1
|
Imamura H, Adachi T, Zhu W, Yamamoto T, Kanamura N, Onoda H, Nakamura-Takahashi A, Kasahara M, Nakada M, Sato H, Pezzotti G. Raman Spectroscopic Analysis of Molecular Structure and Mechanical Properties of Hypophosphatasia Primary Tooth. Molecules 2024; 29:6049. [PMID: 39770137 PMCID: PMC11678008 DOI: 10.3390/molecules29246049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/18/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Mild hypophosphatasia (HPP) can be difficult to distinguish from other bone disorders in the absence of typical symptoms such as the premature loss of primary teeth. Therefore, this study aimed to analyze the crystallinity of hydroxyapatite (HAp) and the three-dimensional structure of collagen in HPP teeth at the molecular level and to search for new biomarkers of HPP. Raman spectroscopy was used to investigate the molecular structure, composition, and mechanical properties of primary teeth from healthy individuals and patients with HPP. The results showed that the crystallinity of HAp decreased and the carbonate apatite content increased in the region near the dentin-enamel junction (DEJ) of HPP primary teeth. X-ray diffraction (XRD) analyses confirmed a decrease in HAp crystallinity near the DEJ, and micro-computed tomography (CT) scanning revealed a decrease in mineral density in this region. These results suggest incomplete calcification in HPP primary dentin and may contribute to the development of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.); (G.P.)
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.); (G.P.)
- Department of Dentistry, Kyoto Prefectural Rehabilitation Hospital for Mentally and Physically Disabled, Naka Ashihara, Joyo 610-0113, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (W.Z.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.); (G.P.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.); (G.P.)
| | - Hiroaki Onoda
- Department of Biomolecular Chemistry, Faculty of Science and Technology, Kyoto Prefectural University, 1-5, Shimogamo-nakaragi, Sakyo-ku, Kyoto 606-8522, Japan;
| | - Aki Nakamura-Takahashi
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.N.-T.); (M.K.)
| | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.N.-T.); (M.K.)
| | - Masaru Nakada
- Toray Research Center, Inc., 2-11 Sonoyama 3-chome, Otsu 520-8567, Japan;
| | - Hideo Sato
- Department of Pediatric Dentistry, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan;
| | - Giuseppe Pezzotti
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Biomedical Engineering Center, Kansai Medical University, 1-9-11 Shin-machi, Hirakata, Osaka 573-1191, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| |
Collapse
|
2
|
Ryder S. Integrated Applied Clinical Pharmacology in the Advancement of Rare and Ultra-Rare Disease Therapeutics. Clin Pharmacol Ther 2024; 116:1485-1495. [PMID: 39034754 DOI: 10.1002/cpt.3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
The introduction of safe and effective rare/ultra-rare disease treatments is a focus of many biotherapeutic enterprises. Despite this increased activity, a significant unmet need remains, and the responsibility to meet this need is augmented by enhanced genomic, biologic, medical, analytical, and informatic tools. It is recognized that the development of an effective and safe rare/ultra-rare disease therapeutic faces a number of challenges with an important role noted for clinical pharmacology. Clinical pharmacology is foundationally an integrative discipline which must be embedded in and is interdependent upon understanding the pathogenic biology, clinical presentation, disease progression, and end-point assessment of the disease under study. This manuscript presents an overview and two case examples of this integrative approach, the development of C5-targeted therapeutics for the treatment of generalized myasthenia gravis and asfotase alpha for the treatment of hypophosphatasia. The two presented case examples show the usefulness of understanding the biological drivers and clinical course of a rare disease, having relevant animal models, procuring informative natural history data, importing assessment tools from relevant alternative areas, and using integrated applied clinical pharmacology to inform target engagement, dose, and the cascade of pharmacodynamic and clinical effects that follow. Learnings from these programs include the importance of assuring cross-validation of assays throughout a development program and continued commitment to understanding the relationship among the array of Pd end points and clinical outcomes. Using an integrative approach, substantive work remains to be done to meet the unmet needs of patients with rare/ultra-rare disease.
Collapse
|
3
|
Ma X, Yang Y, Jiang Q. Association between urinary cadmium levels and prevalence of coronary artery disease: NHANES cross-sectional study (2009-2018). Front Cardiovasc Med 2024; 11:1415269. [PMID: 39669407 PMCID: PMC11634864 DOI: 10.3389/fcvm.2024.1415269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Objective This study aims to sheds light on the correlation between urinary cadmium (Cd-U) exposure and coronary heart disease (CHD) and the mediating effects of serum alkaline phosphatase (ALP) based on a sample of adults in the United States. Methods A comprehensive cross-sectional study was performed on 8,998 CHD participants who participated in the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2018. Weighted logistic regression was employed to elucidate the association between Cd-U and the likelihood of CHD. We investigated the link of Cd-U exposure to the prevalence of CHD using limited cubic spline models to analyze the exposure-dose relationship. In addition, mediation analyses were conducted to explore the role of serum ALP in metal exposure-induced CHD. Results 8,998 participants were included, and 323 among them were diagnosed with CHD. Our study found that elevated levels of Cd-U in U.S. are linked to a heightened likelihood of CHD. Additionally, there is a non-linear positive correlation between Cd-U and CHD, and a saturation effect was observed. Further mediation analysis revealed that the association between Cd-U and CHD prevalence was mediated through serum ALP mellitus, with the mediation percentage being 2.5% (P value <0.05). Conclusions Our study indicates a strong association between the levels of Cd-U exposure in urine and the likelihood of CHD, with serum ALP serving as a mediator.
Collapse
Affiliation(s)
- Xuhui Ma
- Department of Cardiology, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Yang
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Qingjun Jiang
- Department of Cardiovascular Medicine, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
4
|
Giraulo C, De Palma G, Plaitano P, Cicala C, Morello S. Insight into adenosine pathway in psoriasis: Elucidating its role and the potential therapeutical applications. Life Sci 2024; 357:123071. [PMID: 39307180 DOI: 10.1016/j.lfs.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Psoriasis is an inflammatory skin disease, that can manifest as different phenotypes, however its most common form is psoriasis vulgaris (plaque psoriasis), characterized by abnormal keratinocyte proliferation, leading to characteristic histopathological signs of acanthosis, hyperkeratosis and parakeratosis. For many years, there has been a debate regarding whether keratinocyte dysfunction leads to immune system dysregulation in psoriasis or vice versa. It is now understood that epidermal hyperplasia results from immune system activation. Besides epidermal hyperplasia, psoriatic skin shows leukocyte infiltration, evident angiogenesis in the papillary dermis, characterized by tortuous, dilated capillaries, as well as oedema. There is substantial early evidence that adenosine is a key mediator of the immune response; it derives from ATP hydrolysis and accumulates into tissue in response to systemic and local stress conditions, hypoxia, metabolic stress, inflammation. Adenosine controls several cell functions by signalling through its 4 receptor subtypes, A1, A2A, A2B and A3. Evidence suggests that adenosine may play a role in psoriasis pathogenesis by controlling several immune cell functions, keratinocyte proliferation, neo-angiogenesis. Expression of adenosine receptor varies in psoriatic skin, and this can significantly impact on tissue homeostasis. Indeed, an altered adenosine receptor profile may contribute to the dysregulation observed in psoriasis, affecting immune responses and inflammatory pathways. Here, we discuss the role of adenosine in regulating the functions of the main cell populations implied in the pathogenesis of psoriasis. Furthermore, we give evidence for adenosine signalling pathway as target for therapeutic intervention in psoriasis.
Collapse
Affiliation(s)
- Caterina Giraulo
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Giacomo De Palma
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy; PhD Program in Nutraceuticals, Functional Foods and Human Health, University of Naples "Federico II", Napoli, NA, Italy
| | - Paola Plaitano
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Napoli, NA, Italy.
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
5
|
Joseph J, Hashim IA. Patient-derived reference intervals for alkaline phosphatase to support appropriate utility for isoenzymes determinations and hypophosphatasia. Lab Med 2024; 55:717-723. [PMID: 38809761 DOI: 10.1093/labmed/lmae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Appropriate age- and sex-specific reference intervals for alkaline phosphatase (ALP) are essential to identify patients with hypophosphatasia (low ALP) and to avoid unnecessary ALP isoenzymes analysis (elevated ALP). This study used patient ALP historical data to statistically derive sex- and age-specific reference intervals. METHODS The ALP values reported as part of clinical management during an 18 month period (from July 2021 to March 2023) were obtained. Following logarithmic transformation of ALP data and repeated removal of outliers, cumulative frequency plots were generated using a modified Hoffmann approach to derive age- and sex-specific reference intervals. RESULTS Age-specific ALP reference intervals ranged from 110 to 250 and 120 to 295 U/L for males and females <15 days old, 80 to 400 and 90 to 380 U/L for males and females 15 days to 1 year old, 105 to 280 and 90 to 290 U/L for males and females 1 to 10 years old, 75 to 300 and 90 to 300 U/L for males and females 10 to 13 years old, 80 to 300 and 60 to 175 U/L for males and females 13 to 15 years old, 55 to 150 and 60 to 180 U/L for males and females 15 to 18 years old, and 55 to 140 and 60 to 147 U/L for male and female adults, respectively (>18 years old). CONCLUSION By applying derived ranges, a retrospective review of ALP isoenzymes would eliminate 24.5% of requests. Additionally, 9 neonates would have required investigation for possible hypophosphatasia.
Collapse
Affiliation(s)
| | - Ibrahim A Hashim
- UT Southwestern Medical Center - Pathology, Dallas, TX, US
- Parkland Health and Hospital System, Dallas, TX, US
| |
Collapse
|
6
|
Tornero C, de Miguel E, Navarro-Compán V, Balsa A, Aguado P. Prevalence of chondrocalcinosis and calcium pyrophosphate deposition disease in a cohort of adult patients with low alkaline phosphatase levels and a positive versus negative genetic ALPL study. JBMR Plus 2024; 8:ziae124. [PMID: 39450343 PMCID: PMC11499678 DOI: 10.1093/jbmrpl/ziae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/16/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives To estimate the prevalence of chondrocalcinosis and calcium pyrophosphate dihydrate deposition disease (CPPD) in patients with low alkaline phosphatase (ALP) levels and a positive ALPL genetic study (+GT) for hypophosphatasia (HPP) compared to those with the same biochemical abnormality and a negative genetic test (-GT). As a secondary objective, to analyze the biochemical factors associated with its presence in subjects with ALPL variants. Methods Seventy-eight subjects with persistently low ALP levels and ALPL genetic test were included. Baseline and 24-mo knee ultrasounds were performed in 42 + GT and 36 -GT subjects, in whom the fibrocartilage, hyaline cartilage of menisci, tendons, and synovial fluid were scanned to detect calcium pyrophosphate deposits. A MyLabTwice ultrasound machine (Esaote) with a multifrequency linear array transducer (4-13 MHz) was used. Results A higher percentage of chondrocalcinosis was observed in the +GT group [9/42 (21.4%)] compared to the -GT group [2/36 (5.6%), p=.045)]. Two patients (4.76%), both in the +GT group, had arthritis secondary to CPPD. No new cases were identified at the 24-mo control. When comparing +GT patients with and without chondrocalcinosis, ALP levels were lower, and pyridoxal-5'-phosphate (PLP) and phosphate levels were higher in the former group (p<.05). Logistic regression analysis revealed that higher PLP levels are associated with the presence of chondrocalcinosis (OR: 1.1; 95% confidence interval, CI, 1.001-1.012). Conclusions Chondrocalcinosis was a frequent ultrasonographic finding in HPP. Arthritis secondary to calcium pyrophosphate deposits, however, proved less prevalent. Genetic causes, such as HPP, should be considered when evaluating patients with chondrocalcinosis in clinical practice.
Collapse
Affiliation(s)
- Carolina Tornero
- Rheumatology Unit, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Eugenio de Miguel
- Rheumatology Unit, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Victoria Navarro-Compán
- Rheumatology Unit, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Alejandro Balsa
- Rheumatology Unit, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Pilar Aguado
- Rheumatology Unit, La Paz University Hospital, Paseo de la Castellana, 261, 28046 Madrid, Spain
| |
Collapse
|
7
|
Foster BL, Boyce AM, Millán JL, Kramer K, Ferreira CR, Somerman MJ, Wright JT. Inherited phosphate and pyrophosphate disorders: New insights and novel therapies changing the oral health landscape. J Am Dent Assoc 2024; 155:912-925. [PMID: 39127957 PMCID: PMC11540754 DOI: 10.1016/j.adaj.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mineral metabolism is critical for proper development of hard tissues of the skeleton and dentition. The dentoalveolar complex includes the following 4 mineralized tissues: enamel, dentin, cementum, and alveolar bone. Developmental processes of these tissues are affected by inherited disorders that disrupt phosphate and pyrophosphate homeostasis, although manifestations are distinct from those in the skeleton. TYPES OF STUDIES REVIEWED The authors discuss original data from experiments and comparative analyses and review articles describing effects of inherited phosphate and pyrophosphate disorders on dental tissues. A particular emphasis is placed on how new therapeutic approaches for these conditions may affect oral health and dental treatments of affected patients. RESULTS Disorders of phosphate and pyrophosphate metabolism can lead to reduced mineralization (hypomineralization) or inappropriate (ectopic) calcification of soft tissues. Disruptions in phosphate levels in X-linked hypophosphatemia and hyperphosphatemic familial tumoral calcinosis and disruptions in pyrophosphate levels in hypophosphatasia and generalized arterial calcification of infancy contribute to dental mineralization defects. Traditionally, there have been few options to ameliorate dental health problems arising from these conditions. New antibody and enzyme replacement therapies bring possibilities to improve oral health in affected patients. PRACTICAL IMPLICATIONS Research over the past 2 decades has exponentially expanded the understanding of mineral metabolism, and has led to novel treatments for mineralization disorders. Newly implemented and emerging therapeutic strategies affect the dentoalveolar complex and interact with aspects of oral health care that must be considered for dental treatment, clinical trial design, and coordination of multidisciplinary care teams.
