1
|
Riedel J, Schermuly II, Romanet S, Saliu EM, Lemme A, Zentek J, Aschenbach JR. Transport and expression of transporters for 3-O-methyl-D-glucose and L-methionine along the intestine of broiler chickens receiving different methionine supplements. Poult Sci 2025; 104:105142. [PMID: 40228340 DOI: 10.1016/j.psj.2025.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025] Open
Abstract
The present study hypothesized that supplementation of different methionine (Met) sources might influence the intestinal absorption of l-Met and 3-O-methyl-d-glucose (3-OMG) in broilers. In a completely randomized study, a total of 53 Cobb500 broilers (30 males and 23 females) received a grower-finisher diet that was either not supplemented with Met (Met + Cys, 0.49 %; control) or supplemented with either 0.27 % l-Met, 0.27 % DL-Met or 0.47 % DL-2‑hydroxy-4-(methylthio) butanoic acid (HMTBA). After ≥10 days on the diets, uptakes of 3-OMG and l-Met were measured in duodenum, mid-jejunum and caecum at 50 µM and 5 mM concentrations in Ussing chambers, each in the presence and absence of Na+. We also investigated the mRNA expression of apical glucose and Met transporters. Dietary supplements had no effect on 3-OMG and l-Met uptakes (P > 0.05), except for male broilers receiving DL-Met or DL-HMTBA, that showed higher jejunal uptakes of l-Met than control at 5 mM (P < 0.001). Except for l-Met uptakes at 5 mM, tissue × sodium interactions (P ≤ 0.05) for 3-OMG and l-Met uptakes verified higher uptakes in jejunum compared to duodenum and caecum; with higher uptakes in the presence vs. absence of Na+ in jejunum only. In duodenum, uptakes of l-Met and 3-OMG at 50 µM concentration were higher in males vs. females. Expression of SGLT1, B0AT1, ATB0,+ and rBAT, but not ASCT1, were lowest in caecum (P ≤ 0.05). Expression of B0AT1 was higher in males vs. females (P ≤ 0.05). Expression of ASCT1 was higher with DL-Met and DL-HMTBA supplements compared to l-Met and control (P ≤ 0.05). These findings indicate that jejunum is the main intestinal segment for Na+-dependent l-Met and 3-OMG absorption in broilers with minor effects of dietary Met source. A sexual dimorphism for duodenal nutrient uptake and mRNA abundance of B0AT1 was congruent with the more efficient growth performance of male chickens known from the literature.
Collapse
Affiliation(s)
- Julia Riedel
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Isabel I Schermuly
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Stella Romanet
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| | - Eva-Maria Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Andreas Lemme
- Evonik Operations GmbH, Animal Nutrition Services, Hanau-Wolfgang, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front Physiol 2024; 14:1326809. [PMID: 38235383 PMCID: PMC10791986 DOI: 10.3389/fphys.2023.1326809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
3
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
4
|
Kurz A, Seifert J. Factors Influencing Proteolysis and Protein Utilization in the Intestine of Pigs: A Review. Animals (Basel) 2021; 11:3551. [PMID: 34944326 PMCID: PMC8698117 DOI: 10.3390/ani11123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pigs are among the most important farm animals for meat production worldwide. In order to meet the amino acid requirements of the animals, pigs rely on the regular intake of proteins and amino acids with their feed. Unfortunately, pigs excrete about two thirds of the used protein, and production of pork is currently associated with a high emission of nitrogen compounds resulting in negative impacts on the environment. Thus, improving protein efficiency in pigs is a central aim to decrease the usage of protein carriers in feed and to lower nitrogen emissions. This is necessary as the supply of plant protein sources is limited by the yield and the cultivable acreage for protein plants. Strategies to increase protein efficiency that go beyond the known feeding options have to be investigated considering the characteristics of the individual animals. This requires a deep understanding of the intestinal processes including enzymatic activities, capacities of amino acid transporters and the microbiome. This review provides an overview of these physiological factors and the respective analyses methods.
Collapse
Affiliation(s)
- Alina Kurz
- HoLMIR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, 70599 Stuttgart, Germany;
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 8, 70599 Stuttgart, Germany
| | - Jana Seifert
- HoLMIR—Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, 70599 Stuttgart, Germany;
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 8, 70599 Stuttgart, Germany
| |
Collapse
|
5
|
Morales A, González F, Bernal H, Camacho RL, Arce N, Vásquez N, González-Vega JC, Htoo JK, Viana MT, Cervantes M. Effect of arginine supplementation on the morphology and function of intestinal epithelia, and serum concentrations of amino acids in pigs exposed to heat stress. J Anim Sci 2021; 99:6291043. [PMID: 34077525 DOI: 10.1093/jas/skab179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
The exposure of pigs to heat stress (HS) appears to damage their intestinal epithelia, affecting the absorption of amino acids (AA). Arg is involved in the restoration of intestinal epithelial cells but HS reduces Arg intake. The effect of dietary supplementation with Arg on morphology of intestinal epithelia, AA transporter gene expression, and serum concentration (SC) of free AA in HS pigs were analyzed. Twenty pigs (25.3 ± 2.4 kg BW) were randomly assigned to two dietary treatments: control (0.81% Arg), wheat-soybean meal diet supplemented with L-Lys, L-Thr, DL-Met and L-Trp, and the experimental diet where 0.16% free L-Arg was supplemented to a similar control diet (+Arg). All pigs were individually housed and exposed to HS, fed at libitum with full access to water. The ambient temperature, recorded at 15-min intervals during the 21-d trial, ranged on average from 29.6 to 39.4 °C within the same day. Blood samples were collected on d18 at 1600 h (ambient temperature peak); serum was separated by centrifugation. At the end of the trial, five pigs per treatment were sacrificed to collect samples of mucosa scratched from each small intestine segment. The expression of AA transporters in intestinal mucosa and the SC of AA were analyzed. Villi height was higher (P < 0.01) in duodenum, jejunum, and ileum but the crypt depth did not differ between the control and the +Arg pigs. Supplementation of L-Arg increased the mRNA coding for the synthesis of the cationic AA transporter b 0,+ (P < 0.01) and the neutral AA transporter B 0 (P < 0.05) in duodenum by approximately five-folds and three-folds, respectively, but no effect on mRNA abundance was observed in jejunum and ileum. The supplementation of L-Arg increased serum Arg, His, Met, Thr, Trp, and urea (P < 0.05); tended to increase Val (P < 0.10), but did not affect Ile, Lys, Leu, and Phe. These results indicate that supplementing 0.16% L-Arg to the control diet may help to improve the function of the small intestine epithelium, by increasing the villi height, the abundance of AA transporters, and the SC of most indispensable AA in pigs exposed to HS conditions. However, the lack of effect of supplemental Arg on both Lys SC and weight gain of pigs suggests that increasing the Lys content in the +Arg diet might be needed to improve the performance of HS pigs.
