The fMRI results revealed activation in the expected contralateral left primary motor cortex (M1) for the right-sided motor tasks, and bilateral M1 activation for the left-sided motor tasks. Intraoperative neurophysiology confirmed these findings, whereby electromyography revealed left-sided (i.e., ipsilateral) responses for four of the five electrode locations. The DTI results indicated that the corticospinal tracts and spinothalamic tracts were within normal limits and showed no displacement or disorganization. CONCLUSIONS These results suggest that there may have been reorganization of the M1 following her initial stroke, and that the left hemisphere may have become involved in moving the left side of the body thereby leading to left hemiparesis following the left subdural hematoma. The findings suggest that cortical reorganization may occur in stroke patients recovering from hemiparesis, and specifically, that components of motor processing subserved by M1 may be taken over by ipsilateral regions.
Collapse
Affiliation(s)
- Layla Gould
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Shaylyn Kress
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Josh Neudorf
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Katherine Gibb
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Amit Persad
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Kotoo Meguro
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Jonathan Norton
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Ron Borowsky
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| |
Collapse
|
24
|
Ambrosini E, Parati M, Ferriero G, Pedrocchi A, Ferrante S. Does cycling induced by functional electrical stimulation enhance motor recovery in the subacute phase after stroke? A systematic review and meta-analysis. Clin Rehabil 2020; 34:1341-1354. [PMID: 32613859 DOI: 10.1177/0269215520938423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the effects of cycling with functional electrical stimulation on walking, muscle power and tone, balance and activities of daily living in subacute stroke survivors. DATA SOURCES Ten electronic databases were searched from inception to February 2020. REVIEW METHODS Inclusion criteria were: subacute stroke survivors (<6 months since stroke), an experimental group performing any type of cycling training with electrical stimulation, alone or in addition to usual care, and a control group performing usual care alone. Two reviewers assessed eligibility, extracted data and analyzed the risks of bias. Standardized Mean Difference (SMD) or Mean Difference (MD) with 95% Confidence Intervals (CI) were estimated using fixed- or random-effects models to evaluate the training effect. RESULTS Seven randomized controlled trials recruiting a total of 273 stroke survivors were included in the meta-analyses. There was a statistically significant, but not clinically relevant, effect of cycling with electrical stimulation compared to usual care on walking (six studies, SMD [95% CI] = 0.40 [0.13, 0.67]; P = 0.004), capability to maintain a sitting position (three studies, MD [95% CI] = 7.92 [1.01, 14.82]; P = 0.02) and work produced by the paretic leg during pedaling (2 studies, MD [95% CI] = 8.13 [1.03, 15.25]; P = 0.02). No significant between-group differences were found for muscular power, tone, standing balance, and activities of daily living. CONCLUSIONS Cycling training with functional electrical stimulation cannot be recommended in terms of being better than usual care in subacute stroke survivors. Further investigations are required to confirm these results, to determine the optimal training parameters and to evaluate long-term effects.
Collapse
Affiliation(s)
- Emilia Ambrosini
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, MI, Italy
| | - Monica Parati
- Bioengineering Laboratory, Scientific Institute of Milan, Istituti Clinici Scientifici Maugeri IRCCS, Milan, Italy
| | - Giorgio Ferriero
- Physical and Rehabilitation Medicine Unit, Scientific Institute of Tradate, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - Alessandra Pedrocchi
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, MI, Italy
| | - Simona Ferrante
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, MI, Italy
| |
Collapse
|
25
|
Duffell LD, Donaldson NDN. A Comparison of FES and SCS for Neuroplastic Recovery After SCI: Historical Perspectives and Future Directions. Front Neurol 2020; 11:607. [PMID: 32714270 PMCID: PMC7344227 DOI: 10.3389/fneur.2020.00607] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that neuroplastic changes can occur even years after spinal cord injury, leading to reduced disability and better health which should reduce the cost of healthcare. In motor-incomplete spinal cord injury, recovery of leg function may occur if repetitive training causes afferent input to the lumbar spinal cord. The afferent input may be due to activity-based therapy without electrical stimulation but we present evidence that it is faster with electrical stimulation. This may be spinal cord stimulation or peripheral nerve stimulation. Recovery is faster if the stimulation is phasic and that the patient is trying to use their legs during the training. All the published studies are small, so all conclusions are provisional, but it appears that patients with more disability (AIS A and B) may need to continue using stimulation and for them, an implanted stimulator is likely to be convenient. Patients with less disability (AIS C and D) may make useful recovery and improve their quality of life from a course of therapy. This might be locomotion therapy but we argue that cycling with electrical stimulation, which uses biofeedback to encourage descending drive, causes rapid recovery and might be used with little supervision at home, making it much less expensive. Such an electrical therapy followed by conventional physiotherapy might be affordable for the many people living with chronic SCI. To put this in perspective, we present some information about what treatments are funded in the UK and the US.
Collapse
Affiliation(s)
- Lynsey D Duffell
- Implanted Devices Group, University College London, London, United Kingdom.,Aspire CREATe, University College London, London, United Kingdom
| | | |
Collapse
|
26
|
Sun J, Yan F, Liu A, Liu T, Wang H. Electrical Stimulation of the Motor Cortex or Paretic Muscles Improves Strength Production in Stroke Patients: A Systematic Review and Meta-Analysis. PM R 2020; 13:171-179. [PMID: 32385898 DOI: 10.1002/pmrj.12399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) and functional electrical stimulation (FES) are two widely applied methods of electrical stimulation for motor recovery among stroke patients. This systematic review and meta-analysis investigated the efficacy of tDCS and FES for strength production in stroke patients. TYPE: Systematic review. LITERATURE SURVEY Studies that explored the effects of tDCS or FES on the strength production of paralyzed muscles in stroke patients were retrieved on a comprehensive set of three databases: (1) Google Scholar, (2) PubMed, and (3) the Cochrane Database of Systematic Reviews until July 2019. METHODOLOGY Systematic study retrieval led to the inclusion of 15 studies that reported on strength production effects after tDCS and FES interventions among stoke patients. A sham control group and randomization were used in each study. The 15 studies included 20 comparisons with sham controls, 7 of which involved tDCS and 13 of which involved FES. SYNTHESIS Random-effects models showed that strength production was improved after tDCS (effect size [ES] = 0.52, 95% confidence interval [CI] = 0.35-0.69, P < .001, Z = 6.05) and FES (ES = 0.47, 95% CI = 0.16-0.78, P < .003, Z = 2.99). Additionally, tDCS was shown to improve strength production in the acute (ES = 0.52, 95% CI = 0.24-0.80, P < .001, Z = 3.65), subacute (ES = 0.85, 95% CI = 0.37-1.32, P < .001, Z = 3.51), but not chronic (ES = 0.06, 95% CI = -0.47-0.60, P = .82, Z = 0.23) phases of stroke recovery. Out of the 13 studies involving FES, 12 investigated strength production in the chronic phase and one investigated in the acute phase, showing a positive effect in these two stages. CONCLUSIONS The results of the meta-analysis showed that tDCS and FES successfully improved strength production in stroke patients.