Collapse
Affiliation(s)
- Brian L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Alison M. Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Kaitrin Kramer
- Department of Dentistry and Department of Plastic and Reconstructive Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Carlos R. Ferreira
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - J. Timothy Wright
- Department of Pediatric and Public Health Dentistry, University of North Carolina Adams School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Glotov OS, Zhuchenko NA, Balashova MS, Raspopova AN, Tsai VV, Chernov AN, Chuiko IV, Danilov LG, Morozova LD, Glotov AS. The Benefits of Whole-Exome Sequencing in the Differential Diagnosis of Hypophosphatasia. Int J Mol Sci 2024; 25:11728. [PMID: 39519277 PMCID: PMC11545870 DOI: 10.3390/ijms252111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Hypophosphatasia (HPP) is a rare inherited disorder characterized by the decreased activity of tissue-nonspecific alkaline phosphatase (TNSALP), caused by mutations in the ALPL gene. The aim of this study was to conduct differential diagnostics in HPP patients using whole-exome sequencing (WES). The medical records of HPP patients and the genetic testing of the ALPL gene were reviewed. Seven patients were recruited and underwent WES using the Illumina or MGI sequencing platforms. All of the exome samples were matched onto a GRCh38.p13 reference genome assembly by using the Genome Analysis ToolKit (GATK) and the BWA MEM read aligner. We present the clinical and molecular findings of the seven patients referred for genetic analyses due to a clinical and biochemical suspicion of HPP. In two patients out of three (with identified heterozygous variants in the ALPL gene), we also identified c.682T>A in exon 3 of the WNT10A gene and c.3470del in exon 23 of the SMC1A gene variants for the first time. In four patients, variants in the ALPL gene were not detected, but WES allowed us to identify for the first time rare variants (c.5651A>C in exon 36 of the TRIO gene, c.880T>G in exon 6 of the TRPV4 gene, c.32078-1G>T in intron 159 of the TTN gene, c.47720_47721del in exon 235 of the TTN gene, and c.1946G>A in exon 15 of the SLC5A1 gene) and to conduct differential diagnostics with HPP. Using WES, for the first time, we demonstrate the possibility of early differential diagnostics in HPP patients with other rare genetic diseases.
Collapse
Affiliation(s)
- Oleg S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia; (M.S.B.); (V.V.T.); (A.S.G.)
- Department of Experimental Medical Virology, Molecular Genetics and Biobanking of Pediatric Research and Clinical Center for Infectious Diseases, 197022 Saint Petersburg, Russia
- CerbaLab Ltd., 199106 Saint Petersburg, Russia; (A.N.R.); (L.G.D.)
| | - Natalya A. Zhuchenko
- Department of Medical Genetics, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.A.Z.); (L.D.M.)
| | - Maria S. Balashova
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia; (M.S.B.); (V.V.T.); (A.S.G.)
- Department of Medical Genetics, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.A.Z.); (L.D.M.)
| | | | - Victoria V. Tsai
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia; (M.S.B.); (V.V.T.); (A.S.G.)
- Department of Experimental Medical Virology, Molecular Genetics and Biobanking of Pediatric Research and Clinical Center for Infectious Diseases, 197022 Saint Petersburg, Russia
- CerbaLab Ltd., 199106 Saint Petersburg, Russia; (A.N.R.); (L.G.D.)
| | - Alexandr N. Chernov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia; (M.S.B.); (V.V.T.); (A.S.G.)
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
- Department of Biological Chemistry, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia
| | - Iana V. Chuiko
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119991 Moscow, Russia;
| | - Lavrentii G. Danilov
- CerbaLab Ltd., 199106 Saint Petersburg, Russia; (A.N.R.); (L.G.D.)
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Lyudmila D. Morozova
- Department of Medical Genetics, N.V. Sklifosovsky ICM, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (N.A.Z.); (L.D.M.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia; (M.S.B.); (V.V.T.); (A.S.G.)
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
9
|
Suwittayarak R, Nowwarote N, Kornsuthisopon C, Sukarawan W, Foster BL, Egusa H, Osathanon T. Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth. Sci Rep 2024; 14:24282. [PMID: 39414921 PMCID: PMC11484878 DOI: 10.1038/s41598-024-75303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Calcium phosphate-based materials (CaP) are introduced as potential dental pulp capping materials for deciduous teeth. The present study investigated the influence of inorganic phosphate (Pi) on regulating stem cells isolated from human exfoliated deciduous teeth (SHED). SHEDs were treated with Pi. Cell cycle progression and apoptosis were examined using flow cytometry analysis. Osteo/odontogenic and adipogenic differentiation were analyzed using alizarin red S and oil red O staining, respectively. The mRNA expression profile was investigated using a high-throughput RNA sequencing technique. Pi increased the late apoptotic cell population while cell cycle progression was not altered. Pi upregulated osteo/odontoblastic gene expression and enhanced calcium deposition. Pi-induced mineralization was reversed by pretreatment of cells with Foscarnet, or p38 inhibitor. Pi treatment inhibited adipogenic differentiation as determined by decreased PPARγ expression and reduced intracellular lipid accumulation. Bioinformatic analysis of gene expression profiles demonstrated several involved pathways, including PI3K/AKT, MAPK, EGFR, and VEGF signaling. In conclusion, Pi enhanced osteo/odontogenic but inhibited adipogenic differentiation in SHED.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
| | - Nunthawan Nowwarote
- Department of Oral Biology, Faculty of Dentistry and Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waleerat Sukarawan
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand
- Department of Paediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Miyagi, Japan.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand.
- Department of Oral Biology, Faculty of Dentistry and Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France.
| |
Collapse
|
10
|
Schwab PE, Dessain A, Milby J. Monoclonal antibody anti-sclerostin for treatment of pelvic insufficiency fractures in adult hypophosphatasia: A case report. Trauma Case Rep 2024; 53:101077. [PMID: 39091566 PMCID: PMC11293581 DOI: 10.1016/j.tcr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Hypophosphatasia is a rare inherited metabolic disease leading to inhibition of bone and teeth mineralization that can be complicated by multiple insufficiency fractures. Treatment is currently limited to enzyme replacement therapy using bone-targeting recombinant human alkaline phosphatase, or asfotase alfa. Romosozumab is a monoclonal anti-sclerostin antibody originally indicated for the treatment of osteoporosis in postmenopausal women with high-risk of fracture. Recently its indication had been expanded to other metabolic bone disorders such as osteogenesis imperfecta. We report a unique case of a 67-yer-old female with hypophosphatasia complicated by multiple delayed-union and nonunion insufficiency fractures of the pelvis. After 12-month therapy with Romosozumab to address her osteoporosis, the patient healed her fractures and increased her bone mass density. Our case report shows interesting effects of Romozumab in an adult patient with hypophosphatasia. It not only helped increase bone density, but also help in the healing process of delayed-union and nonunion insufficiency fractures of the pelvis and prevented the occurrence of new fractures during the treatment period. To our knowledge, this is the first report describing the potential effect of Romosozumab on insufficiency fractures in patients with hypophosphatasia.
Collapse
Affiliation(s)
- Pierre-Emmanuel Schwab
- Missouri Orthopaedic Institute, Missouri University Health, Department of Orthopaedic Surgery, 1100 Virginia Avenue, Columbia, MO 65201, United States of America
| | - Alicia Dessain
- Missouri University Health, Department of Pathology, 1 Hospital Drive, Columbia, MO 65201, United States of America
| | - Joshua Milby
- Cox Medical Center South, Missouri University Health, Department of Orthopaedic Trauma Surgery, 3801 S National Avenue, Springfield, MO 65807, United States of America
| |
Collapse
|
11
|
Vargas-Castillo A, Sun Y, Smythers AL, Grauvogel L, Dumesic PA, Emont MP, Tsai LT, Rosen ED, Zammit NW, Shaffer SM, Ordonez M, Chouchani ET, Gygi SP, Wang T, Sharma AK, Balaz M, Wolfrum C, Spiegelman BM. Development of a functional beige fat cell line uncovers independent subclasses of cells expressing UCP1 and the futile creatine cycle. Cell Metab 2024; 36:2146-2155.e5. [PMID: 39084217 DOI: 10.1016/j.cmet.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Although uncoupling protein 1 (UCP1) is established as a major contributor to adipose thermogenesis, recent data have illustrated an important role for alternative pathways, particularly the futile creatine cycle (FCC). How these pathways co-exist in cells and tissues has not been explored. Beige cell adipogenesis occurs in vivo but has been difficult to model in vitro; here, we describe the development of a murine beige cell line that executes a robust respiratory response, including uncoupled respiration and the FCC. The key FCC enzyme, tissue-nonspecific alkaline phosphatase (TNAP), is localized almost exclusively to mitochondria in these cells. Surprisingly, single-cell cloning from this cell line shows that cells with the highest levels of UCP1 express little TNAP, and cells with the highest expression of TNAP express little UCP1. Immunofluorescence analysis of subcutaneous fat from cold-exposed mice confirms that the highest levels of these critical thermogenic components are expressed in distinct fat cell populations.
Collapse
Affiliation(s)
- Ariana Vargas-Castillo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yizhi Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Amanda L Smythers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Louisa Grauvogel
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Margo P Emont
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathan W Zammit
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Sydney M Shaffer
- Department of Pathology and Laboratory Medicine and the Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tongtong Wang
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Anand K Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Miroslav Balaz
- Laboratory of Cellular and Molecular Metabolism, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Zhao JZ, Ge YY, Xue LF, Xu YX, Yue J, Li C, Xiao WL. CA1 Modulates the Osteogenic Differentiation of Dental Follicle Stem Cells by Activating the BMP Signaling Pathway In Vitro. Tissue Eng Regen Med 2024; 21:855-865. [PMID: 38652220 PMCID: PMC11286914 DOI: 10.1007/s13770-024-00642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Carbonic anhydrase 1 (CA1) has been found to be involved in osteogenesis and osteoclast in various human diseases, but the molecular mechanisms are not completely understood. In this study, we aim to use siRNA and lentivirus to reduce or increase the expression of CA1 in Dental follicle stem cells (DFSCs), in order to further elucidate the role and mechanism of CA1 in osteogenesis, and provide better osteogenic growth factors and stem cell selection for the application of bone tissue engineering in alveolar bone fracture transplantation. METHODS The study used RNA interference and lentiviral vectors to manipulate the expression of the CA1 gene in DFSCs during in vitro osteogenic induction. The expression of osteogenic marker genes was evaluated and changes in CA1, alkaline phosphatase (ALP), Runt-related transcription factor 2 (RUNX2), and Bone morphogenetic proteins (BMP2) were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). The osteogenic effect was assessed through Alizarin Red staining. RESULTS The mRNA and protein expression levels of CA1, ALP, RUNX2, and BMP2 decreased distinctly in the si-CA1 group than other groups (p < 0.05). In the Lentivirus-CA1 (LV-CA1) group, the mRNA and protein expressions of CA1, ALP, RUNX2, and BMP2 were amplified to varying degrees than other groups (p < 0.05). Apart from CA1, BMP2 (43.01%) and ALP (36.69%) showed significant upregulation (p < 0.05). Alizarin red staining indicated that the LV-CA1 group produced more calcified nodules than other groups, with a higher optical density (p < 0.05), and the osteogenic effect was superior. CONCLUSIONS CA1 can impact osteogenic differentiation via BMP related signaling pathways, positioning itself upstream in osteogenic signaling pathways, and closely linked to osteoblast calcification and ossification processes.