Collapse
Affiliation(s)
- A Morales
- Universidad Autónoma de Baja California, Mexicali, B. C., México
| | - F González
- Universidad Autónoma de Baja California, Mexicali, B. C., México
| | - H Bernal
- Universidad Autónoma de Nuevo León, Monterrey, México
| | - R L Camacho
- Universidad Autónoma de Baja California, Mexicali, B. C., México
| | - N Arce
- Universidad Autónoma de Baja California, Mexicali, B. C., México
| | - N Vásquez
- Universidad Autónoma de Nuevo León, Monterrey, México
| | | | - J K Htoo
- Evonik Operations GmbH, Hanau, Germany
| | - M T Viana
- Universidad Autónoma de Baja California, Mexicali, B. C., México
| | - M Cervantes
- Universidad Autónoma de Baja California, Mexicali, B. C., México
| |
Collapse
|
6
|
Castro FLDS, Kim WK. Secondary Functions of Arginine and Sulfur Amino Acids in Poultry Health: Review. Animals (Basel) 2020; 10:ani10112106. [PMID: 33202808 PMCID: PMC7697735 DOI: 10.3390/ani10112106] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Historically, studies with amino acids have focused on protein synthesis and accretion, especially with eggs and meat, whereas less importance has been given to their secondary functions on the metabolism. However, certain amino acids, such as arginine, methionine, and cysteine are precursors for other essential molecules in the immune defense, antioxidant system, cell signaling, and gene expression, and can act as regulators in the growth and development of the animals. Because poultry are subjected to stressful conditions throughout their lives, the use of these amino acids and their secondary functions could beneficiate their general health. This review describes the metabolism of arginine, methionine, and cysteine and how they modulate different tissues, especially during challenging conditions. Arginine supplementation has been shown to modulate musculoskeletal health development, reduce fat accretion, and improve the antioxidant system. Moreover, methionine and cysteine could improve the bone development and have a potential in mitigating the negative effects caused by heat stress. Understanding how these amino acids can ameliorate stressful conditions may provide novel insights about their use as nutritional strategies to modulate the health status of chickens. Abstract Amino acids such as arginine, methionine, and cysteine are the precursors of essential molecules that regulate growth and health, being classified as functional amino acids. This review describes the metabolism of arginine and the sulfur amino acids and how they modulate, directly or indirectly, different tissues. Emphasis is placed on their effects in supporting health during challenging conditions, such as heat stress and Eimeria infection. The use of arginine has been shown to reduce abdominal fat pad in ducks and increase lean tissue and bone mineral density in broilers. Additionally, the sulfur amino acids have been shown to improve bone development and are beneficial during heat stress. The use of L-methionine increased the cortical and trabecular bone mineral densities, in laying hens. Moreover, the dietary inclusion of these amino acids could reduce the damage caused by Eimeria spp. infection by regulating the antioxidant system and cell repair. Understanding how these amino acids can mitigate stressful conditions may provide us novel insights of their use as nutritional strategies to modulate the health status of chickens.
Collapse
|
7
|
Morales A, Gómez T, Villalobos YD, Bernal H, Htoo JK, González-Vega JC, Espinoza S, Yáñez J, Cervantes M. Dietary protein-bound or free amino acids differently affect intestinal morphology, gene expression of amino acid transporters, and serum amino acids of pigs exposed to heat stress. J Anim Sci 2020; 98:5739008. [PMID: 32064529 DOI: 10.1093/jas/skaa056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 01/10/2023] Open
Abstract
Pigs exposed to heat stress (HS) increase body temperature in which can damage the intestinal epithelia and affect the absorption and availability of amino acids (AA). Protein digestion and metabolism further increase body temperature. An experiment was conducted with six pairs of pigs (of 47.3 ± 1.3 kg initial body weight) exposed to natural HS to assess the effect of substituting dietary protein-bound AA by free AA on morphology and gene expression of intestinal epithelial and serum concentration (SC) of free AA. Treatments were: high protein, 21.9% crude protein (CP) diet (HShp) and low protein, 13.5% CP diet supplemented with crystalline Lys, Thr, Met, Trp, His, Ile, Leu, Phe, and Val (HSaa). The HShp diet met or exceeded all AA requirements. The HSaa diet was formulated on the basis of ideal protein. Pigs were fed the same amount at 0700 and 1900 hours during the 21-d study. Blood samples were collected at 1700 hours (2.0 h before the evening meal), 2030 hours, and 2130 hours (1.5 and 2.5 h after the evening meal). At the end, all pigs were sacrificed to collect intestinal mucosa and a 5-cm section from each segment of the small intestine from each pig. Villi measures, expression of AA transporters (y+L and B0) in mucosa, and SC of AA were analyzed. Ambient temperature fluctuated daily from 24.5 to 42.6 °C. Weight gain and G.F were not affected by dietary treatment. Villi height tended to be larger (P ≤ 0.10) and the villi height:crypt depth ratio was higher in duodenum and jejunum of pigs fed the HSaa diet (P < 0.05). Gene expression of transporter y+L in jejunum tended to be lower (P < 0.10) and transporter B0 in the ileum was lower (P < 0.05) in HSaa pigs. Preprandial (1700 hours) SC of Arg, His, Ile, Leu, Thr, Trp, and Val was higher (P < 0.05), and Phe tended to be higher (P < 0.10) in HShp pigs. At 2030 hours (1.5 h postprandial), serum Lys, Met, and Thr were higher in the HSaa pigs (P < 0.05). At 2130 hours (2.5 h), Arg, His, Ile, Phe, and Trp were lower (P < 0.05); Met was higher (P < 0.05); and Lys tended to be higher (P < 0.10) in HSaa pigs. In conclusion, feeding HS pigs with low protein diets supplemented with free AA reduces the damage of the intestinal epithelia and seems to improve its absorption capacity, in comparison with HS pigs fed diets containing solely protein-bound AA. This information is useful to formulate diets that correct the reduced AA consumption associated with the decreased voluntary feed intake of pigs under HS.