Collapse
Affiliation(s)
- Jinping Sun
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Fei Yan
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
27
|
Swallowing Outcomes and Discharge Destinations in Acute Stroke Tube-Feeding Dependent Dysphagia Patients Treated With Neuromuscular Electrical Stimulation During Inpatient Rehabilitation. Am J Phys Med Rehabil 2020; 99:487-494. [DOI: 10.1097/phm.0000000000001353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Fu MJ, Curby A, Suder R, Katholi B, Knutson JS. Home-Based Functional Electrical Stimulation-Assisted Hand Therapy Video Games for Children With Hemiplegia: Development and Proof-of-Concept. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1461-1470. [PMID: 32396095 PMCID: PMC7364443 DOI: 10.1109/tnsre.2020.2992036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe the development and three case reports of a home-based intervention for children with hand hemiplegia that integrates custom video games with contralaterally controlled functional electrical stimulation (CCFES). With CCFES, stimulated opening of the more-affected hand is modulated by volitional opening of the less-affected hand. Video games that solicit goal-oriented, skill-requiring movement have shown promise for treating hemiplegia, but they have not previously been combined with electrical stimulation in children. Three children ages 8, 9, and 11 with moderate-to-severe hand hemiplegia were assigned six weeks of therapy in lab and at home. The goal was to determine if children could tolerate 9 lab treatment sessions and administer up to 7.5 hrs/wk of CCFES video game therapy at home. The feasibility of this intervention for home use was assessed by device logs, end-of-treatment interviews, and motor function/impairment assessments. With caregiver help, the children were all able to attend 9 lab sessions and built up to 7.5 hrs/wk of therapy by week 3. They averaged 5-7 hrs/wk of home intervention overall. Motor outcomes improved for all three participants at treatment end, but mostly regressed at 4-weeks follow-up. Individual improvements at treatment end exceeded minimum detectable or clinically important thresholds for Assisting Hands Assessment, Fugl-Meyer Assessment, and Melbourne Motor Assessment 2. We found preliminary indications that CCFES-integrated video game therapy can provide a high dose of hand motor control therapy at home and in the lab. Improvements in motor outcomes were also observed, but more development and study is needed.
Collapse
|
29
|
Jones LM, Ginier E, Debbs J, Eaton JL, Renner C, Hawkins J, Rios-Spicer R, Tang E, Schertzing C, Giordani B. Exploring Representation of Diverse Samples in fMRI Studies Conducted in Patients With Cardiac-Related Chronic Illness: A Focused Systematic Review. Front Hum Neurosci 2020; 14:108. [PMID: 32477079 PMCID: PMC7240043 DOI: 10.3389/fnhum.2020.00108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/11/2020] [Indexed: 01/14/2023] Open
Abstract
Introduction/Purpose: Cardiovascular disease (CVD) is the leading cause of death worldwide, and in the United States alone, CVD causes nearly 840,000 deaths annually. Using functional magnetic resonance imaging (fMRI), a tool to assess brain activity, researchers have identified some brain-behavior connections and predicted several self-management behaviors. The purpose of this study was to examine the sample characteristics of individuals with CVD who participated in fMRI studies. Methods: A literature search was conducted in PubMed, CINAHL, and Scopus. No date or language restrictions were applied and research methodology filters were used. In October 2017, 1659 titles and abstracts were identified. Inclusion criteria were: (1) utilized an empirical study design, (2) used fMRI to assess brain activity, and (3) focused on patients with CVD-related chronic illness. Articles were excluded if they: were theory or opinion articles, focused on mental or neuropathic illness, included non-human samples, or were not written in English. After duplicates were removed (230), 1,429 titles and abstracts were reviewed based on inclusion criteria; 1,243 abstracts were then excluded. A total of 186 studies were reviewed in their entirety; after additional review, 142 were further excluded for not meeting the inclusion criteria. Forty-four articles met criteria and were included in the final review. An evidence table was created to capture the demographics of each study sample. Results: Ninety eight percent of the studies did not report the racial or ethnic composition of their sample. Most studies (66%) contained more men than women. Mean age ranged from 38 to 78 years; 77% reported mean age ≥50 years. The most frequently studied CVD was stroke (86%), while hypertension was studied the least (2%). Conclusion: Understanding brain-behavior relationships can help researchers and practitioners tailor interventions to meet specific patient needs. These findings suggest that additional studies are needed that focus on populations historically underrepresented in fMRI research. Researchers should thoughtfully consider diversity and purposefully sample groups by including individuals that are: women, from diverse backgrounds, younger, and diagnosed with a variety of CVD-related illnesses. Identifying and addressing these gaps by studying more representative samples will help healthcare providers reduce disparities and tailor interventions for all CVD populations.
Collapse
Affiliation(s)
- Lenette M. Jones
- School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | - Emily Ginier
- Taubman Health Sciences Library, University of Michigan, Ann Arbor, MI, United States
| | - Joseph Debbs
- School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | - Jarrod L. Eaton
- School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | - Catherine Renner
- School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | - Jaclynn Hawkins
- School of Social Work, University of Michigan, Ann Arbor, MI, United States
| | | | - Emily Tang
- School of Nursing, University of Michigan, Ann Arbor, MI, United States
| | | | - Bruno Giordani
- Psychiatry, Neurology, Psychology, and Nursing, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
30
|
Mendes LA, Lima INDF, Souza T, do Nascimento GC, Resqueti VR, Fregonezi GAF. Motor neuroprosthesis for promoting recovery of function after stroke. Cochrane Database Syst Rev 2020; 1:CD012991. [PMID: 31935047 PMCID: PMC6984639 DOI: 10.1002/14651858.cd012991.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Motor neuroprosthesis (MN) involves electrical stimulation of neural structures by miniaturized devices to allow the performance of tasks in the natural environment in which people live (home and community context), as an orthosis. In this way, daily use of these devices could act as an environmental facilitator for increasing the activities and participation of people with stroke. OBJECTIVES To assess the effects of MN for improving independence in activities of daily living (ADL), activities involving limbs, participation scales of health-related quality of life (HRQoL), exercise capacity, balance, and adverse events in people after stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (searched 19 August 2019), the Cochrane Central Register of Controlled Trials (CENTRAL) (August 2019), MEDLINE (1946 to 16 August 2019), Embase (1980 to 19 August 2019), and five additional databases. We also searched trial registries, databases, and websites to identify additional relevant published, unpublished, and ongoing trials. SELECTION CRITERIA Randomized controlled trials (RCTs) and randomized controlled cross-over trials comparing MN for improving activities and participation versus other assistive technology device or MN without electrical stimulus (stimulator is turned off), or no treatment, for people after stroke. