1
|
Geng S, Zuo D, Song A, Huang B, Wang H, Yu S. RNAs associated with oxidative stress and apoptosis show anticancer effects of Flos Sophorae flavonoids extract on human hepatoma cells. Int J Biol Macromol 2024; 282:136750. [PMID: 39433182 DOI: 10.1016/j.ijbiomac.2024.136750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Flos Sophorae, a traditional Chinese medicinal herb and health tea, consists of the dried flowers and buds of the Sophora japonica L. (Leguminosae). This study assesses the in vitro anticancer efficacy of Flos Sophorae flower extract (FSFE) against the human hepatocarcinoma cell line HepG2, juxtaposed with its effects on normal human liver L02 cells. Cell viability was assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the effects of fruit skin flavonoid extract (FSFE) on cellular proliferation. The results indicated that FSFE significantly inhibited the proliferation of HepG2 liver cancer cells, with an inhibitory concentration (IC50) of 117.98 μg/mL, while having minimal effects on normal liver L02 cells. HPLC analysis identified rutin and quercetin as components of FSFE, both recognized for their antioxidant properties. The flavonoids in Flos Sophorae exhibit potent inhibitory effects on liver cancer cells, indicating potential as a natural anticancer agent. The findings support the continued development and research into the therapeutic applications of these compounds.
Collapse
Affiliation(s)
- Shan Geng
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China; State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, 400016 Chongqing, China
| | - Dan Zuo
- Clinical Nutrition Department, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Anchao Song
- College of Public Health, Chongqing Medical University, 400016 Chongqing, China
| | - Biao Huang
- Clinical Nutrition Department, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China
| | - Honglin Wang
- Department of Orthopedic Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| | - Shaohong Yu
- Department of General Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, 402360 Chongqing, China.
| |
Collapse
|
2
|
Haque Z, Taleuzzaman M, Jamal R, Al-Qahtani NH, Haque A. Targeting protein receptors and enzymes for precision management of urolithiasis: A comprehensive review. Eur J Pharmacol 2024; 981:176904. [PMID: 39153649 DOI: 10.1016/j.ejphar.2024.176904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Urolithiasis, characterized by the formation of solid crystalline structures within the urinary tract, presents a significant global health burden with high recurrence rates and limited treatment efficacy. Recent research has identified various protein receptors and enzymes implicated in the pathogenesis of urolithiasis, offering potential targets for therapeutic intervention. Protein receptors such as the calcium-sensing receptor and vasopressin V2 receptor play crucial roles in regulating urinary calcium excretion and water reabsorption, respectively, influencing stone formation. Additionally, modulation of receptors like the angiotensin II receptor and aldosterone receptor can impact renal function and electrolyte balance, contributing to stone prevention. Furthermore, enzymes such as urease inhibitors and xanthine oxidase inhibitors offer targeted approaches to prevent the formation of specific stone types. This review discusses the potential of targeting these receptors and enzymes for the treatment of urolithiasis, exploring associated drugs and their mechanisms of action. Despite promising avenues for personalized and precision medicine approaches, challenges such as the need for robust clinical evidence and ensuring cost-effectiveness must be addressed for the translation of these interventions into clinical practice. By overcoming these challenges, receptor-targeted therapies and enzyme inhibitors hold promise for revolutionizing the management of urolithiasis and reducing its global burden.
Collapse
Affiliation(s)
- Ziyaul Haque
- Anjumane-I-Islam Kalsekar Technical Campus (AIKTC), School of Pharmacy, Plot No: 2&3, Sector:16, Near Thana Naka, Khandagaon, New Panvel, Mumbai, Maharashtra 410206, India; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan, 342802, India
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan, 342802, India.
| | - Ruqaiya Jamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan, 342802, India
| | - Noora H Al-Qahtani
- Central Laboratories Unit (CLU), Qatar University, Doha P.O. Box 2713, Qatar; Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Anzarul Haque
- Central Laboratories Unit (CLU), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Taha SAY, Shokeir AA, Mortada WI, Awadalla A, Barakat LAA. Effect of Copper and Zinc Ions on Biochemical and Molecular Characteristics of Calcium Oxalate Renal Stones: a Controlled Clinical Study. Biol Trace Elem Res 2024; 202:410-422. [PMID: 37191760 PMCID: PMC10764588 DOI: 10.1007/s12011-023-03686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Contradictory results are existed in the literature regarding the impact of trace elements on the pathogenesis of calcium oxalate (CaOx) stone patients. Therefore, the aim of our study was to investigate the effect of Cu and Zn on biochemical and molecular characteristics of CaOx stones. Plasma and urine concentrations of Cu and Zn in 30 CaOx stones patients and 20 controls were determined by flame atomic absorption spectrometry (FAAS). Urinary levels of citric acid and oxalate were measured by commercial spectrophotometric kits. Blood levels of glutathione reduced (GSH) and catalase (CAT) were determined as markers of antioxidant activity, while blood malondialdehyde (MDA) and urine level of nitric oxide (NO) were used to assess oxidative stress. Gene expression of MAPk pathway (ERK, P38, and JNK) were estimated. The plasma and urine levels of Cu were significantly increased in the patient group compared to those of controls, while the levels of Zn were decreased. Excessive urinary excretion of citric acid and oxalate were found among CaOx stone patients. The GSH and CAT concentration were significantly reduced in CaOx stones patients compared to healthy group. The plasma MDA and urine NO concentration were significantly increased in CaOx stones patients compared to control group. The expressions of the studied genes were significantly increased in CaOx stones patients. These findings suggest that alteration in Cu and Zn might contribute to pathogenesis of CaOx patients through oxidative stress and MAPK pathway genes (ERK, P38 and JNK).
