1
|
Keckeis S, Reichhart N, Roubeix C, Strauß O. Anoctamin2 (TMEM16B) forms the Ca2+-activated Cl− channel in the retinal pigment epithelium. Exp Eye Res 2017; 154:139-150. [DOI: 10.1016/j.exer.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023]
|
2
|
Cordeiro S, Strauss O. Expression of Orai genes and ICRAC activation in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 2010; 249:47-54. [DOI: 10.1007/s00417-010-1445-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/15/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022] Open
|
3
|
Abstract
The retinal pigment epithelium (RPE) lying distal to the retina regulates the extracellular environment and provides metabolic support to the outer retina. RPE abnormalities are closely associated with retinal death and it has been claimed several of the most important diseases causing blindness are degenerations of the RPE. Therefore, the study of the RPE is important in Ophthalmology. Although visualisation of the RPE is part of clinical investigations, there are a limited number of methods which have been used to investigate RPE function. One of the most important is a study of the current generated by the RPE. In this it is similar to other secretory epithelia. The RPE current is large and varies as retinal activity alters. It is also affected by drugs and disease. The RPE currents can be studied in cell culture, in animal experimentation but also in clinical situations. The object of this review is to summarise this work, to relate it to the molecular membrane mechanisms of the RPE and to possible mechanisms of disease states.
Collapse
Affiliation(s)
- Geoffrey B Arden
- Department of Optometry and Visual Science, Henry Wellcome Laboratiories for Visual Sciences, City University, London, UK.
| | | |
Collapse
|
4
|
Wollmann G, Lenzner S, Berger W, Rosenthal R, Karl MO, Strauss O. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice. Vision Res 2005; 46:688-98. [PMID: 16289664 DOI: 10.1016/j.visres.2005.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.
Collapse
Affiliation(s)
- Guido Wollmann
- Institut fuer Klinische Physiologie, Charite-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Located between vessels of the choriocapillaris and light-sensitive outer segments of the photoreceptors, the retinal pigment epithelium (RPE) closely interacts with photoreceptors in the maintenance of visual function. Increasing knowledge of the multiple functions performed by the RPE improved the understanding of many diseases leading to blindness. This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function. Mutations in genes that are expressed in the RPE can lead to photoreceptor degeneration. On the other hand, mutations in genes expressed in photoreceptors can lead to degenerations of the RPE. Thus both tissues can be regarded as a functional unit where both interacting partners depend on each other.
Collapse
Affiliation(s)
- Olaf Strauss
- Bereich Experimentelle Ophthalmologie, Klinik und Poliklinik fuer Augenheilkunde, Universitaetsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
6
|
Abstract
Clarification of the function of bestrophin, the gene product of VMD2, establishes a basis for the understanding of the pathomechanisms leading to Best's vitelliform macular degeneration. Studies of heterologously expressed bestrophin showed that bestrophin can function as a Cl(-) channel. All four known bestrophins were found to display Cl(-) channel activity. A loss in Cl(-) channel function would elegantly explain the development of the leading symptom for Best's disease, the reduction of the light peak amplitude in the patient's electro-oculogram. However, there are still gaps in the chain of evidence demonstrating that bestrophin is a Cl(-) channel, and this hypothesis is inconsistent with newly published follow-up observations. In an alternative hypothesis bestrophin appears as a regulator of voltage-dependent Ca(2+) channels assuming an indirect involvement of bestrophin in the generation of the light peak. Further studies on either bestrophin-deficient mice or transgenic mice will show that either one of the hypotheses is right or maybe both will be proven correct, showing bestrophin as a Cl(-) channel and Ca(2+) channel regulator.