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials, extracted data, and assessed risk of bias of the included studies. Any disagreements were resolved through discussion with a third review author. We contacted trialists for additional information when necessary and performed all analyses using Review Manager 5. We used GRADE to assess the certainty of the evidence. MAIN RESULTS We included four RCTs involving a total of 831 participants who were more than three months poststroke. All RCTs were of MN that applied electrical stimuli to the peroneal nerve. All studies included conditioning protocols to adapt participants to MN use, after which participants used MN from up to eight hours per day to all-day use for ambulation in daily activities performed in the home or community context. All studies compared the use of MN versus another assistive device (ankle-foot orthosis [AFO]). There was a high risk of bias for at least one assessed domain in three of the four included studies. No studies reported outcomes related to independence in ADL. There was low-certainty evidence that AFO was more beneficial than MN on activities involving limbs such as walking speed until six months of device use (mean difference (MD) -0.05 m/s, 95% confidence interval (CI) -0.10 to -0.00; P = 0.03; 605 participants; 2 studies; I2 = 0%; low-certainty evidence); however, this difference was no longer present in our sensitivity analysis (MD -0.07 m/s, 95% CI -0.16 to 0.02; P = 0.13; 110 participants; 1 study; I2 = 0%). There was low to moderate certainty that MN was no more beneficial than AFO on activities involving limbs such as walking speed between 6 and 12 months of device use (MD 0.00 m/s, 95% CI -0.05 to 0.05; P = 0.93; 713 participants; 3 studies; I2 = 17%; low-certainty evidence), Timed Up and Go (MD 0.51 s, 95% CI -4.41 to 5.43; P = 0.84; 692 participants; 2 studies; I2 = 0%; moderate-certainty evidence), and modified Emory Functional Ambulation Profile (MD 14.77 s, 95% CI -12.52 to 42.06; P = 0.29; 605 participants; 2 studies; I2 = 0%; low-certainty evidence). There was no significant difference in walking speed when MN was delivered with surface or implantable electrodes (test for subgroup differences P = 0.09; I2 = 65.1%). For our secondary outcomes, there was very low to moderate certainty that MN was no more beneficial than another assistive device for participation scales of HRQoL (standardized mean difference 0.26, 95% CI -0.22 to 0.74; P = 0.28; 632 participants; 3 studies; I2 = 77%; very low-certainty evidence), exercise capacity (MD -9.03 m, 95% CI -26.87 to 8.81; P = 0.32; 692 participants; 2 studies; I2 = 0%; low-certainty evidence), and balance (MD -0.34, 95% CI -1.96 to 1.28; P = 0.68; 692 participants; 2 studies; I2 = 0%; moderate-certainty evidence). Although there was low- to moderate-certainty evidence that the use of MN did not increase the number of serious adverse events related to intervention (risk ratio (RR) 0.35, 95% CI 0.04 to 3.33; P = 0.36; 692 participants; 2 studies; I2 = 0%; low-certainty evidence) or number of falls (RR 1.20, 95% CI 0.92 to 1.55; P = 0.08; 802 participants; 3 studies; I2 = 33%; moderate-certainty evidence), there was low-certainty evidence that the use of MN in people after stroke may increase the risk of participants dropping out during the intervention (RR 1.48, 95% CI 1.11 to 1.97; P = 0.007; 829 participants; 4 studies; I2 = 0%). AUTHORS' CONCLUSIONS Current evidence indicates that MN is no more beneficial than another assistive technology device for improving activities involving limbs measured by Timed Up and Go, balance (moderate-certainty evidence), activities involving limbs measured by walking speed and modified Emory Functional Ambulation Profile, exercise capacity (low-certainty evidence), and participation scale of HRQoL (very low-certainty evidence). Evidence was insufficient to estimate the effect of MN on independence in ADL. In comparison to other assistive devices, MN does not appear to increase the number of falls (moderate-certainty evidence) or serious adverse events (low-certainty evidence), but may result in a higher number of dropouts during intervention period (low-certainty evidence).
Collapse
Affiliation(s)
- Luciana A Mendes
- Federal University of Rio Grande do NortePneumoCardioVascular Lab, Onofre Lopes University Hospital, Brazilian Company of Hospital Services (EBSERH) & Department of Biomedical EngineeringNatalRio Grande do NorteBrazil59078‐970
| | - Illia NDF Lima
- Federal University of Rio Grande do NorteFaculty of Health Sciences of TrairiSanta CruzRio Grande do NorteBrazil59200‐000
| | - Tulio Souza
- Federal University of Rio Grande do NorteDepartment of Physical TherapyNatalBrazil59078‐970
| | - George C do Nascimento
- Federal University of Rio Grande do NorteDepartment of Biomedical EngineeringCaixa Postal 1524 ‐ Campus Universitário Lagoa NovaDepartamento de Engenharia BiomédicaNatalRio Grande do NorteBrazil59078‐970
| | - Vanessa R Resqueti
- Federal University of Rio Grande do NortePneumoCardioVascular Lab, Onofre Lopes University Hospital, Brazilian Company of Hospital Services (EBSERH) & Department of Physical TherapyCampus Universitario Lagoa NovaCaixa Postal 1524NatalRio Grande do NorteBrazil59078‐970
| | - Guilherme AF Fregonezi
- Onofre Lopes University Hospital, Brazilian Company of Hospital Services (EBSERH)PneumoCardioVascular LabNatalRio Grande do NorteBrazil59078‐970
| | | |
Collapse
|
31
|
Parker J, Powell L, Mawson S. Effectiveness of Upper Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: Systematic Review. J Med Internet Res 2020; 22:e15981. [PMID: 31913131 PMCID: PMC6996755 DOI: 10.2196/15981] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND With advances in technology, the adoption of wearable devices has become a viable adjunct in poststroke rehabilitation. Upper limb (UL) impairment affects up to 77% of stroke survivors impacting on their ability to carry out everyday activities. However, despite an increase in research exploring these devices for UL rehabilitation, little is known of their effectiveness. OBJECTIVE This review aimed to assess the effectiveness of UL wearable technology for improving activity and participation in adult stroke survivors. METHODS Randomized controlled trials (RCTs) and randomized comparable trials of UL wearable technology for poststroke rehabilitation were included. Primary outcome measures were validated measures of activity and participation as defined by the International Classification of Functioning, Disability, and Health. Databases searched were MEDLINE, Web of Science (Core collection), CINAHL, and the Cochrane Library. The Cochrane Risk of Bias Tool was used to assess the methodological quality of the RCTs and the Downs and Black Instrument for the quality of non RCTs. RESULTS In the review, we included 11 studies with collectively 354 participants at baseline and 323 participants at final follow-up including control groups and participants poststroke. Participants' stroke type and severity varied. Only 1 study found significant between-group differences for systems functioning and activity (P≤.02). The 11 included studies in this review had small sample sizes ranging from 5 to 99 participants at an average (mean) age of 57 years. CONCLUSIONS This review has highlighted a number of reasons for insignificant findings in this area including low sample sizes and the appropriateness of the methodology for complex interventions. However, technology has the potential to measure outcomes, provide feedback, and engage users outside of clinical sessions. This could provide a platform for motivating stroke survivors to carry out more rehabilitation in the absence of a therapist, which could maximize recovery. TRIAL REGISTRATION PROSPERO CRD42017057715; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=57715.