Collapse
Affiliation(s)
- Adriana Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Tania Gómez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Yuri D Villalobos
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - Hugo Bernal
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Monterrey, NL, México
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | | | - Salvador Espinoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - Jorge Yáñez
- Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Miguel Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| |
Collapse
|
8
|
To VPTH, Masagounder K, Loewen ME. SLC transporters ASCT2, B 0 AT1-like, y + LAT1, and LAT4-like associate with methionine electrogenic and radio-isotope flux kinetics in rainbow trout intestine. Physiol Rep 2019; 7:e14274. [PMID: 31705630 PMCID: PMC6841986 DOI: 10.14814/phy2.14274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/21/2019] [Indexed: 01/08/2023] Open
Abstract
Methionine (Met) is an important building block and metabolite for protein biosynthesis. However, the mechanism behind its absorption in the fish gut has not been elucidated. Here, we describe the fundamental properties of Met transport along trout gut at µmol/L and mmol/L concentration. Both electrogenic and unidirectional DL-[14 C]Met flux were employed to characterize Met transporters in Ussing chambers. Exploiting the differences in gene expression between diploid (2N) and triploid (3N) and intestinal segment as tools, allowed the association between gene and methionine transport. Specifically, three intestinal segments including pyloric caeca (PC), midgut (MG), and hindgut (HG) were assessed. Results at 0-150 µmol/L concentration demonstrated that the DL-Met was most likely transported by apical transporter ASCT2 (SLC1A5) and recycled by basolateral transporter y+ LAT1 (SLC7A7) due to five lines of observation: (1) lack of Na+ -independent kinetics, (2) low expression of B0 AT2-like gene, (3) Na+ -dependent, high-affinity (Km , µmol/L ranges) kinetics in DL-[14 C]Met flux, (4) association mRNA expression with the high-affinity kinetics and (5) electrogenic currents induced by Met. Results at 0.2-20 mmol/L concentration suggested that the DL-Met transport is likely transported by B0 AT1-like (SLC6A19-like) based on gene expression, Na+ -dependence and low-affinity kinetics (Km , mmol/L ranges). Similarly, genomic and gene expression analysis suggest that the basolateral exit of methionine was primarily through LAT4-like transporter (SLC43A2-like). Conclusively, DL-Met uptake in trout gut was most likely governed by Na+ -dependent apical transporters ASCT2 and B0 AT1-like and released through basolateral LAT4-like, with some recycling through y+ LAT1. A comparatively simpler model than that previously described in mammals.
Collapse
Affiliation(s)
- Van P. T. H. To
- Veterinary Biomedical SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Matthew E. Loewen
- Veterinary Biomedical SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
9
|
Selle P, Liu SY. The Relevance of Starch and Protein Digestive Dynamics in Poultry. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nat Commun 2019; 10:1807. [PMID: 31000719 PMCID: PMC6472337 DOI: 10.1038/s41467-019-09837-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/02/2019] [Indexed: 11/26/2022] Open
Abstract
L-amino acid transporters (LATs) play key roles in human physiology and are implicated in several human pathologies. LATs are asymmetric amino acid exchangers where the low apparent affinity cytoplasmic side controls the exchange of substrates with high apparent affinity on the extracellular side. Here, we report the crystal structures of an LAT, the bacterial alanine-serine-cysteine exchanger (BasC), in a non-occluded inward-facing conformation in both apo and substrate-bound states. We crystallized BasC in complex with a nanobody, which blocks the transporter from the intracellular side, thus unveiling the sidedness of the substrate interaction of BasC. Two conserved residues in human LATs, Tyr 236 and Lys 154, are located in equivalent positions to the Na1 and Na2 sites of sodium-dependent APC superfamily transporters. Functional studies and molecular dynamics (MD) calculations reveal that these residues are key for the asymmetric substrate interaction of BasC and in the homologous human transporter Asc-1. L-Amino acid Transporters (LATs) are asymmetric amino acid exchangers. Here the authors determine the crystal structure of a prokaryotic LAT, the alanine-serine-cysteine exchanger (BasC) and identify key residues for asymmetric substrate interaction in both BasC and the homologous human transporter Asc-1 through functional studies.
Collapse
|
11
|
Bartoccioni P, Fort J, Zorzano A, Errasti-Murugarren E, Palacín M. Functional characterization of the alanine-serine-cysteine exchanger of Carnobacterium sp AT7. J Gen Physiol 2019; 151:505-517. [PMID: 30696726 PMCID: PMC6445583 DOI: 10.1085/jgp.201812195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 01/18/2023] Open
Abstract
Proteins of the L-type amino acid transporter (LAT) subfamily take up amino acids from the environment for use in the cell. Bartoccioni et al. show that the bacterial amino acid exchanger BasC is functionally similar to the human LAT Asc1, making BasC a useful model for this class of transporters. Many key cell processes require prior cell uptake of amino acids from the environment, which is facilitated by cell membrane amino acid transporters such as those of the L-type amino acid transporter (LAT) subfamily. Alterations in LAT subfamily amino acid transport are associated with several human diseases, including cancer, aminoacidurias, and neurodegenerative conditions. Therefore, from the perspective of human health, there is considerable interest in obtaining structural information about these transporter proteins. We recently solved the crystal structure of the first LAT transporter, the bacterial alanine-serine-cysteine exchanger of Carnobacterium sp AT7 (BasC). Here, we provide a complete functional characterization of detergent-purified, liposome-reconstituted BasC transporter to allow the extension of the structural insights into mechanistic understanding. BasC is a sodium- and proton-independent small neutral amino acid exchanger whose substrate and inhibitor selectivity are almost identical to those previously described for the human LAT subfamily member Asc-1. Additionally, we show that, like its human counterparts, this transporter has apparent affinity asymmetry for the intra- and extracellular substrate binding sites—a key feature in the physiological role played by these proteins. BasC is an excellent paradigm of human LAT transporters and will contribute to our understanding of the molecular mechanisms underlying substrate recognition and translocation at both sides of the plasma membrane.