Collapse
Affiliation(s)
- Shaimaa A Y Taha
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Shokeir
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Wael I Mortada
- Clinical Chemistry Laboratory, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Amira Awadalla
- Center of Excellence for Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Lamiaa A A Barakat
- Department of Biochemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
4
|
Kumar P, Laurence E, Crossman DK, Assimos DG, Murphy MP, Mitchell T. Oxalate disrupts monocyte and macrophage cellular function via Interleukin-10 and mitochondrial reactive oxygen species (ROS) signaling. Redox Biol 2023; 67:102919. [PMID: 37806112 PMCID: PMC10565874 DOI: 10.1016/j.redox.2023.102919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
Oxalate is a small compound found in certain plant-derived foods and is a major component of calcium oxalate (CaOx) kidney stones. Individuals that consume oxalate enriched meals have an increased risk of forming urinary crystals, which are precursors to CaOx kidney stones. We previously reported that a single dietary oxalate load induces nanocrystalluria and reduces monocyte cellular bioenergetics in healthy adults. The purpose of this study was to extend these investigations to identify specific oxalate-mediated mechanisms in monocytes and macrophages. We performed RNA-Sequencing analysis on monocytes isolated from healthy subjects exposed to a high oxalate (8 mmol) dietary load. RNA-sequencing revealed 1,198 genes were altered and Ingenuity Pathway Analysis demonstrated modifications in several pathways including Interleukin-10 (IL-10) anti-inflammatory cytokine signaling, mitochondrial metabolism and function, oxalic acid downstream signaling, and autophagy. Based on these findings, we hypothesized that oxalate induces mitochondrial and lysosomal dysfunction in monocytes and macrophages via IL-10 and reactive oxygen species (ROS) signaling which can be reversed with exogenous IL-10 or Mitoquinone (MitoQ; a mitochondrial targeted antioxidant). We exposed monocytes and macrophages to oxalate in an in-vitro setting which caused oxidative stress, a decline in IL-10 cytokine levels, mitochondrial and lysosomal dysfunction, and impaired autophagy in both cell types. Administration of exogenous IL-10 and MitoQ attenuated these responses. These findings suggest that oxalate impairs metabolism and immune response via IL-10 signaling and mitochondrial ROS generation in both monocytes and macrophages which can be potentially limited or reversed. Future studies will examine the benefits of these therapies on CaOx crystal formation and growth in vivo.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emma Laurence
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dean G Assimos
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Yang B, Wang G, Li Y, Yang T, Guo H, Li P, Li J. Hydroxycitric acid prevents hyperoxaluric-induced nephrolithiasis and oxidative stress via activation of the Nrf2/Keap1 signaling pathway. Cell Cycle 2023; 22:1884-1899. [PMID: 37592762 PMCID: PMC10599177 DOI: 10.1080/15384101.2023.2247251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 08/19/2023] Open
Abstract
Nephrolithiasis is a common and frequently-occurring disease in the urinary system with high recurrence. The present study aimed to explore the protective effect and underlying mechanism of hydroxycitric acid (HCA) in hyperoxaluria-induced nephrolithiasis in vitro and in vivo. Crystal deposition and pathophysiological injury in rat models of glyoxylate-induced nephrolithiasis were examined using H&E staining. Cell models of nephrolithiasis were established by oxalate-treated renal tubular epithelial cells. The levels of oxidative stress indexes were determined by ELISA kits. Cell proliferation in vivo and in vitro was evaluated using a cell counting kit-8 (CCK-8) assay and Ki-67 cell proliferation detection kit. Cell apoptosis was measured by flow cytometry and TUNEL staining. The protein levels were examined by western blotting. Our results showed that HCA administration significantly reduced crystal deposition and kidney injury induced by glyoxylate. HCA also alleviated oxidative stress via upregulating the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) and reducing the malondialdehyde (MDA) content. Moreover, HCA treatment promoted cell proliferation and inhibited apoptosis of renal tubular epithelial cells exposed to hyperoxaluria. Of note, Nrf2 activator dimethyl fumarate (DMF) exerted the same beneficial effects as HCA in nephrolithiasis. Mechanistically, HCA prevented crystal deposition and oxidative stress induced by hyperoxaluria through targeting the Nrf2/Keap1 antioxidant defense pathway, while knockdown of Nrf2 significantly abrogated these effects. Taken together, HCA exhibited antioxidation and anti-apoptosis activities in nephrolithiasis induced by hyperoxaluria via activating Nrf2/Keap1 pathway, suggesting that it may be an effective therapeutic agent for the prevention and treatment of nephrolithiasis.
Collapse
Affiliation(s)
- Bowei Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Guang Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuhang Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Haixiang Guo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Pei Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiongming Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
6
|
Khan SR, Canales BK. Proposal for pathogenesis-based treatment options to reduce calcium oxalate stone recurrence. Asian J Urol 2023; 10:246-257. [PMID: 37538166 PMCID: PMC10394280 DOI: 10.1016/j.ajur.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Prevalence of kidney stone disease continues to increase globally with recurrence rates between 30% and 50% despite technological and scientific advances. Reduction in recurrence would improve patient outcomes and reduce cost and stone morbidities. Our objective was to review results of experimental studies performed to determine the efficacy of readily available compounds that can be used to prevent recurrence. Methods All relevant literature up to October 2020, listed in PubMed is reviewed. Results Clinical guidelines endorse the use of evidence-based medications, such as alkaline agents and thiazides, to reduce urinary mineral supersaturation and recurrence. However, there may be additional steps during stone pathogenesis where medications could moderate stone risk. Idiopathic calcium oxalate stones grow attached to Randall's plaques or plugs. Results of clinical and experimental studies suggest involvement of reactive oxygen species and oxidative stress in the formation of both the plaques and plugs. The renin-angiotensin-aldosterone system (RAAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, mitochondria, and NOD-like receptor pyrin domain containing-3 (NLRP3) inflammasome have all been implicated at specific steps during stone pathogenesis in animal models. Conclusion In addition to supersaturation-reducing therapies, the use of anti-oxidants, free radical scavengers, and inhibitors of NADPH oxidase, NLRP3 inflammasome, and RAAS may prove beneficial for stone prevention. Compounds such as statins and angiotensin converting enzyme inhibitors are already in use as therapeutics for hypertension and cardio-vascular disease and have previously shown to reduce calcium oxalate nephrolithiasis in rats. Although clinical evidence for their use in stone prevention in humans is limited, experimental data support they be considered along with standard evidence-based medications and clinical expertise when patients are being counselled for stone prevention.