Collapse
Affiliation(s)
- Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ying-Ying Ge
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Cong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wen-Lin Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266023, China.
| |
Collapse
|
13
|
Gomez S, Millán JL. Zinc-alkaline phosphatase at sites of aortic calcification. J Mol Histol 2024; 55:465-479. [PMID: 38850447 PMCID: PMC11306377 DOI: 10.1007/s10735-024-10207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Zinc (Zn) is a normal trace element in mineralizing tissues, but it is unclear whether it is primarily bound to the mineral phase or to organic molecules involved in the mineralization process, or both. Tissue-nonspecific alkaline phosphatase (TNAP) is a Zn metalloenzyme with two Zn ions bound to the M1 and M2 catalytic sites that functions to control the phosphate/pyrophosphate ratio during biomineralization. Here, we studied aortas from Tagln-Cre +/-; HprtALP/Y TNAP overexpressor (TNAP-OE) mice that develop severe calcification. Zn histochemistry was performed using the sulfide-silver staining method in combination with a Zn partial extraction procedure to localize mineral-bound (mineral Zn) and TNAP-bound Zn (tenacious Zn), since soluble Zn (loose Zn) is extracted during fixation of the specimens. Two synthetic bone mineral composites with different Zn content, bone ash, and rat epiphyseal growth plate cartilage were used as controls for Zn staining. In order to correlate the distribution of mineral and tenacious Zn with the presence of mineral deposits, the aortas were examined histologically in unstained and stained thin sections using various light microscopy techniques. Our results show that 14 and 30 dpn, TNAP is concentrated in the calcifying matrix and loses Zn as Ca2+ progressively displaces Zn2+ at the M1 and M2 metal sites. Thus, in addition to its catalytic role TNAP has an additional function at calcifying sites as a Ca-binding protein.
Collapse
Affiliation(s)
- Santiago Gomez
- Departamento Anatomía Patológica, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela 9, Cádiz, 11003, Spain.
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
14
|
Amri Y, Dabboubi R, Khemiri M, Jebabli E, Hadj Fredj S, Ahmed SB, Jouini Y, Ouali F, Messaoud T. Catalyzing precision: unraveling the diagnostic conundrum of tunisian familial hypophosphatasia case through integrative clinical and molecular approaches. Mol Genet Genomics 2024; 299:64. [PMID: 38909345 DOI: 10.1007/s00438-024-02157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Familial Hypophosphatasia presents a complex diagnostic challenge due to its wide-ranging clinical manifestations and genetic heterogeneity. This study aims to elucidate the molecular underpinnings of familial Hypophosphatasia within a Tunisian family harboring a rare c.896 T > C mutation in the ALPL gene, offering insights into genotype-phenotype correlations and potential therapeutic avenues. The study employs a comprehensive approach, integrating biochemical examination, genetic analysis, structural modeling, and functional insights to unravel the impact of this rare mutation. Genetic investigation revealed the presence of the p.Leu299Pro mutation within the ALPL gene in affected family members. This mutation is strategically positioned in proximity to both the catalytic site and the metal-binding domain, suggesting potential functional consequences. Homology modeling techniques were employed to predict the 3D structure of TNSALP, providing insights into the structural context of the mutation. Our findings suggest that the mutation may induce conformational changes in the vicinity of the catalytic site and metal-binding domain, potentially affecting substrate recognition and catalytic efficiency. Molecular dynamics simulations were instrumental in elucidating the dynamic behavior of the tissue-nonspecific alkaline phosphatase isozyme (TNSALP) in the presence of the p.Leu299Pro mutation. The simulations indicated alterations in structural flexibility near the mutation site, with potential ramifications for the enzyme's overall stability and function. These dynamic changes may influence the catalytic efficiency of TNSALP, shedding light on the molecular underpinnings of the observed clinical manifestations within the Tunisian family. The clinical presentation of affected individuals highlighted significant phenotypic heterogeneity, underscoring the complex genotype-phenotype correlations in familial Hypophosphatasia. Variability in age of onset, severity of symptoms, and radiographic features was observed, emphasizing the need for a nuanced understanding of the clinical spectrum associated with the p.Leu299Pro mutation. This study advances our understanding of familial Hypophosphatasia by delineating the molecular consequences of the p.Leu299Pro mutation in the ALPL gene. By integrating genetic, structural, and clinical analyses, we provide insights into disease pathogenesis and lay the groundwork for personalized therapeutic strategies tailored to specific genetic profiles. Our findings underscore the importance of comprehensive genetic and clinical evaluation in guiding precision medicine approaches for familial Hypophosphatasia.
Collapse
Affiliation(s)
- Yessine Amri
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia.
- Higher Institute of Applied Studies in Humanity Le Kef, Department of Educational Sciences, University of Jendouba, Kef, Tunisia.
| | - Rym Dabboubi
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| | - Monia Khemiri
- Pediatric Service, Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Elham Jebabli
- Pediatric Service, Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Sondess Hadj Fredj
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| | - Sarra Ben Ahmed
- Pediatric Service, Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Yosr Jouini
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| | - Faida Ouali
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| | - Taieb Messaoud
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Bab Saadoun Square, 1007, Tunis, Tunisia
| |
Collapse
|
15
|
Youssef EM, Wu GY. Subnormal Serum Liver Enzyme Levels: A Review of Pathophysiology and Clinical Significance. J Clin Transl Hepatol 2024; 12:428-435. [PMID: 38638374 PMCID: PMC11022067 DOI: 10.14218/jcth.2023.00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 04/20/2024] Open
Abstract
Subnormal levels of liver enzymes, below the lower limit of normal on local laboratory reports, can be useful diagnostically. For instance, subnormal levels of aminotransferases can be observed in vitamin B6 deficiency and chronic kidney disease. Subnormal alkaline phosphatase levels may indicate the presence of hypophosphatasia, Wilson's disease, deficiencies of divalent ions, or malnutrition. Subnormal levels of gamma glutamyl transferase may be seen in cases of acute intrahepatic cholestasis, the use of certain medications, and in bone disease. Finally, subnormal levels of 5'-nucleotidase have been reported in lead poisoning and nonspherocytic hemolytic anemia. The aim of this review is to bring attention to the fact that subnormal levels of these enzymes should not be ignored as they may indicate pathological conditions and provide a means of early diagnosis.
Collapse
Affiliation(s)
| | - George Y. Wu
- Department of Medicine, Division of Gastroenterology-Hepatology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
16
|
Zhang X, Xiao Q, Zhang C, Zhou Q, Xu T. Construction of a prognostic model with CAFs for predicting the prognosis and immunotherapeutic response of lung squamous cell carcinoma. J Cell Mol Med 2024; 28:e18262. [PMID: 38520221 PMCID: PMC10960179 DOI: 10.1111/jcmm.18262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024] Open
Abstract
Lung squamous cell carcinoma (LUSC) is one of the subtypes of lung cancer (LC) that contributes to approximately 25%-30% of its prevalence. Cancer-associated fibroblasts (CAFs) are key cellular components of the TME, and the large number of CAFs in tumour tissues creates a favourable environment for tumour development. However, the function of CAFs in the LUSC is complex and uncertain. First, we processed the scRNA-seq data and classified distinct types of CAFs. We also identified prognostic CAFRGs using univariate Cox analysis and conducted survival analysis. Additionally, we assessed immune cell infiltration in CAF clusters using ssGSEA. We developed a model with a significant prognostic correlation and verified the prognostic model. Furthermore, we explored the immune landscape of LUSC and further investigated the correlation between malignant features and LUSC. We identified CAFs and classified them into three categories: iCAFs, mCAFs and apCAFs. The survival analysis showed a significant correlation between apCAFs and iCAFs and LUSC patient prognosis. Kaplan-Meier analysis showed that patients in CAF cluster C showed a better survival probability compared to clusters A and B. In addition, we identified nine significant prognostic CAFRGs (CLDN1, TMX4, ALPL, PTX3, BHLHE40, TNFRSF12A, VKORC1, CST3 and ADD3) and subsequently employed multivariate Cox analysis to develop a signature and validate the model. Lastly, the correlation between CAFRG and malignant features indicates the potential role of CAFRG in promoting tumour angiogenesis, EMT and cell cycle alterations. We constructed a CAF prognostic signature for identifying potential prognostic CAFRGs and predicting the prognosis and immunotherapeutic response for LUSC. Our study may provide a more accurate prognostic assessment and immunotherapy targeting strategies for LUSC.
Collapse
Affiliation(s)
- Xiang Zhang
- Lung cancer center, West China hospitalSichuan universityChengduChina
| | - Qingqing Xiao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Cong Zhang
- Department of Thoracic surgeryChengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College)ChengduChina
| | - Qinghua Zhou
- Lung cancer center, West China hospitalSichuan universityChengduChina
| | - Tao Xu
- Department of Thoracic SurgeryThe Affiliated Hospital, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
17
|
Andrilli LHS, Sebinelli HG, Cominal JG, Bolean M, Hayann L, Millán JL, Ramos AP, Ciancaglini P. Differential effects of the lipidic and ionic microenvironment on NPP1's phosphohydrolase and phosphodiesterase activities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184292. [PMID: 38342362 DOI: 10.1016/j.bbamem.2024.184292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/30/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is an enzyme present in matrix vesicles (MV). NPP1 participates on the regulation of bone formation by producing pyrophosphate (PPi) from adenosine triphosphate (ATP). Here, we have used liposomes bearing dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), and cholesterol (Chol) harboring NPP1 to mimic the composition of MV lipid rafts to investigate ionic and lipidic influence on NPP1 activity and mineral propagation. Atomic force microscopy (AFM) revealed that DPPC-liposomes had spherical and smooth surface. The presence of SM and Chol elicited rough and smooth surface, respectively. NPP1 insertion produced protrusions in all the liposome surface. Maximum phosphodiesterase activity emerged at 0.082 M ionic strength, whereas maximum phosphomonohydrolase activity arose at low ionic strength. Phosphoserine-Calcium Phosphate Complex (PS-CPLX) and amorphous calcium-phosphate (ACP) induced mineral propagation in DPPC- and DPPC:SM-liposomes and in DPPC:Chol-liposomes, respectively. Mineral characterization revealed the presence of bands assigned to HAp in the mineral propagated by NPP1 harbored in DPPC-liposomes without nucleators or in DPPC:Chol-liposomes with ACP nucleators. These data show that studying how the ionic and lipidic environment affects NPP1 properties is important, especially for HAp obtained under controlled conditions in vitro.
Collapse
Affiliation(s)
- Luiz H S Andrilli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil; Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Heitor G Sebinelli
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juçara G Cominal
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maytê Bolean
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Larwsk Hayann
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José Luís Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Ana P Ramos
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Pietro Ciancaglini
- Department of Chemistry, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Whyte MP, Zhang F, Mack KE, Wenkert D, Gottesman GS, Ericson KL, Cole JT, Coburn SP. Pyridoxine challenge reflects pediatric hypophosphatasia severity and thereby examines tissue-nonspecific alkaline phosphatase's role in vitamin B 6 metabolism. Bone 2024; 181:117033. [PMID: 38307176 DOI: 10.1016/j.bone.2024.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Alkaline phosphatase (ALP) is detected in most human tissues. However, ALP activity is routinely assayed using high concentrations of artificial colorimetric substrates in phosphate-free laboratory buffers at lethal pH. Hypophosphatasia (HPP) is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of the ALPL gene that encodes the ALP isoenzyme expressed in bone, liver, kidney, and elsewhere and is therefore designated "tissue-nonspecific" ALP (TNSALP). Consequently, HPP harbors clues concerning the biological function of this phosphohydrolase that is anchored onto the surface of cells. The biochemical signature of HPP features low serum ALP activity (hypophosphatasemia) together with elevated plasma levels of three natural substrates of TNSALP: i) phosphoethanolamine (PEA), a component of the linkage apparatus that binds ALPs and other proteins to the plasma membrane surface; ii) inorganic pyrophosphate (PPi), an inhibitor of bone and tooth mineralization; and iii) pyridoxal 5'-phosphate (PLP), the principal circulating vitameric form of vitamin B6 (B6). Autosomal dominant and autosomal recessive inheritance involving several hundred ALPL mutations underlies the remarkably broad-ranging expressivity of HPP featuring tooth loss often with muscle weakness and rickets or osteomalacia. Thus, HPP associates the "bone" isoform of TNSALP with biomineralization, whereas the physiological role of the "liver", "kidney", and other isoforms of TNSALP remains uncertain. Herein, to examine HPP's broad-ranging severity and the function of TNSALP, we administered an oral challenge of pyridoxine (PN) hydrochloride to 116 children with HPP. We assayed both pre- and post-challenge serum ALP activity and plasma levels of PLP, the B6 degradation product pyridoxic acid (PA), and the B6 vitamer pyridoxal (PL) that can enter cells. Responses were validated by PN challenge of 14 healthy adults and 19 children with metabolic bone diseases other than HPP. HPP severity was assessed using our HPP clinical nosology and patient height Z-scores. PN challenge of all study groups did not alter serum ALP activity in our clinical laboratory. In HPP, both the post-challenge PLP level and the PLP increment correlated (Ps < 0.0001) with the clinical nosology and height Z-scores (Rs = +0.6009 and + 0.4886, and Rs = -0.4846 and - 0.5002, respectively). In contrast, the plasma levels and increments of PA and PL from the PN challenge became less pronounced with HPP severity. We discuss how our findings suggest extraskeletal TNSALP primarily conditioned the PN challenge responses, and explain why they caution against overzealous B6 supplementation of HPP.