Collapse
Affiliation(s)
- Paola Bartoccioni
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Joana Fort
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
13
|
Cervantes M, Cota M, Arce N, Castillo G, Avelar E, Espinoza S, Morales A. Effect of heat stress on performance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in growing pigs. J Therm Biol 2016; 59:69-76. [DOI: 10.1016/j.jtherbio.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/05/2015] [Accepted: 04/17/2016] [Indexed: 10/21/2022]
|
14
|
Morales A, Buenabad L, Castillo G, Vázquez L, Espinoza S, Htoo JK, Cervantes M. Dietary levels of protein and free amino acids affect pancreatic proteases activities, amino acids transporters expression and serum amino acid concentrations in starter pigs. J Anim Physiol Anim Nutr (Berl) 2016; 101:723-732. [PMID: 27121753 DOI: 10.1111/jpn.12515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 03/12/2016] [Indexed: 12/17/2022]
Abstract
The dietary contents of crude protein and free amino acids (AA) may affect the protein digestion and AA absorption in pigs. Trypsin and chymotrypsin activities, AA serum concentrations and expression of AA transporters in the small intestine of pigs fed a low protein, AA-supplemented (19.2%, LPAA) or a high protein (28.1%, HP), wheat-soybean meal diet were measured in two 14-d trials. The LPAA diet contained free L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp and L-Phe. All pigs were fed the same amount of feed (890 and 800 g/d for trial 1 and 2 respectively). In trial 1, samples of mucosa (duodenum, jejunum and ileum) and digesta (duodenum and jejunum) were collected from 14 pigs (17.2 ± 0.4 kg); in trial 2, blood samples were collected from 12 pigs (12.7 ± 0.3 kg). The trypsin and chymotrypsin activities in both intestinal segments were higher in pigs fed the HP diet (p < 0.01). Trypsin activity was higher in jejunum than in duodenum regardless the dietary treatment (p < 0.05). Pigs fed the LPAA diet expressed more b0,+ AT in duodenum, B0 AT1 in ileum (p < 0.05), and tended to express more y+ LAT1 in duodenum (p = 0.10). In pigs fed the LPAA diet, the expression of b0,+ AT was higher in duodenum than in jejunum and ileum (p < 0.01), but no difference was observed in pigs fed the HP diet. Ileum had the lowest b0,+ AT expression regardless the diet. The serum concentrations of Lys, Thr and Met were higher in LPAA pigs while serum Arg was higher in HP pigs (p < 0.05). Serum concentrations of AA appear to reflect the AA absorption. In conclusion, these data indicate that the dietary protein contents affect the extent of protein digestion and that supplemental free AA may influence the intestinal site of AA release and absorption, which may impact their availability for growth of young pigs.
Collapse
Affiliation(s)
- A Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - L Buenabad
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - G Castillo
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - L Vázquez
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - S Espinoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| | - J K Htoo
- Evonik Industries AG, Nutrition Research, Hanau-Wolfgang, Germany
| | - M Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, México
| |
Collapse
|
15
|
Morales A, Buenabad L, Castillo G, Arce N, Araiza BA, Htoo JK, Cervantes M. Low-protein amino acid-supplemented diets for growing pigs: effect on expression of amino acid transporters, serum concentration, performance, and carcass composition. J Anim Sci 2015; 93:2154-64. [PMID: 26020311 DOI: 10.2527/jas.2014-8834] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Pigs fed protein-bound AA appear to have a higher abundance of AA transporters for their absorption in the jejunum compared with the duodenum. However, there is limited data about the effect of dietary free AA, readily available in the duodenum, on the duodenal abundance of AA transporters and its impact on pig performance. Forty-eight pigs (24.3 kg initial BW) distributed in 4 treatments were used to evaluate the effect of the CP level and form (free vs. protein bound) in which AA are added to diets on the expression of AA transporters in the 3 small intestine segments, serum concentration of AA, and performance. Dietary treatments based on wheat and soybean meal (SBM) were 1) low-CP (14%) diet supplemented with L-Lys, L-Thr, DL-Met, L-Leu, L-Ile, L-Val, L-His, L-Trp, and L-Phe (LPAA); 2) as in the LPAA but with added L-Gly as a N source (LPAA+N); 3) intermediate CP content (16%) supplemented with L-Lys HCl, L-Thr, and DL-Met (MPAA); and 4) high-CP (22%) diet (HP) without free AA. At the end of the experiment, 8 pigs from LPAA and HP were sacrificed to collect intestinal mucosa and blood samples and to dissect the carcasses. There were no differences in ADG, ADFI, G:F, and weights of carcass components and some visceral organs between treatments. Weights of the large intestine and kidney were higher in HP pigs (P < 0.01). Expression of b(0,+) in the duodenum was higher in pigs fed the LPAA compared with the HP diet (P= 0.036) but there was no difference in the jejunum and ileum. In the ileum, y+ L expression tended to be higher in pigs fed the LPAA diet (P = 0.098). Expression of b(0,+) in LPAA pigs did not differ between the duodenum and the jejunum, but in HP pigs, the expression of all AA transporters was higher in the jejunum than in the duodenum or ileum (P < 0.05). The serum concentration of Arg, His, Ile, Leu, Phe, and Val was higher but serum Lys and Met were lower in pigs fed the HP diet (P < 0.05). These results indicate that LPAA can substitute up to 8 percentage units of protein in HP wheat-SBM diets without affecting pig performance; nonessential N does not seem to be limiting in very low-protein wheat-SBM diets for growing pigs. Also, the inclusion of free AA in the diet appears to affect their serum concentration and the expression of the AA transporter b0,+ in the duodenum of pigs.