Collapse
Affiliation(s)
- Saeed R. Khan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
7
|
Sáenz-Medina J, San Román J, Rodríguez-Monsalve M, Durán M, Carballido J, Prieto D, Gil Miguel Á. Hospitalization Burden of Patients with Kidney Stones and Metabolic Comorbidities in Spain during the Period 2017-2020. Metabolites 2023; 13:metabo13040574. [PMID: 37110232 PMCID: PMC10142441 DOI: 10.3390/metabo13040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Nephrolithiasis has become an increasing worldwide problem during the last decades. Metabolic syndrome, its components, and related dietary factors have been pointed out as responsible for the increasing incidence. The objective of this study was to evaluate the trends in the hospitalization rates of patients with nephrolithiasis, hospitalization features, costs, and how metabolic syndrome traits influence both the prevalence and complications of lithiasic patients. An observational retrospective study was conducted by analyzing hospitalization records from the minimum basic data set, including all patient hospitalizations in Spain in which nephrolithiasis has been coded as a main diagnosis or as a comorbidity during the period 2017-2020. A total of 106,407 patients were hospitalized and coded for kidney or ureteral lithiasis in this period. The mean age of the patients was 58.28 years (CI95%: 58.18-58.38); 56.8% were male, and the median length of stay was 5.23 days (CI95%: 5.06-5.39). In 56,884 (53.5%) patients, kidney or ureteral lithiasis were coded as the main diagnosis; the rest of the patients were coded mostly as direct complications of kidney or ureteral stones, such as "non-pecified renal colic", "acute pyelonephritis", or "tract urinary infection". The hospitalization rate was 56.7 (CI95%: 56.3-57.01) patients per 100,000 inhabitants, showing neither a significant increasing nor decreasing trend, although it was influenced by the COVID-19 pandemic. The mortality rate was 1.6% (CI95%: 1.5-1.7), which was higher, if lithiasis was coded as a comorbidity (3.4% CI95%: 3.2-3.6). Metabolic syndrome diagnosis component codes increased the association with kidney lithiasis when age was higher, reaching the highest in the eighth decade of life. Age, diabetes, and hypertension or lithiasis coded as a comorbidity were the most common causes associated with the mortality of lithiasic patients. In Spain, the hospitalization rate of kidney lithiasis has remained stable during the period of study. The mortality rate in lithiasic patients is higher in elderly patients, being associated with urinary tract infections. Comorbidity conditions such as diabetes mellitus and hypertension are mortality predictors.
Collapse
Affiliation(s)
- Javier Sáenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Madrid, Spain
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28922 Madrid, Spain
| | - Jesús San Román
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28922 Madrid, Spain
| | | | - Manuel Durán
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28922 Madrid, Spain
| | - Joaquín Carballido
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222 Madrid, Spain
| | - Dolores Prieto
- Department of Physiology, Pharmacy Faculty, Complutense University, 28040 Madrid, Spain
| | - Ángel Gil Miguel
- Department of Medical Specialties and Public Health, King Juan Carlos University, 28922 Madrid, Spain
| |
Collapse
|
8
|
Khan A, Gilani AH. An insight investigation to the antiurolithic activity of Trachyspermum ammi using the in vitro and in vivo experiments. Urolithiasis 2023; 51:43. [PMID: 36867274 DOI: 10.1007/s00240-023-01415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
The crude extract of Trachyspermum ammi seeds (Ta.Cr) was studied for its antiurolithic activity using the in vivo and in vitro experiments. In the in vivo experiments, Ta.Cr treatment showed a diuretic activity at the dose of 30 and 100 mg/kg and exhibited curative effect in male hyperoxaluric Wistar rats, which received 0.75% ethylene glycol (EG) in drinking water given for 3 weeks, with 1% ammonium chloride (AC) for initial three days. In the in vitro experiments, Ta.Cr delayed the slopes of nucleation and inhibited the calcium oxalate (CaOx) crystal aggregation in a concentration-dependent manner like that of potassium citrate. Ta.Cr also inhibited DPPH free radicals like standard antioxidant drug butylated hydroxytoluene (BHT), and significantly reduced cell toxicity and LDH release in Madin-Darby canine kidney (MDCK) cells, exposed to oxalate (0.5 mM) and COM (66 µg/cm2) crystals. In isolated rabbit urinary bladder strips, Ta.Cr relaxed high K+ (80 mM) and CCh (1 µM)-induced contractions, showing antispasmodic activity. The findings of this study suggest that the antiurolithic activity of crude extract of Trachyspermum ammi seeds may be mediated by a number of mechanisms, including a diuretic, an inhibitor of CaOx crystal aggregation, an antioxidant, renal epithelial cell protection, and an antispasmodic, thus, showing the therapeutic potential in urolithiasis, for which there is no viable non-invasive option in modern medicine.
Collapse
Affiliation(s)
- Aslam Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, 13 KM Raiwind Road, Lahore, Pakistan. .,Department of Biological and Biomedical Sciences, Aga Khan University Medical College, Karachi, 74800, Pakistan.
| | - Anwar H Gilani
- Department of Biological and Biomedical Sciences, Aga Khan University Medical College, Karachi, 74800, Pakistan. .,Pakistan Academy of Sciences, Constitution Avenue, G-5, Islamabad, Pakistan.
| |
Collapse
|
9
|
Wulf MJ, Tom VJ. Consequences of spinal cord injury on the sympathetic nervous system. Front Cell Neurosci 2023; 17:999253. [PMID: 36925966 PMCID: PMC10011113 DOI: 10.3389/fncel.2023.999253] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury (SCI) damages multiple structures at the lesion site, including ascending, descending, and propriospinal axons; interrupting the conduction of information up and down the spinal cord. Additionally, axons associated with the autonomic nervous system that control involuntary physiological functions course through the spinal cord. Moreover, sympathetic, and parasympathetic preganglionic neurons reside in the spinal cord. Thus, depending on the level of an SCI, autonomic function can be greatly impacted by the trauma resulting in dysfunction of various organs. For example, SCI can lead to dysregulation of a variety of organs, such as the pineal gland, the heart and vasculature, lungs, spleen, kidneys, and bladder. Indeed, it is becoming more apparent that many disorders that negatively affect quality-of-life for SCI individuals have a basis in dysregulation of the sympathetic nervous system. Here, we will review how SCI impacts the sympathetic nervous system and how that negatively impacts target organs that receive sympathetic innervation. A deeper understanding of this may offer potential therapeutic insight into how to improve health and quality-of-life for those living with SCI.
