1
|
Fujiwara M, Tian L, Le PT, DeMambro VE, Becker KA, Rosen CJ, Guntur AR. The mitophagy receptor Bcl-2-like protein 13 stimulates adipogenesis by regulating mitochondrial oxidative phosphorylation and apoptosis in mice. J Biol Chem 2019; 294:12683-12694. [PMID: 31266807 DOI: 10.1074/jbc.ra119.008630] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Metabolic programming of bone marrow stromal cells (BMSCs) could influence the function of progenitor osteoblasts or adipocytes and hence determine skeletal phenotypes. Adipocytes predominantly utilize oxidative phosphorylation, whereas osteoblasts use glycolysis to meet ATP demand. Here, we compared progenitor differentiation from the marrow of two inbred mouse strains, C3H/HeJ (C3H) and C57BL6J (B6). These strains differ in both skeletal mass and bone marrow adiposity. We hypothesized that genetic regulation of metabolic programs controls skeletal stem cell fate. Our experiments identified Bcl-2-like protein 13 (Bcl2l13), a mitochondrial mitophagy receptor, as being critical for adipogenic differentiation. We also found that Bcl2l13 is differentially expressed in the two mouse strains, with C3H adipocyte progenitor differentiation being accompanied by a >2-fold increase in Bcl2l13 levels relative to B6 marrow adipocytes. Bcl2l13 expression also increased during adipogenic differentiation in mouse ear mesenchymal stem cells (eMSCs) and the murine preadipocyte cell line 3T3-L1. The higher Bcl2l13 expression correlated with increased mitochondrial fusion and biogenesis. Importantly, Bcl2l13 knockdown significantly impaired adipocyte differentiation in both 3T3-L1 cells and eMSCs. Mechanistically, Bcl2l13 knockdown reprogrammed cells to rely more on glycolysis to meet ATP demand in the face of impaired oxidative phosphorylation. Bcl2l13 knockdown in eMSCs increased mitophagy. Moreover, Bcl2l13 prevented apoptosis during adipogenesis. Our findings indicate that the mitochondrial receptor Bcl2l13 promotes adipogenesis by increasing oxidative phosphorylation, suppressing apoptosis, and providing mitochondrial quality control through mitophagy. We conclude that genetic programming of metabolism may be important for lineage determination and cell function within the bone marrow.
Collapse
Affiliation(s)
- Makoto Fujiwara
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Li Tian
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Victoria E DeMambro
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Kathleen A Becker
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074.,Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
2
|
Herrera PK, Zambolin AP, Fernandes MDS, Cestari TM, Iano FG, Zambuzzi WF, Buzalaf MAR, Oliveira RCD. Fluoride affects bone repair differently in mice models with distinct bone densities. J Trace Elem Med Biol 2017; 39:129-134. [PMID: 27908404 DOI: 10.1016/j.jtemb.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
We grouped mice [strains: C57BL/6J (n=32) and C3H/HeJ (n=32)] to address the influence of bone density on fluoride's (F's) biological effects. These animals received low-fluoride food and water containing 0 (control group) or 50ppm of F for up to 28days. The upper left central incisor was extracted, and the left maxilla was collected at 7, 14, 21, and 28days for histological and histomorphometric analysis to estimate bone neoformation. Our results showed bone neoformation in all of the evaluated groups, with the presence of bone islets invading the center of the alveoli when replacing the existing connective tissue. Curiously, this biological phenomenon was more evident in the C57BL/6J strain. The histomorphometric analysis confirmed the histological findings in relation to the amount of new bone tissue and showed a decrease in C3H/HeJ mice (control group). Altogether, our results showed differential effects of fluoride bone metabolism, confirming a genetic component in susceptibility to the effects of fluoride.