Collapse
|
16
|
Morales A, García H, Arce N, Cota M, Zijlstra RT, Araiza BA, Cervantes M. Effect of L-lysine on expression of selected genes, serum concentration of amino acids, muscle growth and performance of growing pigs. J Anim Physiol Anim Nutr (Berl) 2014; 99:701-9. [PMID: 25354230 DOI: 10.1111/jpn.12267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022]
Abstract
Lysine (Lys) is the first limiting amino acid (AA) in most feed formulations for pigs and most abundant, along with leucine, in muscle proteins. An experiment was conducted with 17 pigs (17.7 ± 0.05 kg initial BW) to identify a role of dietary Lys in the control of protein synthesis in pigs. Fourteen pigs were randomly assigned to one of the two wheat-based dietary treatments: Lys-deficient, 3.0 g/kg (DEF) and Lys-adequate, 10.8 g/kg (ADE). Samples from jejunum mucosa, liver, Longissumus and Semitendinosus muscles, and blood were collected. The other three pigs were sacrificed at the beginning of the trial to measure basal carcass composition. Weight gain, gain:feed ratio, Lys intake and loin eye area were greater in ADE than in DEF pigs (p < 0.01). Muscle-related carcass characteristics were better, and myosin heavy chain IIb expression (MyHC IIb) in Semitendinosus was higher in ADE than in DEF pigs. Expression of AA transporters CAT-1 was lower (p < 0.05), serum Lys was higher and serum Val was lower in pigs fed the ADE diet. The higher muscularity, MyHC IIb expression in Semitendinosus muscle and Lys serum of pigs fed the ADE diet suggest that Lys increases growth rate not only by functioning as protein construction unit but also as potential control of the protein synthesis process.
Collapse
Affiliation(s)
- A Morales
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - H García
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - N Arce
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - M Cota
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - R T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - B A Araiza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| | - M Cervantes
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, BC, México
| |
Collapse
|
17
|
Morales A, Grageola F, García H, Arce N, Araiza B, Yáñez J, Cervantes M. Performance, serum amino acid concentrations and expression of selected genes in pair-fed growing pigs exposed to high ambient temperatures. J Anim Physiol Anim Nutr (Berl) 2014; 98:928-35. [DOI: 10.1111/jpn.12161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 12/06/2013] [Indexed: 12/25/2022]
Affiliation(s)
- A. Morales
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - F. Grageola
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - H. García
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - N. Arce
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - B. Araiza
- ICA; Universidad Autónoma de Baja California; Mexicali México
| | - J. Yáñez
- FMVZ; Universidad Autónoma de Tlaxcala; Tlaxcala México
| | - M. Cervantes
- ICA; Universidad Autónoma de Baja California; Mexicali México
| |
Collapse
|
18
|
Paris NE, Wong EA. Expression of digestive enzymes and nutrient transporters in the intestine of Eimeria maxima-infected chickens. Poult Sci 2013; 92:1331-5. [PMID: 23571343 DOI: 10.3382/ps.2012-02966] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infection with the intestinal protozoa Eimeria causes destruction of intestinal epithelia, resulting in reduced feed efficiency and BW gain. The objective of this study was to investigate the effect of Eimeria maxima infection on the expression of 20 digestive enzymes as well as macro- and micronutrient transporters in the intestine. Expression of the brushborder membrane amino acid transporters EAAT3 (excitatory amino acid transporter 3) and b(o+)AT (Na(+)-independent neutral amino acid transporter) was decreased to 35 to 39% and 20% of control, respectively, in the intestine of E. maxima-infected chickens. Expression of the basolateral amino acid transporter LAT1 and the amino acid transporter ASCT1 was upregulated 17- to 19-fold and 12-fold, respectively, in E. maxima-infected chickens, whereas the zinc transporter was decreased to 20 to 44% of control. In addition, expression of the antimicrobial peptide LEAP-2 (liver-expressed antimicrobial peptide-2) was reduced to 5 to 24% of control. The other 13 digestive enzymes or nutrient transporters examined were unaffected. Together these results suggest a model whereby, upon infection, Eimeria causes a downregulation of LEAP-2. In response, there are changes in expression of the amino acid transporters that would result in a depletion of the energy source (glutamate) and some essential amino acids, which may lead to death of the cell and inhibition of pathogen replication.
Collapse
Affiliation(s)
- N E Paris
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24061
| | | |
Collapse
|
19
|
Cervantes-Ramírez M, Mendez-Trujillo V, Araiza-Piña B, Barrera-Silva M, González-Mendoza D, Morales-Trejo A. Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs. GENETICS AND MOLECULAR RESEARCH 2013; 12:115-26. [DOI: 10.4238/2013.january.24.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
García-Villalobos H, Morales-Trejo A, Araiza-Piña BA, Htoo JK, Cervantes-Ramírez M. Effects of dietary protein and amino acid levels on the expression of selected cationic amino acid transporters and serum amino acid concentration in growing pigs. Arch Anim Nutr 2012; 66:257-70. [DOI: 10.1080/1745039x.2012.697351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Morales A, Barrera MA, Araiza AB, Zijlstra RT, Bernal H, Cervantes M. Effect of excess levels of lysine and leucine in wheat-based, amino acid-fortified diets on the mRNA expression of two selected cationic amino acid transporters in pigs. J Anim Physiol Anim Nutr (Berl) 2012; 97:263-70. [PMID: 22211733 DOI: 10.1111/j.1439-0396.2011.01266.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An experiment was conducted to evaluate the effect of excess levels of Leu and Lys on the expression of b(0,+) and CAT-1 mRNA in jejunum, liver and the muscles Longissimus dorsi (LDM) and Semitendinosus (STM). Twenty pigs with an average initial BW of 16.4 ± 1.7 kg were used in a Randomized Complete Block. Dietary treatments (T) were as follows: T1, basal diet; T2, basal plus 3.5 g l-Lys/kg diet; T3, basal plus 1.5 g l-Leu/kg diet; T4, basal plus 3.5 g l-Lys plus 1.5 g l-Leu/kg diet. Diets in T1 and T3 met 100% the requirement of Lys for pigs within the 10 to 20 kg body weight range; diets in T2 and T4 contained 35% excess of Lys. Also, diets in T1 and T2 supplied 104%, whereas diets in T3 and T4 supplied 116% the requirement of Leu. The expression of b(0,+) in jejunum was reduced (p = 0.002) because of the supplementation of l-Leu, but l-Lys supplementation had no effect (p = 0.738). In contrast, the expression of b(0,+) in STM (p = 0.012) and liver (p = 0.095) was reduced by the high level of Lys, but Leu had no effect (p > 0.100). CAT-1 expression in STM increased by high Lys (p = 0.023) and Leu (p = 0.007) levels. In liver, the expression of CAT-1 substantially increased (p = 0.001) because of Lys. In conclusion, excess levels of dietary Lys and Leu affect the expression of cationic amino acid transporters, and this effect varies depending on the studied tissue.