Collapse
Affiliation(s)
| | - Veronica J. Tom
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
10
|
Rashid S, Sameti M, Alqarni MH, Abdel Bar FM. In vivo investigation of the inhibitory effect of Peganum harmala L. and its major alkaloids on ethylene glycol-induced urolithiasis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115752. [PMID: 36174807 DOI: 10.1016/j.jep.2022.115752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peganum harmala L. is a traditional medicinal plant used for centuries in folk medicine. It has a wide array of therapeutic attributes, which include hypoglycemic, sedative, anti-inflammatory, and antioxidant properties. The fruit decoction of this plant was claimed by Avicenna as traditional therapy for urolithiasis. Also, P. harmala seed showed a clinical reduction in kidney stone number and size in patients with urolithiasis. AIM OF THE STUDY In light of the above-mentioned data, the anti-urolithiatic activities of the seed extracts and the major β-carboline alkaloids of P. harmala were investigated. MATERIALS AND METHODS Extraction, isolation, and characterization of the major alkaloids were performed using different chromatographic and spectral techniques. The in vivo anti-urolithiatic action was evaluated using ethylene glycol (EG)-induced urolithiasis in rats by studying their mitigating effects on the antioxidant machinery, serum toxicity markers (i.e. nitrogenous waste, such as blood urea nitrogen, uric acid, urea, and creatinine), minerals (such as Ca, Mg, P, and oxalate), kidney injury marker 1 (KIM-1), and urinary markers (i.e. urine pH and urine output). RESULTS Two major alkaloids, harmine (P1) and harmalacidine HCl (P2), were isolated and in vivo evaluated alongside the different extracts. The results showed that P. harmala and its constituents/fractions significantly reduced oxidative stress at 50 mg/kg body weight, p.o., as demonstrated by increased levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and catalase (CAT) in kidney homogenate as compared to the EG-treated group. Likewise, the total extract, pet. ether fraction, n-butanol fraction, and P1, P2 alleviated malondialdehyde (MDA) as compared to the EG-treated group. Serum toxicity markers like blood urea nitrogen (BUN), creatinine, uric acid, urea, kidney injury molecule-1 (Kim-1), calcium, magnesium, phosphate, and oxalate levels were decreased by total extract, pet. ether fraction, n-butanol fraction, P1, and P2 as compared to the EG-treated group. Inflammatory markers like NFκ-B and TNF-α were also downregulated in the kidney homogenate of treatment groups as compared to the EG-treated group. Moreover, urine output and urine pH were significantly increased in treatment groups as compared to the EG-treated group deciphering anti-urolithiatic property of P. harmala. Histopathological assessment by different staining patterns also supported the previous findings and indicated that treatment with P. harmala caused a gradual recovery in damaged glomeruli, medulla, interstitial spaces and tubules, and brown calculi materials as compared to the EG-treated group. CONCLUSION The current research represents scientific evidence on the use of P. harmala and its major alkaloids as an effective therapy in the prevention and management of urolithiasis.
Collapse
Affiliation(s)
- Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Maryam Sameti
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Hoseinynejad K, Mard SA, Mansouri Z, Lamoochi Z, Kazemzadeh R. Efficacy of Chlorogenic Acid against Ethylene Glycol-Induced Renal Stone Model: The Role of NFKB-RUNX2-AP1-OSTERIX Signaling Pathway. Tissue Cell 2022; 79:101960. [DOI: 10.1016/j.tice.2022.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
12
|
Nephrolithiasis: A Red Flag for Cardiovascular Risk. J Clin Med 2022; 11:jcm11195512. [PMID: 36233380 PMCID: PMC9573143 DOI: 10.3390/jcm11195512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Epidemiological evidence shows that nephrolithiasis is associated with cardiovascular (CV) morbidities. The association between nephrolithiasis and CV disease is not surprising because both diseases share conditions that facilitate their development. Metabolic conditions, encompassed in the definition of metabolic syndrome (MS), and habits that promote nephrolithiasis by altering urine composition also promote clinical manifestations of CV disease. By inducing oxidative stress, these conditions cause endothelial dysfunction and increased arterial stiffness, which are both well-known predictors of CV disease. Furthermore, the subtle systemic metabolic acidosis observed in stone formers with CV disease may have a pathogenic role by increasing bone turnover and leading to reduced mineral content and osteoporosis/osteopenia. Heart valves and/or coronary artery and aortic calcifications are frequently associated with reduced mineral density. This is known as the 'calcification paradox' in osteoporosis and has also been observed in subjects with calcium nephrolithiasis. Evidence supports the hypothesis that osteoporosis/osteopenia is an independent risk factor for the development of CV calcifications. In the long term, episodes of renal stones may occur from the onset of metabolic derangements/MS to arterial stiffness/atherosclerosis and CV morbidities. These episodes should be considered a warning sign of an ongoing and silent atherosclerotic process. The evaluation of cardiometabolic risk factors and MS components should be routine in the assessment of renal stone formers. This would allow for treatment and prevention of the development of CV complications, which are much more severe for the patient and for public health.
Collapse
|
13
|
Bhardwaj R, Bhardwaj A, Dhawan DK, Tandon C, Kaur T. 4-PBA rescues hyperoxaluria induced nephrolithiasis by modulating urinary glycoproteins: Cross talk between endoplasmic reticulum, calcium homeostasis and mitochondria. Life Sci 2022; 305:120786. [PMID: 35809664 DOI: 10.1016/j.lfs.2022.120786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
AIM Urinary glycoproteins such as Tamm Horsfall Protein (THP) and Osteopontin (OPN) are well established key regulators of renal stone formation. Additionally, recent revelations have highlighted the influence of Endoplasmic Reticulum (ER) and mitochondria of crucial importance in nephrolithiasis. However, till date conclusive approach highlighting the influence of ER stress on urinary glycoproteins and chaperone in nephrolithiasis remains elusive. Therefore, the present study was focussed on deciphering the possible effect of 4-PBA mitigating ER stress on urinary glycoproteins and calnexin (chaperone) with emphasis on interlinking calcium homeostasis in hyperoxaluric rats. MATERIAL AND METHODS Post 9 days of treatment, animals were sacrificed, and renal tissues were investigated for urinary glycoproteins, calnexin, calcium homeostasis, ER environment, redox status, and mitochondrial linkage. KEY FINDINGS 4-PBA appreciably reversed the altered levels of THP, OPN, and calnexin observed along with curtailing the disrupted calcium homeostasis when assessed for SERCA activity and intra-cellular calcium levels. Additionally, significant improvement in the perturbed ER environment as verified by escalated ER stress markers, disturbed protein folding-aggregation-degradation (congo red assay) pathway, and redox status was found post 4-PBA intervention. Interestingly, linkage of ER stress and mitochondria was established under hyperoxaluric conditions when assessed for protein levels of VDAC1 and GRP75. SIGNIFICANCE 4-PBA treatment resulted in rectifying the repercussions of ER-mitochondrial caused distress when assessed for protein folding/aggregation/degradation events along with disturbed calcium homeostasis. The present study advocates the necessity to adopt a holistic vision towards hyperoxaluria with emphasis on glycoproteins and ER environment.