Collapse
Affiliation(s)
- Paula Kennerly Herrera
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Andressa Pelissari Zambolin
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Mileni da Silva Fernandes
- Department of Genetics and Evolution, Center of Biological Sciences and Health, Federal University of São Carlos, Washington Luis, km 235, 13560-970, São Carlos, São Paulo, Brazil
| | - Tânia Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Flávia Godoy Iano
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Willian Fernando Zambuzzi
- Laboratory for Bioassays and Cellular Dynamics, Department of Chemistry and Biochemistry, Bioscience Institute, São Paulo State University, Rubião Junior S/N, 18618-970, Botucatu, São Paulo, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|
3
|
Rendina-Ruedy E, Graef JL, Davis MR, Hembree KD, Gimble JM, Clarke SL, Lucas EA, Smith BJ. Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance. J Bone Miner Metab 2016; 34:380-94. [PMID: 26058493 DOI: 10.1007/s00774-015-0685-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/09/2015] [Indexed: 12/24/2022]
Abstract
Skeletal fractures are considered a chronic complication of type 2 diabetes mellitus (T2DM), but the etiology of compromised bone quality that develops over time remains uncertain. This study investigated the concurrent alterations in metabolic and skeletal changes in two mouse strains, a responsive (C57BL/6) and a relatively resistant (C3H/HeJ) strain, to high-fat diet-induced glucose intolerance. Four-week-old male C57BL/6 and C3H/HeJ mice were randomized to a control (Con = 10 % kcal fat) or high-fat (HF = 60 % kcal fat) diet for 2, 8, or 16 weeks. Metabolic changes, including blood glucose, plasma insulin and leptin, and glucose tolerance were monitored over time in conjunction with alterations in bone structure and turn over. Elevated fasting glucose occurred in both the C57BL/6 and C3H/HeJ strains on the HF diet at 2 and 8 weeks, but only in the C57BL/6 strain at 16 weeks. Both strains on the HF diet demonstrated impaired glucose tolerance at each time point. The C57BL/6 mice on the HF diet exhibited lower whole-body bone mineral density (BMD) by 8 and 16 weeks, but the C3H/HeJ strain had no evidence of bone loss until 16 weeks. Analyses of bone microarchitecture revealed that trabecular bone accrual in the distal femur metaphysis was attenuated in the C57BL/6 mice on the HF diet at 8 and 16 weeks. In contrast, the C3H/HeJ mice were protected from the deleterious effects of the HF diet on trabecular bone. Alterations in gene expression from the femur revealed that several toll-like receptor (TLR)-4 targets (Atf4, Socs3, and Tlr4) were regulated by the HF diet in the C57BL/6 strain, but not in the C3H/HeJ strain. Structural changes observed only in the C57BL/6 mice were accompanied with a decrease in osteoblastogenesis after 8 and 16 weeks on the HF diet, suggesting a TLR-4-mediated mechanism in the suppression of bone formation. Both the C57BL/6 and C3H/HeJ mice demonstrated an increase in osteoclastogenesis after 8 weeks on the HF diet; however, bone turnover was decreased in the C57BL/6 with prolonged hyperglycemia. Further investigation is needed to understand how hyperglycemia and hyperinsulinemia suppress bone turnover in the context of T2DM and the role of TLR-4 in this response.
Collapse
Affiliation(s)
- Elizabeth Rendina-Ruedy
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jennifer L Graef
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - McKale R Davis
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kelsey D Hembree
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, HSci 420 Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
4
|
An Unbalanced Rearrangement of Chromosomes 4:20 is Associated with Childhood Osteoporosis and Reduced Caspase-3 Levels. J Pediatr Genet 2016; 5:167-73. [PMID: 27617159 DOI: 10.1055/s-0036-1584359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/26/2015] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate the association of a chromosome 4:20 imbalance with osteoporosis in three related children. Bone biochemistry, bone turnover markers, and dual-energy X-ray absorptiometry (DXA) scanning were performed in all three cases and bone biopsy and histomorphometry in one. The chromosome imbalance was delineated by array comparative genomic hybridization (aCGH) and analyzed for candidate genes. A potential candidate gene within the deleted region is caspase-3, previously linked to low bone mineral density (BMD) in heterozygous mice thus caspase-3 activity was measured in cases and controls. Routine bone biochemistry and markers of bone turnover did not reveal any abnormality. DXA showed reduced total and lumbar spine bone mineral content. aCGH showed an 8 megabase (Mb) deletion of terminal chromosome 4q incorporating a region previously linked to low BMD and a 15 Mb duplication of terminal chromosome 20p. Bone biopsy showed a high bone turnover state, trabecularisation of cortical bone and numerous small osteoclasts coupled with normal bone formation. Basal serum caspase-3 activity was lower in cases compared with controls. We conclude that the early-onset osteoporosis with low basal levels of caspase-3 and abnormal osteoclasts is a feature of this chromosomal translocation. Further investigation of the role of the deleted and duplicated genes and especially caspase-3 is required.