Collapse
Affiliation(s)
- A Morales
- Instituto de Ciencias Agrícolas, UABC, Mexicali, México
| | | | | | | | | | | |
Collapse
|
22
|
Martín-Venegas R, Rodríguez-Lagunas MJ, Mercier Y, Geraert PA, Ferrer R. Effect of pH onl- andd-methionine uptake across the apical membrane of Caco-2 cells. Am J Physiol Cell Physiol 2009; 296:C632-8. [DOI: 10.1152/ajpcell.00478.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transport systems involved in intestinal methionine (Met) absorption are described as Na+-dependent and Na+-independent mechanisms. However, since recent studies have suggested the importance of the H+gradient as a driving force for intestinal nutrient absorption, the aim of the present work was to test whether Met transport across the apical membrane of Caco-2 cells is affected by extracellular pH. The results show that l- and d-Met uptake was increased by lowering extracellular pH from 7.4 to 5.5, in both the presence and absence of Na+. Cis-inhibition experiments revealed that inhibition of l-Met transport by 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) or l-lysine (l-Lys) was higher at a pH of 5.5. Moreover, the BCH-insensitive component was not affected by pH, whereas the l-Lys-insensitive component was increased by lowering extracellular pH, thus suggesting the participation of system L. The contribution of another mechanism, sensitive to both BCH and l-Lys, was also considered. The inhibition obtained with taurine (Tau) was also higher at a pH of 5.5, thus suggesting the involvement of system B0,+on pH-stimulated component. As for d-Met uptake, the results showed higher inhibition with l-Lys and Tau at a pH of 5.5 and no effect on the l-Lys- or Tau-insensitive component. In conclusion, Met transport across the apical membrane of Caco-2 cells is increased by low extracellular pH as the result of the stimulation of two transport systems functionally identified with systems L and B0,+for l-Met and with system B0,+for d-Met.
Collapse
|
23
|
Abstract
Near complete reabsorption of filtered amino acids is a main specialized transport function of the kidney proximal tubule. This evolutionary conserved task is carried out by a subset of luminal and basolateral transporters that together form the transcellular amino acid transport machinery similar to that of small intestine. A number of other amino acid transporters expressed in the basolateral membrane of proximal kidney tubule cells subserve either specialized metabolic functions, such as the production of ammonium, or are part of the cellular housekeeping equipment. A new finding is that the luminal Na(+)-dependent neutral amino acid transporters of the SLC6 family require an associated protein for their surface expression as shown for the Hartnup transporter B(0)AT1 (SLC6A19) and suggested for the L: -proline transporter SIT1 (IMINO(B), SLC6A20) and for B(0)AT3 (XT2, SLC6A18). This accessory subunit called collectrin (TMEM27) is homologous to the transmembrane anchor region of the renin-angiotensin system enzyme ACE2 that we have shown to function in small intestine as associated subunit of the luminal SLC6 transporters B(0)AT1 and SIT1. Some mutations of B(0)AT1 differentially interact with these accessory subunits, providing an explanation for differential intestinal phenotypes among Hartnup patients. The basolateral efflux of numerous amino acids from kidney tubular cells is mediated by heteromeric amino acid transporters that function as obligatory exchangers. Thus, other transporters within the same membrane need to mediate the net efflux of exchange substrates, controlling thereby the net basolateral amino transport and thus the intracellular amino acid concentration.
Collapse
|
24
|
Bröer S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 2008; 23:95-103. [PMID: 18400692 DOI: 10.1152/physiol.00045.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Absorption of amino acids in kidney and intestine involves a variety of transporters for different groups of amino acids. This is illustrated by inherited disorders of amino acid absorption, such as Hartnup disorder, cystinuria, iminoglycinuria, dicarboxylic aminoaciduria, and lysinuric protein intolerance, affecting separate groups of amino acids. Recent advances in the molecular identification of apical neutral amino acid transporters has shed a light on the molecular basis of Hartnup disorder and iminoglycinuria.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australia.
| |
Collapse
|
25
|
Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008; 88:249-86. [PMID: 18195088 DOI: 10.1152/physrev.00018.2006] [Citation(s) in RCA: 647] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transport of amino acids in kidney and intestine is critical for the supply of amino acids to all tissues and the homeostasis of plasma amino acid levels. This is illustrated by a number of inherited disorders affecting amino acid transport in epithelial cells, such as cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, dicarboxylic aminoaciduria, and some other less well-described disturbances of amino acid transport. The identification of most epithelial amino acid transporters over the past 15 years allows the definition of these disorders at the molecular level and provides a clear picture of the functional cooperation between transporters in the apical and basolateral membranes of mammalian epithelial cells. Transport of amino acids across the apical membrane not only makes use of sodium-dependent symporters, but also uses the proton-motive force and the gradient of other amino acids to efficiently absorb amino acids from the lumen. In the basolateral membrane, antiporters cooperate with facilitators to release amino acids without depleting cells of valuable nutrients. With very few exceptions, individual amino acids are transported by more than one transporter, providing backup capacity for absorption in the case of mutational inactivation of a transport system.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
26
|
Reig N, del Rio C, Casagrande F, Ratera M, Gelpí JL, Torrents D, Henderson PJF, Xie H, Baldwin SA, Zorzano A, Fotiadis D, Palacín M. Functional and Structural Characterization of the First Prokaryotic Member of the L-Amino Acid Transporter (LAT) Family. J Biol Chem 2007; 282:13270-81. [PMID: 17344220 DOI: 10.1074/jbc.m610695200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.
