1
|
de Almeida FD, Wang Y, de Mello Pedreiro RC, Brizzi ACB, Campos SF, Sales MP, Kennedy DM, Pinto Neto O. Combining Transcranial Direct Current Stimulation with Exercise to Improve Mobility, Stability, and Tremor Management in 25 Individuals with Parkinson's Disease. Neurol Int 2024; 16:1223-1238. [PMID: 39585052 PMCID: PMC11587078 DOI: 10.3390/neurolint16060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Parkinson's disease (PD) is a neurodegenerative disorder characterized by tremors, balance impairments, and mobility limitations. Innovative approaches like combining transcranial direct current stimulation (tDCS) with exercise show promise in addressing these symptoms. This study investigates the effects of exercise combined with tDCS on mobility and tremor management in PD patients. METHODS Twenty-five individuals aged 60-75 (66.6 ± 7.33), diagnosed with PD (Hoehn and Yahr stage 2-3), were assigned to three groups in a randomized controlled design: exercise with active tDCS (n = 8), exercise with sham tDCS (n = 8), and a control group (n = 9). Dual-task training sessions focusing on walking speed, balance, and force control were conducted over ten sessions. RESULTS No significant differences were detected across the groups for grip strength or force control measures (p > 0.05). Significant improvements were observed in the intervention group: the Timed Up and Go (TUG) test showed a significant reduction in time (mean difference = 2.498 s, p < 0.001, ηp2 = 0.331); anterior-posterior displacement significantly increased (mean difference = 21.375 mm, p = 0.0269, ηp2 = 0.303); and force-tremor decoupling improved, with coherence in the 1-4 Hz band significantly decreasing (p = 0.0067). Finally, changes in TUG from post- to pre-treatment values were significantly positively correlated with the changes in coherence (R = 0.468, p = 0.018). CONCLUSIONS Combining tDCS with exercise enhances mobility and tremor management in PD patients. These findings support the potential for such interventions to improve functional outcomes and quality of life for individuals with PD.
Collapse
Affiliation(s)
- Fabrício D. de Almeida
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Department of Anatomy, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Yiyu Wang
- Department of Psychology, Princeton University, Princeton, NJ 08540, USA;
| | - Rodrigo C. de Mello Pedreiro
- Departament of Physical Education, Estácio de Sá University, Teresópolis 25963-150, RJ, Brazil;
- Arena235 Research Lab, São José dos Campos 12246-876, SP, Brazil
| | - Ana Carolina B. Brizzi
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Departments of Psychology and Physical Therapy, Universidade de Taubaté (Unitau), Taubaté 12020-040, SP, Brazil
| | - Shirley F. Campos
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Arena235 Research Lab, São José dos Campos 12246-876, SP, Brazil
| | - Melina P. Sales
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Departments of Psychology and Physical Therapy, Universidade de Taubaté (Unitau), Taubaté 12020-040, SP, Brazil
| | - Deanna M. Kennedy
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77845, USA;
| | - Osmar Pinto Neto
- Department of Biomedical Engineering, Anhembi Morumbi University, São José dos Campos 12247-016, SP, Brazil; (F.D.d.A.); (A.C.B.B.); (S.F.C.); (M.P.S.)
- Department of Kinesiology, California State University San Marcos (CSUSM), San Marcos, CA 92096, USA
- Center of Innovation Technology and Education-CITÉ, São José dos Campos 12247-016, SP, Brazil
| |
Collapse
|
2
|
de Paula LV, de Oliveira GT, Ferreira RM, Soares ER. Functional data analysis of the force unsteadiness. J Appl Physiol (1985) 2024; 136:1270. [PMID: 38743398 DOI: 10.1152/japplphysiol.00200.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Leandro Vinhas de Paula
- Aquatic Activities Research Group, Department of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
- Physical evaluation and Resistance Training Research Group, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Géssyca Tolomeu de Oliveira
- Exercise Physiology Performance - EXPPER, Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Aquatic Activities Research Group, Department of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Renato Melo Ferreira
- Aquatic Activities Research Group, Department of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
- Physical evaluation and Resistance Training Research Group, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Everton Rocha Soares
- Aquatic Activities Research Group, Department of Physical Education, Federal University of Ouro Preto, Ouro Preto, Brazil
- Physical evaluation and Resistance Training Research Group, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
3
|
Rizzato A, Cantarella G, Basso E, Paoli A, Rotundo L, Bisiacchi P, Marcolin G. Relationship between intended force and actual force: comparison between athletes and non-athletes. PeerJ 2024; 12:e17156. [PMID: 38584935 PMCID: PMC10998631 DOI: 10.7717/peerj.17156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
This cross-sectional study aimed to investigate whether athletes (ATHL) and non-athletes (NON-ATHL) individuals had similar accuracy in matching intended to actual force during ballistic (BAL) and tonic (TON) isometric contractions. In this cross-sectional study, the subjects were divided into ATHL (n = 20; 22.4 ± 2.3 yrs; 73.2 ± 15.7 kg; 1.76 ± 0.08 m) and NON-ATHL (n = 20; 24.6 ± 2.4 yrs; 68.2 ± 15.0 kg; 1.73 ± 0.1 m) groups. The isometric quadriceps strength was measured with a load cell applied to a custom-built chair. For each condition, subjects performed at first three maximal voluntary isometric contractions (MVIC) as reference. Then, subjects had to match three intended force intensities expressed in percentage of the MVIC (i.e., 25%, 50%, and 75%) without any external feedback. Subjects performed three trials for each force intensity. The accuracy (AC) was calculated as the absolute difference in percentage between the intended and the actual force. A Likert scale was administered for each trial to assess the subjective matching between the intended and the actual force. Statistical analysis showed that the ATHL group was more accurate (p < 0.001) than the NON-ATHL group. In contrast, the AC (p < 0.001) was lower when the force intensities increased independently from the group. Moreover, significantly higher AC (p < 0.001) and lower aggregate Likert scores (p < 0.001) were found in BAL than TON conditions. These results suggest that (i) sports practice could enhance muscle recruitment strategies by increasing the AC in the isometric task; (ii) differences between intended and actual force appeared to be intensity-dependent with lower AC at high force intensities; (iii) different control systems act in modulating BAL and TON contractions.
Collapse
Affiliation(s)
- Alex Rizzato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Elisa Basso
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Luca Rotundo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Shi F, Rymer WZ, Son J. Ankle Joint Angle Influences Relative Torque Fluctuation during Isometric Plantar Flexion. Bioengineering (Basel) 2023; 10:bioengineering10030373. [PMID: 36978764 PMCID: PMC10045061 DOI: 10.3390/bioengineering10030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The purpose of this study was to investigate the influence of changes in muscle length on the torque fluctuations and on related oscillations in muscle activity during voluntary isometric contractions of ankle plantar flexor muscles. Eleven healthy individuals were asked to perform voluntary isometric contractions of ankle muscles at five different contraction intensities from 10% to 70% of maximum voluntary isometric contraction (MVIC) and at three different muscle lengths, implemented by changing the ankle joint angle (plantar flexion of 26°-shorter muscle length; plantar flexion of 10°-neutral muscle length; dorsiflexion of 3°-longer muscle length). Surface electromyogram (EMG) signals were recorded from the skin surface over the triceps surae muscles, and rectified-and-smoothed EMG (rsEMG) were estimated to assess the oscillations in muscle activity. The absolute torque fluctuations (quantified by the standard deviation) were significantly higher during moderate-to-high contractions at the longer muscle length. Absolute torque fluctuations were found to be a linear function of torque output regardless of muscle length. In contrast, the relative torque fluctuations (quantified by the coefficient of variation) were higher at the shorter muscle length. However, both absolute and relative oscillations in muscle activities remained relatively consistent at different ankle joint angles for all plantar flexors. These findings suggest that the torque steadiness may be affected by not only muscle activities, but also by muscle length-dependent mechanical properties. This study provides more insights that muscle mechanics should be considered when explaining the steadiness in force output.
Collapse
Affiliation(s)
- Fandi Shi
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab (Formerly the Rehabilitation Institute of Chicago), Chicago, IL 60611, USA
| | - William Zev Rymer
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab (Formerly the Rehabilitation Institute of Chicago), Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jongsang Son
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Lee JH, Kang N. Altered Bimanual Kinetic and Kinematic Motor Control Capabilities in Older Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2153. [PMID: 36767520 PMCID: PMC9915092 DOI: 10.3390/ijerph20032153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Older women may experience critical neuromuscular impairments interfering with controlling successful bimanual motor actions. Our study aimed to investigate altered bimanual motor performances in older women compared with younger women by focusing on kinetic and kinematic motor properties. Twenty-two older women and 22 younger women performed bimanual kinetic and kinematic motor tasks. To estimate bimanual kinetic functions, we calculated bimanual maximal voluntary contractions (i.e., MVC) and force control capabilities (i.e., mean force, accuracy, variability, and regularity of the total force produced by two hands) during bimanual hand-grip submaximal force control tasks. For bimanual kinematic performances, we assessed the scores of the Purdue Pegboard Test (i.e., PPT) in both hands and assembly tasks, respectively. For the bimanual MVC and PPT, we conducted an independent t-test between two groups. The bimanual force control capabilities were analyzed using two-way mixed ANOVAs (Group × Force Level; 2 × 2). Our findings revealed that the older women showed less bimanual MVC (p = 0.046) and submaximal force outputs (p = 0.036) and greater changes in bimanual force control capabilities as indicated by a greater force variability (p = 0.017) and regularity (p = 0.014). Further, the older women revealed lower scores of PPT in both the hands condition (p < 0.001) and assembly task condition (p < 0.001). The additional correlation analyses for the older women showed that lower levels of skeletal muscle mass were related to less bimanual MVC (r = 0.591; p = 0.004). Furthermore, a higher age was related to lower scores in the bimanual PPT assembly task (r = -0.427; p = 0.048). These findings suggested that older women experience greater changes in bimanual motor functions compared with younger women.