Collapse
Affiliation(s)
- Rishi Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Ankita Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India
| | | | | | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Huang Z, Wang G, Yang B, Li P, Yang T, Wu Y, Yang X, Liu J, Li J. Mechanism of ketotifen fumarate inhibiting renal calcium oxalate stone formation in SD rats. Biomed Pharmacother 2022; 151:113147. [PMID: 35643070 DOI: 10.1016/j.biopha.2022.113147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES To investigate the inhibitory effect of ketotifen fumarate (KFA), a mast cell membrane stabilizer, on renal calcium oxalate stone (CaOx) formation and its possible molecular mechanism. METHODS We used the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database for functional and pathway enrichment analyses of osteopontin (OPN), CD44 and fibronectin (FN). Blood biochemistry, reactive oxygen species ratio (ROS), mast cells, proteins (CD44, OPN and FN) and OPN receptor integrin family genes were detected by ELISA, flow cytometry, immunohistochemistry and RT-QPCR, respectively. RESULTS The crystal area of CaOx in the KFA and Control group was significantly smaller than that in the Model group. The number of activated mast cells, the expression levels of OPN and CD44 in the Control and KFA groups were significantly lower than those in the Model group, and the percentage of ROS in the KFA group was also significantly lower than that in the Model group. The mRNA expression levels of ITGB1, ITGA9, ITGAV and ITGA4 genes in the prominent OPN receptor integrin family increased significantly in the Model group. CONCLUSIONS Ketotifen can effectively inhibit the crystal formation of CaOx and reduce the inflammatory response of tissue in SD rats. The mechanism may be to reduce the infiltration and activation of mast cells in renal tissue and down-regulate the expression of OPN, CD44 and FN in renal tubules and renal interstitium. And affect the synthesis of integrins (ITGA9, ITGA4, ITGAV, ITGB1, ITGB3 and ITGB5) and ROS.
Collapse
Affiliation(s)
- Ziye Huang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Guang Wang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Bowei Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Pei Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Tongxin Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Yuyun Wu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Xing Yang
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China
| | - Jianhe Liu
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China.
| | - Jiongming Li
- The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan 650101, PR China.
| |
Collapse
|
15
|
HydroZitLa inhibits calcium oxalate stone formation in nephrolithic rats and promotes longevity in nematode Caenorhabditis elegans. Sci Rep 2022; 12:5102. [PMID: 35332173 PMCID: PMC8948263 DOI: 10.1038/s41598-022-08316-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/22/2022] [Indexed: 11/24/2022] Open
Abstract
Low fluid intake, low urinary citrate excretion, and high oxidative stress are main causative factors of calcium oxalate (CaOx) nephrolithiasis. HydroZitLa contains citrate and natural antioxidants and is developed to correct these three factors simultaneously. Antioxidants theoretically can prolong the lifespan of organisms. In this study, we preclinically investigated the antilithogenic, lifespan-extending and anti-aging effects of HydroZitLa in HK-2 cells, male Wistar rats, and Caenorhabditis elegans. HydroZitLa significantly inhibited CaOx crystal aggregation in vitro and reduced oxidative stress in HK-2 cells challenged with lithogenic factors. For experimental nephrolithiasis, rats were divided into four groups: ethylene glycol (EG), EG + HydroZitLa, EG + Uralyt-U, and untreated control. CaOx deposits in kidneys of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. Intrarenal expression of 4-hydroxynonenal in EG + HydroZitLa rats was significantly lower than that of EG rats. The urinary oxalate levels of EG + HydroZitLa and EG + Uralyt-U rats were significantly lower than those of EG rats. The urinary citrate levels of EG + HydroZitLa and EG + Uralyt-U rats were restored to the level in normal control rats. In C. elegans, HydroZitLa supplementation significantly extended the median lifespan of nematodes up to 34% without altering feeding ability. Lipofuscin accumulation in HydroZitLa-supplemented nematodes was significantly lower than that of non-supplemented control. Additionally, HydroZitLa inhibited telomere shortening, p16 upregulation, and premature senescence in HK-2 cells exposed to lithogenic stressors. Conclusions, HydroZitLa inhibited oxidative stress and CaOx formation both in vitro and in vivo. HydroZitLa extended the lifespan and delayed the onset of aging in C. elegans and human kidney cells. This preclinical evidence suggests that HydroZitLa is beneficial for inhibiting CaOx stone formation, promoting longevity, and slowing down aging.
Collapse
|
16
|
Betel Nut Chewing Is Associated with the Risk of Kidney Stone Disease. J Pers Med 2022; 12:jpm12020126. [PMID: 35207614 PMCID: PMC8879579 DOI: 10.3390/jpm12020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Betel nut chewing injures bodily health. Although, the relationship between betel nut chewing and kidney stone disease (KSD) is unknown. (2) Methods: We analyzed 43,636 men from Taiwan Biobank. We divided them into two groups on the status of betel nut chewing, the never-chewer and ever-chewer groups. Self-reported diagnosed KSD was defined as the subject’s medical history of KSD in the questionnaire. Logistic regression was used to analyze the association of betel nut chewing and the risk of KSD. (3) Results: The mean age of subjects in the present study was 50 years, and 16% were ever-chewers. KSD was observed in 3759 (10.3%) and 894 (12.6%) participants in the group of never-chewer and ever-chewer groups, respectively. Higher risk of KSD was found in participants with betel nut chewing compared with to without betel nut chewing (odds ratio (OR), 1.094; 95% confidence interval (95% CI), 1.001 to 1.196). Furthermore, the daily amounts of betel nut chewing >30 quids was associated with a more than 1.5-fold increase (OR, 1.571; 95% CI, 1.186 to 2.079) in the odds of KSD; (4) Conclusions: Our study suggests that betel nut chewing is associated with the risk of KSD and warrants further attention to this problem.