Collapse
Affiliation(s)
- Núria Reig
- Institute for Research in Biomedicine, Barcelona Science Park and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fernández E, Jiménez-Vidal M, Calvo M, Zorzano A, Tebar F, Palacín M, Chillarón J. The Structural and Functional Units of Heteromeric Amino Acid Transporters. J Biol Chem 2006; 281:26552-61. [PMID: 16825196 DOI: 10.1074/jbc.m604049200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heteromeric amino acid transporters are composed of a catalytic light subunit and a heavy subunit linked by a disulfide bridge. We analyzed the structural and functional units of systems b0,+ and xC-, formed by the heterodimers b0,+ AT-rBAT and xCT-4F2hc, respectively. Blue Native gel electrophoresis, cross-linking, and fluorescence resonance energy transfer in vivo indicate that system b0,+ is a heterotetramer [b0,+ AT-rBAT]2, whereas xCT-4F2hc seems not to stably or efficiently oligomerize. However, substitution of the heavy subunit 4F2hc for rBAT was sufficient to form a heterotetrameric [xCT-rBAT]2 structure. The functional expression of concatamers of two light subunits (which differ only in their sensitivity to inactivation by a sulfhydryl reagent) suggests that a single heterodimer is the functional unit of systems b0,+ and xC-.
Collapse
Affiliation(s)
- Esperanza Fernández
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Chubb S, Kingsland AL, Bröer A, Bröer S. Mutation of the 4F2 heavy-chain carboxy terminus causes y+ LAT2 light-chain dysfunction. Mol Membr Biol 2006; 23:255-67. [PMID: 16785209 DOI: 10.1080/09687860600652968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heteromeric amino acid transporters are composed of two subunits--a multipass membrane protein called the 'light chain'--and a single pass glycoprotein called the 'heavy chain'. The light chain contains the transport pore, while the heavy chain appears to be necessary for trafficking the light chain to the plasma membrane. In this study, the role of the 4F2hc heavy chain in the function of the y+ LAT2 light chain was investigated. Carboxy terminal truncations and site specific mutants of 4F2hc were co-expressed in Xenopus laevis oocytes with the y+ LAT2 light chain, and the oocytes were analysed for transport activity and surface expression. Truncations of the 4F2hc carboxy terminus ranging between 15 and 404 residues caused a complete loss of light chain function, although all heterodimers were expressed at the cell surface. This indicated that the 15 carboxy-terminal residues of 4F2hc are required for the transport function of the heterodimer. Mutation of the conserved residue leucine 523 to glutamine in the carboxy terminus reduced the Vmax of arginine and leucine uptake. The affinity of the transporter for both arginine and leucine remained unaltered, but the Km-value of Na+, being cotransported with leucine, increased about three-fold. The change of the Na+ Km caused a specific defect of leucine efflux, whereas uptake of leucine at high extracellular NaCl concentration was unaffected.
Collapse
Affiliation(s)
- Sarah Chubb
- School of Biochemistry & Molecular Biology, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
29
|
Palacín M, Nunes V, Font-Llitjós M, Jiménez-Vidal M, Fort J, Gasol E, Pineda M, Feliubadaló L, Chillarón J, Zorzano A. The Genetics of Heteromeric Amino Acid Transporters. Physiology (Bethesda) 2005; 20:112-24. [PMID: 15772300 DOI: 10.1152/physiol.00051.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heteromeric amino acid transporters (HATs) are composed of a heavy ( SLC3 family) and a light ( SLC7 family) subunit. Mutations in system b0,+(rBAT-b0,+AT) and in system y+L (4F2hc-y+LAT1) cause the primary inherited aminoacidurias (PIAs) cystinuria and lysinuric protein intolerance, respectively. Recent developments [including the identification of the first Hartnup disorder gene (B0AT1; SLC6A19)] and knockout mouse models have begun to reveal the basis of renal and intestinal reabsorption of amino acids in mammals.
Collapse
Affiliation(s)
- Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Institut de Recerca Biomedica de Barcelona, Barcelona Science Park, University of Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dave MH, Schulz N, Zecevic M, Wagner CA, Verrey F. Expression of heteromeric amino acid transporters along the murine intestine. J Physiol 2004; 558:597-610. [PMID: 15155792 PMCID: PMC1664976 DOI: 10.1113/jphysiol.2004.065037] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.
Collapse
Affiliation(s)
- Mital H Dave
- Institute of Physiology, University of Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Pineda M, Wagner CA, Bröer A, Stehberger PA, Kaltenbach S, Gelpí JL, Martín Del Río R, Zorzano A, Palacín M, Lang F, Bröer S. Cystinuria-specific rBAT(R365W) mutation reveals two translocation pathways in the amino acid transporter rBAT-b0,+AT. Biochem J 2004; 377:665-74. [PMID: 14561219 PMCID: PMC1223896 DOI: 10.1042/bj20030956] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 10/09/2003] [Accepted: 10/15/2003] [Indexed: 11/17/2022]
Abstract
Apical reabsorption of dibasic amino acids and cystine in kidney is mediated by the heteromeric amino acid antiporter rBAT/b(0,+)AT (system b(0,+)). Mutations in rBAT cause cystinuria type A, whereas mutations in b(0,+)AT cause cystinuria type B. b(0,+)AT is the catalytic subunit, whereas it is believed that rBAT helps the routing of the rBAT/b(0,+)AT heterodimeric complex to the plasma membrane. In the present study, we have functionally characterized the cystinuria-specific R365W (Arg(365)-->Trp) mutation of human rBAT, which in addition to a trafficking defect, alters functional properties of the b(0,+) transporter. In oocytes, where human rBAT interacts with the endogenous b(0,+)AT subunit to form an active transporter, the rBAT(R365W) mutation caused a defect of arginine efflux without altering arginine influx or apparent affinities for intracellular or extracellular arginine. Transport of lysine or leucine remained unaffected. In HeLa cells, functional expression of rBAT(R365W)/b(0,+)AT was observed only at the permissive temperature of 33 degrees C. Under these conditions, the mutated transporter showed 50% reduction of arginine influx and a similar decreased accumulation of dibasic amino acids. Efflux of arginine through the rBAT(R365W)/b(0,+)AT holotransporter was completely abolished. This supports a two-translocation-pathway model for antiporter b(0,+), in which the efflux pathway in the rBAT(R365W)/b(0,+)AT holotransporter is defective for arginine translocation or dissociation. This is the first direct evidence that mutations in rBAT may modify transport properties of system b(0,+).