Collapse
|
5
|
Li B, Sankaran JS, Judex S. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing. PLoS One 2016; 11:e0156222. [PMID: 27223115 PMCID: PMC4880346 DOI: 10.1371/journal.pone.0156222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Genetic make-up strongly influences the skeleton’s susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H) mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12) or served as normal baseline controls (BC, n = 10) or age-matched controls (AC, n = 12). In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS) in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC) comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing—in contrast to the insignificant response previously demonstrated in female young adult C3H mice. Thus, the attributed low sensitivity of the C3H mouse strain to the loss of mechanical signals is not apparent at a young age and this trait therefore does not reflect a genetic regulation throughout the life span of this strain. These results highlight the significance of age in modulating the contribution of genetics in orchestrating bone’s response to unloading and that the skeletal unresponsiveness of young adult C3H mice to the loss of weight bearing is not genetically hard-wired.
Collapse
Affiliation(s)
- Bing Li
- Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Jeyantt Srinivas Sankaran
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Moran MM, Virdi AS, Sena K, Mazzone SR, McNulty MA, Sumner DR. Intramembranous bone regeneration differs among common inbred mouse strains following marrow ablation. J Orthop Res 2015; 33:1374-81. [PMID: 25808034 DOI: 10.1002/jor.22901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
Abstract
Various intact and post-injury bone phenotypes are heritable traits. In this study, we sought to determine if intramembranous bone regeneration following marrow ablation differed among common inbred mouse strains and to identify how early the differences appear. We found a ∼four-fold difference in the regenerated bone volume 21 days after marrow ablation in females from four inbred mouse strains: FVB/N (15.7 ± 8.1%, mean and standard deviation), C3H/He (15.5 ± 4.2%), C57BL/6 (12.2 ± 5.2%), and BALB/c (4.0 ± 4.4%); with BALB/c different from FVB/N (p = 0.007) and C3H/He (p = 0.002). A second experiment showed that FVB/N compared to BALB/c mice had more regenerated bone 7 and 14 days after ablation (p < 0.001), while at 21 days FVB/N mice had a greater fraction of mineralizing surface (p = 0.008) without a difference in mineral apposition rate. Thus, differences among strains are evident early during intramembranous bone regeneration following marrow ablation and appear to be associated with differences in osteogenic cell recruitment, but not osteoblast activity. The amount of regenerating bone was not correlated with other heritable traits such as the intact bone phenotype or soft tissue wound healing, suggesting that there may be independent genetic pathways for these traits.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Amarjit S Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Kotaro Sena
- Department of Periodontology, Kagoshima University, Kagoshima, Japan
| | - Steven R Mazzone
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| | - Margaret A McNulty
- Department Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge
| | - Dale R Sumner
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago
| |
Collapse
|
7
|
Li S, Meyer NP, Quarto N, Longaker MT. Integration of multiple signaling regulates through apoptosis the differential osteogenic potential of neural crest-derived and mesoderm-derived Osteoblasts. PLoS One 2013; 8:e58610. [PMID: 23536803 PMCID: PMC3607600 DOI: 10.1371/journal.pone.0058610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022] Open
Abstract
Neural crest-derived (FOb) and mesoderm-derived (POb) calvarial osteoblasts are characterized by distinct differences in their osteogenic potential. We have previously demonstrated that enhanced activation of endogenous FGF and Wnt signaling confers greater osteogenic potential to FOb. Apoptosis, a key player in bone formation, is the main focus of this study. In the current work, we have investigated the apoptotic activity of FOb and POb cells during differentiation. We found that lower apoptosis, as measured by caspase-3 activity is a major feature of neural crest-derived osteoblast which also have higher osteogenic capacity. Further investigation indicated TGF-β signaling as main positive regulator of apoptosis in these two populations of calvarial osteoblasts, while BMP and canonical Wnt signaling negatively regulate the process. By either inducing or inhibiting these signaling pathways we could modulate apoptotic events and improve the osteogenic potential of POb. Taken together, our findings demonstrate that integration of multiple signaling pathways contribute to imparting greater osteogenic potential to FOb by decreasing apoptosis.