Collapse
Affiliation(s)
- Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon 22012, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon 22012, Republic of Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon 22012, Republic of Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon 22012, Republic of Korea
- Division of Sport Science, Sport Science Institute, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
6
|
Bauer P, Gomes JS, Oliveira J, Santos P, Pezarat-Correia P, Vaz JR. Torque Regulation Is Influenced by the Nature of the Isometric Contraction. SENSORS (BASEL, SWITZERLAND) 2023; 23:726. [PMID: 36679523 PMCID: PMC9861772 DOI: 10.3390/s23020726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The present study aimed to investigate the effects of a continuous visual feedback and the isometric contraction nature on the complexity and variability of force. Thirteen healthy and young male adults performed three MVCs followed by three submaximal isometric force tasks at a target force of 40% of their MVC for 30 s, as follows: (i) push isometric task with visual feedback (Pvisual); (ii) hold isometric task with visual feedback (Hvisual); (iii) hold isometric task without visual feedback (Hnon-visual). Force complexity was evaluated through sample entropy (SampEn) of the force output. Force variability was analyzed through the coefficient of variation (CV). Results showed that differences were task-related, with Pvisual showing higher complexity (i.e., higher SampEn) and decreased variability (i.e., lower CV) when compared with the remaining tasks. Additionally, no significant differences were found between the two hold isometric force tasks (i.e., no influence of visual feedback). Our results are promising as we showed these two isometric tasks to induce different motor control strategies. Furthermore, we demonstrated that visual feedback's influence is also dependent on the type of isometric task. These findings should motivate researchers and physiologists to shift training paradigms and incorporate different force control evaluation tasks.
Collapse
Affiliation(s)
- Philipp Bauer
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- Interdisciplinary Research Centre Egas Moniz (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - João Sá Gomes
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- Interdisciplinary Research Centre Egas Moniz (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| | - João Oliveira
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
| | - Paulo Santos
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
| | - Pedro Pezarat-Correia
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
| | - João R. Vaz
- Centro Interdisciplinar de Performance Humana (CIPER), Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, 1495-751 Lisbon, Portugal
- Interdisciplinary Research Centre Egas Moniz (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
| |
Collapse
|
7
|
Bunno Y, Onigata C. Influence of emotion on precision grip force control: A comparison of pleasant and neutral emotion. Front Psychol 2022; 13:1038522. [DOI: 10.3389/fpsyg.2022.1038522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
ObjectiveThe present study aimed to investigate the impact of emotion on force steadiness of isometric precision pinch grip that is not direction-specific.MethodsThirty-two healthy volunteer subjects participated in the present study. Subjects were divided into two experimental groups: pleasant image group and neutral image group. The isometric precision pinch grip task was performed for three times. Specifically, the first task was performed before pleasant or neutral picture viewing, the second task was performed immediately after picture viewing, further the third task was performed 30 seconds after the second task. During the isometric precision pinch grip task, participants were asked to exert pinch grip force at 10% of maximal voluntary contraction with visual feedback. The coefficient of variation of force production and normalized root mean square value of electromyography activity were calculated.ResultsAfter pleasant picture viewing, coefficient of variation of pinch force production and normalized root mean square value of electromyography was decreased. While, in the neutral image condition, theses variables were not altered. More important, compared to the neutral image condition, pleasant emotion led to lower coefficient of variation of pinch grip force production.ConclusionThese findings indicate that pleasant emotion improves force control of isometric precision pinch grip. Therefore, in clinical settings, the emotional state of patients may affect the effectiveness of rehabilitation and should be taken into consideration.
Collapse
|
8
|
Kowalski KL, Tierney BC, Christie AD. Mental fatigue does not substantially alter neuromuscular function in young, healthy males and females. Physiol Behav 2022; 253:113855. [PMID: 35609724 DOI: 10.1016/j.physbeh.2022.113855] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
The neuromuscular mechanisms leading to impaired motor performance after mental fatigue (MF) are not well-understood and little is known of sex-specific differences in the neuromuscular response to MF. The purpose of this study was to investigate sex-related differences in the impact of MF on neuromuscular function. Thirty young, healthy adults (15F, 15M) performed the Psychomotor Vigilance Task (PVT) to induce MF and watched the Earth documentary (control) for 30 min in a random and counterbalanced order. Before and after each task, measurements of neuromuscular function during submaximal dorsiflexion contractions were obtained. At the end of the PVT, females and males had a slower reaction time (p<0.001, η2p=0.41) and reported higher fatigue (p<0.001, η2p=0.50), suggesting the PVT induced MF. After the PVT, females and males demonstrated a decline in force during 10% maximum voluntary contractions (MVC) (p=0.006, η2p=0.24), slower motor unit firing rate during 20% MVC (p=0.04, η2p=0.15) and a longer cortical silent period (p=0.01, η2p=0.22). However, similar changes were observed in the control condition suggesting MF is unlikely to substantially alter neuromuscular function during submaximal isometric contractions in young, healthy adults. Results also suggest neuromuscular function after a MF task is similar between young, healthy females and males. Further research is required to investigate populations with higher fatigue, such as multiple sclerosis or chronic fatigue syndrome.
Collapse
Affiliation(s)
- Katie L Kowalski
- School of Kinesiology, Western University, London, Ontario, Canada
| | | | - Anita D Christie
- School of Kinesiology, Western University, London, Ontario, Canada.
| |
Collapse
|
9
|
Experimental Evaluation on Haptic Feedback Accuracy by Using Two Self-Made Haptic Devices and One Additional Interface in Robotic Teleoperation. ACTUATORS 2022. [DOI: 10.3390/act11010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of haptic feedback in robotic teleoperation is to enable users to accurately feel the interaction force measured at the slave side and precisely understand what is happening in the slave environment. The accuracy of the feedback force describing the error between the actual feedback force felt by a user at the master side and the measured interaction force at the slave side is the key performance indicator for haptic display in robotic teleoperation. In this paper, we evaluate the haptic feedback accuracy in robotic teleoperation via experimental method. A special interface iHandle and two haptic devices, iGrasp-T and iGrasp-R, designed for robotic teleoperation are developed for experimental evaluation. The device iHandle integrates a high-performance force sensor and a micro attitude and heading reference system which can be used to identify human upper limb motor abilities, such as posture maintenance and force application. When a user is asked to grasp the iHandle and maintain a fixed position and posture, the fluctuation value of hand posture is measured to be between 2 and 8 degrees. Based on the experimental results, human hand tremble as input noise sensed by the haptic device is found to be a major reason that results in the noise of output force from haptic device if the spring-damping model is used to render feedback force. Therefore, haptic rendering algorithms should be independent of hand motion information to avoid input noise from human hand to the haptic control loop in teleoperation. Moreover, the iHandle can be fixed at the end effector of haptic devices; iGrasp-T or iGrasp-R, to measure the output force/torque from iGrasp-T or iGrasp-Rand to the user. Experimental results show that the accuracy of the output force from haptic device iGrasp-T is approximately 0.92 N, and using the force sensor in the iHandle can compensate for the output force inaccuracy of device iGrasp-T to 0.1 N. Using a force sensor as the feedback link to form a closed-loop feedback force control system is an effective way to improve the accuracy of feedback force and guarantee high-fidelity of feedback forces at the master side in robotic teleoperation.
Collapse
|
10
|
Letter M, Beauperthuy A, Parrino RL, Posner K, Baraga MG, Best TM, Kaplan LD, Eltoukhy M, Strand KL, Buskard A, Signorile JF. Association Between Neuromuscular Variables and Graft Harvest in Soft Tissue Quadriceps Tendon Versus Bone-Patellar Tendon-Bone Anterior Cruciate Ligament Autografts. Orthop J Sports Med 2021; 9:23259671211041591. [PMID: 34708139 PMCID: PMC8543586 DOI: 10.1177/23259671211041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Quadriceps tendon (QT) autografts are increasingly popular for anterior cruciate ligament reconstruction (ACLR). However, no study has compared QT autografts with bone–patellar tendon–bone (BTB) autografts regarding the electromechanical delay (EMD), the peak torque (PT), and the rate of force development (RFD) in the superficial quadriceps muscles (rectus femoris [RF], vastus medialis [VM], and vastus lateralis [VL]). Hypotheses: We hypothesized (1) there would be a significantly lower PT, lower RFD, and longer quadriceps EMD of the operative limb for the QT versus the BTB autograft; (2) the PT, the RFD, and the quadriceps EMD of the operative limb would be significantly depressed compared with those of the nonoperative limb, regardless of the surgical technique; and (3) there would be greater increases in the RF EMD than in the VM or the VL EMD. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 34 patients (age, 18-40 years), who had undergone ACLR (QT, n = 17; BTB, n = 17) at least 1 year before testing and performed 3 perceived maximal effort isometric tests, which were time synchronized with surface electromyography (EMG) on their operative and nonoperative limbs, were included in this study. EMD, PT, and RFD data were analyzed using a 2 (limb) × 2 (graft) × 3 (repetition) mixed repeated-measures analysis of variance. Results: The EMD, the PT, and the RFD were not significantly affected by graft choice. For the VL, a significant repetition × graft × limb interaction was detected for the VL EMD (P = .027; ηp = 0.075), with repetition 3 having longer EMD than repetition 2 (mean difference [MD], 16 milliseconds; P = .039). For the RF EMD, there was a significant repetition × limb interaction (P = .027; ηp = 0.074), with repetition 3 being significantly longer on the operative versus the nonoperative limb (MD, 24 milliseconds; P = .004). Further, the operative limb EMD was significantly longer for repetition 3 versus repetition 2 (MD, 17 milliseconds; P = .042). For the PT, there was a significant effect for repetition (P = .003; ηp = 0.114), with repetition 1 being significantly higher than both repetitions 2 (MD, 8.52 N·m; P = .001) and 3 (MD, 7.79 N·m; P = .031). For the RFD, significant limb (P = .034; ηp = 0.092) and repetition (P = .010; ηp = 0.093) effects were seen, with the nonoperative limb being significantly faster than the operative limb (MD, 23.7 N·m/s; P = .034) and repetition 1 being significantly slower than repetitions 2 (MD, -20.46 N·m/s; P = .039) or 3 (MD, −29.85 N·m/s; P = .002). Conclusion: The EMD, the PT, and the RFD were not significantly affected by graft type when comparing QT and BTB autografts for ACLR; however, all neuromuscular variables were affected regardless of the QT or the BTB harvest.