Collapse
Affiliation(s)
- O Strauss
- Abteilung für Experimentelle Ophthalmologie, Klinik und Poliklinik für Augenheilkunde des Universitätsklinikums Hamburg-Eppendorf, Hamburg.
| | | |
Collapse
|
7
|
Loewen ME, Smith NK, Hamilton DL, Grahn BH, Forsyth GW. CLCA protein and chloride transport in canine retinal pigment epithelium. Am J Physiol Cell Physiol 2003; 285:C1314-21. [PMID: 12867361 DOI: 10.1152/ajpcell.00210.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Problems in ion and fluid transfer across the retinal pigment epithelium (RPE) are a probable cause of inappropriate accumulations of fluid between the photoreceptors of the retina and the RPE. The activities of Cl- transporters involved in basal fluid transfer across the RPE have been compared to determine whether Ca2+- or cAMP-dependent channels may be responsible for basal housekeeping levels of secretory activity in this tissue. The role of a candidate Ca2+-dependent CLCA protein in the basal RPE transport of Cl- has been investigated. Low concentrations of the Cl- conductance inhibitors glibenclamide and 5-nitro-2-(3-phenylpropylamino)benzoate reduced the short-circuit current in dog RPE preparations mounted in Ussing chambers and decreased the Ca2+-dependent Cl- efflux from fibroblasts expressing the pCLCA1 Cl- conductance regulator. However, these same agents did not inhibit the rate of Cl- release from cultured fibroblasts expressing the cystic fibrosis transmembrane regulator (CFTR) conductive Cl- channel. Addition of ionomycin to primary cultures of canine RPE cells or to fibroblasts expressing the pCLCA1 channel regulator increased the rate of release of Cl- from both types of cultured cells. However, the presence of pCLCA1 also increased cAMP-dependent Cl- release from fibroblasts expressing CFTR. We conclude that Ca2+-dependent Cl- transport may be more important than cAMP-dependent Cl- transport for normal fluid secretion across the RPE. Furthermore, CLCA proteins expressed in the RPE appear to regulate the activity of other Cl- transporters, rather than functioning as primary ion transport proteins.
Collapse
Affiliation(s)
- Matthew E Loewen
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5B4
| | | | | | | | | |
Collapse
|
8
|
Hartzell HC, Qu Z. Chloride currents in acutely isolated Xenopus retinal pigment epithelial cells. J Physiol 2003; 549:453-69. [PMID: 12665603 PMCID: PMC2342951 DOI: 10.1113/jphysiol.2003.040428] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2002] [Accepted: 03/18/2003] [Indexed: 11/08/2022] Open
Abstract
The retinal pigment epithelium (RPE) regulates the ionic composition of the fluid surrounding the photoreceptors by transport mechanisms that utilize Cl- channels. Cl- currents in RPE cells, however, remain incompletely characterized. The purpose of this study was to identify the Cl- currents in acutely isolated Xenopus RPE cells using whole-cell patch clamp. We describe three different Cl- currents. (1) An inwardly rectifying Cl- current, ICl,ir, activates slowly with hyperpolarization (tauact = ~1 s at -80 mV, V1/2= -94 +/- 3 mV), is blocked by Zn2+ (IC50 =185 microM), is stimulated by acid (ICl,ir is 5 times larger at pH 6 than pH 8), and is blocked by DIDS in a voltage-dependent manner. ICl,ir closely resembles cloned ClC-2currents. (2) An outwardly rectifying Cl- current, ICl,Ca, is stimulated by elevated cytosolic free [Ca2+]. With 1 microM free [Ca2+]i in the patch pipette, ICl,Ca activates slowly with depolarization (tauact =325 ms at 100 mV) and deactivates upon hyperpolarization. ICl,Ca is not blocked by 1 mM Zn2+ or 10 microM Gd3+ but is blocked by DIDS. High extracellular [Ca2+] (10 mM) also activates ICl,Ca. (3) A non-rectifying current is activated by elevation of cytoplasmic cAMP with forskolin and IBMX. In addition to these three Cl- currents, Xenopus RPE cells exhibit a non-selective background current (Ibkg) which has a linear I-V relationship and is voltage insensitive. This current is blocked by Zn2+ (IC50 of 5.3 microM) or 10 microM Gd3+. This description provides new insights into the physiology of Cl- channels involved in salt and fluid transport by the retinal pigment epithelium.