Collapse
Affiliation(s)
- Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
- Dipartimento di Scienze Biomediche Avanzate, Universita’ degli Studi di Napoli Federico II, Napoli, Italy
- * E-mail: (NQ); (MTL)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, California, United States of America
- * E-mail: (NQ); (MTL)
| |
Collapse
|
8
|
Senarath-Yapa K, Li S, Meyer NP, Longaker MT, Quarto N. Integration of multiple signaling pathways determines differences in the osteogenic potential and tissue regeneration of neural crest-derived and mesoderm-derived calvarial bones. Int J Mol Sci 2013; 14:5978-97. [PMID: 23502464 PMCID: PMC3634461 DOI: 10.3390/ijms14035978] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/24/2022] Open
Abstract
The mammalian skull vault, a product of a unique and tightly regulated evolutionary process, in which components of disparate embryonic origin are integrated, is an elegant model with which to study osteoblast biology. Our laboratory has demonstrated that this distinct embryonic origin of frontal and parietal bones confer differences in embryonic and postnatal osteogenic potential and skeletal regenerative capacity, with frontal neural crest derived osteoblasts benefitting from greater osteogenic potential. We outline how this model has been used to elucidate some of the molecular mechanisms which underlie these differences and place these findings into the context of our current understanding of the key, highly conserved, pathways which govern the osteoblast lineage including FGF, BMP, Wnt and TGFβ signaling. Furthermore, we explore recent studies which have provided a tantalizing insight into way these pathways interact, with evidence accumulating for certain transcription factors, such as Runx2, acting as a nexus for cross-talk.
Collapse
Affiliation(s)
- Kshemendra Senarath-Yapa
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Shuli Li
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Nathaniel P. Meyer
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University, School of Medicine, Stanford, CA 94305, USA; E-Mails: (K.S.-Y.); (S.L.); (N.P.M.)
- Department of Advanced Biomedical Science, University of Studies of Naples Federico II, Naples 80131, Italy
- Authors to whom correspondence should be addressed; E-Mails: (M.T.L.); (N.Q.); Tel.: +1-650-7361-704; Fax: +1-650-7361-705
| |
Collapse
|
9
|
Somayaji SN, Huet YM, Gruber HE, Hudson MC. UV-killed Staphylococcus aureus enhances adhesion and differentiation of osteoblasts on bone-associated biomaterials. J Biomed Mater Res A 2011; 95:574-9. [PMID: 20725968 DOI: 10.1002/jbm.a.32890] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Titanium alloys (Ti) are the preferred material for orthopedic applications. However, very often, these metallic implants loosen over a long period and mandate revision surgery. For implant success, osteoblasts must adhere to the implant surface and deposit a mineralized extracellular matrix (ECM). Here, we utilized UV-killed Staphylococcus aureus as a novel osteoconductive coating for Ti surfaces. S. aureus expresses surface adhesins capable of binding to bone and biomaterials directly. Furthermore, interaction of S. aureus with osteoblasts activates growth factor-related pathways that potentiate osteogenesis. Although UV-killed S. aureus cells retain their bone-adhesive ability, they do not stimulate significant immune modulator expression. All of the abovementioned properties were utilized for a novel implant coating so as to promote osteoblast recruitment and subsequent cell functions on the bone-implant interface. In this study, osteoblast adhesion, proliferation, and mineralized ECM synthesis were measured on Ti surfaces coated with fibronectin with and without UV-killed bacteria. Osteoblast adhesion was enhanced on Ti alloy surfaces coated with bacteria compared to uncoated surfaces, while cell proliferation was sustained comparably on both surfaces. Osteoblast markers such as collagen, osteocalcin, alkaline phosphatase activity, and mineralized nodule formation were increased on Ti alloy coated with bacteria compared to uncoated surfaces.
Collapse
Affiliation(s)
- Shankari N Somayaji
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001, USA.