Collapse
Affiliation(s)
- Michael Letter
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA. .,Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | | | - Rosalia L Parrino
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Kevin Posner
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Michael G Baraga
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA.
| | - Thomas M Best
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA.
| | - Lee D Kaplan
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA.
| | - Moataz Eltoukhy
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Keri L Strand
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Andrew Buskard
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | | |
Collapse
|
11
|
Visual feedback improves bimanual force control performances at planning and execution levels. Sci Rep 2021; 11:21149. [PMID: 34707163 PMCID: PMC8551182 DOI: 10.1038/s41598-021-00721-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to determine the effect of different visual conditions and targeted force levels on bilateral motor synergies and bimanual force control performances. Fourteen healthy young participants performed bimanual isometric force control tasks by extending their wrists and fingers under two visual feedback conditions (i.e., vision and no-vision) and three targeted force levels (i.e., 5%, 25%, and 50% of maximum voluntary contraction: MVC). To estimate bilateral motor synergies across multiple trials, we calculated the proportion of good variability relative to bad variability using an uncontrolled manifold analysis. To assess bimanual force control performances within a trial, we used the accuracy, variability, and regularity of total forces produced by two hands. Further, analysis included correlation coefficients between forces from the left and right hands. In addition, we examined the correlations between altered bilateral motor synergies and force control performances from no-vision to vision conditions for each targeted force level. Importantly, our findings revealed that the presence of visual feedback increased bilateral motor synergies across multiple trials significantly with a reduction of bad variability as well as improved bimanual force control performances within a trial based on higher force accuracy, lower force variability, less force regularity, and decreased correlation coefficients between hands. Further, we found two significant correlations in (a) increased bilateral motor synergy versus higher force accuracy at 5% of MVC and (b) increased bilateral motor synergy versus lower force variability at 50% of MVC. Together, these results suggested that visual feedback effectively improved both synergetic coordination behaviors across multiple trials and stability of task performance within a trial across various submaximal force levels.
Collapse
|
12
|
Lidstone DE, Mostofsky SH. Moving Toward Understanding Autism: Visual-Motor Integration, Imitation, and Social Skill Development. Pediatr Neurol 2021; 122:98-105. [PMID: 34330613 PMCID: PMC8372541 DOI: 10.1016/j.pediatrneurol.2021.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a behavioral phenotype characterized by impaired development of social-communicative skills and excessive repetitive and stereotyped behaviors. Despite high phenotypic heterogeneity in ASD, a meaningful subpopulation of children with ASD (∼90%) show significant general motor impairment. More focused studies on the nature of motor impairment in ASD reveal that children with ASD are particularly impaired on tasks such as ball catching and motor imitation that require efficient visual-motor integration (VMI). Motor computational approaches also provide evidence for VMI impairment showing that children with ASD form internal sensorimotor representations that bias proprioceptive over visual feedback. Impaired integration of visual information to form internal representations of others' and the external world may explain observed impairments on VMI tasks and motor imitation of others. Motor imitation is crucial for acquiring both social and motor skills, and impaired imitation skill may contribute to the observed core behavioral phenotype of ASD. The current review examines evidence supporting VMI impairment as a core feature of ASD that may contribute to both impaired motor imitation and social-communicative skill development. We propose that understanding the neurobiological mechanisms underlying VMI impairment in ASD may be key to discovery of therapeutics to address disability in children and adults with ASD.
Collapse
Affiliation(s)
- Daniel E Lidstone
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Snarr RL, Adams K, Cook J. Effect of Bench Press Load Knowledge on One Repetition Maximum Strength. J Strength Cond Res 2021; 35:2121-2126. [PMID: 30946265 DOI: 10.1519/jsc.0000000000003096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Snarr, RL, Adams, K, and Cook, J. Effect of bench press load knowledge on one repetition maximum strength. J Strength Cond Res 35(8): 2121-2126, 2021-Knowledge of a given load and visual feedback are crucial while performing a given task. Although previous literature has examined the consequences of lifting a submaximal weight, the removal of load knowledge has yet to be examined under maximal effort. Therefore, the purpose of this investigation was to examine the differences in 1 repetition maximum (1RM) bench press values between a known and unknown external load. Twenty resistance-trained subjects (10 male subjects and 10 female subjects) completed 2 trials of a 1RM bench press protocol separated by 48-72 hours. The two 1RM trials consisted of (a) a traditional 1RM lift in which subjects could see the external load and (b) a 1RM lift in which the external load was blocked from view of the subject. Trials were randomized for all subjects. Results indicated that no differences were observed when the load was known vs. unknown within all subjects (p = 0.094; Cohen's d = 0.03; intraclass correlation coefficient = 0.99). In addition, 40% decreased and 15% increased their 1RM, despite the unknown condition. A statistical difference was found between the initial 1RM estimation vs. measured 1RM during the known load trial (p = 0.034, Cohen's d = 0.07). Practitioners should note that load knowledge before a maximal lift does not appear to present any significant detrimental effects on performance. Therefore, training during a "blinded" condition may present a unique modality and additional balance component that would not be presented during a traditional maximal lift. Further examination of attentional focus and muscle activation differences are warranted.
Collapse
Affiliation(s)
- Ronald L Snarr
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, Georgia
| | | | | |
Collapse
|
14
|
Schaefer LV, Bittmann FN. Paired personal interaction reveals objective differences between pushing and holding isometric muscle action. PLoS One 2021; 16:e0238331. [PMID: 33956801 PMCID: PMC8101915 DOI: 10.1371/journal.pone.0238331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/04/2021] [Indexed: 11/19/2022] Open
Abstract
In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A "HIMA failure" occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA.
Collapse
Affiliation(s)
- Laura V. Schaefer
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Potsdam, Germany
| | - Frank N. Bittmann
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
15
|
Marcel-Millet P, Gimenez P, Groslambert A, Ravier G, Grospretre S. The type of visual biofeedback influences maximal handgrip strength and activation strategies. Eur J Appl Physiol 2021; 121:1607-1616. [PMID: 33649937 DOI: 10.1007/s00421-021-04640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE This study investigated the effects of force and electromyographic (EMG) feedbacks on forearm muscle activations and handgrip maximal isometric voluntary contraction (MIVC). METHODS Sixteen males performed a set of MIVC in four different feedback conditions: (1) NO-FB: no feedback is given to the participant; (2) FORCE-FB: participants received a visual feedback of the produced force; (3) AGO-FB: participants received a visual feedback of the EMG activity of two agonist grip muscles; (4) ANTAGO-FB: participants received a visual feedback of the EMG activity of two hand extensors muscles. Each feedback was displayed by monitoring the signal of either force or electrical activity of the corresponding muscles. RESULTS Compared to NO-FB, FORCE-FB was associated with a higher MIVC force (+ 11%, P < 0.05), a higher EMG activity of agonist and antagonist muscles (+ 8.7% and + 9.2%, respectively, P < 0.05) and a better MIVC/EMG ratio with the agonist muscles (P < 0.05). AGO-FB was associated with a higher EMG activity of agonist muscles (P < 0.05) and ANTAGO-FB was associated with a higher EMG activity of antagonist muscles (P < 0.05). MIVC force was higher in the agonist feedback condition than in the antagonist feedback condition (+ 5.9%, P < 0.05). CONCLUSION Our results showed that the MIVC force can be influenced by different visuals feedback, such as force or EMG feedbacks. Moreover, these results suggested that the type of feedback employed could modify the EMG-to-force relationships. Finally, EMG biofeedback could represent an interesting tool to optimize motor strategies. But in the purpose of performing the highest strength independently of the strategy, the force feedback should be recommended.
Collapse
Affiliation(s)
- Philémon Marcel-Millet
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Philippe Gimenez
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Alain Groslambert
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Gilles Ravier
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France
| | - Sidney Grospretre
- EA4660, C3S Laboratory, UPFR Sports, University of Bourgogne Franche-Comté, 31, Chemin de l'Epitaphe, 25000, Besançon, France.
| |
Collapse
|
16
|
Nagamori A, Laine CM, Loeb GE, Valero-Cuevas FJ. Force variability is mostly not motor noise: Theoretical implications for motor control. PLoS Comput Biol 2021; 17:e1008707. [PMID: 33684099 PMCID: PMC7971898 DOI: 10.1371/journal.pcbi.1008707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/18/2021] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
Variability in muscle force is a hallmark of healthy and pathological human behavior. Predominant theories of sensorimotor control assume 'motor noise' leads to force variability and its 'signal dependence' (variability in muscle force whose amplitude increases with intensity of neural drive). Here, we demonstrate that the two proposed mechanisms for motor noise (i.e. the stochastic nature of motor unit discharge and unfused tetanic contraction) cannot account for the majority of force variability nor for its signal dependence. We do so by considering three previously underappreciated but physiologically important features of a population of motor units: 1) fusion of motor unit twitches, 2) coupling among motoneuron discharge rate, cross-bridge dynamics, and muscle mechanics, and 3) a series-elastic element to account for the aponeurosis and tendon. These results argue strongly against the idea that force variability and the resulting kinematic variability are generated primarily by 'motor noise.' Rather, they underscore the importance of variability arising from properties of control strategies embodied through distributed sensorimotor systems. As such, our study provides a critical path toward developing theories and models of sensorimotor control that provide a physiologically valid and clinically useful understanding of healthy and pathologic force variability.