Collapse
Affiliation(s)
- H Criss Hartzell
- Department of Cell Biology, Whitehead Biomedical Research Building 535, 615 Michael Street, Emory University School of Medicine, Atlanta, GA 30322-3030, USA.
| | | |
Collapse
|
9
|
CLCA adhesion in site-specific cancer metastasis. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)53044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Sanghi S, Kumar R, Lumsden A, Dickinson D, Klepeis V, Trinkaus-Randall V, Frierson HF, Laurie GW. cDNA and genomic cloning of lacritin, a novel secretion enhancing factor from the human lacrimal gland. J Mol Biol 2001; 310:127-39. [PMID: 11419941 DOI: 10.1006/jmbi.2001.4748] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multiple extracellular factors are hypothesized to promote the differentiation of unstimulated and/or stimulated secretory pathways in exocrine secretory cells, but the identity of differentiation factors, particularly those organ-specific, remain largely unknown. Here, we report on the identification of a novel secreted glycoprotein, lacritin, that enhances exocrine secretion in overnight cultures of lacrimal acinar cells which otherwise display loss of secretory function. Lacritin mRNA and protein are highly expressed in human lacrimal gland, moderately in major and minor salivary glands and slightly in thyroid. No lacritin message or protein is detected elsewhere among more than 50 human tissues examined. Lacritin displays partial similarity to the glycosaminoglycan-binding region of brain-specific neuroglycan C (32 % identity over 102 amino acid residues) and to the possibly mucin-like amino globular region of fibulin-2 (30 % identity over 81 amino acid residues), and localizes primarily to secretory granules and secretory fluid. The lacritin gene consists of five exons, displays no alternative splicing and maps to 12q13. Recombinant lacritin augments unstimulated but not stimulated acinar cell secretion, promotes ductal cell proliferation, and stimulates signaling through tyrosine phosphorylation and release of calcium. It binds collagen IV, laminin-1, entactin/nidogen-1, fibronectin and vitronectin, but not collagen I, heparin or EGF. As an autocrine/paracrine enhancer of the lacrimal constitutive secretory pathway, ductal cell mitogen and stimulator of corneal epithelial cells, lacritin may play a key role in the function of the lacrimal gland-corneal axis.
Collapse
Affiliation(s)
- S Sanghi
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lagostena L, Ashmore JF, Kachar B, Mammano F. Purinergic control of intercellular communication between Hensen's cells of the guinea-pig cochlea. J Physiol 2001; 531:693-706. [PMID: 11251051 PMCID: PMC2278490 DOI: 10.1111/j.1469-7793.2001.0693h.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Hensen's cells in the isolated cochlea were stimulated by extracellular adenosine 5'-triphosphate (ATP) applied to their endolymphatic surface while changes in membrane current and intracellular calcium concentration ([Ca2+]i) were measured simultaneously. The response consisted of (i) an initial rapid inward current accompanied by elevation of the [Ca2+]i, (ii) a more slowly rising inward current accompanied by a rise of the [Ca2+]i and (iii) a slowly developing reduction of input conductance. 2. The slower responses were maintained in the absence of extracellular Ca2+. Similar responses were produced by increasing the [Ca2+]i via UV flash photolysis of intracellular D-myo-inositol 1,4,5-trisphosphate, P4(5)-(1-(2-nitrophenyl)ethyl) ester (caged InsP3) loaded at pipette concentrations of 8-16 microM. 3. The slow inward current, reversing around 0 mV, was blocked by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). 4. Bath application of U-73122 (1 microM), a phospholipase C inhibitor, eliminated the slow Ca2+-release component of the response to ATP. It is proposed that the effects of ATP are mediated by the co-activation of ionotropic P2X and metabotropic P2Y receptors. 5. Immunohistochemistry using light and electron microscopy revealed that inositol 1,4,5-trisphosphate (InsP3) receptors delineate a network within the cells. 6. The coupling ratio (CR) between cell pairs measured in dual patch-clamp recordings was 0.356 +/- 0.024. The coupling reversibly decreased to 51 % of the control within 2 min of applying 100 microM ATP. Flash photolysis of 32 microM intracellular caged InsP3 and 1 mM caged Ca2+ reduced CR to 42 and 62 % of the control, respectively. 7. We propose that endolymphatic ATP via P2X and P2Y receptors can control intercellular communication amongst Hensen's cells by reducing gap junction conductance in a Ca2+- and InsP3-dependent manner.