| | | | | | | |
Collapse
|
10
|
Wallace JM, Golcuk K, Morris MD, Kohn DH. Inbred strain-specific response to biglycan deficiency in the cortical bone of C57BL6/129 and C3H/He mice. J Bone Miner Res 2009; 24:1002-12. [PMID: 19113913 PMCID: PMC3276349 DOI: 10.1359/jbmr.081259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 11/06/2008] [Accepted: 12/23/2008] [Indexed: 11/18/2022]
Abstract
Inbred strain-specific differences in mice exist in bone cross-sectional geometry, mechanical properties, and indices of bone formation. Inbred strain-specific responses to external stimuli also exist, but the role of background strain in response to genetic deletion is not fully understood. Biglycan (bgn) deficiency impacts bone through negative regulation of osteoblasts, resulting in extracellular matrix alterations and decreased mechanical properties. Because osteoblasts from C3H/He (C3H) mice are inherently more active versus osteoblasts from other inbred strains, and the bones of C3H mice are less responsive to other insults, it was hypothesized that C3H mice would be relatively more resistant to changes associated with bgn deficiency compared with C57BL6/129 (B6;129) mice. Changes in mRNA expression, tissue composition, mineral density, bone formation rate, cross-sectional geometry, and mechanical properties were studied at 8 and 11 wk of age in the tibias of male wildtype and bgn-deficient mice bred on B6;129 and C3H background strains. Bgn deficiency altered collagen cross-linking and gene expression and the amount and composition of mineral in vivo. In bgn's absence, changes in collagen were independent of mouse strain. Bgn-deficiency increased the amount of mineral in both strains, but changes in mineral composition, cross-sectional geometry, and mechanical properties were dependent on genetic background. Bgn deficiency influenced the amount and composition of bone in mice from both strains at 8 wk, but C3H mice were better able to maintain properties close to wildtype (WT) levels. By 11 wk, most properties from C3H knockout (KO) bones were equal to or greater than WT levels, whereas phenotypic differences persisted in B6;129 KO mice. This is the first study into mouse strain-specific changes in a small leucine-rich proteoglycan gene disruption model in properties across the bone hierarchy and is also one of the first to relate these changes to mechanical competence. This study supports the importance of genetic factors in determining the response to a gene deletion and defines biglycan's importance to collagen and mineral composition in vivo.
Collapse
Affiliation(s)
- Joseph M Wallace
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|
11
|
Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res 2008; 23:1765-74. [PMID: 18597629 PMCID: PMC2685485 DOI: 10.1359/jbmr.080612] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long-term treatment of mice or humans with granulocyte colony-stimulating factor (G-CSF) is associated with a clinically significant osteopenia characterized by increased osteoclast activity and number. In addition, recent reports have observed a decrease in number of mature osteoblasts during G-CSF administration. However, neither the extent of G-CSF's suppressive effect on the osteoblast compartment nor its mechanisms are well understood. Herein, we show that short-term G-CSF treatment in mice leads to decreased numbers of endosteal and trabecular osteoblasts. The effect is specific to mature osteoblasts, because bone-lining cells, osteocytes, and periosteal osteoblasts are unaffected. G-CSF treatment accelerates osteoblast turnover in the bone marrow by inducing osteoblast apoptosis. In addition, whereas G-CSF treatment sharply increases osteoprogenitor number, differentiation of mature osteoblasts is impaired. Bone marrow transplantation studies show that G-CSF acts through a hematopoietic intermediary to suppress osteoblasts. Finally, G-CSF treatment, through suppression of mature osteoblasts, also leads to a marked decrease in osteoprotegerin expression in the bone marrow, whereas expression of RANKL remains relatively constant, suggesting a novel mechanism contributing to the increased osteoclastogenesis seen with long-term G-CSF treatment. In sum, these findings suggest that the hematopoietic system may play a novel role in regulating osteoblast differentiation and apoptosis during G-CSF treatment.
Collapse
|
12
|
Manigrasso MB, O'Connor JP. Comparison of fracture healing among different inbred mouse strains. Calcif Tissue Int 2008; 82:465-74. [PMID: 18528610 DOI: 10.1007/s00223-008-9144-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 05/03/2008] [Indexed: 11/29/2022]
Abstract
Quantitative trait locus analysis can be used to identify genes critically involved in biological processes. No such analysis has been applied to identifying genes that control bone fracture healing. To determine the feasibility of such an approach, healing of femur fractures was measured between C57BL/6, DBA/2, and C3H inbred strains of mice. Healing was assessed by radiography and histology and measured by histomorphometry and biomechanical testing. In all strains, radiographic bridging of the fracture was apparent after 3 weeks of healing. Histology showed that healing occurred through endochondral ossification in all strains. Histomorphometric measurements found more bone in the C57BL/6 fracture calluses 7 and 10 days after fracture. In contrast, more cartilage was present after 7 days in the C3H callus, which rapidly declined to levels less than those of C57BL/6 or DBA/2 mice by 14 days after fracture. An endochondral ossification index was calculated by multiplying the callus percent cartilage and bone areas as a measure of endochondral ossification. At 7 and 10 days after fracture, this value was higher in C57BL/6 mice. Using torsional mechanical testing, normalized structural and material properties of the C57BL/6 healing femurs were higher than values from the DBA/2 or C3H mice 4 weeks after fracture. The data indicate that fracture healing proceeds more rapidly in C57BL/6 mice and demonstrate that genetic variability significantly contributes to the process of bone regeneration. Large enough differences exist between C57BL/6 and DBA/2 or C3H mice to permit a quantitative trait locus analysis to identify genes controlling bone regeneration.