Collapse
Affiliation(s)
- Akira Nagamori
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Christopher M. Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Gerald E. Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Francisco J. Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Tian D, Izumi SI, Suzuki E. Modulation of Interhemispheric Inhibition between Primary Motor Cortices Induced by Manual Motor Imitation: A Transcranial Magnetic Stimulation Study. Brain Sci 2021; 11:brainsci11020266. [PMID: 33669827 PMCID: PMC7923080 DOI: 10.3390/brainsci11020266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Imitation has been proven effective in motor development and neurorehabilitation. However, the relationship between imitation and interhemispheric inhibition (IHI) remains unclear. Transcranial magnetic stimulation (TMS) can be used to investigate IHI. In this study, the modification effects of IHI resulting from mirror neuron system (MNS) activation during different imitations are addressed. We measured IHI between homologous primary motor cortex (M1) by analyzing the ipsilateral silent period (iSP) evoked by single-pulse focal TMS during imitation and analyzed the respective IHI modulation during and after different patterns of imitation. Our main results showed that throughout anatomical imitation, significant time-course changes of iSP duration through the experiment were observed in both directions. iSP duration declined from the pre-imitation time point to the post-imitation time point and did not return to baseline after 30 min rest. We also observed significant iSP reduction from the right hemisphere to the left hemisphere during anatomical and specular imitation, compared with non-imitative movement. Our findings indicate that using anatomical imitation in action observation and execution therapy promotes functional recovery in neurorehabilitation by regulating IHI.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Correspondence:
| | - Shin-ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| | - Eizaburo Suzuki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.-i.I.); (E.S.)
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata 990-2212, Japan
| |
Collapse
|
18
|
Grooms DR, Criss CR, Simon JE, Haggerty AL, Wohl TR. Neural Correlates of Knee Extension and Flexion Force Control: A Kinetically-Instrumented Neuroimaging Study. Front Hum Neurosci 2021; 14:622637. [PMID: 33613205 PMCID: PMC7890238 DOI: 10.3389/fnhum.2020.622637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The regulation of muscle force is a vital aspect of sensorimotor control, requiring intricate neural processes. While neural activity associated with upper extremity force control has been documented, extrapolation to lower extremity force control is limited. Knowledge of how the brain regulates force control for knee extension and flexion may provide insights as to how pathology or intervention impacts central control of movement. Objectives: To develop and implement a neuroimaging-compatible force control paradigm for knee extension and flexion. Methods: A magnetic resonance imaging (MRI) safe load cell was used in a customized apparatus to quantify force (N) during neuroimaging (Philips Achieva 3T). Visual biofeedback and a target sinusoidal wave that fluctuated between 0 and 5 N was provided via an MRI-safe virtual reality display. Fifteen right leg dominant female participants (age = 20.3 ± 1.2 years, height = 1.6 ± 0.10 m, weight = 64.8 ± 6.4 kg) completed a knee extension and flexion force matching paradigm during neuroimaging. The force-matching error was calculated based on the difference between the visual target and actual performance. Brain activation patterns were calculated and associated with force-matching error and the difference between quadriceps and hamstring force-matching tasks were evaluated with a mixed-effects model (z > 3.1, p < 0.05, cluster corrected). Results: Knee extension and flexion force-matching tasks increased BOLD signal among cerebellar, sensorimotor, and visual-processing regions. Increased knee extension force-matching error was associated with greater right frontal cortex and left parietal cortex activity and reduced left lingual gyrus activity. Increased knee flexion force-matching error was associated with reduced left frontal and right parietal region activity. Knee flexion force control increased bilateral premotor, secondary somatosensory, and right anterior temporal activity relative to knee extension. The force-matching error was not statistically different between tasks. Conclusion: Lower extremity force control results in unique activation strategies depending on if engaging knee extension or flexion, with knee flexion requiring increased neural activity (BOLD signal) for the same level of force and no difference in relative error. These fMRI compatible force control paradigms allow precise behavioral quantification of motor performance concurrent with brain activity for lower extremity sensorimotor function and may serve as a method for future research to investigate how pathologies affect lower extremity neuromuscular function.
Collapse
Affiliation(s)
- Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States.,Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Cody R Criss
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Translational Biomedical Sciences Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Adam L Haggerty
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Grover Center, Athens, OH, United States.,Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Grover Center, Athens, OH, United States
| | - Timothy R Wohl
- Honors Tutorial College, Ohio University, Athens, OH, United States.,Division of Physical Therapy, School of Health and Rehabilitation Sciences, Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Force Steadiness during Submaximal Isometric Plantar and Dorsiflexion in Resistance Training: Experienced vs Non-experienced Individuals. CENTRAL EUROPEAN JOURNAL OF SPORT SCIENCES AND MEDICINE 2021. [DOI: 10.18276/cej.2021.2-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Hwang IS, Hu CL, Huang WM, Tsai YY, Chen YC. Potential Motor Benefits of Visual Feedback of Error Reduction for Older Adults. J Aging Phys Act 2020; 28:934-942. [PMID: 32702665 DOI: 10.1123/japa.2019-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 11/18/2022]
Abstract
This study investigated how visual feedback of virtual error reduction (ER) modified the visuomotor performance of older adults with limited attentional capacity. Error structures of young and older adults during birhythmic force tracking were contrasted when the visualized error size was exact or half of the actual size. As compared with full-size error feedback, ER feedback improved the force tracking symmetry of older adults, but undermined that of young adults. Extended Poincaré analysis revealed that young adults presented greater short-term error variability (mean value of κ-lagged SD1 of the error signal) with ER feedback, which led to a smaller mean value of κ-lagged SD1 of the error signal for older adults. The ER-related task improvement of the older adults was negatively correlated with the size of the tracking errors with real error feedback and positively correlated with ER-related increases in force spectral symmetry and decreases in the mean value of κ-lagged SD1 of the error signal. ER feedback could advance visuomotor tasks for older adults who perform worse with full-size visual feedback by the enhancement of self-efficacy and stabilization of negative internal feedback.
Collapse
|
21
|
Yu SH, Wu RM, Huang CY. Attentional Resource Associated With Visual Feedback on a Postural Dual Task in Parkinson's Disease. Neurorehabil Neural Repair 2020; 34:891-903. [PMID: 32830603 DOI: 10.1177/1545968320948071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Restricted attentional resource and central processing in patients with Parkinson's disease (PD) may reduce the benefit of visual feedback in a dual task. OBJECTIVES Using brain event-related potentials (ERPs), this study aims to investigate the neural mechanisms of posture visual feedback and supraposture visual feedback during performing of a posture-motor dual task. METHODS Eighteen patients with PD and 18 healthy controls stood on a mobile platform (postural task) and executed a manual force-matching task (suprapostural task) concurrently with provided visual feedback of platform movement (posture-feedback condition) or force output (force-feedback condition). The platform movement, force-matching performance, and ERPs (P1, N1, and P2 waves) were recorded. RESULTS Both PD and control groups had superior force accuracy in the force-feedback condition. Decreased postural sway by posture-feedback was observed in healthy controls but not in PD. Force-feedback led to a greater frontal area N1 peak in PD group but smaller N1 peaks in control group. In addition, force-feedback led to smaller P2 peaks of the frontal and sensorimotor areas among PD patients but greater P2 peaks of the sensorimotor and parietal-occipital areas among healthy controls. However, P1 modulations was present only in healthy controls. CONCLUSIONS Force-feedback had positive effect on force accuracy in both PD and healthy individuals; however, the beneficial effect of posture-feedback on posture balance is not observed in PD. These findings are the first to suggest that PD could recruit more attentional resources in dual-task preparation to enhance suprapostural accuracy and avoid degrading postural stability by supraposture visual feedback.
Collapse
Affiliation(s)
- Shu-Han Yu
- Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Ya Huang
- Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan.,School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Sunada Y, Magara J, Tsujimura T, Ono K, Inoue M. Endurance measurement of hyoid muscle activity and hyoid-laryngeal position during tongue lift movement. J Oral Rehabil 2020; 47:967-976. [PMID: 32350874 DOI: 10.1111/joor.12988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Tongue lift movement (TLM) is used as a therapy to improve tongue pressure against the hard palate for dysphagic patients. OBJECTIVE The present study aimed to characterize the time-dependent endurance changes in hyoid muscle activity and hyoid-laryngeal displacement during TLM in different ways. METHODS Sixteen young healthy volunteers were instructed to perform TLM at maximum effort (100%) against the anterior and posterior parts of the hard palate using a balloon-type tongue pressure instrument, followed by a 10-second recording during anterior 80% TLM, anterior 100% TLM, posterior 80% TLM and posterior 100% TLM with visual feedback. Electromyography (EMG) of suprahyoid (S-Hyo) and infrahyoid (I-Hyo) muscles and videofluorography were simultaneously recorded. To evaluate temporal changes, the recording period was divided into three substages: early, middle and late. Tongue pressure, integrated EMG (iEMG), power frequency of EMG burst and hyoid-laryngeal position were compared among the conditions (80% vs 100%, anterior vs posterior and early vs middle vs late). RESULTS Tongue pressure was stably maintained for 10 seconds in all conditions. S-Hyo iEMG and I-Hyo iEMG were significantly greater at 100% than at 80%, while no significant difference was observed between positions. S-Hyo iEMG and I-Hyo iEMG significantly increased at the late stage, while power frequency of EMG burst gradually decreased. Significant temporal changes in laryngeal elevation were observed only in posterior 100% TLM. CONCLUSION The current results suggested that isometric posterior TLM may be more useful compared with anterior TLM in clinical situations for dysphagic patients to elevate the hyolaryngeal complex.