Collapse
|
32
|
Dabadghav R, Potdar A, Patil V, Sancheti P, Shyam A. Additional effect of neuromuscular electrical stimulation on knee extension lag, pain and knee range of motion in immediate postsurgical phase (0-2 weeks) in primary total knee arthroplasty patient. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S253. [PMID: 31728377 DOI: 10.21037/atm.2019.09.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background There are various studies on younger adults which have shown that neuromuscular electrical stimulation (NMES), at sufficient intensities, combined with active exercises had better improvement in muscle strength and functional performance than exercises alone. But very limited research is available for giving NMES in the early acute stages post total knee arthroplasty (TKA). So, the short-term effect of NMES had not yet been researched upon widely. As there were conflicting evidences in giving NMES post TKA, this study was proposed to assess the short-term effect of early NMES on knee joint pain, range of motion (ROM) and extension lag on patients undergoing bilateral TKA. Methods The study included 28 bilateral TKA patients following osteoarthritis (OA) knee within the age group of 50-75 years (60.82±5.69). The knees of 28 bilaterally operated patients were randomly divided into two groups; 1 knee was allocated in the experimental group and the other knee of the same patient became the control. The experimental group was given NMES with exercises, while the control group was given only exercises for 7 days. The patients were asked to continue to follow exercises even after the discharge, i.e., beyond 7 days. The patients were measured for pain; knee flexion ROM and extensor lag both before and after intervention. Results There was a significant improvement in pain, knee ROM and extensor lag post intervention P<0.05 in both the groups. But there was no significant difference between the groups with respect to pain, knee ROM and extensor lag, P>0.05. Conclusions The NMES and exercises worked equally in case of patients operated for TKA. Hence our results concluded that there was no additional effect of NMES on extensor lag, knee ROM and pain when applied for 7 days in patients operated with TKA.
Collapse
Affiliation(s)
- Rachana Dabadghav
- Sport Injury Management and Therapy, Research Coordinator, Sancheti Institute College of Physiotherapy, Pune, India
| | - Amruta Potdar
- Physiotherapy Department, Sancheti Institute for Orthopaedics and Rehabilitation, Pune, India
| | - Vishakha Patil
- Department of Orthopaedics, Sancheti Institute for Orthopaedics and Rehabilitation, Pune, India
| | - Parag Sancheti
- Department of Orthopaedics, Sancheti Institute for Orthopaedics and Rehabilitation, Pune, India
| | - Ashok Shyam
- Department of Orthopaedics, Sancheti Institute for Orthopaedics and Rehabilitation, Pune, India
| |
Collapse
|
33
|
Huo C, Li X, Jing J, Ma Y, Li W, Wang Y, Liu W, Fan Y, Yue S, Wang Y, Li Z. Median Nerve Electrical Stimulation-Induced Changes in Effective Connectivity in Patients With Stroke as Assessed With Functional Near-Infrared Spectroscopy. Neurorehabil Neural Repair 2019; 33:1008-1017. [PMID: 31550986 DOI: 10.1177/1545968319875952] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background. The cortical plastic changes in response to median nerve electrical stimulation (MNES) in stroke patients have not been entirely illustrated. Objective. This study aimed to investigate MNES-related changes in effective connectivity (EC) within a cortical network after stroke by using functional near-infrared spectroscopy (fNIRS). Methods. The cerebral oxygenation signals in the bilateral prefrontal cortex (LPFC/RPFC), motor cortex (LMC/RMC), and occipital lobe (LOL/ROL) of 20 stroke patients with right hemiplegia were measured by fNIRS in 2 conditions: (1) resting state and (2) MNES applied to the right wrist. Coupling function together with dynamical Bayesian inference was used to assess MNES-related changes in EC among the cerebral low-frequency fluctuations. Results. Compared with the resting state, EC from LPFC and RPFC to LOL was significantly increased during the MNES state in stroke patients. Additionally, MNES triggered significantly higher coupling strengths from LMC and LOL to RPFC. The interregional main coupling direction was observed from LPFC to bilateral motor and occipital areas in responding to MNES, suggesting that MNES could promote the regulation function of ipsilesional prefrontal areas in the functional network. MNES can induce muscle twitch of the stroke-affected hand involving a decreased neural coupling of the contralesional motor area on the ipsilesional MC. Conclusions. MNES can trigger sensorimotor stimulations of the affected hand that sequentially involved functional reorganization of distant cortical areas after stroke. Investigating MNES-related changes in EC after stroke may help further our understanding of the neural mechanisms underlying MNES.
Collapse
Affiliation(s)
- Congcong Huo
- Qilu Hospital, Shandong University, Jinan, China.,National Research Center for Rehabilitation Technical Aids, Beijing, China.,Beihang University, Beijing, China
| | - Xinglou Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Jing Jing
- Qilu Hospital, Shandong University, Jinan, China
| | - Yanping Ma
- Qilu Hospital, Shandong University, Jinan, China
| | | | - Yanqin Wang
- Qilu Hospital, Shandong University, Jinan, China
| | - Wanlin Liu
- Qilu Hospital, Shandong University, Jinan, China
| | - Yubo Fan
- National Research Center for Rehabilitation Technical Aids, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| | - Shouwei Yue
- Qilu Hospital, Shandong University, Jinan, China
| | - Yonghui Wang
- Qilu Hospital, Shandong University, Jinan, China
| | - Zengyong Li
- National Research Center for Rehabilitation Technical Aids, Beijing, China.,Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, Beijing, China
| |
Collapse
|
34
|
Tsuchimoto S, Shindo K, Hotta F, Hanakawa T, Liu M, Ushiba J. Sensorimotor Connectivity after Motor Exercise with Neurofeedback in Post-Stroke Patients with Hemiplegia. Neuroscience 2019; 416:109-125. [PMID: 31356896 DOI: 10.1016/j.neuroscience.2019.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 11/27/2022]
Abstract
Impaired finger motor function in post-stroke hemiplegia is a debilitating condition with no evidence-based or accessible treatments. Here, we evaluated the neurophysiological effectiveness of direct brain control of robotic exoskeleton that provides movement support contingent with brain activity. To elucidate the mechanisms underlying the neurofeedback intervention, we assessed resting-state functional connectivity with functional magnetic resonance imaging (rsfcMRI) between the ipsilesional sensory and motor cortices before and after a single 1-h intervention. Eighteen stroke patients were randomly assigned to crossover interventions in a double-blind and sham-controlled design. One patient dropped out midway through the study, and 17 patients were included in this analysis. Interventions involved motor imagery, robotic assistance, and neuromuscular electrical stimulation administered to a paretic finger. The neurofeedback intervention delivered stimulations contingent on desynchronized ipsilesional electroencephalographic (EEG) oscillations during imagined movement, and the control intervention delivered sensorimotor stimulations that were independent of EEG oscillations. There was a significant time × intervention interaction in rsfcMRI in the ipsilesional sensorimotor cortex. Post-hoc analysis showed a larger gain in increased functional connectivity during the neurofeedback intervention. Although the neurofeedback intervention delivered fewer total sensorimotor stimulations compared to the sham-control, rsfcMRI in the ipsilesional sensorimotor cortices was increased during the neurofeedback intervention compared to the sham-control. Higher coactivation of the sensory and motor cortices during neurofeedback intervention enhanced rsfcMRI in the ipsilesional sensorimotor cortices. This study showed neurophysiological evidence that EEG-contingent neurofeedback is a promising strategy to induce intrinsic ipsilesional sensorimotor reorganization, supporting the importance of integrating closed-loop sensorimotor processing at a neurophysiological level.