Collapse
Affiliation(s)
- Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Fan Zhang
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St. Louis, MO 63110, USA.
| | - Karen E Mack
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St. Louis, MO 63110, USA
| | - Deborah Wenkert
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St. Louis, MO 63110, USA.
| | - Gary S Gottesman
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St. Louis, MO 63110, USA; Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
| | - Karen L Ericson
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA.
| | - Jeffrey T Cole
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children-St Louis, St. Louis, MO 63110, USA.
| | - Stephen P Coburn
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA.
| |
Collapse
|
19
|
Baroncelli GI, Carlucci G, Freri E, Giuca MR, Guarnieri V, Navarra G, Toschi B, Mora S. The diagnosis of hypophosphatasia in children as a multidisciplinary effort: an expert opinion. J Endocrinol Invest 2024; 47:739-747. [PMID: 37752373 PMCID: PMC10904512 DOI: 10.1007/s40618-023-02199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Hypophosphatasia (HPP) is a rare genetic disorder in which pathogenic variants of the ALPL gene lead to a marked decrease of tissue non-specific alkaline phosphatase (TNSALP) activity. Although HPP is a systemic disorder, its clinical manifestations are more evident on bones, teeth, muscle and central nervous system. The clinical spectrum ranges from severe forms with extreme skeletal deformities, respiratory impairment, seizures, to very mild forms with onset in late adulthood and few clinical signs. The diagnosis can be suspected by measurement of TNSALP activity, but the insufficient awareness among health professionals and the lack of official guidelines are responsible for delayed diagnosis in children with HPP. The purpose of the current document is to provide an expert opinion directed at optimizing the diagnostic pathway of pediatric HPP. From April to December 2022, a multidisciplinary working group of 6 experts including two pediatric endocrinologists, a pediatric neurologist, a pediatric odontologist, a clinical geneticist, and a molecular biologist gathered in a series of periodic meetings to discuss the main issues related to the diagnosis of HPP in children and formalize an Expert Opinion statement. The experts agreed on a diagnostic trail that begins with the recognition of specific clinical signs, leading to biochemical analyses of TNSALP activity and vitamin B6 serum concentration. Very important are the neurological and dental manifestation of the disease that should be thoroughly investigated. The evaluation of TNSALP activity must consider sex and age variability and low activity must be persistent. Repeated blood measurements are thus necessary. The molecular analysis is then mandatory to confirm the diagnosis and for genetic counseling.
Collapse
Affiliation(s)
- G I Baroncelli
- Pediatric and Adolescent Endocrinology, Division of Pediatrics, Department of Obstetrics, Gynecology and Pediatrics, University Hospital, Pisa, Italy
| | - G Carlucci
- OPT S.P.A., Soluzioni Per Il Mondo Healthcare, Milan, Italy
| | - E Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M R Giuca
- Unit of Pediatric Dentistry, Department of Surgical Medical Molecular Pathology and Critical Area, Dental and Oral Surgery Clinic, University of Pisa, Pisa, Italy
| | - V Guarnieri
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - G Navarra
- OPT S.P.A., Soluzioni Per Il Mondo Healthcare, Milan, Italy
| | - B Toschi
- Section of Medical Genetics, Department of Medical and Oncological Area, University Hospital, Pisa, Italy
| | - S Mora
- Laboratory of Pediatric Endocrinology, Department of Pediatrics, IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
20
|
González-Cejudo T, Villa-Suárez JM, Ferrer-Millán M, Andújar-Vera F, Contreras-Bolívar V, Andreo-López MC, Gómez-Vida JM, Martínez-Heredia L, González-Salvatierra S, de Haro Muñoz T, García-Fontana C, Muñoz-Torres M, García-Fontana B. Mild hypophosphatasia may be twice as prevalent as previously estimated: an effective clinical algorithm to detect undiagnosed cases. Clin Chem Lab Med 2024; 62:128-137. [PMID: 37440753 DOI: 10.1515/cclm-2023-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVES Since the prevalence of hypophosphatasia (HPP), a rare genetic disease, seems to be underestimated in clinical practice, in this study, a new diagnostic algorithm to identify missed cases of HPP was developed and implemented. METHODS Analytical determinations recorded in the Clinical Analysis Unit of the Hospital Universitario Clínico San Cecilio in the period June 2018 - December 2020 were reviewed. A new clinical algorithm to detect HPP-misdiagnosed cases was used including the following steps: confirmation of persistent hypophosphatasemia, exclusion of secondary causes of hypophosphatasemia, determination of serum pyridoxal-5'-phosphate (PLP) and genetic study of ALPL gene. RESULTS Twenty-four subjects were selected to participate in the study and genetic testing was carried out in 20 of them following clinical algorithm criteria. Eighty percent of patients was misdiagnosed with HPP following the current standard clinical practice. Extrapolating these results to the current Spanish population means that there could be up to 27,177 cases of undiagnosed HPP in Spain. In addition, we found a substantial proportion of HPP patients affected by other comorbidities, such as autoimmune diseases (∼40 %). CONCLUSIONS This new algorithm was effective in detecting previously undiagnosed cases of HPP, which appears to be twice as prevalent as previously estimated for the European population. In the near future, our algorithm could be globally applied routinely in clinical practice to minimize the underdiagnosis of HPP. Additionally, some relevant findings, such as the high prevalence of autoimmune diseases in HPP-affected patients, should be investigated to better characterize this disorder.
Collapse
Affiliation(s)
- Trinidad González-Cejudo
- Clinical Analysis Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
| | | | - María Ferrer-Millán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Francisco Andújar-Vera
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), Granada, Spain
| | - Victoria Contreras-Bolívar
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | | | | | | | - Sheila González-Salvatierra
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Tomás de Haro Muñoz
- Clinical Analysis Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Manuel Muñoz-Torres
- Department of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Novais EJ, Narayanan R, Canseco JA, van de Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR, Risbud MV. A new perspective on intervertebral disc calcification-from bench to bedside. Bone Res 2024; 12:3. [PMID: 38253615 PMCID: PMC10803356 DOI: 10.1038/s41413-023-00307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
| | - Rajkishen Narayanan
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alan S Hilibrand
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Martínez-Heredia L, Muñoz-Torres M, Sanabria-de la Torre R, Jiménez-Ortas Á, Andújar-Vera F, González-Cejudo T, Contreras-Bolívar V, González-Salvatierra S, Gómez-Vida JM, García-Fontana C, García-Fontana B. Systemic effects of hypophosphatasia characterization of two novel variants in the ALPL gene. Front Endocrinol (Lausanne) 2024; 14:1320516. [PMID: 38234425 PMCID: PMC10792043 DOI: 10.3389/fendo.2023.1320516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Hypophosphatasia (HPP) is an inborn metabolic error caused by mutations in the ALPL gene encoding tissue non-specific alkaline phosphatase (TNSALP) and leading to decreased alkaline phosphatase (ALP) activity. Although the main characteristic of this disease is bone involvement, it presents a great genetic and clinical variability, which makes it a systemic disease. Methods Patients were recruited based on biochemical assessments. Diagnosis was made by measuring serum ALP and pyridoxal 5-phosphate levels and finally by Sanger sequencing of the ALPL gene from peripheral blood mononuclear cells. Characterization of the new variants was performed by transfection of the variants into HEK293T cells, where ALP activity and cellular localization were measured by flow cytometry. The dominant negative effect was analyzed by co-transfection of each variant with the wild-type gene, measuring ALP activity and analyzing cellular localization by flow cytometry. Results Two previously undescribed variants were found in the ALPL gene: leucine 6 to serine missense mutation (c.17T>C, L6S) affecting the signal peptide and threonine 167 deletion (c.498_500delCAC, T167del) affecting the vicinity of the active site. These mutations lead mainly to non-pathognomonic symptoms of HPP. Structural prediction and modeling tools indicated the affected residues as critical residues with important roles in protein structure and function. In vitro results demonstrated low TNSALP activity and a dominant negative effect in both mutations. The results of the characterization of these variants suggest that the pleiotropic role of TNSALP could be involved in the systemic effects observed in these patients highlighting digestive and autoimmune disorders associated with TNSALP dysfunction. Conclusions The two new mutations have been classified as pathogenic. At the clinical level, this study suggests that both mutations not only lead to pathognomonic symptoms of the disease, but may also play a role at the systemic level.
Collapse
Affiliation(s)
| | - Manuel Muñoz-Torres
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Ángela Jiménez-Ortas
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
| | - Francisco Andújar-Vera
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), Granada, Spain
- Bioinformatic Service, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - Trinidad González-Cejudo
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Clinical Analysis Unit, University Hospital Clínico San Cecilio, Granada, Spain
| | | | - Sheila González-Salvatierra
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Department of Medicine, University of Granada, Granada, Spain
| | | | - Cristina García-Fontana
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, Granada, Spain
- Biomedical Research Network in Fragility and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cell Biology, University of Granada, Granada, Spain
| |
Collapse
|
23
|
Raimann A, Misof BM, Fratzl P, Fratzl-Zelman N. Bone Material Properties in Bone Diseases Affecting Children. Curr Osteoporos Rep 2023; 21:787-805. [PMID: 37897675 DOI: 10.1007/s11914-023-00822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders. RECENT FINDINGS We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies. Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.
Collapse
Affiliation(s)
- Adalbert Raimann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Barbara M Misof
- Vienna Bone and Growth Center, Vienna, Austria
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Vienna Bone and Growth Center, Vienna, Austria.
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| |
Collapse
|
24
|
Hidaka N, Murata H, Tachikawa K, Osaki K, Sekiyama T, Kinoshita Y, Kato H, Hoshino Y, Kimura S, Sunouchi T, Watanabe S, Nangaku M, Makita N, Michigami T, Ito N. The Effect of Asfotase Alfa on Plasma and Urine Pyrophosphate Levels and Pseudofractures in a Patient With Adult-Onset Hypophosphatasia. JBMR Plus 2023; 7:e10842. [PMID: 38130758 PMCID: PMC10731098 DOI: 10.1002/jbm4.10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Hypophosphatasia (HPP) is an inherited disease caused by variants of the ALPL gene encoding tissue-nonspecific alkaline phosphatase. Adult-onset HPP (adult HPP), known as a mild form of HPP, develops symptoms involving osteomalacia after the age of 18 years. Asfotase alfa (AA) is a modulated recombinant human alkaline phosphatase (ALP) that has been established as a first-line therapy for severe forms of HPP, such as perinatal and infantile forms. We described a 64-year-old female who presented with pseudofractures in bilateral femur diaphyses and impaired mobility. Low serum ALP activity and a high concentration of urine phosphoethanolamine indicated the diagnosis of HPP, which was confirmed by the identification of a homozygous variant in the ALPL gene (c.319G > A; p.Val107Ile). An in vitro transfection experiment to measure the ALP activity of this novel variant protein was performed, resulting in 40% of the residual enzymatic activity compared with the wild type. AA was initiated to facilitate the union of pseudofracture and to improve mobility. After 6 months, radiographic images revealed the disappearance of fracture lines, and improvement of ambulatory ability was confirmed by the 6-minute walk test (525 to 606 m). The EQ-5D-5L index was also improved (0.757 to 0.895). Within a follow-up period, the levels of urine pyrophosphate corrected by urine creatinine (uPPi/Cre) declined in parallel with the level of plasma PPi (plasma PPi: 6.34 to 1.04 μM, uPPi/Cre: 226.8 to 75.4 nmol/mg). The beneficial effect of AA on pseudofracture healing in adult HPP was presented, although the application of AA should be restricted to patients exhibiting relatively severe manifestations. In addition, a novel pathogenic variant of the ALPL gene was identified with the supportive result of functional analysis. Furthermore, when monitoring patients with HPP treated with AA, uPPi/Cre might be a convenient substitute for plasma PPi, which requires immediate filtration after blood sampling. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Naoko Hidaka
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| | - Hiroaki Murata
- Department of Orthopaedic Surgery, Panasonic Health Insurance OrganizationMatsushita Memorial HospitalOsakaJapan
| | - Kanako Tachikawa
- Department of Bone and Mineral Research, Research InstituteOsaka Women's and Children's HospitalOsakaJapan
| | - Keiichi Osaki
- Department of Rehabilitation, Panasonic Health Insurance OrganizationMatsushita Memorial HospitalOsakaJapan
| | - Takashi Sekiyama
- Department of Rehabilitation, Panasonic Health Insurance OrganizationMatsushita Memorial HospitalOsakaJapan
| | - Yuka Kinoshita
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| | - Hajime Kato
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| | - Yoshitomo Hoshino
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| | - Soichiro Kimura
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| | - Takashi Sunouchi
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| | - So Watanabe
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
- Department of Geriatric Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Masaomi Nangaku
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
| | - Noriko Makita
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research InstituteOsaka Women's and Children's HospitalOsakaJapan
| | - Nobuaki Ito
- Division of Nephrology and EndocrinologyThe University of Tokyo HospitalTokyoJapan
- Osteoporosis CenterThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
25
|
Sbrocchi AM, Cavin R, Marleau A, Fournier T, Beecroft M, Ferraz dos Santos B. Aetiologies of low alkaline phosphatase in a Canadian Paediatric Tertiary Care Centre. Paediatr Child Health 2023; 28:483-488. [PMID: 38638542 PMCID: PMC11022865 DOI: 10.1093/pch/pxad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/15/2023] [Indexed: 04/20/2024] Open
Abstract
Objectives Increasingly, laboratories flag low serum alkaline phosphatase (sALP) that are age-and sex-specific in paediatrics. The aim of this study was to report clinical manifestations of paediatric patients with age-and sex-specific low sALP, thereby increasing awareness of its potential aetiologies. Methods This retrospective Canadian tertiary care paediatric hospital study assessed all sALP of ambulatory patients aged less than 18 years from 2015 to 2017. The hospital used a Beckman Coulter AU assay to measure sALP and compared values to the Canadian age-and sex-specific reference intervals from CALIPER. All children who had at least one subnormal age-and sex-specific sALP were evaluated. A review of medical charts of included patients was performed and demographic characteristics, medical history and diagnosis were collected, and categorized under groups of medical disorders. Results Of 11,874 included patients, 1,001 patients (9.2%) had low sALP. Of those, 48% (485/1,001) had transient low sALP activity and 9.6% (96/1,001) had persistently low sALP. Prolonged immobilization and inflammatory bowel disease represented the main aetiologies for persistently low sALP. Interestingly, 13.5% (13/96) of patients with persistently low sALP had no apparent aetiology. Conclusions Our results report aetiologies of low sALP in a Canadian paediatric population using age-and sex-specific Canadian reference ranges. This study highlights that healthcare providers should be aware that a low sALP may have clinical significance and should be repeated if warranted based on further clinical assessment.