Collapse
Affiliation(s)
- Michaele B Manigrasso
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School and Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
13
|
Poliachik SL, Threet D, Srinivasan S, Gross TS. 32 wk old C3H/HeJ mice actively respond to mechanical loading. Bone 2008; 42:653-9. [PMID: 18280231 PMCID: PMC2366046 DOI: 10.1016/j.bone.2007.12.222] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 12/19/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Numerous studies indicate that C3H/HeJ (C3H) mice are mildly responsive to mechanical loading compared to C57BL/6J (C57) mice. Guided by data indicating high baseline periosteal osteoblast activity in 16 wk C3H mice, we speculated that simply allowing the C3H mice to age until basal periosteal bone formation was equivalent to that of 16 wk C57 mice would restore mechanoresponsiveness in C3H mice. We tested this hypothesis by subjecting the right tibiae of 32 wk old C3H mice and 16 wk old C57 mice to low magnitude rest-inserted loading (peak strain: 1235 mu epsilon) and then exposing the right tibiae of 32 wk C3H mice to low (1085 mu epsilon) or moderate (1875 mu epsilon) magnitude cyclic loading. The osteoblastic response to loading on the endocortical and periosteal surfaces was evaluated via dynamic histomorphometry. At 32 wk of age, C3H mice responded to low magnitude rest-inserted loading with significantly elevated periosteal mineralizing surface, mineral apposition rate and bone formation compared to unloaded contralateral bones. Surprisingly, the periosteal bone formation induced by low magnitude rest-inserted loading in C3H mice exceeded that induced in 16 wk C57 mice. At 32 wk of age, C3H mice also demonstrated an elevated response to increased magnitudes of cyclic loading. We conclude that a high level of basal osteoblast function in 16 wk C3H mice appears to overwhelm the ability of the tissue to respond to an otherwise anabolic mechanical loading stimulus. However, when basal surface osteoblast activity is equivalent to that of 16 wk C57 mice, C3H mice demonstrate a clear ability to respond to either rest-inserted or cyclic loading.
Collapse
Affiliation(s)
- Sandra L Poliachik
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, 98104, USA.
| | | | | | | |
Collapse
|
14
|
Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC. Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res 2007; 22:1492-501. [PMID: 17542686 DOI: 10.1359/jbmr.070518] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the initial demonstration of the phenomenon in murine and human bone sections approximately 10 yr ago, appreciation of the biologic significance of osteoblast apoptosis has contributed greatly not only to understanding the regulation of osteoblast number during physiologic bone remodeling, but also the pathogenesis of metabolic bone diseases and the pharmacology of some of the drugs used for their treatment. It is now appreciated that all major regulators of bone metabolism including bone morphogenetic proteins (BMPs), Wnts, other growth factors and cytokines, integrins, estrogens, androgens, glucocorticoids, PTH and PTH-related protein (PTHrP), immobilization, and the oxidative stress associated with aging contribute to the regulation of osteoblast and osteocyte life span by modulating apoptosis. Moreover, osteocyte apoptosis has emerged as an important regulator of remodeling on the bone surface and a critical determinant of bone strength, independently of bone mass. The detection of apoptotic osteoblasts in bone sections remains challenging because apoptosis represents only a tiny fraction of the life span of osteoblasts, not unlike a 6-mo-long terminal illness in the life of a 75-yr-old human. Importantly, the phenomenon is 50 times less common in human bone biopsies because human osteoblasts live longer and are fewer in number. Be that as it may, well-controlled assays of apoptosis can yield accurate and reproducible estimates of the prevalence of the event, particularly in rodents where there is an abundance of osteoblasts for inspection. In this perspective, we focus on the biological significance of the phenomenon for understanding basic bone biology and the pathogenesis and treatment of metabolic bone diseases and discuss limitations of existing techniques for quantifying osteoblast apoptosis in human biopsies and their methodologic pitfalls.