Collapse
Affiliation(s)
- Yukako Sunada
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhiro Ono
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
23
|
Jayasinghe SAL, Ranganathan R. Effects of Short-Term Mental Imagery and Supplemental Visual Feedback on Muscle Coordination in a Myoelectric Task. J Mot Behav 2020; 53:59-71. [PMID: 32041488 DOI: 10.1080/00222895.2020.1723482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Changing muscle coordination patterns is a critical part of motor learning - yet there is a lack of simple, clinically feasible techniques to alter these patterns. Here, we investigated the effects of short-term mental imagery and supplemental visual feedback on muscle coordination using a myoelectric reaching task with complex mapping of arm and hand muscles to cursor position. Forty participants were divided into four groups, and practiced this task over 180 trials. During a short intervention period, the controls rested, the task- and muscle-imagery groups were given specific instructions meant to simplify the task, and the supplemental feedback group was provided extra visual information of muscle-to-cursor mapping. Results showed that there were no changes in task performance between groups. However, we found that in terms of muscle coordination, the supplemental visual feedback group showed the most efficient coordination. Furthermore, across all groups, individuals with greater efficiency and exploration showed better task performance at the end of practice. The results from this pilot study point to a greater need for understanding strategies for changing muscle coordination, which could be applicable in a rehabilitation setting.
Collapse
Affiliation(s)
| | - Rajiv Ranganathan
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA.,Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
24
|
Effects of mechanical assistance on muscle activity and motor performance during isometric elbow flexion. J Electromyogr Kinesiol 2019; 50:102380. [PMID: 31841884 DOI: 10.1016/j.jelekin.2019.102380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Mechanical assistance on joint movement is generally beneficial; however, its effects on cooperative performance and muscle activity needs to be further explored. This study examined how motor performance and muscle activity are altered when mechanical assistance is provided during isometric force control of ramp-down and hold phases. Thirteen right-handed participants (age: 24.7 ± 1.8 years) performed trajectory tracking tasks. Participants were asked to maintain the reference magnitude of 47 N (REF) during isometric elbow flexion. The force was released to a step-down magnitude of either 75% REF or 50% REF and maintained, with and without mechanical assistance. The ramp-down durations of force release were set to 0.5, 2.5, or 5.0 s. Throughout the experiment, we measured the following: (1) the force output using load cells to compute force variability and overshoot ratio; (2) peak perturbation on the elbow movement using an accelerometer; (3) the surface electromyography (sEMG) from biceps brachii and triceps brachii muscles; and (4) EMG oscillation from the biceps brachii muscle in the bandwidth of 15-45 Hz. Our results indicated that mechanical assistance, which involved greater peak perturbation, demonstrated lower force variability than non-assistance (p < 0.01), while EMG oscillation in the biceps brachii muscle from 15 to 45 Hz was increased (p < 0.05). These findings imply that if assistive force is provided during isometric force control, the central nervous system actively tries to stabilize motor performance by controlling specific motor unit activity in the agonist muscle.
Collapse
|
25
|
Letter M, Baraga MG, Best TM, Kaplan LD, Buskard ANL, Catena L, Eltoukhy M, Oh J, Strand K, Signorile J. Comparison of Neuromuscular Firing Patterns of the Superficial Quadriceps in Soft Tissue Quadriceps Tendon Versus Bone-Patellar Tendon-Bone ACL Autografts. Orthop J Sports Med 2019; 7:2325967119887674. [PMID: 31897410 PMCID: PMC6918040 DOI: 10.1177/2325967119887674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Soft tissue quadriceps tendon (QT) autografts are increasingly popular as a
primary graft choice for anterior cruciate ligament reconstruction (ACLR),
but no study has compared superficial quadriceps activity levels and leg
extension strength for QT versus bone–patellar tendon–bone (BTB)
autografts. Hypothesis: Harvesting the central portion of the QT will alter rectus femoris (RF)
firing patterns during maximum voluntary isometric contraction. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 34 patients (age range, 18-40 years) who underwent ACLR using a
BTB (n = 17) or QT (n = 17) autograft at a single institution participated
in this study. Participants, who had no neuromuscular injury or prior
surgery on either lower extremity, were at least 1 year after ACLR, and were
cleared for full activity. Postoperative rehabilitation protocols were
consistent across participants. Synchronized electromyography (EMG) and
isometric torque data were collected from participants in the seated
position with the hips flexed to 90° and the knee at 60° of flexion.
Participants were asked to extend their knees as quickly as possible and
perform maximum voluntary isometric contraction for 3 seconds. A practice
trial and 3 test trials were completed with 30-second rest intervals. Mixed
(2 graft × 2 limb) analyses of variance were used to examine differences in
average and peak torque values and RF/vastus lateralis (VL) and RF/vastus
medialis (VM) ratios. Lysholm and International Knee Documentation Committee
(IKDC) scores were compared between groups using unpaired t
tests. Results: Significantly lower values were seen for the operative compared with the
nonoperative extremity for average (P = .008; η2
= 0.201) and peak torque (P < .0001; η2 =
0.321), with no significant difference between graft types. Additionally, no
significant differences in RF/VL or RF/VM ratios between limbs or graft
types were observed. Conclusion: At 1 year after ACLR, QT and BTB autografts showed similar isometric strength
deficits, with no differences in quadriceps muscle EMG ratios seen between
the 2 graft types. The results support the use of a QT autograft for ACLR,
as its graft harvest does not adversely affect quadriceps firing patterns in
comparison with BTB graft harvest.
Collapse
Affiliation(s)
- Michael Letter
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA.,Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Michael G Baraga
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA
| | - Thomas M Best
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA
| | - Lee D Kaplan
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA
| | | | - Lauren Catena
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Moataz Eltoukhy
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA.,Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Joenghoon Oh
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Keri Strand
- Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA
| | - Joseph Signorile
- University of Miami Sports Medicine Institute, Coral Gables, Florida, USA.,Max Orovitz Laboratory, University of Miami, Coral Gables, Florida, USA.,Center for Cognitive Neuroscience and Aging, University of Miami, Miami, Florida, USA
| |
Collapse
|
26
|
Gopaul U, Laver D, Carey L, Matyas TA, van Vliet P, Callister R. Measures of maximal tactile pressures of a sustained grasp task using a TactArray device have satisfactory reliability and validity in healthy people. Somatosens Mot Res 2019; 36:249-261. [DOI: 10.1080/08990220.2019.1673721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Urvashy Gopaul
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
- School of Health Sciences, Faculty of Medicine and Health Sciences, University of Newcastle, Newcastle, Australia
| | - Derek Laver
- Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Leeanne Carey
- The Florey Institute of Neuroscience and Mental Health, Neurorehabilitation and Recovery Group, Parkville, Australia
| | - Thomas A. Matyas
- The Florey Institute of Neuroscience and Mental Health, Neurorehabilitation and Recovery Group, Parkville, Australia
| | - Paulette van Vliet
- School of Humanities and Social Science, Faculty of Education and Arts, University of Newcastle, Newcastle, Australia
| | - Robin Callister
- Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| |
Collapse
|
27
|
Choi J, Yeoh WL, Loh PY, Muraki S. Force and electromyography responses during isometric force release of different rates and step-down magnitudes. Hum Mov Sci 2019; 67:102516. [PMID: 31539754 DOI: 10.1016/j.humov.2019.102516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 11/26/2022]
Abstract
This study investigated motor responses of force release during isometric elbow flexion by comparing effects of different ramp durations and step-down magnitudes. Twelve right-handed participants (age: 23.1 ± 1.1) performed trajectory tracking tasks. Participants were instructed to release their force from the reference magnitude (REF; 40% of maximal voluntary contraction force) to a step-down magnitude of 67% REF or 33% REF and maintain the released magnitude. Force release was guided by ramp durations of either 1 s or 5 s. Electromyography of the biceps brachii and triceps brachii was performed during the experimental task, and the co-contraction ratio was evaluated. Force output was recorded to evaluate the parameters of motor performance, such as force variability and overshoot ratio. Although a longer ramp duration of 5 s decreased the force variability and overshoot ratio than did shorter ramp duration of 1 s, higher perceived exertion and co-contraction ratio were followed. Force variability was greater when force was released to the step-down magnitude of 33% REF than that when the magnitude was 67% REF, however, the overshoot ratio showed opposite results. This study provided evidence proving that motor control strategies adopted for force release were affected by both duration and step-down magnitude. In particular, it implies that different control strategies are required according to the level of step-down magnitude with a relatively short ramp duration.
Collapse
Affiliation(s)
- Jeewon Choi
- Department of Human Science, Graduate School of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan.
| | - Wen Liang Yeoh
- Department of Human Science, Graduate School of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| | - Ping Yeap Loh
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| | - Satoshi Muraki
- Department of Human Science, Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| |
Collapse
|
28
|
Chen YC, Shih CL, Lin YT, Hwang IS. The effect of visuospatial resolution on discharge variability among motor units and force-discharge relation. CHINESE J PHYSIOL 2019; 62:166-174. [PMID: 31535632 DOI: 10.4103/cjp.cjp_12_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although force steadiness varies with visuospatial information, accountable motor unit (MU) behaviors are not fully understood. This study investigated the modulation of MU discharges and force-discharge relation due to variations in the spatial resolution of visual feedback, with a particular focus on discharge variability among MUs. Fourteen young adults produced isometric force at 10% of maximal voluntary contraction (MVC) through index abduction, under the conditions of force trajectory displayed with low visual gain (LVG) and high visual gain (HVG). Together with smaller and more complex force fluctuations, HVG resulted in greater variabilities of the mean interspike interval and discharge irregularity among MUs than LVG did. Estimated via smoothening of a cumulative spike train of all MUs, global discharge rate was tuned to visual gain, with a more complex global discharge rate and a lower force-discharge relation in the HVG condition. These higher discharge variabilities were linked to larger variance of the common drive received by MUs for regulation of muscle force with higher visuospatial information. In summary, higher visuospatial information improves force steadiness with more complex force fluctuations, underlying joint effects of low-pass filter property of the musculotendon complex and central modulation of discharge variability among MUs.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, Chung Shan Medical University; Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Chia-Li Shih
- Department of Rehabilitation Medicine, Tainan Municipal An-Nan Hospital, Tainan, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung City, Taiwan
| | - Ing-Shiou Hwang
- Institute of Allied Health Sciences; Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
29
|
Marchini A, Pedroso W, Neto OP. Mixed Modal Training to Help Older Adults Maintain Postural Balance. J Chiropr Med 2019; 18:198-204. [PMID: 32874159 PMCID: PMC7452169 DOI: 10.1016/j.jcm.2019.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/28/2018] [Accepted: 01/16/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Older adults have poorer balance compared with younger adults, but exercise may slow this age-related loss. Although the best type of exercise to optimize balance gains remains unclear, it is likely that a training regimen incorporating several different types of exercise, termed mixed modality training (MMT) (popularized by CrossFit), would be effective. Accordingly, this study aims to assess whether regular MMT leads to improved balance in older adults. METHODS Ten trained young (28 ± 4 years, minimum of 1 year MMT) and 22 older (67 ± 6 years) adults participated in this study. Older adults were divided into 2 groups: trained (minimum of 1 year MMT) and untrained. An electronic baropodometer was used to assess baseline postural balance using the postural sway (both open and closed eyes) test. RESULTS Compared with untrained older adults, those who trained performed similarly to young trained adults in the postural sway test. In addition, with eyes closed, trained older adults demonstrated better center of pressure total displacement area than untrained older adults. CONCLUSION These data suggest that regular MMT can lead to a level of postural control in older adults similar to that observed in young adults. The favorable effects of MMT on postural control in older adults may be attributable to improvements in both muscle strength and proprioception.