Collapse
Affiliation(s)
- Anne Marie Sbrocchi
- Department of Pediatrics, Montreal Children’s Hospital, Montreal
- Faculty of Medicine, McGill University, Montreal
| | - Rosalie Cavin
- Department of Pediatrics, Montreal Children’s Hospital, Montreal
| | - Annie Marleau
- Division of Dentistry, Department of Pediatric Surgery, Montreal Children’s Hospital, Montreal
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal
| | - Tanya Fournier
- Alexion, AstraZeneca Rare Disease, Boston, Massachusetts, USA
| | | | - Beatriz Ferraz dos Santos
- Division of Dentistry, Department of Pediatric Surgery, Montreal Children’s Hospital, Montreal
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal
| |
Collapse
|
26
|
Pendleton EG, Nichenko AS, Mcfaline-Figueroa J, Raymond-Pope CJ, Schifino AG, Pigg TM, Barrow RP, Greising SM, Call JA, Mortensen LJ. Compromised Muscle Properties in a Severe Hypophosphatasia Murine Model. Int J Mol Sci 2023; 24:15905. [PMID: 37958888 PMCID: PMC10649932 DOI: 10.3390/ijms242115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Hypophosphatasia (HPP) is a rare metabolic bone disorder characterized by low levels of tissue non-specific alkaline phosphatase (TNAP) that causes under-mineralization of the bone, leading to bone deformity and fractures. In addition, patients often present with chronic muscle pain, reduced muscle strength, and an altered gait. In this work, we explored dynamic muscle function in a homozygous TNAP knockout mouse model of severe juvenile onset HPP. We found a reduction in skeletal muscle size and impairment in a range of isolated muscle contractile properties. Using histological methods, we found that the structure of HPP muscles was similar to healthy muscles in fiber size, actin and myosin structures, as well as the α-tubulin and mitochondria networks. However, HPP mice had significantly fewer embryonic and type I fibers than wild type mice, and fewer metabolically active NADH+ muscle fibers. We then used oxygen respirometry to evaluate mitochondrial function and found that complex I and complex II leak respiration were reduced in HPP mice, but that there was no disruption in efficiency of electron transport in complex I or complex II. In summary, the severe HPP mouse model recapitulates the muscle strength impairment phenotypes observed in human patients. Further exploration of the role of alkaline phosphatase in skeletal muscle could provide insight into mechanisms of muscle weakness in HPP.
Collapse
Affiliation(s)
- Emily G. Pendleton
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Anna S. Nichenko
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Jennifer Mcfaline-Figueroa
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | | | - Albino G. Schifino
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Taylor M. Pigg
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Ruth P. Barrow
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jarrod A. Call
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Luke J. Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, GA 30602, USA
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
27
|
Fratzl-Zelman N, Linglart A, Bin K, Rauch F, Blouin S, Coutant R, Donzeau A. Combination of osteogenesis imperfecta and hypophosphatasia in three children with multiple fractures, low bone mass and severe osteomalacia, a challenge for therapeutic management. Eur J Med Genet 2023; 66:104856. [PMID: 37758163 DOI: 10.1016/j.ejmg.2023.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Osteogenesis imperfecta (OI) and hypophosphatasia (HPP) are rare skeletal disorders caused by mutations in the genes encoding collagen type I (COL1A, COL1A2) and tissue-non-specific isoenzyme of alkaline phosphatase (ALPL), respectively. Both conditions result in skeletal deformities and bone fragility although bone tissue abnormalities differ considerably. Children with OI have low bone mass and hypermineralized matrix, whereas HPP children develop rickets and osteomalacia. We report a family, father and three children, affected with growth retardation, low bone mass and recurrent fractures. None of them had rickets, blue sclera or dentinogenesis imperfecta. ALP serum levels were low and genetics revealed in the four probands heterozygous pathogenic mutations in COL1A2 c.838G > A (p.Gly280Ser) and in ALPL c.1333T > C (p.Ser445Pro). After multidisciplinary meeting, a diagnostic transiliac bone biopsy was indicated for each sibling for therapeutic decision. Bone histology and histomorphometry, as compared to reference values of children with OI type I as well as, to a control pediatric patient harboring the same COL1A2 mutation, revealed similarly decreased trabecular bone volume, increased osteocyte lacunae, but additionally severe osteomalacia. Quantitative backscattered electron imaging demonstrated that bone matrix mineralization was not as decreased as expected for osteomalacia. In summary, we observed within each biopsy samples classical features of OI and classical features of HPP. The apparent nearly normal bone mineralization density distribution results presumably from divergent effects of OI and HPP on matrix mineralization. A combination therapy was initiated with ALP enzyme-replacement and one month later with bisphosphonates. The ongoing treatment led to improved skeletal growth, increased BMD and markedly reduced fracture incidence.
Collapse
Affiliation(s)
- Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Department Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria.
| | - Agnès Linglart
- AP-HP, Paris Saclay University, INSERM, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, Platform of Expertise for Rare Diseases, OSCAR Filière, EndoERN and BOND ERN Center, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital, France
| | - Kim Bin
- Pediatric Orthopedic Surgery Angers University Hospital, Angers, France
| | - Frank Rauch
- Shriners Hospital for Children, Canada, Montreal, QC, Canada
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Department Hanusch Hospital, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Régis Coutant
- AP-HP, Paris Saclay University, INSERM, Reference Center for Rare Diseases of the Calcium and Phosphate Metabolism, Platform of Expertise for Rare Diseases, OSCAR Filière, EndoERN and BOND ERN Center, Endocrinology and Diabetes for Children, Bicêtre Paris Saclay Hospital, France; Department of Pediatric Endocrinology and Diabetology, Competence Center for Rare Diseases of the Calcium and Phosphate Metabolism, Angers University Hospital, Angers, France
| | - Aurélie Donzeau
- Department of Pediatric Endocrinology and Diabetology, Competence Center for Rare Diseases of the Calcium and Phosphate Metabolism, Angers University Hospital, Angers, France
| |
Collapse
|
28
|
Pontán F, Hauta-Alus H, Valkama S, Rosendahl J, Enlund-Cerullo M, Andersson S, Mäkitie O, Holmlund-Suila E. Alkaline Phosphatase and Hyperphosphatasemia in Vitamin D Trial in Healthy Infants and Toddlers. J Clin Endocrinol Metab 2023; 108:e1082-e1091. [PMID: 37061810 DOI: 10.1210/clinem/dgad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
CONTEXT Childhood hyperphosphatasemia is usually transient and may be associated with infections. It remains less well known how hyperphosphatasemia is related to growth and bone mineralization. OBJECTIVE We explored alkaline phosphatase (ALP) concentrations and prevalence of hyperphosphatasemia, and their association with vitamin D, growth, infections, and bone parameters in healthy children. METHODS The study was a secondary analysis of a vitamin D intervention trial. Participants received vitamin D3 10 or 30 µg daily from age 2 weeks to 2 years. Children with data on ALP at 12 and/or 24 months (n = 813, girls 51.9%) were included. Anthropometrics and bone parameters were measured at 12 and 24 months. Infections were recorded prospectively by the parents. RESULTS Boys had higher ALP than girls at 12 months (median [IQR] 287 [241-345] U/L vs 266 [218-341] U/L; P = .02). At 24 months concentrations were lower than at 12 months (240 [202-284]; P < .001) but without sex difference. The prevalence of hyperphosphatasemia (ALP > 1000 U/L) at 12 months was 5.3% and at 24 months 0.6%. Body size, growth rate, and bone mineral content associated positively with ALP, while vitamin D intervention had no effect. Infants with hyperphosphatasemia were smaller than infants with ALP ≤ 1000 U/L. Hyperphosphatasemia was not associated with previous infections. CONCLUSION Approximately 5% of infants had hyperphosphatasemia at 12 months, but <1% at 24 months. ALP concentrations and hyperphosphatasemia were associated with sex, anthropometry, and bone mineralization. Infections did not contribute to hyperphosphatasemia.
Collapse
Affiliation(s)
- Freja Pontán
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Helena Hauta-Alus
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Population Health Unit, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland
- Clinical Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, 90014 Oulu, Finland
| | - Saara Valkama
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jenni Rosendahl
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Maria Enlund-Cerullo
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Elisa Holmlund-Suila
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
29
|
Tourkova IL, Larrouture QC, Onwuka KM, Liu S, Luo J, Schlesinger PH, Blair HC. Age-related decline in bone mineral transport and bone matrix proteins in osteoblasts from stromal stem cells. Am J Physiol Cell Physiol 2023; 325:C613-C622. [PMID: 37519232 PMCID: PMC10635645 DOI: 10.1152/ajpcell.00227.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
We studied osteoblast bone mineral transport and matrix proteins as a function of age. In isolated bone marrow cells from long bones of young (3 or 4 mo) and old (18 or 19 mo) mice, age correlated with reduced mRNA of mineral transport proteins: alkaline phosphatase (ALP), ankylosis (ANK), the Cl-/H+ exchanger ClC3, and matrix proteins collagen 1 (Col1) and osteocalcin (BGLAP). Some proteins, including the neutral phosphate transporter2 (NPT2), were not reduced. These are predominately osteoblast proteins, but in mixed cell populations. Remarkably, in osteoblasts differentiated from preparations of stromal stem cells (SSCs) made from bone marrow cells in young and old mice, differentiated in vitro on perforated polyethylene terephthalate membranes, mRNA confirmed decreased expression with age for most transport-related and bone matrix proteins. Additional mRNAs in osteoblasts in vitro included ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), unchanged, and ENPP2, reduced with age. Decrease with age in ALP activity and protein by Western blot was also significant. Transport protein findings correlated with micro-computed tomography of lumbar vertebra, showing that trabecular bone of old mice is osteopenic relative to young mice, consistent with other studies. Pathway analysis of osteoblasts differentiated in vitro showed that cells from old animals had reduced Erk1/2 phosphorylation and decreased suppressor of mothers against decapentaplegic 2 (Smad2) mRNA, consistent with TGFβ pathway, and reduced β-catenin mRNA, consistent with WNT pathway regulation. Our results show that decline in bone density with age reflects selective changes, resulting effectively in a phenotype modification. Reduction of matrix and mineral transport protein expression with age is regulated by multiple signaling pathways.NEW & NOTEWORTHY This work for the first time showed that specific enzymes in bone mineral transport, and matrix synthesis proteins, in the epithelial-like bone-forming cell layer are downregulated with aging. Results were compared using cells extracted from long bones of young and old mice, or in essentially uniform osteoblasts differentiated from stromal stem cells in vitro. The age effect showed memory in the stromal stem cells, a remarkable finding.