Collapse
Affiliation(s)
- L Lagostena
- Settore di Biofisica e Istituto Nazionale di Fisica della Materia, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34014 Trieste, Italy
| | | | | | | |
Collapse
|
12
|
Pauli BU, Abdel-Ghany M, Cheng HC, Gruber AD, Archibald HA, Elble RC. Molecular characteristics and functional diversity of CLCA family members. Clin Exp Pharmacol Physiol 2000; 27:901-5. [PMID: 11071307 DOI: 10.1046/j.1440-1681.2000.03358.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. In the present brief review, we describe some of the molecular and functional characteristics of a novel mammalian family of putative Ca2+-activated chloride channels (CLCA). 2. So far, two bovine (bCLC1; bCLCA2 (Lu-ECAM-1)), three mouse (mCLCA1; mCLCA2; mCLCA3) and four human (hCLCA1; hCLCA2; hCLCA3; hCLCA4) CLCA family members have been cloned. Each CLCA exhibits a distinct, often overlapping, tissue expression pattern. 3. With the exception of the truncated secreted hCLCA3, all CLCA proteins are synthesized as an approximately 125 kDa precursor transmembrane glycoprotein that is rapidly cleaved into 90 and 35 kDa subunits. 4. The CLCA proteins expressed on the luminal surface of lung vascular endothelia (bCLCA2; mCLCA1; hCLCA2) serve as adhesion molecules for lung metastatic cancer cells, mediating vascular arrest and lung colonization. 5. Expression of hCLCA2 in normal mammary epithelium is consistently lost in human breast cancer and in all tumorigenic breast cancer cell lines. Re-expression of hCLCA2 in human breast cancer cells abrogates invasiveness of Matrigel (BD Biosciences-Labware, Bedford, MA, USA) in vitro and tumorigenicity in nude mice, implying that hCLCA2 acts as a tumour suppressor in breast cancer.
Collapse
Affiliation(s)
- B U Pauli
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, New York 14853, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Cui XL, Jin WW, Ding YX, Alexander LD, Hopfer U, Douglas JG. Ca(2+)-dependent activation of c-jun NH(2)-terminal kinase in primary rabbit proximal tubule epithelial cells. Am J Physiol Cell Physiol 2000; 279:C403-9. [PMID: 10913007 PMCID: PMC3014607 DOI: 10.1152/ajpcell.2000.279.2.c403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous work from this laboratory demonstrated that arachidonic acid activates c-jun NH(2)-terminal kinase (JNK) through oxidative intermediates in a Ca(2+)-independent manner (Cui X and Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci USA 94: 3771-3776, 1997.). We now report that JNK can also be activated via a Ca(2+)-dependent mechanism by agents that increase the cytosolic Ca(2+) concentration (Ca(2+) ionophore A(23187), Ca(2+)-ATPase inhibitor thapsigargin) or deplete intracellular Ca(2+) stores [intracellular Ca(2+) chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM]. The activation of JNK by BAPTA-AM occurs despite a decrease in cytosolic Ca(2+) concentration as detected by the indicator dye fura 2, but appears to be related to Ca(2+) metabolism, because modification of BAPTA with two methyl groups increases not only the chelation affinity for Ca(2+), but also the potency for JNK activation. BAPTA-AM stimulates Ca(2+) influx across the plasma membrane, and the resulting local Ca(2+) increases are probably involved in activation of JNK because Ca(2+) influx inhibitors (SKF-96365, nifedipine) and lowering of the free extracellular Ca(2+) concentration with EGTA reduce the BAPTA-induced JNK activation.
Collapse
Affiliation(s)
- X L Cui
- Division of Hypertension, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Ohio 44106-4982, USA.
| | | | | | | | | | | |
Collapse
|