Collapse
|
17
|
Chaiyarit S, Thongboonkerd V. Oxidative Modifications Switch Modulatory Activities of Urinary Proteins From Inhibiting to Promoting Calcium Oxalate Crystallization, Growth, and Aggregation. Mol Cell Proteomics 2021; 20:100151. [PMID: 34562649 PMCID: PMC8551538 DOI: 10.1016/j.mcpro.2021.100151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022] Open
Abstract
The incidence/prevalence of kidney stone disease has been increasing around the globe, but its pathogenic mechanisms remained unclear. We evaluated effects of oxidative modifications of urinary proteins on calcium oxalate (CaOx) stone formation processes. Urinary proteins derived from 20 healthy individuals were modified by performic oxidation, and the presence of oxidatively modified urinary proteins was verified, quantified, and characterized by Oxyblot assay and tandem MS (nanoLC-electrospray ionization-linear trap quadrupole-Orbitrap-MS/MS). Subsequently, activities of oxidatively modified urinary proteins on CaOx stone formation processes were examined. Oxyblot assay confirmed the marked increase in protein oxidation level in the modified urine. NanoLC-electrospray ionization-linear trap quadrupole-Orbitrap-MS/MS identified a total of 193 and 220 urinary proteins in nonmodified and modified urine samples, respectively. Among these, there were 1121 and 5297 unambiguous oxidatively modified peptides representing 42 and 136 oxidatively modified proteins in the nonmodified and modified urine samples, respectively. Crystal assays revealed that oxidatively modified urinary proteins significantly promoted CaOx crystallization, crystal growth, and aggregation. By contrast, the nonmodified urinary proteins had inhibitory activities. This is the first direct evidence demonstrating that oxidative modifications of urinary proteins increase the risk of kidney stone disease by switching their modulatory activities from inhibiting to promoting CaOx crystallization, crystal growth, and aggregation.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Secondhand smoke increases the risk of developing kidney stone disease. Sci Rep 2021; 11:17694. [PMID: 34489505 PMCID: PMC8421344 DOI: 10.1038/s41598-021-97254-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Research indicates smoking increases the risk of various kidney diseases, although the risk of developing kidney stone disease in non-smokers exposed to secondhand smoke is unknown. This study analyzed a total of 19,430 never-smokers with no history of kidney stone disease who participated in the Taiwan Biobank from 2008 to 2019. They were divided into two groups by secondhand smoke exposure; no exposure and exposure groups; the mean age of participants was 51 years, and 81% were women. Incident kidney stone development was observed in 352 (2.0%) and 50 (3.3%) participants in the no exposure and exposure groups during a mean follow-up of 47 months. The odds ratio (OR) of incident kidney stone was significantly higher in the exposure group than the no exposure group [OR, 1.64; 95% confidence interval (95% CI) 1.21 to 2.23]. Participants with > 1.2 h per week exposure were associated with almost twofold risk of developing kidney stones compared with no exposure (OR, 1.92; 95% CI 1.29 to 2.86). Our study suggests that secondhand smoke is a risk factor for development of kidney stones and supports the need for a prospective evaluation of this finding.
Collapse
|
19
|
Xu X, Yan J. β-Caryophyllene may attenuate hyperoxaluria-induced kidney dysfunction in rats by regulating stress marker KIM-1/MCP-1 and NF-κB signaling pathway. J Biochem Mol Toxicol 2021; 35:e22891. [PMID: 34468068 DOI: 10.1002/jbt.22891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
β-Caryophyllene (BCP), a bicyclic sesquiterpene, has proved to exhibit antioxidant and anti-inflammatory activities. The present study is carried out to investigate BCP impact on hyperoxaluria-induced kidney dysfunction in male Wistar rats. The animals were categorized into four groups, namely, Group I, control rats; Group II, ethylene glycol (inducer); Group III, inducer + BCP (100 µM/kg bw); Group IV, BCP alone. After the treatment period, the rate of creatinine clearance and the concentration of urea in urine and serum were assessed. Histopathology reports were conducted to study renal and liver tissues, while the reverse transcription-polymerase chain reaction studies were carried out for messenger RNA expression of inflammatory (nuclear factor kappa B) and endoplasmic reticulum (ER) stress (kidney dysfunction molecule-1, monocyte chemoattractant protein-1, glucose binding protein 78, CHOP, activating factor 4, and X-box binding protein-1) markers as well as antioxidant activity for the hyperoxaluric rats. Western blot was performed to investigate the level of protein expression by the treatment group on apoptotic (Bcl-2, Bax, caspase-3, and caspase-9) proteins. The results show BCP to possess a renoprotective effect under hyperoxaluric conditions by decreasing the level of the inflammatory and ER stress markers and restoring the enzymes' antioxidant activities. The histology reports depicted the satisfactory morphology of glomerulus in diseased rats. Furthermore, the results of Western blot suggested that BCP may possess inhibitory action on apoptosis by affecting the mitochondrial-dependent apoptotic pathway. Therefore, BCP can be considered as a potential candidate for the therapy of hyperoxaluric-induced kidney complications.
Collapse
Affiliation(s)
- Xia Xu
- Department of Pharmacy, Ankang Hospital of Traditional Chinese Medicine, Ankang, China
| | - Jiamiao Yan
- Department of Pharmacy, Ankang Hospital of Traditional Chinese Medicine, Ankang, China
| |
Collapse
|
20
|
Zou GJ, Huang WB, Sun XY, Tang GH, Ouyang JM. Carboxymethylation of Corn Silk Polysaccharide and Its Inhibition on Adhesion of Nanocalcium Oxalate Crystals to Damaged Renal Epithelial Cells. ACS Biomater Sci Eng 2021; 7:3409-3422. [PMID: 34170660 DOI: 10.1021/acsbiomaterials.1c00176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to explore the repair effect of carboxymethyl-modified corn silk polysaccharide (CSP) on oxidatively damaged renal epithelial cells and the difference in adhesion between cells and calcium oxalate crystals. The CSP was degraded and modified through carboxymethylation. An oxidatively damaged cell model was constructed by oxalate damage to human kidney proximal tubular epithelial (HK-2) cells. Then, the damaged cells were repaired by modified polysaccharides, and the changes in biochemical indexes and adhesion ability between cells and crystals before and after repair were detected. Four modified polysaccharides with carboxyl group (-COOH) contents of 3.92% (CSP0), 7.75% (CCSP1), 12.90% (CCSP2), and 16.38% (CCSP3) were obtained. Compared with CSP0, CCSPs had stronger antioxidant activity, could repair damaged HK-2 cells, and could reduce phosphorylated serine eversion on the cell membrane, the expression of osteopontin (OPN) and Annexin A1, and crystal adhesion. However, its effect on the expression of hyaluronic acid synthase was not substantial. The carboxymethyl modification of the CSP can improve its ability to repair cells and inhibit crystal adhesion and aggregation. A high carboxymethylation degree results in strong polysaccharide activity. CCSPs are expected to reduce the risk of kidney stone formation and recurrence.