Collapse
Affiliation(s)
- Irina L Tourkova
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Quitterie C Larrouture
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kelechi M Onwuka
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Paul H Schlesinger
- Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Harry C Blair
- Research Service, VA Medical Center, Pittsburgh, Pennsylvania, United States
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
30
|
Calmarza P, Lapresta C, Martínez García M, Ochoa J, Sienes Bailo P, Acha Pérez J, Beltrán Audera J, González-Roca E. Musculoskeletal pain and muscular weakness as the main symptoms of adult hypophosphatasia in a Spanish cohort: clinical characterization and identification of a new ALPL gene variant. J Bone Miner Metab 2023; 41:654-665. [PMID: 37351650 DOI: 10.1007/s00774-023-01440-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Hypophosphatasia (HPP) is a rare inherited disorder, caused by mutations in the alkaline phosphatase (ALPL) gene, which encodes for the tissue non-specific alkaline phosphatase (TNSALP) isoform of alkaline phosphatase (ALP). Adult HPP is one of the mild forms that presents with unspecific signs such as osteopenia, osteomalacia and muscle involvement. Our purpose was to identify and characterize possibly misdiagnosed adult HPP patients at a clinical and biochemical level. MATERIAL AND METHODS At the laboratory of Miguel Servet University Hospital we retrospectively reviewed serum ALP levels in adults over a 48-month period. The clinical records of individuals with consistently low ALP levels were reviewed to exclude secondary causes. Those with persistent hypophosphatasemia were screened for symptoms of HPP. The study participants were evaluated at biochemical and genetic levels. RESULTS We identified 705 ALP determinations (out of 384,000 processed) in 589 patients below the reference range (30 U/l). Only 21 patients with clinical signs and symptoms of HPP were selected for genetic testing. Finally, only 12 patients participated in the study, 83.3% of whom (10/12) harbored a pathogenic or likely pathogenic variant in a heterozygous state. The major symptoms of our cohort were the presence of musculoskeletal pain (100% of patients) and muscular weakness (83.3% patients). CONCLUSION Mild HPP patients presenting with diffuse symptoms such as musculoskeletal pain may be undiagnosed or misdiagnosed as osteoporosis patients by routine diagnosis. It is important to identify these individuals, to avoid inappropriate treatment with antiresorptive drugs.
Collapse
Affiliation(s)
- Pilar Calmarza
- Clinical Biochemistry Department, IIS Aragón, Miguel Servet University Hospital, Network Research Center in Cardiovascular Diseases (CIBERCV), University of Zaragoza, 50009, Zaragoza, Spain.
| | - Carlos Lapresta
- Preventive Medicine Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | | | - José Ochoa
- Occupational Risk Prevention Service, MAS Prevention, Zaragoza, Spain
| | - Paula Sienes Bailo
- Clinical Biochemistry Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Javier Acha Pérez
- Endocrinology Department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Jesús Beltrán Audera
- Rheumatology department, Miguel Servet University Hospital, 50009, Zaragoza, Spain
| | - Eva González-Roca
- Molecular Biology Core Lab/Immunology Department, CDB. Hospital Clínic, Barcelona, Spain
| |
Collapse
|
31
|
Yu Y, Rong K, Yao D, Zhang Q, Cao X, Rao B, Xia Y, Lu Y, Shen Y, Yao Y, Xu H, Ma P, Cao Y, Qin A. The structural pathology for hypophosphatasia caused by malfunctional tissue non-specific alkaline phosphatase. Nat Commun 2023; 14:4048. [PMID: 37422472 PMCID: PMC10329691 DOI: 10.1038/s41467-023-39833-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/30/2023] [Indexed: 07/10/2023] Open
Abstract
Hypophosphatasia (HPP) is a metabolic bone disease that manifests as developmental abnormalities in bone and dental tissues. HPP patients exhibit hypo-mineralization and osteopenia due to the deficiency or malfunction of tissue non-specific alkaline phosphatase (TNAP), which catalyzes the hydrolysis of phosphate-containing molecules outside the cells, promoting the deposition of hydroxyapatite in the extracellular matrix. Despite the identification of hundreds of pathogenic TNAP mutations, the detailed molecular pathology of HPP remains unclear. Here, to address this issue, we determine the crystal structures of human TNAP at near-atomic resolution and map the major pathogenic mutations onto the structure. Our study reveals an unexpected octameric architecture for TNAP, which is generated by the tetramerization of dimeric TNAPs, potentially stabilizing the TNAPs in the extracellular environments. Moreover, we use cryo-electron microscopy to demonstrate that the TNAP agonist antibody (JTALP001) forms a stable complex with TNAP by binding to the octameric interface. The administration of JTALP001 enhances osteoblast mineralization and promoted recombinant TNAP-rescued mineralization in TNAP knockout osteoblasts. Our findings elucidate the structural pathology of HPP and highlight the therapeutic potential of the TNAP agonist antibody for osteoblast-associated bone disorders.
Collapse
Affiliation(s)
- Yating Yu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Xiankun Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bing Rao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yi Lu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Peixiang Ma
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yu Cao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
32
|
Buss DJ, Rechav K, Reznikov N, McKee MD. Mineral tessellation in mouse enthesis fibrocartilage, Achilles tendon, and Hyp calcifying enthesopathy: A shared 3D mineralization pattern. Bone 2023:116818. [PMID: 37295663 DOI: 10.1016/j.bone.2023.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The hallmark of enthesis architecture is the 3D compositional and structural gradient encompassing four tissue zones - tendon/ligament, uncalcified fibrocartilage, calcified fibrocartilage and bone. This functional gradient accommodates the large stiffness differential between calcified bone and uncalcified tendon/ligament. Here we analyze in 3D the organization of the mouse Achilles enthesis and mineralizing Achilles tendon in comparison to lamellar bone. We use correlative, multiscale high-resolution volume imaging methods including μCT with submicrometer resolution and FIB-SEM tomography (both with deep learning-based image segmentation), and TEM and SEM imaging, to describe ultrastructural features of physiologic, age-related and aberrant mineral patterning. We applied these approaches to murine wildtype (WT) Achilles enthesis tissues to describe in normal calcifying fibrocartilage a crossfibrillar mineral tessellation pattern similar to that observed in lamellar bone, but with greater variance in mineral tesselle morphology and size. We also examined Achilles enthesis structure in Hyp mice, a murine model for the inherited osteomalacic disease X-linked hypophosphatemia (XLH) with calcifying enthesopathy. In Achilles enthesis fibrocartilage of Hyp mice, we show defective crossfibrillar mineral tessellation similar to that which occurs in Hyp lamellar bone. At the cellular level in fibrocartilage, unlike in bone where enlarged osteocyte mineral lacunae are found as peri-osteocytic lesions, mineral lacunar volumes for fibrochondrocytes did not differ between WT and Hyp mice. While both WT and Hyp aged mice demonstrate Achilles tendon midsubstance ectopic mineralization, a consistently defective mineralization pattern was observed in Hyp mice. Strong immunostaining for osteopontin was observed at all mineralization sites examined in both WT and Hyp mice. Taken together, this new 3D ultrastructural information describes details of common mineralization trajectories for enthesis, tendon and bone, which in Hyp/XLH are defective.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Katya Rechav
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
33
|
Zhou W, van Rooij JGJ, van de Laarschot DM, Zervou Z, Bruggenwirth H, Appelman‐Dijkstra NM, Ebeling PR, Demirdas S, Verkerk AJMH, Zillikens MC. Prevalence of Monogenic Bone Disorders in a Dutch Cohort of Atypical Femur Fracture Patients. J Bone Miner Res 2023; 38:896-906. [PMID: 37076969 PMCID: PMC10946469 DOI: 10.1002/jbmr.4801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 04/21/2023]
Abstract
Atypical femur fractures (AFFs), considered rare associations of bisphosphonates, have also been reported in patients with monogenic bone disorders without bisphosphonate use. The exact association between AFFs and monogenic bone disorders remains unknown. Our aim was to determine the prevalence of monogenic bone disorders in a Dutch AFF cohort. AFF patients were recruited from two specialist bone centers in the Netherlands. Medical records of the AFF patients were reviewed for clinical features of monogenic bone disorders. Genetic variants identified by whole-exome sequencing in 37 candidate genes involved in monogenic bone disorders were classified based on the American College of Medical Genetics and Genomics (ACMG) classification guidelines. Copy number variations overlapping the candidate genes were also evaluated using DNA array genotyping data. The cohort comprises 60 AFF patients (including a pair of siblings), with 95% having received bisphosphonates. Fifteen AFF patients (25%) had clinical features of monogenic bone disorders. Eight of them (54%), including the pair of siblings, had a (likely) pathogenic variant in either PLS3, COL1A2, LRP5, or ALPL. One patient carried a likely pathogenic variant in TCIRG1 among patients not suspected of monogenic bone disorders (2%). In total, nine patients in this AFF cohort (15%) had a (likely) pathogenic variant. In one patient, we identified a 12.7 Mb deletion in chromosome 6, encompassing TENT5A. The findings indicate a strong relationship between AFFs and monogenic bone disorders, particularly osteogenesis imperfecta and hypophosphatasia, but mainly in individuals with symptoms of these disorders. The high yield of (likely) pathogenic variants in AFF patients with a clinical suspicion of these disorders stresses the importance of careful clinical evaluation of AFF patients. Although the relevance of bisphosphonate use in this relationship is currently unclear, clinicians should consider these findings in medical management of these patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wei Zhou
- Department of Internal MedicineErasmus MCRotterdamThe Netherlands
| | | | | | - Zografia Zervou
- Department of Internal MedicineErasmus MCRotterdamThe Netherlands
| | | | - Natasha M Appelman‐Dijkstra
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter R Ebeling
- Department of MedicineSchool of Clinical Sciences, Monash UniversityClaytonAustralia
| | - Serwet Demirdas
- Department of Clinical GeneticsErasmus MCRotterdamThe Netherlands
| | | | | |
Collapse
|
34
|
Jassas RS, Naeem N, Sadiq A, Mehmood R, Alenazi NA, Al-Rooqi MM, Mughal EU, Alsantali RI, Ahmed SA. Current status of N-, O-, S-heterocycles as potential alkaline phosphatase inhibitors: a medicinal chemistry overview. RSC Adv 2023; 13:16413-16452. [PMID: 37274413 PMCID: PMC10233329 DOI: 10.1039/d3ra01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Heterocycles are a class of compounds that have been found to be potent inhibitors of alkaline phosphatase (AP), an enzyme that plays a critical role in various physiological processes such as bone metabolism, cell growth and differentiation, and has been linked to several diseases such as cancer and osteoporosis. AP is a widely distributed enzyme, and its inhibition has been considered as a therapeutic strategy for the treatment of these diseases. Heterocyclic compounds have been found to inhibit AP by binding to the active site of the enzyme, thereby inhibiting its activity. Heterocyclic compounds such as imidazoles, pyrazoles, and pyridines have been found to be potent AP inhibitors and have been studied as potential therapeutics for the treatment of cancer, osteoporosis, and other diseases. However, the development of more potent and selective inhibitors that can be used as therapeutics for the treatment of various diseases is an ongoing area of research. Additionally, the study of the mechanism of action of heterocyclic AP inhibitors is an ongoing area of research, which could lead to the identification of new targets and new therapeutic strategies. The enzyme known as AP has various physiological functions and is present in multiple tissues and organs throughout the body. This article presents an overview of the different types of AP isoforms, their distribution, and physiological roles. It also discusses the structure and mechanism of AP, including the hydrolysis of phosphate groups. Furthermore, the importance of AP as a clinical marker for liver disease, bone disorders, and cancer is emphasized, as well as its use in the diagnosis of rare inherited disorders such as hypophosphatasia. The potential therapeutic applications of AP inhibitors for different diseases are also explored. The objective of this literature review is to examine the function of alkaline phosphatase in various physiological conditions and diseases, as well as analyze the structure-activity relationships of recently reported inhibitors. The present review summarizes the structure-activity relationship (SAR) of various heterocyclic compounds as AP inhibitors. The SAR studies of these compounds have revealed that the presence of a heterocyclic ring, particularly a pyridine, pyrimidine, or pyrazole ring, in the molecule is essential for inhibitory activity. Additionally, the substitution pattern and stereochemistry of the heterocyclic ring also play a crucial role in determining the potency of the inhibitor.
Collapse
Affiliation(s)
- Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Rabia Mehmood
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Noof A Alenazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-kharj 11942 Saudi Arabia
| | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| |
Collapse
|
35
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
36
|
Tachikawa K, Yamazaki M, Michigami T. A unique case of childhood hypophosphatasia caused by a novel heterozygous 51-bp in-frame deletion in the ALPL gene. Clin Pediatr Endocrinol 2023; 32:180-187. [PMID: 37362163 PMCID: PMC10288296 DOI: 10.1297/cpe.2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
Hypophosphatasia (HPP) is caused by inactivating variants of the ALPL gene, which encodes tissue non-specific alkaline phosphatase (TNSALP). Among the six subtypes of HPP, childhood HPP presents after 6 months and before 18 yr of age, and is inherited in both autosomal dominant and autosomal recessive manners. Patients with childhood HPP have variable symptoms, including rickets-like bone changes, low bone mineral density (BMD), short stature, muscle weakness, craniosynostosis, and premature loss of deciduous teeth. Here, we describe a 7-yr-old boy with childhood HPP who showed short stature, impaired ossification of the carpal bones, and low BMD. Genetic testing identified a novel heterozygous 51-bp in-frame deletion in the ALPL gene (c.1482_1532del51), leading to the lack of 17 amino acids between Gly495 and Leu511 (p.Gly495_Leu511del). In vitro transfection experiments revealed the loss of enzymatic activity and the dominant-negative effect of the TNSALP[p.Gly495_Leu511del] variant; thus, the patient was diagnosed as having autosomal dominant HPP. The TNSALP[p.Gly495_Leu511del] variant was localized to the plasma membrane as was the wild-type TNSALP (TNSALP[WT]): however, co-immunoprecipitation experiments suggested a reduced dimerization between TNSALP[p.Gly495_Leu511del] and TNSALP[WT]. This case expands the variable clinical manifestation of childhood HPP and sheds light on the molecular bases underlying the dominant-negative effects of some TNSALP variants.