Collapse
Affiliation(s)
- Shohei Tsuchimoto
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, 223-8522, Japan; Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Keiichiro Shindo
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan; Shonan Keiiku Hospital, Kanagawa, 252-0816, Japan
| | - Fujiko Hotta
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan; Tokyo Metropolitan Rehabilitation Hospital, Tokyo, 131-0034, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 332-0012, Saitama, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, 223-8522, Japan; Keio Institute of Pure and Applied Sciences, Faculty of Science and Technology Graduate School of Science and Technology, Keio University, Kanagawa, 223-8522, Japan.
| |
Collapse
|
35
|
Elgueta-Cancino E, Massé-Alarie H, Schabrun SM, Hodges PW. Electrical Stimulation of Back Muscles Does Not Prime the Corticospinal Pathway. Neuromodulation 2019; 22:555-563. [PMID: 31232503 DOI: 10.1111/ner.12978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate whether peripheral electrical stimulation (PES) of back extensor muscles changes excitability of the corticospinal pathway of the stimulated muscle and synergist trunk muscles. METHODS In 12 volunteers with no history of low back pain (LBP), intramuscular fine-wire electrodes recorded electromyography (EMG) from the deep multifidus (DM) and longissimus muscles. Surface electrodes recorded general EMG from the erector spinae and abdominal muscles. Single- and paired-pulse transcranial magnetic stimulation (TMS) paradigms tested corticospinal excitability, short-interval intracortical inhibition (SICI-2 and 3 ms), and intracortical facilitation (ICF) optimized for recordings of DM. Active motor threshold (aMT) to evoke a motor-evoked potential (MEP) in DM was determined and stimulation was applied at 120% of this intensity. PES was provided via electrodes placed over the right multifidus. The effect of 20-min PES (ramped motor activation) was studied. RESULTS Mean aMT for DM was 42.7 ± 10% of the maximal stimulator output. No effects of PES were found on MEP amplitude (single-pulse TMS) for any trunk muscles examined. There was no evidence for changes in SICI or ICF; that is, conditioned MEP amplitude was not different between trials after PES. CONCLUSION Results indicate that, unlike previous reports that show increased corticospinal excitability of limb muscles, PES of back muscles does not modify the corticospinal excitability. This difference in response of the motor pathway of back muscles to PES might be explained by the lesser importance of voluntary cortical drive to these muscles and the greater role of postural networks. Whether PES influences back muscle training remains unclear, yet the present results suggest that potential effects are unlikely to be explained by the effects of PES at corticospinal level with the parameters used in this study.
Collapse
Affiliation(s)
- Edith Elgueta-Cancino
- Centre of Clinical Excellence Research in Spinal Pain Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Hugo Massé-Alarie
- Centre of Clinical Excellence Research in Spinal Pain Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Siobhan M Schabrun
- Brain Rehabilitation and Neuroplasticity Unit, School of Science and Health, Western Sydney University, Sydney, New South Wales, Australia
| | - Paul W Hodges
- Centre of Clinical Excellence Research in Spinal Pain Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
36
|
Yang JD, Liao CD, Huang SW, Tam KW, Liou TH, Lee YH, Lin CY, Chen HC. Effectiveness of electrical stimulation therapy in improving arm function after stroke: a systematic review and a meta-analysis of randomised controlled trials. Clin Rehabil 2019; 33:1286-1297. [PMID: 30977379 DOI: 10.1177/0269215519839165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the effectiveness of electrical stimulation in arm function recovery after stroke. METHODS Data were obtained from the PubMed, Cochrane Library, Embase, and Scopus databases from their inception until 12 January 2019. Only randomized controlled trials (RCTs) reporting the effects of electrical stimulation on the recovery of arm function after stroke were selected. RESULTS Forty-eight RCTs with a total of 1712 patients were included in the analysis. The body function assessment, Upper-Extremity Fugl-Meyer Assessment, indicated more favorable outcomes in the electrical stimulation group than in the placebo group immediately after treatment (23 RCTs (n = 794): standard mean difference (SMD) = 0.67, 95% confidence interval (CI) = 0.51-0.84) and at follow-up (12 RCTs (n = 391): SMD = 0.66, 95% CI = 0.35-0.97). The activity assessment, Action Research Arm Test, revealed superior outcomes in the electrical stimulation group than those in the placebo group immediately after treatment (10 RCTs (n = 411): SMD = 0.70, 95% CI = 0.39-1.02) and at follow-up (8 RCTs (n = 289): SMD = 0.93, 95% CI = 0.34-1.52). Other activity assessments, including Wolf Motor Function Test, Box and Block Test, and Motor Activity Log, also revealed superior outcomes in the electrical stimulation group than those in the placebo group. Comparisons between three types of electrical stimulation (sensory, cyclic, and electromyography-triggered electrical stimulation) groups revealed no significant differences in the body function and activity. CONCLUSION Electrical stimulation therapy can effectively improve the arm function in stroke patients.
Collapse
Affiliation(s)
- Jheng-Dao Yang
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Chun-De Liao
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,2 School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Shih-Wei Huang
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Ka-Wai Tam
- 4 Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei.,5 Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,6 Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Tsan-Hon Liou
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Yu-Hao Lee
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Chia-Yun Lin
- 7 Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei Medical University, Taipei
| | - Hung-Chou Chen
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,6 Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, Taipei
| |
Collapse
|
37
|
Yen HC, Chen WS, Jeng JS, Luh JJ, Lee YY, Pan GS. Standard early rehabilitation and lower limb transcutaneous nerve or neuromuscular electrical stimulation in acute stroke patients: a randomized controlled pilot study. Clin Rehabil 2019; 33:1344-1354. [PMID: 30977392 DOI: 10.1177/0269215519841420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We investigated adding lower limb transcutaneous nerve stimulation or neuromuscular electrical stimulation to standard early rehabilitation in acute stroke patients. DESIGN An assessor-blinded, randomized controlled pilot study. SETTING A medical stroke center. SUBJECTS First-stroke patients aged 20-80 years admitted to the stroke center within 24 hours post stroke. INTERVENTIONS A total of 42 participants were randomly assigned to groups: transcutaneous nerve stimulation + standard early rehabilitation, neuromuscular electrical stimulation + standard early rehabilitation, or standard early rehabilitation-only. Transcutaneous nerve or neuromuscular electrical stimulation was delivered to the affected tibialis anterior and quadriceps muscles for 30 minutes a day, five days per week for two weeks. MAIN MEASURES The Postural Assessment Scale for Stroke Patients, the Functional Independence Measure, and three mobility milestones, namely, sitting for >five minutes, standing for >one minute, and walking ⩾50 m, were evaluated, respectively, at baseline, at the two-week post-intervention, and at two-week follow-up. RESULTS Significant differences existed in the Postural Assessment Scale for Stroke Patients scores between the transcutaneous nerve stimulation and standard early rehabilitation-only groups measured at two-weeks post-intervention (mean (SD) = 31.38 (5.39) and 18.00 (8.65), respectively) and at the two-week follow-up (34.08 (2.69) and 26.14 (7.77), respectively). A higher proportion of participants could walk ⩾50 m independently in the transcutaneous nerve stimulation group than in the standard early rehabilitation-only group at the two-week post-intervention (P = 0.013) and two-week follow-up (P = 0.01) marks. CONCLUSION Two weeks of transcutaneous nerve stimulation added to standard early rehabilitation improved postural stability and walking in acute stroke patients.