Collapse
Affiliation(s)
- Marta Pineda
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona Science Park, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Reig N, Chillarón J, Bartoccioni P, Fernández E, Bendahan A, Zorzano A, Kanner B, Palacín M, Bertran J. The light subunit of system b(o,+) is fully functional in the absence of the heavy subunit. EMBO J 2002; 21:4906-14. [PMID: 12234930 PMCID: PMC126296 DOI: 10.1093/emboj/cdf500] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Revised: 07/10/2002] [Accepted: 07/31/2002] [Indexed: 01/05/2023] Open
Abstract
The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System b(o,+) exchanges dibasic for neutral amino acids. It is composed of rBAT and b(o,+)AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. b(o,+)AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the b(o,+) substrates inside the liposomes. rBAT was essential for the cell surface expression of b(o,+)AT, but it was not required for reconstituted b(o,+)AT transport activity. No system b(o,+) transport was detected in liposomes derived from cells expressing rBAT alone. The reconstituted b(o,+)AT showed kinetic asymmetry. Expressing the cystinuria-specific mutant A354T of b(o,+)AT in HeLa cells together with rBAT resulted in defective arginine uptake in whole cells, which was paralleled by the reconstituted b(o,+)AT activity. Thus, subunit b(o,+)AT by itself is sufficient to catalyse transmembrane amino acid exchange. The polytopic subunits may also be the catalytic part in other heteromeric transporters.
Collapse
Affiliation(s)
| | | | | | | | - Annie Bendahan
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, Barcelona E-08028, Spain and
Department of Biochemistry, The Hebrew University Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel Corresponding authors e-mail: or
| | | | - Baruch Kanner
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, Barcelona E-08028, Spain and
Department of Biochemistry, The Hebrew University Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel Corresponding authors e-mail: or
| | - Manuel Palacín
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, Barcelona E-08028, Spain and
Department of Biochemistry, The Hebrew University Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel Corresponding authors e-mail: or
| | - Joan Bertran
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda Diagonal 645, Barcelona E-08028, Spain and
Department of Biochemistry, The Hebrew University Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel Corresponding authors e-mail: or
| |
Collapse
|
33
|
Angelo S, Rojas AM, Ramírez H, Devés R. Epithelial cells isolated from chicken jejunum: an experimental model for the study of the functional properties of amino acid transport system b(0,+). Comp Biochem Physiol A Mol Integr Physiol 2002; 132:637-44. [PMID: 12044773 DOI: 10.1016/s1095-6433(02)00106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transport of lysine has been investigated in epithelial cells isolated from chicken jejunum. The kinetics of lysine transport and the pattern of interaction with zwitterionic amino acids were consistent with system b(0,+) activity, the broad-spectrum and Na(+)-independent amino acid transporter. The half-saturation constant for lysine entry (K(m)+/-S.E.) was 0.029+/-0.002 mM and the flux was not affected significantly by Na(+) replacement with choline. Lysine influx was inhibited by L-leucine both in Na(+) and choline medium with inhibition constants (K(i)+/-S.E.) 0.068+/-0.006 mM (in Na(+)) and 0.065+/-0.009 mM (in choline). Other inhibitory amino acids (K(i)+/-S.E.) were (mM): L-tyrosine (0.073+/-0.018), L-methionine (0.15+/-0.015), L-cystine (0.42+/-0.04), L-cysteine (1.1+/-0.07), L-isoleucine (1.1+/-0.09), L-glutamine (1.8+/-0.16) and L-valine (2.5+/-0.13). Lysine exit was trans-accelerated (approx. 20 fold) by 2 mM L-lysine and L-leucine. The flux was resistant to pretreatment of the cells with p-chloromercuriphenylsulfonate (0.2 mM), which is an inhibitor of system y(+)L, the broad-spectrum and cation-modulated transporter.
Collapse
Affiliation(s)
- S Angelo
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70005, Santiago 7, Chile
| | | | | | | |
Collapse
|
34
|
Chillarón J, Roca R, Valencia A, Zorzano A, Palacín M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol 2001; 281:F995-1018. [PMID: 11704550 DOI: 10.1152/ajprenal.2001.281.6.f995] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The heteromeric amino acid transporters (HATs) are composed of two polypeptides: a heavy subunit (HSHAT) and a light subunit (LSHAT) linked by a disulfide bridge. HSHATs are N-glycosylated type II membrane glycoproteins, whereas LSHATs are nonglycosylated polytopic membrane proteins. The HSHATs have been known since 1992, and the LSHATs have been described in the last three years. HATs represent several of the classic mammalian amino acid transport systems (e.g., L isoforms, y(+)L isoforms, asc, x(c)(-), and b(0,+)). Members of the HAT family are the molecular bases of inherited primary aminoacidurias cystinuria and lysinuric protein intolerance. In addition to the role in amino acid transport, one HSHAT [the heavy subunit of the cell-surface antigen 4F2 (also named CD98)] is involved in other cell functions that might be related to integrin activation. This review covers the biochemistry, human genetics, and cell physiology of HATs, including the multifunctional character of CD98.
Collapse
Affiliation(s)
- J Chillarón
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona E-08028, Spain
| | | | | | | | | |
Collapse
|
35
|
Palacín M, Borsani G, Sebastio G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev 2001; 11:328-35. [PMID: 11377971 DOI: 10.1016/s0959-437x(00)00198-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystinuria and lysinuric protein intolerance are inherited aminoacidurias caused by defective amino-acid transport activities linked to a family of heteromeric amino-acid transporters (HATs). HATs comprise two subunits: co-expression of subunits 4F2hc and y(+)LAT-1 induces the efflux of dibasic amino acids from cells, whereas co-expression of subunits rBAT and b(o,+)AT induces the renal reabsorption and intestinal absorption of cystine and dibasic amino acids at the brush border of epithelial cells. Recently, the role of b(o,+)AT (SLC7A9) in cystinuria (non Type I) and the role of y(+)LAT-1 (SLC7A7) in lysinuric protein intolerance have been demonstrated.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028, Barcelona, Spain.
| | | | | |
Collapse
|