Collapse
Affiliation(s)
- Kanako Tachikawa
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, Osaka, Japan
| |
Collapse
|
37
|
Schmidt FN, Schmidt C, Delsmann J, Amling M, Barvencik F. Radial HR-pQCT and Finite Element Analysis in HPP Patients are Superior in Identifying Susceptibility to Fracture-Associated Skeletal Affections Compared to DXA and Laboratory Tests. Calcif Tissue Int 2023; 112:691-703. [PMID: 37147467 DOI: 10.1007/s00223-023-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Hypophosphatasia (HPP) is an inborn disease that causes a rare form of osteomalacia, a mineralization disorder affecting mineralized tissues. Identification of patients at high risk for fractures or other skeletal manifestations (such as insufficiency fractures or excessive bone marrow edema) by bone densitometry and laboratory tests remains clinically challenging. Therefore, we examined two cohorts of patients with variants in the ALPL gene grouped by bone manifestations. These groups were compared by means of bone microarchitecture using high-resolution peripheral quantitative computed tomography (HR-pQCT) and simulated mechanical performance utilizing finite element analysis (FEA). Whereas the incidence of skeletal manifestations among the patients could not be determined by dual energy X-ray absorptiometry (DXA) or laboratory assessment, HR-pQCT evaluation showed a distinct pattern of HPP patients with such manifestations. Specifically, these patients had a pronounced loss of trabecular bone mineral density, increased trabecular spacing, and decreased ultimate force at the distal radius. Interestingly, the derived results indicate that the non-weight-bearing radius is superior to the weight-bearing tibia in identifying deteriorated skeletal patterns. Overall, the assessment by HR-pQCT appears to be of high clinical relevance due to the improved identification of HPP patients with an increased risk for fractures or other skeletal manifestations, especially at the distal radius.
Collapse
Affiliation(s)
- Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Constantin Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Julian Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
38
|
Li X, Ren N, Wang Z, Wang Y, Hu Y, Hu W, Gu J, Hong W, Zhang Z, Wang C. Clinical and Genetic Characteristics of Hypophosphatasia in Chinese Adults. Genes (Basel) 2023; 14:genes14040922. [PMID: 37107680 PMCID: PMC10137706 DOI: 10.3390/genes14040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Hypophosphatasia (HPP) is an inherited disease caused by ALPL mutation, resulting in decreased alkaline phosphatase (ALP) activity and damage to bone and tooth mineralization. The clinical symptoms of adult HPP are variable, making diagnosis challenging. This study aims to clarify the clinical and genetic characteristics of HPP in Chinese adults. There were 19 patients, including 1 with childhood-onset and 18 with adult-onset HPP. The median age was 62 (32-74) years and 16 female patients were involved. Common symptoms included musculoskeletal symptoms (12/19), dental problems (8/19), fractures (7/19), and fatigue (6/19). Nine patients (47.4%) were misdiagnosed with osteoporosis and six received anti-resorptive treatment. The average serum ALP level was 29.1 (14-53) U/L and 94.7% (18/19) of patients had ALP levels below 40 U/L. Genetic analysis found 14 ALPL mutations, including three novel mutations-c.511C>G (p.His171Ala), c.782C>A (p.Pro261Gln), and 1399A>G (p.Met467Val). The symptoms of two patients with compound heterozygous mutations were more severe than those with heterozygous mutations. Our study summarized the clinical characteristics of adult HPP patients in the Chinese population, expanded the spectrum of pathogenic mutations, and deepened clinicians' understanding of this neglected disease.
Collapse
Affiliation(s)
- Xiang Li
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Na Ren
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ziyuan Wang
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ya Wang
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yunqiu Hu
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiemei Gu
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wei Hong
- Department of Osteoporosis & Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Zhenlin Zhang
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Disease & Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
39
|
Smart G, Jensen ED, Poirier BF, Sethi S. The impact of enzyme replacement therapy on the oral health manifestations of hypophosphatasia among children: a scoping review. Eur Arch Paediatr Dent 2023:10.1007/s40368-023-00796-0. [PMID: 37036643 DOI: 10.1007/s40368-023-00796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE A scoping review to describe the use of enzyme replacement therapy (ERT) in the form of asfotase alfa to decrease the severity of oral manifestations in children with hypophosphatasia (HPP). METHODS Six databases were searched using keywords and index terms related to "hypophosphatasia," "children," and "enzyme replacement therapy." Duplicates were removed and two independent reviewers screened the titles and abstracts to identify articles for full-text review. Extracted data was summarised narratively. RESULTS The systematic search identified 3548 articles, with 171 suitable for full-text review and a final 22 that met inclusion criteria. Enzyme replacement therapy generally resulted in a reduction in the presence and severity of oral manifestations of HPP. However, numerous studies failed to report specific details regarding the nature of oral health outcomes and there were reported cases of further loss of primary teeth. CONCLUSIONS The available evidence suggests that that ERT in the form of asfotase alfa for HPP in infants and young children leads to improved oral health outcomes. It is recommended that the outcomes are improved with earlier initiation of ERT. Further, well-designed clinical research is required to assess oral health improvements and decreased morbidity associated with the early loss of teeth.
Collapse
Affiliation(s)
- G Smart
- Department of Paediatric Dentistry, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia.
| | - E D Jensen
- Department of Paediatric Dentistry, Women's and Children's Hospital, 72 King William Road, North Adelaide, SA, 5006, Australia
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - B F Poirier
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| | - S Sethi
- Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
40
|
Lee J, Casale S, Landoulsi J, Guibert C. Kinetic Study of Calcium Phosphate Mineralisation in Biomimetic Conditions: An Enzymatic Model Approach. Colloids Surf B Biointerfaces 2023; 226:113290. [PMID: 37086685 DOI: 10.1016/j.colsurfb.2023.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Although it has been studied for decades, calcium phosphate (CaP) biomineralisation remains an unclear process involving many possible pathways depending on subtle biological parameters that are hard to mimic. In this work, we explore the catalytic activity of enzymes to direct CaP crystallisation. This idea derives from the remarkable capacity of matrix vesicles (MVs) to control CaP biomineralisation in vivo by involving a variety of proteins, including enzymes. We highlight how the enzymatic control of the release of phosphate ions allows to better steer when and how the minerals form by tuning the enzymatic activity. We also illustrate how this enzymatic control enables the deeper understanding of the role of a crystallisation inhibitor, magnesium ions. Moreover, we propose in this study the original and extensive use of both dynamic (DLS) and static (SLS) light scattering measurements to follow the mineralisation in real-time and to provide kinetic quantitative parameters to describe this phenomenon. The combination of the techniques reveals noticeable differences in terms of nucleation and growth process between the two levers used in this approach: (i) adjusting the time evolution of the supersaturation or (ii) moderating the crystallisation process. This study allowed also to pinpoint specific intermediate structures, rarely seen and difficult to isolate, that differ when magnesium ions are introduced in the mixture.
Collapse
|
41
|
Khursigara G, Huertas P, Wenkert D, O'Brien K, Sabbagh Y. Effects of food, fasting, and exercise on plasma pyrophosphate levels and ENPP1 activity in healthy adults. Bone 2023; 171:116750. [PMID: 37003563 DOI: 10.1016/j.bone.2023.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Inorganic pyrophosphate (PPi) is highly regulated as it plays a critical role in the regulation of physiological mineralization. Dysregulation of plasma PPi is associated with skeletal hypomineralization and pathogenic mineralization in soft connective tissue, arteries, and heart valves. There is no standard approach to measuring PPi, making it difficult to establish PPi as a biomarker of mineralization disorders. This study aims to determine the impact of time of day, meals, or exercise on plasma PPi homeostasis using a highly sensitive PPi assay. METHODS In this single-center trial, a clinical laboratory improvement amendment (CLIA) validated modified sulfurylase-based adenosine 5-triphosphate (ATP) assay was used to measure PPi levels throughout the day in 10 healthy adults under 3 conditions; normal diet (non-fasting), fasting, and normal diet with exercise. Serum ectonucleotide pyrophosphatase/phosphodiesterase 1 activity (ENPP1; an enzyme that produces PPi) was also measured to determine whether these conditions influence PPi levels through ENPP1 activity. RESULTS There is a circadian increase in mean PPi levels under fasting and non-fasting conditions between 8 am and 6 pm, followed by a rapid return to baseline overnight. A circadian increase in ENPP1 activity was also measured under fasting but was lost under non-fasting conditions. Meals increased the individual variability of PPi levels when compared to the same individual fasting. PPi levels and ENPP1 activity exhibited a short-term increase after intense exercise. We found PPi ranges from 1465 nM to 2969 nM (mean 2164 nM) after fasting overnight. Within this range, there was lower intra-subject variability in PPi, suggesting that each individual has a uniquely regulated normal PPi range. CONCLUSION Plasma levels of PPi can be reliably measured after an overnight fast and show promise as a biomarker of mineralization disorders.
Collapse
Affiliation(s)
- Gus Khursigara
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America.
| | - Pedro Huertas
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Deborah Wenkert
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Kevin O'Brien
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| | - Yves Sabbagh
- Inozyme Pharma, 321 Summer St, Suite 400, Boston, MA 02201, United States of America
| |
Collapse
|
42
|
Houston DA, Stephen LA, Jayash SN, Myers K, Little K, Hopkinson M, Pitsillides AA, MacRae VE, Millan JL, Staines KA, Farquharson C. Increased PHOSPHO1 and alkaline phosphatase expression during the anabolic bone response to intermittent parathyroid hormone delivery. Cell Biochem Funct 2023; 41:189-201. [PMID: 36540015 PMCID: PMC10946561 DOI: 10.1002/cbf.3772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The administration of intermittent parathyroid hormone (iPTH) is anabolic to the skeleton. Recent studies with cultured osteoblasts have revealed that the expression of PHOSPHO1, a bone-specific phosphatase essential for the initiation of mineralisation, is regulated by PTH. Therefore, this study sought to determine whether the bone anabolic response to iPTH involves modulation of expression of Phospho1 and of other enzymes critical for bone matrix mineralisation. To mimic iPTH treatment, primary murine osteoblasts were challenged with 50 nM PTH for 6 h in every 48 h period for 8 days (4 cycles), 14 days (7 cycles) and 20 days (10 cycles) in total. The expression of both Phospho1 and Smpd3 was almost completely inhibited after 4 cycles, whereas 10 cycles were required to stimulate a similar response in Alpl expression. To explore the in vivo role of PHOSPHO1 in PTH-mediated osteogenesis, the effects of 14- and 28-day iPTH (80 µg/kg/day) administration was assessed in male wild-type (WT) and Phospho1-/- mice. The expression of Phospho1, Alpl, Smpd3, Enpp1, Runx2 and Trps1 expression was enhanced in the femora of WT mice following iPTH administration but remained unchanged in the femora of Phospho1-/- mice. After 28 days of iPTH administration, the anabolic response in the femora of WT was greater than that noted in Phospho1-/- mice. Specifically, cortical and trabecular bone volume/total volume, as well as cortical thickness, were increased in femora of iPTH-treated WT but not in iPTH-treated Phospho1-/- mice. Trabecular bone osteoblast number was also increased in iPTH-treated WT mice but not in iPTH-treated Phospho1-/- mice. The increased levels of Phospho1, Alpl, Enpp1 and Smpd3 in WT mice in response to iPTH administration is consistent with their contribution to the potent anabolic properties of iPTH in bone. Furthermore, as the anabolic response to iPTH was attenuated in mice deficient in PHOSPHO1, this suggests that the osteoanabolic effects of iPTH are at least partly mediated via bone mineralisation processes.