Collapse
Affiliation(s)
- Hsiao-Ching Yen
- 1 Division of Physical Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei
| | - Wen-Shiang Chen
- 2 Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei
| | - Jiann-Shing Jeng
- 3 Stroke Center & Department of Neurology, National Taiwan University Hospital, Taipei
| | - Jer-Junn Luh
- 4 School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Ya-Yun Lee
- 4 School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Guan-Shuo Pan
- 1 Division of Physical Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei
| |
Collapse
|
38
|
Huang M, Pang MYC. Muscle activity and vibration transmissibility during whole‐body vibration in chronic stroke. Scand J Med Sci Sports 2019; 29:816-825. [DOI: 10.1111/sms.13408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Meizhen Huang
- Department of Rehabilitation Sciences The Hong Kong Polytechnic University Kowloon Hong Kong
| | - Marco Y. C. Pang
- Department of Rehabilitation Sciences The Hong Kong Polytechnic University Kowloon Hong Kong
| |
Collapse
|
39
|
Lee KW, Kim SB, Lee JH, Lee SJ, Park JG, Jang KW. Effects of Neuromuscular Electrical Stimulation for Masseter Muscle on Oral Dysfunction After Stroke. Ann Rehabil Med 2019; 43:11-18. [PMID: 30852866 PMCID: PMC6409656 DOI: 10.5535/arm.2019.43.1.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/10/2018] [Indexed: 11/13/2022] Open
Abstract
Objective To determine positive effect of neuromuscular electrical stimulation (NMES) in conventional dysphagia therapy on masseter muscle oral dysfunction of patients after subacute stroke. Methods Among subacute stroke patients who were diagnosed as oropharyngeal dysphagia by videofluoroscopy swallowing study (VFSS), those with oral dysfunction were enrolled. They were randomly assigned to a study group or a control group. The study group received NMES on masseter muscle and suprahyoid muscle simultaneously, while the control group received NMES only on suprahyoid muscle. NMES therapy session as applied 30 minutes each time, two times per day for a total of 20 sessions. Both groups received conventional dysphagia therapy for 2 weeks. All enrolled patients were evaluated by VFSS after 2 weeks. Oropharyngeal swallowing function was evaluated by Penetration-Aspiration Scale, Functional Dysphagia Scale (FDS), and American Speech-Language-Hearing Association National Outcome Measurement System swallowing scale based on results of VFSS. Results Patients were randomly assigned to the study group (n=20) or the control group (n=20). There were no significant differences in baseline characteristics or initial values between the two groups. After 2 weeks of NMES, both groups showed improvement in scores of total FDS and pharyngeal phase FDS. Additionally, the study group showed improvement in oral phase FDS. Changes in all measurements were similar between the two groups. Conclusion In this preliminary study, NMES for masseter muscle has a therapeutic effect on oral dysfunction of patients after subacute stroke.
Collapse
Affiliation(s)
- Kyeong Woo Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A Medical Center, Busan, Korea
| | - Sang Beom Kim
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A Medical Center, Busan, Korea
| | - Jong Hwa Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A Medical Center, Busan, Korea
| | - Sook Joung Lee
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A Medical Center, Busan, Korea
| | - Jin Gee Park
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A Medical Center, Busan, Korea
| | - Kyung Won Jang
- Department of Physical Medicine and Rehabilitation, Dong-A University College of Medicine, Busan, Korea.,Regional Cardiocerebrovascular Center, Dong-A Medical Center, Busan, Korea
| |
Collapse
|
40
|
Monte-Silva K, Piscitelli D, Norouzi-Gheidari N, Batalla MAP, Archambault P, Levin MF. Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2019; 33:96-111. [DOI: 10.1177/1545968319826053] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Clinical trials have demonstrated some benefits of electromyogram-triggered/controlled neuromuscular electrical stimulation (EMG-NMES) on motor recovery of upper limb (UL) function in patients with stroke. However, EMG-NMES use in clinical practice is limited due to a lack of evidence supporting its effectiveness. Objective. To perform a systematic review and meta-analysis to determine the effects of EMG-NMES on stroke UL recovery based on each of the International Classification of Functioning, Disability, and Health (ICF) domains. Methods. Database searches identified clinical trials comparing the effect of EMG-NMES versus no treatment or another treatment on stroke upper extremity motor recovery. A meta-analysis was done for outcomes at each ICF domain (Body Structure and Function, Activity and Participation) at posttest (short-term) and follow-up periods. Subgroup analyses were conducted based on stroke chronicity (acute/subacute, chronic phases). Sensitivity analysis was done by removing studies rated as poor or fair quality (PEDro score <6). Results. Twenty-six studies (782 patients) met the inclusion criteria. Fifty percent of them were considered to be of high quality. The meta-analysis showed that EMG-NMES has a robust short-term effect on improving UL motor impairment in the Body Structure and Function domain. No evidence was found in favor of EMG-NMES for the Activity and Participation domain. EMG-NMES had a stronger effect for each ICF domain in chronic (≥3 months) compared to acute/subacute phases. Conclusion. EMG-NMES is effective in the short term in improving UL impairment in individuals with chronic stroke.