Collapse
Affiliation(s)
- Amanda Marchini
- Arena235 Research Lab, Consultoria Esportiva, São Jose dos Campos, Sao Paulo, Brazil
| | - Wellington Pedroso
- Arena235 Research Lab, Consultoria Esportiva, São Jose dos Campos, Sao Paulo, Brazil
| | - Osmar Pinto Neto
- Department of Biomedical Engineering/CITÉ of Anhembi Morumbi University, São Jose dos Campos, Sao Paulo, Brazil
| |
Collapse
|
30
|
Sinusoidal vibrotactile stimulation differentially improves force steadiness depending on contraction intensity. Med Biol Eng Comput 2019; 57:1813-1822. [DOI: 10.1007/s11517-019-01999-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/29/2019] [Indexed: 01/25/2023]
|
31
|
Susilaradeya D, Xu W, Hall TM, Galán F, Alter K, Jackson A. Extrinsic and intrinsic dynamics in movement intermittency. eLife 2019; 8:e40145. [PMID: 30958267 PMCID: PMC6453565 DOI: 10.7554/elife.40145] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/07/2019] [Indexed: 11/29/2022] Open
Abstract
What determines how we move in the world? Motor neuroscience often focusses either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed in continuous tracking movements. Using spatiotemporal perturbations in humans, we demonstrate that apparently discrete submovements made 2-3 times per second reflect constructive interference between motor errors and continuous feedback corrections that are filtered by intrinsic circuitry in the motor system. Local field potentials in monkey motor cortex revealed characteristic signatures of a Kalman filter, giving rise to both low-frequency cortical cycles during movement, and delta oscillations during sleep. We interpret these results within the framework of optimal feedback control, and suggest that the intrinsic rhythmicity of motor cortical networks reflects an internal model of external dynamics, which is used for state estimation during feedback-guided movement. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Damar Susilaradeya
- Institute of Neuroscience, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Wei Xu
- Institute of Neuroscience, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Thomas M Hall
- Institute of Neuroscience, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Ferran Galán
- Institute of Neuroscience, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Kai Alter
- Institute of Neuroscience, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Andrew Jackson
- Institute of Neuroscience, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
32
|
Hwang IS, Hu CL, Yang ZR, Lin YT, Chen YC. Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms. Front Physiol 2019; 10:131. [PMID: 30842742 PMCID: PMC6391708 DOI: 10.3389/fphys.2019.00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
Although error amplification (EA) feedback has been shown to improve performance on visuomotor tasks, the challenge of EA is that it concurrently magnifies task-irrelevant information that may impair visuomotor control. The purpose of this study was to improve the force control in a static task by preclusion of high-oscillatory components in EA feedback that cannot be timely used for error correction by the visuomotor system. Along with motor unit behaviors and corticomuscular coherence, force fluctuations (Fc) were modeled with non-linear SDA to contrast the reliance of the feedback process and underlying neurophysiological mechanisms by using real feedback, EA, and low-frequency error amplification (LF-EA). During the static force task in the experiment, the EA feedback virtually potentiated the size of visual error, whereas the LF-EA did not channel high-frequency errors above 0.8 Hz into the amplification process. The results showed that task accuracy was greater with the LF-EA than with the real and EA feedback modes, and that LF-EA led to smaller and more complex Fc. LF-EA generally led to smaller SDA variables of Fc (critical time points, critical point of Fc, the short-term effective diffusion coefficient, and short-term exponent scaling) than did real feedback and EA. The use of LF-EA feedback increased the irregularity of the ISIs of MUs but decreased the RMS of the mean discharge rate, estimated with pooled MU spike trains. Beta-range EEG–EMG coherence spectra (13–35 Hz) in the LF-EA condition were the greatest among the three feedback conditions. In summary, amplification of low-frequency errors improves force control by shifting the relative significances of the feedforward and feedback processes. The functional benefit arises from the increase in the common descending drive to promote a stable state of MU discharges.
Collapse
Affiliation(s)
- Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zong-Ru Yang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
33
|
Furui A, Hayashi H, Tsuji T. A Scale Mixture-Based Stochastic Model of Surface EMG Signals With Variable Variances. IEEE Trans Biomed Eng 2019; 66:2780-2788. [PMID: 30703005 DOI: 10.1109/tbme.2019.2895683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Surface electromyogram (EMG) signals have typically been assumed to follow a Gaussian distribution. However, the presence of non-Gaussian signals associated with muscle activity has been reported in recent studies, and there is no general model of the distribution of EMG signals that can explain both non-Gaussian and Gaussian distributions within a unified scheme. METHODS In this paper, we describe the formulation of a non-Gaussian EMG model based on a scale mixture distribution. In the model, an EMG signal at a certain time follows a Gaussian distribution, and its variance is handled as a random variable that follows an inverse gamma distribution. Accordingly, the probability distribution of EMG signals is assumed to be a mixture of Gaussians with the same mean but different variances. The EMG variance distribution is estimated via marginal likelihood maximization. RESULTS Experiments involving nine participants revealed that the proposed model provides a better fit to recorded EMG signals than conventional EMG models. It was also shown that variance distribution parameters may reflect underlying motor unit activity. CONCLUSION This study proposed a scale mixture distribution-based stochastic EMG model capable of representing changes in non-Gaussianity associated with muscle activity. A series of experiments demonstrated the validity of the model and highlighted the relationship between the variance distribution and muscle force. SIGNIFICANCE The proposed model helps to clarify conventional wisdom regarding the probability distribution of surface EMG signals within a unified scheme.
Collapse
|
34
|
Kwon M, Christou EA. Visual information processing in older adults: reaction time and motor unit pool modulation. J Neurophysiol 2018; 120:2630-2639. [PMID: 30207861 DOI: 10.1152/jn.00161.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Presently, there is no evidence that magnification of visual feedback has motor implications beyond impairments in force control during a visuomotor task. We hypothesized that magnification of visual feedback would increase visual information processing, alter the muscle activation, and exacerbate the response time in older adults. To test this hypothesis, we examined whether magnification of visual feedback during a reaction time task alters the premotor time and the motor unit pool activation of older adults. Participants responded as fast as possible to a visual stimulus while they maintained a steady ankle dorsiflexion force (15% maximum) either with low-gain or high-gain visual feedback of force. We quantified the following: 1) response time and its components (premotor and motor time), 2) force variability, and 3) motor unit pool activity of the tibialis anterior muscle. Older adults exhibited longer premotor time and greater force variability than young adults. Only in older adults, magnification of visual feedback lengthened the premotor time and exacerbated force variability. The slower premotor time in older adults with high-gain visual feedback was associated with increased force variability and an altered modulation of the motor unit pool. In conclusion, our findings provide novel evidence that magnification of visual feedback also exacerbates premotor time during a reaction time task in older adults, which is correlated with force variability and an altered modulation of motor unit pool. Thus these findings suggest that visual information processing deficiencies in older adults could result in force control and reaction time impairments. NEW & NOTEWORTHY It is unknown whether magnification of visual feedback has motor implications beyond impairments in force control for older adults. We examined whether it impairs reaction time and motor unit pool activation. The findings provide novel evidence that magnification of visual feedback exacerbates reaction time by lengthening premotor time, which implicates time for information processing in older adults, which is correlated with force variability and an altered modulation of motor unit pool.
Collapse
Affiliation(s)
- MinHyuk Kwon
- Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida.,Exercise Science Program, Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida.,Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
35
|
A Novel and Safe Approach to Simulate Cutting Movements Using Ground Reaction Forces. SENSORS 2018; 18:s18082631. [PMID: 30103484 PMCID: PMC6111832 DOI: 10.3390/s18082631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/05/2022]
Abstract
Control of shear ground reaction forces (sGRF) is important in performing running and cutting tasks as poor sGRF control has implications for those with knee injuries, such as anterior cruciate ligament (ACL) ruptures. The goal of this study was to develop a novel and safe task to evaluate control or accurate modulation of shear ground reaction forces related to those generated during cutting. Our approach utilized a force control task using real-time visual feedback of a subject’s force production and evaluated control capabilities through accuracy and divergence measurements. Ten healthy recreational athletes completed the force control task while force control via accuracy measures and divergence calculations was investigated. Participants were able to accurately control sGRF in multiple directions based on error measurements. Forces generated during the task were equal to or greater than those measured during a number of functional activities. We found no significant difference in the divergence of the force profiles using the Lyapunov Exponent of the sGRF trajectories. Participants using our approach produced high accuracy and low divergence force profiles and functional force magnitudes. Moving forward, we will utilize this task in at-risk populations who are unable to complete a cutting maneuver in early stages of rehabilitation, such as ACL deficient and newly reconstructed individuals, allowing insight into force control not obtainable otherwise.