Collapse
Affiliation(s)
- Guo-Jun Zou
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Wei-Bo Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, Guangdong, China
| | - Gu-Hua Tang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
21
|
Guzel A, Yunusoglu S, Calapoglu M, Candan IA, Onaran I, Oncu M, Ergun O, Oksay T. Protective Effects of Quercetin on Oxidative Stress-Induced Tubular Epithelial Damage in the Experimental Rat Hyperoxaluria Model. ACTA ACUST UNITED AC 2021; 57:medicina57060566. [PMID: 34204866 PMCID: PMC8228054 DOI: 10.3390/medicina57060566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Background and Objectives: The most common kidney stones are calcium stones and calcium oxalate (CaOx) stones are the most common type of calcium stones. Hyperoxaluria is an essential risk factor for the formation of these stones. Quercetin is a polyphenol with antioxidant, anti-inflammatory, and many other physiological effects. The aim of this study was to investigate the protective effect of quercetin in hyperoxaluria-induced nephrolithiasis. Materials and Methods: Male Wistar-Albino rats weighing 250–300 g (n = 24) were randomized into three groups: Control (n = 8), ethylene glycol (EG) (n = 8), and EG + quercetin (n = 8). One percent EG-water solution was given to all rats except for the control group as drinking water for five weeks. Quercetin-water solution was given to the EG + quercetin group by oral gavage at a dose of 10 mg/kg/day. Malondialdehyde (MDA), catalase (CAT), urea, calcium, and oxalate levels were analyzed in blood and urine samples. Histopathological assessments and immunohistochemical analyses for oxidative stress and inflammation indicators p38 mitogen-activated protein kinase (p38-MAPK) and nuclear factor kappa B (NF-kB) were performed on renal tissues. Results: The MDA levels were significantly lower in the quercetin-treated group than in the EG-treated group (p = 0.001). Although CAT levels were higher in the quercetin-treated group than the EG-administered group, they were not significantly different between these groups. The expression of p38 MAPK was significantly less in the quercetin-treated group than the EG group (p < 0.004). There was no statistically significant difference between the quercetin and EG groups in terms of NF-kB expression. Conclusions: We conclude that hyperoxaluria activated the signaling pathways, which facilitate the oxidative processes leading to oxalate stone formation in the kidneys. Our findings indicated that quercetin reduced damage due to hyperoxaluria. These results imply that quercetin can be considered a therapeutic agent for decreasing oxalate stone formation, especially in patients with recurrent stones due to hyperoxaluria.
Collapse
Affiliation(s)
- Ahmet Guzel
- Department of Urology, Aydın State Hospital, Aydın 09100, Turkey
- Correspondence: ; Tel.: +90-505-303-94-14
| | - Sedat Yunusoglu
- Department of Urology, Afyonkarahisar State Hospital, Afyonkarahisar 03100, Turkey;
| | - Mustafa Calapoglu
- Department of Biochemistry, Faculty of Arts and Science, Suleyman Demirel University, Isparta 32100, Turkey;
| | - Ibrahim Aydın Candan
- Department of Histology and Embryology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya 07100, Turkey;
| | - Ibrahim Onaran
- Department of Medical Biology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey;
| | - Meral Oncu
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey;
| | - Osman Ergun
- Department of Urology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey; (O.E.); (T.O.)
| | - Taylan Oksay
- Department of Urology, Faculty of Medicine, Suleyman Demirel University, Isparta 32100, Turkey; (O.E.); (T.O.)
| |
Collapse
|
22
|
Khan A, Bashir S, Khan SR. Antiurolithic effects of medicinal plants: results of in vivo studies in rat models of calcium oxalate nephrolithiasis-a systematic review. Urolithiasis 2021; 49:95-122. [PMID: 33484322 DOI: 10.1007/s00240-020-01236-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/17/2020] [Indexed: 11/25/2022]
Abstract
Urolithiasis is one of the oldest diseases affecting humans, while plants are one of our oldest companions providing food, shelter, and medicine. In spite of substantial progress in understanding the pathophysiological mechanisms, treatment options are still limited, often expensive for common people in most parts of the world. As a result, there is a great interest in herbal remedies for the treatment of urinary stone disease as an alternative or adjunct therapy. Numerous in vivo and in vitro studies have been carried out to understand the efficacy of herbs in reducing stone formation. We adopted PRISMA guidelines and systematically reviewed PubMed/Medline for the literature, reporting results of various herbal products on in vivo models of nephrolithiasis/urolithiasis. The Medical Subject Heading Terms (Mesh term) "Urolithiasis" was used with Boolean operator "AND" and other related Mesh Unique terms to search all the available records (July 2019). A total of 163 original articles on in vivo experiments were retrieved from PubMed indexed with the (MeshTerm) "Urolithiasis" AND "Complementary Therapies/Alternative Medicine, "Urolithiasis" AND "Plant Extracts" and "Urolithiasis" AND "Traditional Medicine". Most of the studies used ethylene glycol (EG) to induce hyperoxaluria and nephrolithiasis in rats. A variety of extraction methods including aqueous, alcoholic, hydro-alcoholic of various plant parts ranging from root bark to fruits and seeds, or a combination thereof, were utilized. All the investigations did not study all aspects of nephrolithiasis making it difficult to compare the efficacy of various treatments. Changes in the lithogenic factors and a reduction in calcium oxalate (CaOx) crystal deposition in the kidneys were, however, considered favorable outcomes of the various treatments. Less than 10% of the studies examined antioxidant and diuretic activities of the herbal treatments and concluded that their antiurolithic activities were a result of antioxidant, anti-inflammatory, and/or diuretic effects of the treatments.