Collapse
Affiliation(s)
- Robert L Jilka
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
15
|
MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X, Hauschka PV. Bone mass is inversely proportional to Dkk1 levels in mice. Bone 2007; 41:331-9. [PMID: 17613296 PMCID: PMC2865902 DOI: 10.1016/j.bone.2007.05.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 12/15/2022]
Abstract
The Wnt/beta-catenin signaling pathway has emerged as a key regulator in bone development and bone homeostasis. Loss-of-function mutations in the Wnt co-receptor LRP5 result in osteoporosis and "activating" mutations in LRP5 result in high bone mass. Dickkopf-1 (DKK1) is a secreted Wnt inhibitor that binds LRP5 and LRP6 during embryonic development, therefore it is expected that a decrease in DKK1 will result in an increase in Wnt activity and a high bone mass phenotype. Dkk1-/- knockout mice are embryonic lethal, but mice with hypomorphic Dkk1d (doubleridge) alleles that express low amounts of Dkk1 are viable. In this study we generated an allelic series by crossing Dkk1+/- and Dkk1+/d mice resulting in the following genotypes with decreasing Dkk1 expression levels: +/+, +/d, +/- and d/-. Using muCT imaging we scanned dissected left femora and calvariae from 8-week-old mice (n=60). We analyzed the distal femur to represent trabecular bone and the femur diaphysis for cortical endochondral bone. A region of the parietal bones was used to analyze intramembranous bone of the calvaria. We found that trabecular bone volume is increased in Dkk1 mutant mice in a manner that is inversely proportional to the level of Dkk1 expression. Trabeculae number and thickness were significantly higher in the low Dkk1 expressing genotypes from both female and male mice. Similar results were found in cortical bone with an increase in cortical thickness and cross sectional area of the femur diaphysis that correlated with lower Dkk1 expression. No consistent differences were found in the calvaria measurements. Our results indicate that the progressive Dkk1 reduction increases trabecular and cortical bone mass and that even a 25% reduction in Dkk1 expression could produce significant increases in trabecular bone volume fraction. Thus DKK1 is a negative regulator of normal bone homeostasis in vivo. Our study suggests that manipulation of DKK1 function or expression may have therapeutic significance for the treatment of low bone mass disorders.
Collapse
Affiliation(s)
- Bryan T MacDonald
- Division of Neuroscience, Department of Orthopedic Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Meta IF, Fernandez SA, Gulati P, Huja SS. Adaptations in the mandible and appendicular skeleton of high and low bone density inbred mice. Calcif Tissue Int 2007; 81:107-13. [PMID: 17557123 DOI: 10.1007/s00223-007-9029-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/07/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
The appendicular skeletons of high [C3H/HeJ (C3H)] and low [C57BL/6J (B6)] density inbred mice have been shown to differ in morphology, mechanical properties, and cellular activity. The focus of the current study was to (1) characterize the mandibular bone formation rate (BFR/BS), bone mass, indentation modulus (IM), and hardness of C3H and B6 mice and (2) investigate the relationship of the mechanical properties in three skeletal sites: mandible, femur, and tibia. Specimens from 17-week-old female C3H and B6 (n = 15/group) mice were obtained. Mandibular bone mass was estimated from the lateral-view area (LVA) and transverse cross sections. BFR/BS was measured in the mandibular section distal to the third molar. In addition, bone blocks from the distal surface of the third molar and the femoral and tibial midshaft were obtained for mechanical testing. BFR/BS, cortical area, and LVA were greater (P < 0.001) in C3H mandibles. IM was approximately 2 GPa higher in the C3H mandible (P > 0.05), femur (P < 0.001), and tibia (P < 0.01). Mandibular IM was lower (P < 0.05) than the femoral and tibial IM within each inbred mouse. IM was not significant between C3H and B6 mandibles. However, the magnitude of the difference ( approximately 12%) in the mandible was similar to the difference in the appendicular skeleton. This mandibular bone phenotype is similar to that observed in the appendicular skeleton of these distinct inbred mice.
Collapse
Affiliation(s)
- Isaac F Meta
- Section of Oral Biology, College of Dentistry, The Ohio State University, 3188 Postel Hall, 305 W. 12th Avenue, Columbus, OH, 43210, USA
| | | | | | | |
Collapse
|