Collapse
|
36
|
Luo J, Sun W, Wu Y, Liu H, Wang X, Yan T, Song R. Characterization of the coordination of agonist and antagonist muscles among stroke patients, healthy late middle-aged and young controls using a myoelectric-controlled interface. J Neural Eng 2018; 15:056015. [PMID: 30010089 DOI: 10.1088/1741-2552/aad387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Kim C, Yacoubi B, Christou EA. Speed but not amplitude of visual feedback exacerbates force variability in older adults. Exp Brain Res 2018; 236:2563-2571. [PMID: 29936533 DOI: 10.1007/s00221-018-5317-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 01/05/2023]
Abstract
Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.
Collapse
Affiliation(s)
- Changki Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Basma Yacoubi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA. .,Department of Physical Therapy, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
38
|
Blakemore R, MacAskill' M, Shoorangiz R, Anderson T. Stress-evoking emotional stimuli exaggerate deficits in motor function in Parkinson's disease. Neuropsychologia 2018. [DOI: 10.1016/j.neuropsychologia.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Roh J, Lee SW, Wilger KD. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm. J Mot Behav 2018; 51:83-99. [PMID: 29384438 DOI: 10.1080/00222895.2017.1423020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.
Collapse
Affiliation(s)
- Jinsook Roh
- a Department of Kinesiology , Temple University , Philadelphia , PA , USA.,b Neuromotor Science Program, Temple University , Philadelphia , PA , USA.,c Department of Physical Medicine and Rehabilitation , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Sang Wook Lee
- d Department of Biomedical Engineering , Catholic University of America , Washington, DC , USA.,e Center for Applied Biomechanics and Rehabilitation Research, MedStar National Rehabilitation Hospital , Washington, DC , USA.,f Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institute of Health , Bethesda , MD , USA
| | - Kevin D Wilger
- a Department of Kinesiology , Temple University , Philadelphia , PA , USA.,b Neuromotor Science Program, Temple University , Philadelphia , PA , USA
| |
Collapse
|
40
|
Chen YC, Lin YT, Chang GC, Hwang IS. Perceptual influences of error size on voluntary force control during a compound sinusoidal force task. Hum Mov Sci 2017; 56:46-53. [PMID: 29101823 DOI: 10.1016/j.humov.2017.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 11/27/2022]
Abstract
Visual feedback that provides error information is critical to task quality and motor adjustments. This study investigated how the size of perceived errors via visual feedback affected rate control and force gradation strategy of a designate force task. Fourteen young adults coupled force exertions to a compound sinusoidal signal (0.2 Hz and 0.5 Hz) that fluctuated around a mean level of 30% of maximal voluntary contraction, when the size of execution errors were differently scaled with the error amplification factors. In the low (LAF) and high (HAF) amplification factor conditions, the execution errors in the visual display half and double of the real errors, respectively. The visualized error was the real errors in the medium amplification factor (MAF) condition. In addition to a phase-lead of force output, the LAF condition that virtually reduced the size of error feedback associated with a poorer task accuracy than the MAF and HAF conditions. Virtual increase in error size of visual feedback selectively suppressed the fast target force at 0.5 Hz. In addition, complexity and high-frequency components (>0.75 Hz) of force outputs multiplied progressively with increasing error size. Error-enhancing feedback suppressed fast target force, accentuating the use of error information to tune force output, whereas error-reducing feedback enhanced fast target force in favor of predictive force control.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, Chung Shan Medical University, Taichung City 40201, Taiwan; Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung City 41354, Taiwan
| | - Gwo-Ching Chang
- Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan.
| |
Collapse
|
41
|
Chow JW, Stokic DS. Improvements in force variability and structure from vision- to memory-guided submaximal isometric knee extension in subacute stroke. J Appl Physiol (1985) 2017; 124:592-603. [PMID: 29097632 DOI: 10.1152/japplphysiol.00717.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined changes in variability, accuracy, frequency composition, and temporal regularity of force signal from vision-guided to memory-guided force-matching tasks in 17 subacute stroke and 17 age-matched healthy subjects. Subjects performed a unilateral isometric knee extension at 10, 30, and 50% of peak torque [maximum voluntary contraction (MVC)] for 10 s (3 trials each). Visual feedback was removed at the 5-s mark in the first two trials (feedback withdrawal), and 30 s after the second trial the subjects were asked to produce the target force without visual feedback (force recall). The coefficient of variation and constant error were used to quantify force variability and accuracy. Force structure was assessed by the median frequency, relative spectral power in the 0-3-Hz band, and sample entropy of the force signal. At 10% MVC, the force signal in subacute stroke subjects became steadier, more broadband, and temporally more irregular after the withdrawal of visual feedback, with progressively larger error at higher contraction levels. Also, the lack of modulation in the spectral frequency at higher force levels with visual feedback persisted in both the withdrawal and recall conditions. In terms of changes from the visual feedback condition, the feedback withdrawal produced a greater difference between the paretic, nonparetic, and control legs than the force recall. The overall results suggest improvements in force variability and structure from vision- to memory-guided force control in subacute stroke despite decreased accuracy. Different sensory-motor memory retrieval mechanisms seem to be involved in the feedback withdrawal and force recall conditions, which deserves further study. NEW & NOTEWORTHY We demonstrate that in the subacute phase of stroke, force signals during a low-level isometric knee extension become steadier, more broadband in spectral power, and more complex after removal of visual feedback. Larger force errors are produced when recalling target forces than immediately after withdrawing visual feedback. Although visual feedback offers better accuracy, it worsens force variability and structure in subacute stroke. The feedback withdrawal and force recall conditions seem to involve different memory retrieval mechanisms.
Collapse
Affiliation(s)
- John W Chow
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center , Jackson, Mississippi
| |
Collapse
|
42
|
Cruz-Montecinos C, Maas H, Pellegrin-Friedmann C, Tapia C. The importance of cutaneous feedback on neural activation during maximal voluntary contraction. Eur J Appl Physiol 2017; 117:2469-2477. [PMID: 29018954 DOI: 10.1007/s00421-017-3734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to investigate the importance of cutaneous feedback on neural activation during maximal voluntary contraction (MVC) of the ankle plantar flexors. METHODS The effects of cutaneous plantar anaesthesia were assessed in 15 subjects and compared to 15 controls, using a one-day pre/post-repeated measures design. Cutaneous plantar anaesthesia was induced by lidocaine injection at the centre of forefoot, lateral midfoot, and heel. Each subject performed isometric MVCs of the ankle plantar flexors. During each isometric ramp contraction, the following variables were assessed: maximal isometric torque; surface electromyography (EMG) activity of the medial gastrocnemius (MG) and tibialis anterior (TA) muscles; and co-contraction index (CCI) between the MG and TA. RESULTS For ankle torque, two-way ANOVA showed no significant interaction between the pre/post-measurements × group (p = 0.166). However, MG activity presented significant interactions between the pre/post-measurements × group (p = 0.014). Post hoc comparisons indicated a decrease of MG activity in the experimental group, from 85.9 ± 11.9 to 62.7 ± 30.8% (p = 0.016). Additionally, the post-anaesthesia MG activity of the experimental group differed statistically with pre- and post-MG activity of the control group (p = 0.027 and p = 0.008, respectively). For TA activity and CCI, two-way ANOVA detected no significant interactions between the pre/post-measurements × group (p = 0.605 and p = 0.332, respectively). CONCLUSION Our results indicate that during MVC, cutaneous feedback modulates neural activity to MG muscle, without changing the extent of MG-TA co-contraction.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Programa de Magister en Kinesiología y Biomecánica Clínica, Departamento de Kinesiología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile.,Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile.,Laboratory of Biomechanics and Kinesiology, San José Hospital, Santiago, Chile
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | | | - Claudio Tapia
- Facultad de Ciencias de la Rehabilitacion, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago, Chile. .,Department of Electrical Engineering, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
43
|
Hu X, Ludvig D, Murray WM, Perreault EJ. Using Feedback Control to Reduce Limb Impedance during Forceful Contractions. Sci Rep 2017; 7:9317. [PMID: 28839242 PMCID: PMC5571169 DOI: 10.1038/s41598-017-10181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
Little is known about the ability to precisely regulate forces or torques during unexpected disturbances, as required during numerous tasks. Effective force regulation implies small changes in force responding to externally imposed displacements, a behavior characterized by low limb impedance. This task can be challenging, since the intrinsic impedance of muscles increases when generating volitional forces. The purpose of this study was to examine the ability to voluntarily reduce limb impedance during force regulation, and the neural mechanisms associated with that ability. Small displacement perturbations were used to quantify elbow impedance during the exertion of volitional elbow torques from 0% to 20% of maximum voluntary contraction. Subjects were instructed either to not intervene with the imposed perturbations or to explicitly intervene so as to minimize the influence of the perturbations on the elbow torque. Our results demonstrated that individuals can reduce the low frequency components of elbow impedance by 35%. Electromyographic analysis suggested that this behavior is mediated by volitional and possibly long-latency reflex pathways with delays of at least 120 ms. These results provide a context for understanding how feedback altered by aging or injuries may influence the ability to regulate forces precisely.