Collapse
Affiliation(s)
- Katia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Brazil
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
| | - Daniele Piscitelli
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| | - Nahid Norouzi-Gheidari
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| | - Marc Aureli Pique Batalla
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- Maastricht University, Maastricht, Netherlands
| | - Philippe Archambault
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| | - Mindy F. Levin
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Khan F, Rathore C, Kate M, Joy J, Zachariah G, Vincent PC, Varma RP, Radhakrishnan K. The comparative efficacy of theta burst stimulation or functional electrical stimulation when combined with physical therapy after stroke: a randomized controlled trial. Clin Rehabil 2019; 33:693-703. [PMID: 30618285 DOI: 10.1177/0269215518820896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE: To study the long-term effectiveness of Theta Burst Stimulation (TBS) or Functional Electrical Stimulation (FES) combined with Physical therapy (PT) as compared to PT alone for improving arm functions in patients with acute stroke. DESIGN: Single blind randomized controlled trial. SETTING: Outpatient clinics and inpatient wards at tertiary care neurology center. SUBJECTS: Adult patients with acute middle cerebral artery territory ischemic stroke. INTERVENTIONS: 60 patients were randomized into three groups of 20 each: TBS+PT; FES+PT; and PT alone. TBS group received intermittent TBS of ipsilesional hemisphere and continuous TBS of contralesional hemisphere while FES group received FES of paretic limb, both for four weeks. All groups received supervised physical therapy for four weeks followed by home physiotherapy for one year. OUTCOME MEASURES: Fugl Meyer Assessment upper limb score (FMA-UL) was primary outcome measure. Patients were evaluated at baseline and subsequently at one, three and six months and one year. RESULTS: Compared to PT group, mean FMA-UL scores were higher in TBS and FES groups at all follow-ups ( P < 0.001). From baseline to one year, mean (SD) FMA-UL scores increased from 14.9(2.1) to 55.55(2.46) in TBS group, 15.5(1.99) to 55.85(2.46) in FES group, and 14.3(2.2) to 43.3(4.22) in PT group indicating an increase of 273%, 260%, and 203% respectively. There was no difference between FES and TBS groups. CONCLUSION: A four-week intervention with TBS or FES combined with PT produces better long-term arm functions as compared to PT alone in patients with acute stroke.
Collapse
Affiliation(s)
- Fayaz Khan
- 1 Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India.,2 Department of Physical Therapy, Faculty of Applied Medical Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Chaturbhuj Rathore
- 1 Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India.,3 Department of Neurology, Smt. B.K. Shah Medical Institute & Research Center, Vadodara, India
| | - Mahesh Kate
- 1 Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India.,4 Department of Neurology, Christian Medical College & Hospital, Ludhiana, India
| | - Josy Joy
- 1 Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - George Zachariah
- 5 Department of Physical Medicine and Rehabilitation, Medical College, Trivandrum, India
| | - P C Vincent
- 6 Department of Physical Medicine and Rehabilitation, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Ravi Prasad Varma
- 7 Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Kurupath Radhakrishnan
- 1 Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India.,8 Department of Neurology, Amrita Advanced Epilepsy Centre, Kochi, India
| |
Collapse
|
42
|
Yao J, Sullivan JE, Dewald J. A Novel EMG-driven Functional Electrical Stimulator for Post- Stroke Individuals to Practice Activities of Daily Living. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1436-1439. [PMID: 30440662 DOI: 10.1109/embc.2018.8512543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prior research has demonstrated that hand function can be recovered in individuals with mild stroke through an intervention that is both 'intense' and 'functional'. However, in individuals with moderate to severe post stroke hand paresis, current evidence for an effective intervention to regain hand function is almost absent. A possible contributor to such poor recovery in these individuals may be the inability to intensively practice with the paretic hand during activities of daily living (ADLs). Many ADLs require use of the paretic arm and hand. Due to post-stroke abnormal muscle synergies, functional arm movements, such as lifting or reaching, often result in unwanted activity in the wrist/finger flexors. This makes voluntary hand opening more difficult. A possible solution to enable these individuals to practice with their paretic hand in a functional context is using devices to assist hand opening. Unfortunately, most of currently available hand rehabilitation devices do not sufficiently address hand opening with the appearance of abnormal muscle synergies. We, therefore, developed a synergy resistant, electromyographic (EMG)-driven electrical stimulation device that allows for $\mathbf {Re}$liable and $\mathbf {In}$tuitive control of the hand (ReIn-Hand) opening while using the paretic arm during lifting and reaching.
Collapse
|
43
|
Chen CC, Tang YC, Hsu MJ, Lo SK, Lin JH. Effects of the hybrid of neuromuscular electrical stimulation and noxious thermal stimulation on upper extremity motor recovery in patients with stroke: a randomized controlled trial. Top Stroke Rehabil 2018; 26:66-72. [PMID: 30369297 DOI: 10.1080/10749357.2018.1540458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) and noxious thermal stimulation (NTS) have been developed and incorporated in stroke rehabilitation. OBJECTIVE This study aimed to compare the effects of NMES, NTS, and the hybrid of NMES and NTS ("Hybrid") on motor recovery of upper extremity (UE) for patients with stroke. METHODS We conducted a prospective, single-blind randomized controlled trial with concealed allocation. Forty-three patients with chronic stroke (onset >6 months) were randomly assigned to three groups (NMES, NTS, and "Hybrid"). In addition to conventional rehabilitation, participants received 30 min of NMES or 30 min of NTS or 15 min of NTS followed by 15 min of NMES. The treatment period was 8 weeks, 3 days/week, 30 min/time. The UE subscale of Fugl-Meyer assessment (UE-FMA, the primary outcome), Motricity index, modified Ashworth scale, and Barthel index were administered by a blinded assessor at baseline, posttreatment, and one-month follow-up. RESULTS Most of the participants had mild-to-moderate disability in activity of daily living. No significant differences in the outcome measures at posttreatment and one-month follow-up were found among the NMES group (n = 13), NTS group (n = 13), and the hybrid of NMES and NTS group (n = 17). However, significant score changes in UE-FMA (p < 0.025) from baseline to posttreatment and one-month follow-up were found for the "Hybrid" group. CONCLUSIONS This study reveals that the hybrid of NMES and NTS therapy appears to be beneficial to UE recovery after stroke but is not superior to NMES or NTS alone.
Collapse
Affiliation(s)
- Chien-Chih Chen
- a Department of Physical Therapy , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yu-Ching Tang
- a Department of Physical Therapy , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Miao-Ju Hsu
- a Department of Physical Therapy , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Sing-Kai Lo
- b Faculty of Liberal Arts and Social Sciences , Education University of Hong Kong , Hong Kong
| | - Jau-Hong Lin
- a Department of Physical Therapy , Kaohsiung Medical University , Kaohsiung , Taiwan.,c Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| |
Collapse
|
44
|
EEG-Based Control for Upper and Lower Limb Exoskeletons and Prostheses: A Systematic Review. SENSORS 2018; 18:s18103342. [PMID: 30301238 PMCID: PMC6211123 DOI: 10.3390/s18103342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
Electroencephalography (EEG) signals have great impact on the development of assistive rehabilitation devices. These signals are used as a popular tool to investigate the functions and the behavior of the human motion in recent research. The study of EEG-based control of assistive devices is still in early stages. Although the EEG-based control of assistive devices has attracted a considerable level of attention over the last few years, few studies have been carried out to systematically review these studies, as a means of offering researchers and experts a comprehensive summary of the present, state-of-the-art EEG-based control techniques used for assistive technology. Therefore, this research has three main goals. The first aim is to systematically gather, summarize, evaluate and synthesize information regarding the accuracy and the value of previous research published in the literature between 2011 and 2018. The second goal is to extensively report on the holistic, experimental outcomes of this domain in relation to current research. It is systematically performed to provide a wealthy image and grounded evidence of the current state of research covering EEG-based control for assistive rehabilitation devices to all the experts and scientists. The third goal is to recognize the gap of knowledge that demands further investigation and to recommend directions for future research in this area.