Collapse
Affiliation(s)
- Dean A. Houston
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Louise A. Stephen
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Soher N. Jayash
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Katherine Myers
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Kirsty Little
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Mark Hopkinson
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| | | | - Vicky E. MacRae
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Jose Luis Millan
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Katherine A. Staines
- School of Applied Sciences, Centre for Stress and Age‐Related DiseaseUniversity of BrightonBrightonUK
| | - Colin Farquharson
- Functional Genetics Division, The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
43
|
Based on intervening PCR for detection of alkaline phosphatase and zearalenone. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Kim I, Noh ES, Kim MS, Jang JH, Jeon TY, Choi HW, Cho SY. Six-year clinical outcomes of enzyme replacement therapy for perinatal lethal and infantile hypophosphatasia in Korea: Two case reports. Medicine (Baltimore) 2023; 102:e32800. [PMID: 36820543 PMCID: PMC9907957 DOI: 10.1097/md.0000000000032800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Hypophosphatasia (HPP) is a genetic disease caused by loss-of-function mutations in ALPL, which encodes tissue-nonspecific alkaline phosphatase (ALP). Early diagnosis and treatment of perinatal and infantile HPP are important because of their high mortality rates. Enzyme replacement therapy (ERT) using human recombinant tissue-nonspecific ALP asfotase alfa was introduced in Korea in 2016. We report the first experience of ERT over 6 years for perinatal lethal and infantile HPP in Korea. PATIENT CONCERNS The first patient was a 6-week-old Korean boy with a failure to thrive. The second patient was an 8-day-old Korean-Uzbek body with generalized tonic-clonic seizure with cyanosis. DIAGNOSES HPP was suspected in both patients because of the very low level of ALP activity and rachitic findings on radiographs, and the disease was confirmed by Sanger sequencing of the ALPL gene. INTERVENTION The first patient with infantile HPP started ERT at 21 months of age and the second patient with perinatal HPP started ERT at 30 days of age. Both patients received asfotase alfa (2 mg/kg 3 times per week subcutaneously, adjusted to 3 mg/kg 3 times per week if required) for 6 years. OUTCOMES After 6 years of ERT, radiographic findings and growth standard deviation scores improved in both patients. The second patient showed no evidence of rickets after 3 years of ERT. Mechanical respiratory support and supplemental oxygen were not required after 4.5 years of treatment in the first patient and at 2 months after treatment in the second patient. CONCLUSION Among the 2 patients, the patient who started ERT early had a much better prognosis despite a more severe initial clinical presentation. Our results suggest that early diagnosis and prompt treatment play an important role in improving long-term prognosis and avoiding morbidity and premature mortality in patients with perinatal and infantile HPP.
Collapse
Affiliation(s)
- Insung Kim
- Department of Public Health Administration, Asan City Health Center, Asan, Korea
| | - Eu-Seon Noh
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Sun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae Yeon Jeon
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae Won Choi
- Department of Orthodontics, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Yoon Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * Correspondence: Sung Yoon Cho, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea (e-mail: )
| |
Collapse
|
45
|
Makris K, Mousa C, Cavalier E. Alkaline Phosphatases: Biochemistry, Functions, and Measurement. Calcif Tissue Int 2023; 112:233-242. [PMID: 36571614 DOI: 10.1007/s00223-022-01048-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/01/2022] [Indexed: 12/27/2022]
Abstract
Alkaline phosphatases (ALPs) are a group of isoenzymes, situated on the external layer of the cell membrane; they catalyze the hydrolysis of organic phosphate esters present in the extracellular space. Zinc and magnesium are significant co-factors for the biological activity of these enzymes. Although ALPs are available in various body tissues and have distinct physiochemical properties, they are true isoenzymes since they catalyze a similar reaction. In the liver, ALP is cytosolic and present in the canalicular membrane of the hepatocytes. ALPs are available in placenta, ileal mucosa, kidney, bone, and liver. However, most of the ALPs in serum (over 80%) are delivered from liver and bone and in more modest quantities from the intestines. Despite the fact that alkaline phosphatases are found in numerous tissues all through the body, their exact physiological function remains largely unknown.
Collapse
Affiliation(s)
- Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital, Kifissia, Athens, Greece
- Laboratory for the Research of Musculoskeletal System "Th. Garofalidis", School of Medicine, National and Kapodistrian, University of Athens, Athens, Greece
| | - Chagigia Mousa
- 6th Orthopedic Department, KAT General Hospital, Kifissia, Athens, Greece
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liege, CHU de Liège, CHU Sart-Tilman, B-4000, Liège, Belgium.
| |
Collapse
|
46
|
Hu P, Huang R, Xu Y, Li T, Yin J, Yang Y, Liang Y, Mao X, Ding L, Shu C. A novel and sensitive ratiometric fluorescent quantum dot-based biosensor for alkaline phosphatase detection in biological samples via the inner-filter effect. RSC Adv 2023; 13:2311-2317. [PMID: 36741147 PMCID: PMC9841509 DOI: 10.1039/d2ra06956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Alkaline phosphatase (ALP) is an important biomarker whose abnormal level in activity is associated with hepatobiliary, skeletal, and renal diseases as well as cancer. Herein, we synthesized ZnSe@ZnS quantum dots (ZnSe@ZnS QDs) and Mn-doped ZnS quantum dots (Mn:ZnS QDs) as fluorophores to establish the ratiometric fluorescent assay for ALP activity detection in biological samples. p-Nitrophenyl phosphate (PNPP) was used as a substrate for ALP, and the overlaps between absorption spectra of PNPP and excitation spectra of QDs resulted in sharp fluorescence quenching. Under the catalysis of ALP, PNPP was hydrolyzed into p-nitrophenol (PNP), which caused a red shift of absorption band of PNPP and fluorescence recovery of Mn:ZnS QDs (585 nm). However, the overlaps between absorption spectra of PNP and emission spectra of ZnSe@ZnS QDs led a further quenching of ZnSe@ZnS QDs (405 nm). Therefore, the ratiometric fluorescent signals (F 585/F 405) were associated with activity of ALP based on bidirectional responses of QDs to the concentration of PNPP. Under the optimum conditions, the method exhibited a good linear relationship from 4 to 96 U per L (R 2 = 0.9969) with the detection limit of 0.57 U per L. Moreover, the method was successfully applied for detecting the ALP activity in a complex biological matrix (human serum and HepG2 cells) with impressive specificity. In particular, the complicated chemical modifications of QDs and pretreatments of biological samples were not required in the whole detection procedures. Therefore, it not only provided a sensitive, specific and simple approach to clinical ALP activity detection, but it also provided support for early diagnosis of diseases.
Collapse
Affiliation(s)
- Penghui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Ruiyan Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Ye Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Tengfei Li
- Department of Clinical Pharmacology, School of Pharmacy, Sir Run Run Hospital, Nanjing Medical UniversityNanjing 211166China
| | - Jun Yin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Yu Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Yuan Liang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Xiaohan Mao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical UniversityNanjing 211198China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| |
Collapse
|
47
|
Bessueille L, Kawtharany L, Quillard T, Goettsch C, Briolay A, Taraconat N, Balayssac S, Gilard V, Mebarek S, Peyruchaud O, Duboeuf F, Bouillot C, Pinkerton A, Mechtouff L, Buchet R, Hamade E, Zibara K, Fonta C, Canet-Soulas E, Millan JL, Magne D. Inhibition of alkaline phosphatase impairs dyslipidemia and protects mice from atherosclerosis. Transl Res 2023; 251:2-13. [PMID: 35724933 DOI: 10.1016/j.trsl.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.
Collapse
Affiliation(s)
- Laurence Bessueille
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Lynn Kawtharany
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Thibaut Quillard
- CNRS, INSERM, l'institut du thorax, Nantes Université, Nantes, France
| | - Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen University, Aachen Germany
| | - Anne Briolay
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Nirina Taraconat
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Stéphane Balayssac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Véronique Gilard
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III, Paul Sabatier, France
| | - Saida Mebarek
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | | | | | | | | | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France; CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | - René Buchet
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de Toulouse, France
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Univ Lyon, Lyon, France
| | | | - David Magne
- Université Claude Bernard Lyon 1, UMR CNRS 5246, ICBMS, Univ Lyon, LYON, France.
| |
Collapse
|
48
|
Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev 2022; 44:417-473. [PMID: 36510335 PMCID: PMC10166271 DOI: 10.1210/endrev/bnac031] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bone turnover markers (BTMs) are used widely, in both research and clinical practice. In the last 20 years, much experience has been gained in measurement and interpretation of these markers, which include commonly used bone formation markers bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide; and commonly used resorption markers serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen and tartrate resistant acid phosphatase type 5b. BTMs are usually measured by enzyme-linked immunosorbent assay or automated immunoassay. Sources contributing to BTM variability include uncontrollable components (e.g., age, gender, ethnicity) and controllable components, particularly relating to collection conditions (e.g., fasting/feeding state, and timing relative to circadian rhythms, menstrual cycling, and exercise). Pregnancy, season, drugs, and recent fracture(s) can also affect BTMs. BTMs correlate with other methods of assessing bone turnover, such as bone biopsies and radiotracer kinetics; and can usefully contribute to diagnosis and management of several diseases such as osteoporosis, osteomalacia, Paget's disease, fibrous dysplasia, hypophosphatasia, primary hyperparathyroidism, and chronic kidney disease-mineral bone disorder.
Collapse
Affiliation(s)
- Marian Schini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tatiane Vilaca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Syazrah Salam
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Mertz EL, Makareeva E, Mirigian LS, Leikin S. Bone Formation in 2D Culture of Primary Cells. JBMR Plus 2022; 7:e10701. [PMID: 36699640 PMCID: PMC9850442 DOI: 10.1002/jbm4.10701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Relevance of mineralized nodules in two-dimensional (2D) osteoblast/osteocyte cultures to bone biology, pathology, and engineering is a decades old question, but a comprehensive answer appears to be still wanting. Bone-like cells, extracellular matrix (ECM), and mineral were all reported but so were non-bone-like ones. Many studies described seemingly bone-like cell-ECM structures based on similarity to few select bone features in vivo, yet no studies examined multiple bone features simultaneously and none systematically studied all types of structures coexisting in the same culture. Here, we report such comprehensive analysis of 2D cultures based on light and electron microscopies, Raman microspectroscopy, gene expression, and in situ messenger RNA (mRNA) hybridization. We demonstrate that 2D cultures of primary cells from mouse calvaria do form bona fide bone. Cells, ECM, and mineral within it exhibit morphology, structure, ultrastructure, composition, spatial-temporal gene expression pattern, and growth consistent with intramembranous ossification. However, this bone is just one of at least five different types of cell-ECM structures coexisting in the same 2D culture, which vary widely in their resemblance to bone and ability to mineralize. We show that the other two mineralizing structures may represent abnormal (disrupted) bone and cartilage-like structure with chondrocyte-to-osteoblast transdifferentiation. The two nonmineralizing cell-ECM structures may mimic periosteal cambium and pathological, nonmineralizing osteoid. Importantly, the most commonly used culture conditions (10mM β-glycerophosphate) induce artificial mineralization of all cell-ECM structures, which then become barely distinguishable. We therefore discuss conditions and approaches promoting formation of bona fide bone and simple means for distinguishing it from the other cell-ECM structures. Our findings may improve osteoblast differentiation and function analyses based on 2D cultures and extend applications of these cultures to general bone biology and tissue engineering research. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Edward L. Mertz
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Elena Makareeva
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Lynn S. Mirigian
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Sergey Leikin
- Eunice Kennedy Shriver National Institute of Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
50
|
Mu H, Dong Z, Wang Y, Chu Q, Gao Y, Wang A, Wang Y, Liu X, Gao Y. Odontogenesis-Associated Phosphoprotein (ODAPH) Overexpression in Ameloblasts Disrupts Enamel Formation via Inducing Abnormal Mineralization of Enamel in Secretory Stage. Calcif Tissue Int 2022; 111:611-621. [PMID: 36163390 DOI: 10.1007/s00223-022-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
Odontogenesis-associated phosphoprotein (ODAPH) is a recently discovered enamel matrix protein. Our previous study demonstrated that knockouting out Odaph in mice resulted in enamel hypomineralization. To further investigate the effect of Odaph on enamel mineralization, we constructed an Odaph overexpression mouse model, controlled by an amelogenin promoter. Our histological analysis of OdaphTg mice revealed that the enamel layer was thinner than in WT mice. An uneven, thinner enamel layer was confirmed using micro-computed tomography (uCT). It was subsequently found that the Tomes' processes lost their normal morphology, resulting in the loss of the enamel prism structure. These results indicate that Odaph overexpression in ameloblasts led to enamel dysplasia. In conjunction with this, Odaph overexpression hindered Amelx secretion, and may result in endoplasmic reticulum stress. Interestingly, uCT revealed that enamel had higher mineral density at the secretory stage; due to this, we did the histological staining for the mineralization-related proteins Alkaline phosphatase (ALPL) and Runt-related transcription factor 2 (RUNX2). It was observed that these proteins were up-regulated in OdaphTg mice versus WT mice, indicating that Odaph overexpression led to abnormal enamel mineralization. To confirm this, we transfected ameloblast-like cell line (ALC) with Odaph overexpression lentivirus in vitro and identified that both Alpl and Runx2 were strikingly upregulated in OE-mus-Odaph versus OE-NC cells. We concluded that the ectopic overexpression of Odaph in ameloblasts led to abnormal enamel mineralization. In summary, Odaph profoundly influences amelogenesis by participating in enamel mineralization.
Collapse
Affiliation(s)
- Haiyu Mu
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Zhiheng Dong
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China.
| | - Yumin Wang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Qing Chu
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yan Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Aiqin Wang
- Department of Periodontics, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yu Wang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoying Liu
- Department of Cell Biology, College of Life Science and Technology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China.
| |
Collapse
|