Collapse
Affiliation(s)
- Xiao Hu
- Departement of Biomedical Engineering, Northwestern University, Evanston, IL, USA. .,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.
| | - Daniel Ludvig
- Departement of Biomedical Engineering, Northwestern University, Evanston, IL, USA.,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.,Departement of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Wendy M Murray
- Departement of Biomedical Engineering, Northwestern University, Evanston, IL, USA.,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.,Departement of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA.,Research Service, Edward Hines, Jr. VA Hospital, Hines, IL, USA
| | - Eric J Perreault
- Departement of Biomedical Engineering, Northwestern University, Evanston, IL, USA.,Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.,Departement of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| |
Collapse
|
44
|
Keenan KG, Huddleston WE, Ernest BE. Altered visual strategies and attention are related to increased force fluctuations during a pinch grip task in older adults. J Neurophysiol 2017; 118:2537-2548. [PMID: 28701549 DOI: 10.1152/jn.00928.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/19/2017] [Accepted: 07/08/2017] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine the visual strategies used by older adults during a pinch grip task and to assess the relations between visual strategy, deficits in attention, and increased force fluctuations in older adults. Eye movements of 23 older adults (>65 yr) were monitored during a low-force pinch grip task while subjects viewed three common visual feedback displays. Performance on the Grooved Pegboard test and an attention task (which required no concurrent hand movements) was also measured. Visual strategies varied across subjects and depended on the type of visual feedback provided to the subjects. First, while viewing a high-gain compensatory feedback display (horizontal bar moving up and down with force), 9 of 23 older subjects adopted a strategy of performing saccades during the task, which resulted in 2.5 times greater force fluctuations in those that exhibited saccades compared with those who maintained fixation near the target line. Second, during pursuit feedback displays (force trace moving left to right across screen and up and down with force), all subjects exhibited multiple saccades, and increased force fluctuations were associated (rs = 0.6; P = 0.002) with fewer saccades during the pursuit task. Also, decreased low-frequency (<4 Hz) force fluctuations and Grooved Pegboard times were significantly related (P = 0.033 and P = 0.005, respectively) with higher (i.e., better) attention z scores. Comparison of these results with our previously published results in young subjects indicates that saccadic eye movements and attention are related to force control in older adults.NEW & NOTEWORTHY The significant contributions of the study are the addition of eye movement data and an attention task to explain differences in hand motor control across different visual displays in older adults. Older participants used different visual strategies across varying feedback displays, and saccadic eye movements were related with motor performance. In addition, those older individuals with deficits in attention had impaired motor performance on two different hand motor control tasks, including the Grooved Pegboard test.
Collapse
Affiliation(s)
- Kevin G Keenan
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and .,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Wendy E Huddleston
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and.,Center for Aging and Translational Research, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Bradley E Ernest
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; and
| |
Collapse
|
45
|
Wang D, Jiao J, Yang G, Zhang Y. Force Maintenance Accuracy Using a Tool: Effects of Magnitude and Feedback. IEEE TRANSACTIONS ON HAPTICS 2016; 9:432-436. [PMID: 26930693 DOI: 10.1109/toh.2016.2535216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to precisely produce a force via a hand-held tool is crucial in fine manipulations. In this paper, we study the error in maintaining a target force ranging from 0.5 to 5 N under two concurrent feedback conditions: pure haptic feedback (H), and visual plus haptic feedback (V + H). The results show that absolute error (AE) increases along with the increasing force magnitudes under both feedback conditions. For target forces ranging from 1.5 to 5 N, the relative error (RE) is approximately constant under both feedback conditions, while the RE significantly increases for the small target forces of 0.5 and 1 N. The effect of force magnitude on the coefficient of variation (CoV) is not significant for target forces ranging from 1.5 to 5 N. For both the RE and the CoV, the values under the H condition are significantly larger than those under the V + H condition. The effect of manipulation mode (i.e., a hand-held tool or a fingertip) on force maintenance accuracy is complex, i.e., its effect on RE is not significant while its effect on CoV is significant. Only for the magnitude of 0.5 N, the RE of using the tool was significantly greater than that of using the fingertip under both feedback conditions. For both the RE and the CoV, no interaction effect exists between manipulation mode, force magnitude and feedback condition.
Collapse
|
46
|
Bardal EM, Roeleveld K, Ihlen E, Mork PJ. Micro movements of the upper limb in fibromyalgia: The relation to proprioceptive accuracy and visual feedback. J Electromyogr Kinesiol 2015; 26:1-7. [PMID: 26790141 DOI: 10.1016/j.jelekin.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to explore the role of visual and proprioceptive feedback in upper limb posture control in fibromyalgia (FM) and to assess the coherence between acceleration measurements of upper limb micro movements and surface electromyography (sEMG) of shoulder muscle activity (upper trapezius and deltoid). Twenty-five female FM patients and 25 age- and sex-matched healthy controls (HCs) performed three precision motor tasks: (1) maintain a steady shoulder abduction angle of 45° while receiving visual feedback about upper arm position and supporting external loads (0.5, 1, or 2kg), (2) maintain the same shoulder abduction angle without visual feedback (eyes closed) and no external loading, and (3) a joint position sense test (i.e., assessment of proprioceptive accuracy). Patients had more extensive increase in movement variance than HCs when visual feedback was removed (P<0.03). Proprioceptive accuracy was related to movement variance in HCs (R⩾0.59, P⩽0.002), but not in patients (R⩽0.25, P⩾0.24). There was no difference between patients and HCs in coherence between sEMG and acceleration data. These results may indicate that FM patients are more dependent on visual feedback and less reliant on proprioceptive information for upper limb posture control compared to HCs.
Collapse
Affiliation(s)
- Ellen Marie Bardal
- Department of Neuroscience, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Karin Roeleveld
- Department of Neuroscience, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Espen Ihlen
- Department of Neuroscience, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Paul Jarle Mork
- Department of Public Health and General Practice, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
47
|
Hu X, Murray WM, Perreault EJ. Feedback compensation of intrinsic muscle properties during torque regulation tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:5646-9. [PMID: 24111018 DOI: 10.1109/embc.2013.6610831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many functional tasks require regulating appropriate forces or torques even under unpredictable disturbances. However, how this regulation can be achieved remains poorly understood. Limb impedance describes the relationship between externally imposed displacements to the limb and the changes in force or torque generated in response. Low limb impedance is preferred during torque regulation tasks. However, low-frequency impedance increases with muscle activation, which is counterproductive to torque regulation. The purpose of this study was to quantify the ability to voluntarily reduce limb impedance during torque regulation tasks, and to assess if the observed performance is near optimal given the challenges posed by activation-dependent muscle properties and time delays in the neuromuscular system. By examining elbow impedance measured in experiments and predicted by a biomechanical model with an optimal controller, our results demonstrated that individuals can reduce the low-frequency components (below 1 Hz) of elbow impedance during forceful contractions, and that this performance is similar to those predicted by an optimal feedback controller. These findings suggest that neural feedback can compensate for intrinsic muscle properties in a near-optimal manner, thereby allowing torque to be regulated at frequencies below ~ 1 Hz.
Collapse
|
48
|
Onushko T, Schmit BD, Hyngstrom A. The Effect of Antagonist Muscle Sensory Input on Force Regulation. PLoS One 2015; 10:e0133561. [PMID: 26186590 PMCID: PMC4506057 DOI: 10.1371/journal.pone.0133561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/27/2015] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years), healthy subjects performed constant isometric knee flexion contractions (agonist) at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback) during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%), subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40%) between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical) are likely involved.
Collapse
Affiliation(s)
- Tanya Onushko
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Allison Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
49
|
Ao D, Song R, Tong KY. Sensorimotor control of tracking movements at various speeds for stroke patients as well as age-matched and young healthy subjects. PLoS One 2015; 10:e0128328. [PMID: 26030289 PMCID: PMC4452214 DOI: 10.1371/journal.pone.0128328] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/26/2015] [Indexed: 11/30/2022] Open
Abstract
There are aging- and stroke-induced changes on sensorimotor control in daily activities, but their mechanisms have not been well investigated. This study explored speed-, aging-, and stroke-induced changes on sensorimotor control. Eleven stroke patients (affected sides and unaffected sides) and 20 control subjects (10 young and 10 age-matched individuals) were enrolled to perform elbow tracking tasks using sinusoidal trajectories, which included 6 target speeds (15.7, 31.4, 47.1, 62.8, 78.5, and 94.2 deg/s). The actual elbow angle was recorded and displayed on a screen as visual feedback, and three indicators, the root mean square error (RMSE), normalized integrated jerk (NIJ) and integral of the power spectrum density of normalized speed (IPNS), were used to investigate the strategy of sensorimotor control. Both NIJ and IPNS had significant differences among the four groups (P<0.01), and the values were ranked in the following order: young controls < age-matched controls
Collapse
Affiliation(s)
- Di Ao
- School of Engineering, Sun Yat-sen University, Guangzhou, Guang Dong, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of GuangDong province, Guangzhou, Guang Dong, P. R. China
| | - Rong Song
- School of Engineering, Sun Yat-sen University, Guangzhou, Guang Dong, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instrument of GuangDong province, Guangzhou, Guang Dong, P. R. China
| | - Kai-yu Tong
- Division of Biomedical Engineering, Department of Electronic Engineering, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Locks F, Santos HHD, Carvalho LC, Stolt LROG, Ferreira JJDA. Neural adaptations in isometric contractions with EMG and force biofeedback. MOTRIZ: REVISTA DE EDUCACAO FISICA 2015. [DOI: 10.1590/s1980-65742015000100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the quadriceps femoris neural adaptations during isometric contractions using force and electromyogram (EMG) signals as visual biofeedback. Forty-two participants were randomly assigned to three groups: EMG group, tested with EMG biofeedback; Force group, tested with force biofeedback; and Control group, tested without biofeedback. Evaluations were performed pre (baseline) and post-tests to determine the maximum force and EMG amplitude during maximal voluntary isometric contraction (MVIC). The tests consisted of series of MVICs in which the participants were encouraged to surpass the force or EMG thresholds determined at baseline. The vastus lateralis EMG amplitude and knee extensor force increased significantly in all groups when compared the baseline and post-test evaluations values (p < .05). EMG percentage gain was significantly different between Force and Control groups (p < .01), while force percentage gain was not different between groups. Force biofeedback was more effective in producing neural adaptations.
Collapse
|