Collapse
|
45
|
Pan LLH, Yang WW, Kao CL, Tsai MW, Wei SH, Fregni F, Chen VCF, Chou LW. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Sci Rep 2018; 8:9217. [PMID: 29907780 PMCID: PMC6003966 DOI: 10.1038/s41598-018-27553-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
The peripheral sensory system is critical to regulating motor plasticity and motor recovery. Peripheral electrical stimulation (ES) can generate constant and adequate sensory input to influence the excitability of the motor cortex. The aim of this proof of concept study was to assess whether ES prior to each hand function training session for eight weeks can better improve neuromuscular control and hand function in chronic stroke individuals and change electroencephalography-electromyography (EEG-EMG) coherence, as compared to the control (sham ES). We recruited twelve subjects and randomly assigned them into ES and control groups. Both groups received 20-minute hand function training twice a week, and the ES group received 40-minute ES on the median nerve of the affected side before each training session. The control group received sham ES. EEG, EMG and Fugl-Meyer Assessment (FMA) were collected at four different time points. The corticomuscular coherence (CMC) in the ES group at fourth weeks was significantly higher (p = 0.004) as compared to the control group. The notable increment of FMA at eight weeks and follow-up was found only in the ES group. The eight-week rehabilitation program that implemented peripheral ES sessions prior to function training has a potential to improve neuromuscular control and hand function in chronic stroke individuals.
Collapse
Affiliation(s)
- Li-Ling Hope Pan
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.,Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wen-Wen Yang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine & Rehabilitation, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division chief of General Rehabilitation, Department of Physical Medicine & Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mei-Wun Tsai
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Shun-Hwa Wei
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
46
|
Da-Silva RH, Moore SA, Price CI. Self-directed therapy programmes for arm rehabilitation after stroke: a systematic review. Clin Rehabil 2018; 32:1022-1036. [PMID: 29756513 DOI: 10.1177/0269215518775170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To investigate the effectiveness of self-directed arm interventions in adult stroke survivors. METHODS A systematic review of Medline, EMBASE, CINAHL, SCOPUS and IEEE Xplore up to February 2018 was carried out. Studies of stroke arm interventions were included where more than 50% of the time spent in therapy was initiated and carried out by the participant. Quality of the evidence was assessed using the Cochrane risk of bias tool. RESULTS A total of 40 studies ( n = 1172 participants) were included (19 randomized controlled trials (RCTs) and 21 before-after studies). Studies were grouped according to no technology or the main additional technology used (no technology n = 5; interactive gaming n = 6; electrical stimulation n = 11; constraint-induced movement therapy n = 6; robotic and dynamic orthotic devices n = 8; mirror therapy n = 1; telerehabilitation n = 2; wearable devices n = 1). A beneficial effect on arm function was found for self-directed interventions using constraint-induced movement therapy ( n = 105; standardized mean difference (SMD) 0.39, 95% confidence interval (CI) -0.00 to 0.78) and electrical stimulation ( n = 94; SMD 0.50, 95% CI 0.08-0.91). Constraint-induced movement therapy and therapy programmes without technology improved independence in activities of daily living. Sensitivity analysis demonstrated arm function benefit for patients >12 months poststroke ( n = 145; SMD 0.52, 95% CI 0.21-0.82) but not at 0-3, 3-6 or 6-12 months. CONCLUSION Self-directed interventions can enhance arm recovery after stroke but the effect varies according to the approach used and timing. There were benefits identified from self-directed delivery of constraint-induced movement therapy, electrical stimulation and therapy programmes that increase practice without using additional technology.
Collapse
Affiliation(s)
- Ruth H Da-Silva
- Institute of Neuroscience and Stroke Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah A Moore
- Institute of Neuroscience and Stroke Research Group, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher I Price
- Institute of Neuroscience and Stroke Research Group, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
Hong Z, Sui M, Zhuang Z, Liu H, Zheng X, Cai C, Jin D. Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review. Arch Phys Med Rehabil 2018; 99:1011-1022.e1. [DOI: 10.1016/j.apmr.2017.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
48
|
Virtual Reality Rehabilitation With Functional Electrical Stimulation Improves Upper Extremity Function in Patients With Chronic Stroke: A Pilot Randomized Controlled Study. Arch Phys Med Rehabil 2018; 99:1447-1453.e1. [PMID: 29505744 DOI: 10.1016/j.apmr.2018.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To compare virtual reality (VR) combined with functional electrical stimulation (FES) with cyclic FES for improving upper extremity function and health-related quality of life in patients with chronic stroke. DESIGN A pilot, randomized, single-blind, controlled trial. SETTING Stroke rehabilitation inpatient unit. PARTICIPANTS Participants (N=48) with hemiplegia secondary to a unilateral stroke for >3 months and with a hemiplegic wrist extensor Medical Research Council scale score ranging from 1 to 3. INTERVENTIONS FES was applied to the wrist extensors and finger extensors. A VR-based wearable rehabilitation device was used combined with FES and virtual activity-based training for the intervention group. The control group received cyclic FES only. Both groups completed 20 sessions over a 4-week period. MAIN OUTCOME MEASURES Primary outcome measures were changes in Fugl-Meyer Assessment-Upper Extremity and Wolf Motor Function Test scores. Secondary outcome measures were changes in Box and Block Test, Jebsen-Taylor Hand Function Test, and Stroke Impact Scale scores. Assessments were performed at baseline (t0) and at 2 weeks (t1), 4 weeks (t4), and 8 weeks (t8). Between-group comparisons were evaluated using a repeated-measures analysis of variance. RESULTS Forty-one participants were included in the analysis. Compared with FES alone, VR-FES produced a substantial increase in Fugl-Meyer Assessment-distal score (P=.011) and marginal improvement in Jebsen-Taylor Hand Function Test-gross score (P=.057). VR-FES produced greater, although nonsignificant, improvements in all other outcome measures, except in the Stroke Impact Scale-activities of daily living/instrumental activities of daily living score. CONCLUSIONS FES with VR-based rehabilitation may be more effective than cyclic FES in improving distal upper extremity gross motor performance poststroke.
Collapse
|
49
|
Tarri M, Brihmat N, Gasq D, Lepage B, Loubinoux I, De Boissezon X, Marque P, Castel-Lacanal E. Five-day course of paired associative stimulation fails to improve motor function in stroke patients. Ann Phys Rehabil Med 2018; 61:78-84. [DOI: 10.1016/j.rehab.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
|
50
|
Comparison of the Effect of Sensory-Level and Conventional Motor-Level Neuromuscular Electrical Stimulations on Quadriceps Strength After Total Knee Arthroplasty: A Prospective Randomized Single-Blind Trial. Arch Phys Med Rehabil 2017; 98:2364-2370. [DOI: 10.1016/j.apmr.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022]
|