Collapse
Affiliation(s)
- Aslam Khan
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Samra Bashir
- Department of Pharmacy, Faculty of Health and Life Sciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Saeed R Khan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Miyazawa K, Nakai D, Nakamura Y, Tatsuno T, Inoue S, Nakazawa Y, Ishigaki Y. Effects of the xanthine oxidase inhibitor, febuxostat, on the expression of monocyte chemoattractant protein-1 and synchronous genes in MDCK cells treated with calcium oxalate monohydrate crystals. Int J Urol 2021; 28:339-345. [PMID: 33393162 DOI: 10.1111/iju.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To examine the effects of the selective xanthine oxidase inhibitor febuxostat on the expression of inflammation-related genes involved in stone formation. METHODS Madin-Darby canine kidney cells were exposed to febuxostat, followed by calcium oxalate monohydrate crystals. Monocyte chemoattractant protein-1 messenger ribonucleic acid expression levels were determined by real-time reverse transcription polymerase chain reaction analysis. Deoxyribonucleic acid microarray analysis was utilized to evaluate gene expression. RESULTS Calcium oxalate monohydrate crystals activated monocyte chemoattractant protein-1 messenger ribonucleic acid expression in a time- and concentration-dependent manner. Febuxostat suppressed monocyte chemoattractant protein-1 expression. The expression levels of a group of inflammatory genes, including interleukin-8 and chemokine (C-X-C motif) ligand 10, which are downstream of reactive oxygen species, fluctuated similarly to the observed monocyte chemoattractant protein-1 fluctuations and were reduced by febuxostat pretreatment. CONCLUSIONS Febuxostat exerts preventive effects against reactive oxygen species production and oxidative stress, and might represent a potential treatment for calcium oxalate stones. In the present study, febuxostat downregulated the calcium oxalate monohydrate crystal-induced monocyte chemoattractant protein-1 messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Katsuhito Miyazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Dan Nakai
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Takanori Tatsuno
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shinya Inoue
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yusuke Nakazawa
- Department of Urology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
24
|
Luo Y, Ma J, Lu W. The Significance of Mitochondrial Dysfunction in Cancer. Int J Mol Sci 2020; 21:ijms21165598. [PMID: 32764295 PMCID: PMC7460667 DOI: 10.3390/ijms21165598] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
As an essential organelle in nucleated eukaryotic cells, mitochondria play a central role in energy metabolism, maintenance of redox balance, and regulation of apoptosis. Mitochondrial dysfunction, either due to the TCA cycle enzyme defects, mitochondrial DNA genetic mutations, defective mitochondrial electron transport chain, oxidative stress, or aberrant oncogene and tumor suppressor signaling, has been observed in a wide spectrum of human cancers. In this review, we summarize mitochondrial dysfunction induced by these alterations that promote human cancers.
Collapse
Affiliation(s)
- Yongde Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| | - Jianjia Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Weiqin Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Correspondence: (Y.L.); (W.L.)
| |
Collapse
|
25
|
Liu X, Yuan P, Sun X, Chen Z. Hydroxycitric Acid Inhibits Renal Calcium Oxalate Deposition by Reducing Oxidative Stress and Inflammation. Curr Mol Med 2020; 20:527-535. [PMID: 31902360 DOI: 10.2174/1566524020666200103141116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Objective:
The study aimed to evaluate the preventive effects of hydroxycitric
acid(HCA) for stone formation in the glyoxylate-induced mouse model.
Materials and methods:
Male C57BL/6J mice were divided into a control group,
glyoxylate(GOX) 100 mg/kg group, a GOX+HCA 100 mg/kg group, and a GOX+HCA
200 mg/kg group. Blood samples and kidney samples were collected on the eighth day
of the experiment. We used Pizzolato staining and a polarized light microscope to
examine crystal formation and evaluated oxidative stress via the levels of
malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase
(GSH-Px). Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was
used to detect the expression of monocyte chemotactic protein-1(MCP-1), nuclear
factor-kappa B (NF κ B), interleukin-1 β (IL-1 β) and interleukin-6 (IL-6) messenger RNA
(mRNA). The expression of osteopontin (OPN) and a cluster of differentiation-44(CD44)
were detected by immunohistochemistry and qRT-PCR. In addition, periodic acid Schiff
(PAS) staining and TUNEL assay were used to evaluate renal tubular injury and
apoptosis.
Results:
HCA treatment could reduce markers of renal impairment (Blood Urea
Nitrogen and serum creatinine). There was significantly less calcium oxalate crystal
deposition in mice treated with HCA. Calcium oxalate crystals induced the production of
reactive oxygen species and reduced the activity of antioxidant defense enzymes. HCA
attenuated oxidative stress induced by calcium oxalate crystallization. HCA had
inhibitory effects on calcium oxalate-induced inflammatory cytokines, such as MCP-1, IL-
1 β, and IL-6. In addition, HCA alleviated tubular injury and apoptosis caused by calcium
oxalate crystals.
Conclusion:
HCA inhibits renal injury and calcium oxalate crystal deposition in the
glyoxylate-induced mouse model through antioxidation and anti-inflammation.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Yuan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifeng Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Albert A, Paul E, Rajakumar S, Saso L. Oxidative stress and endoplasmic stress in calcium oxalate stone disease: the chicken or the egg? Free Radic Res 2020; 54:244-253. [PMID: 32292073 DOI: 10.1080/10715762.2020.1751835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crystal modulators play a significant role in the formation of calcium oxalate stone disease. When renal cells are subjected to oxalate stress, the loss in cell integrity leads to exposure of multiple proteins that assist and/or inhibit crystal attachment and retention. Contact between oxalate and calcium oxalate with urothelium proves fatal to cells as a result of reactive oxygen species generation and onset of oxidative stress. Hence, as a therapeutic strategy it was hypothesised that supplementation of antioxidants would suffice. On the contrary to popular belief, the detection of oxalate induced endoplasmic reticulum mediated apoptosis proved the ineffectiveness of antioxidant therapy alone. Thus, the inadequacy of antioxidant supplementation in oxalate stress invoked the presence of an alternative pathway for the induction of kidney fibrosis in hyperoxaluric rats. In addition to settling this query, the link between oxidative stress and ER stress is not well understood, especially in urolithiasis.
Collapse
Affiliation(s)
| | - Eldho Paul
- Department of Biochemistry, Centre for Excellence in Genomics Science, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Selvaraj Rajakumar
- Department of Pediatrics, Group of Molecular Cell Biology of Lipids, 315, Heritage Medical Research Center, University of Alberta, Edmonton, Canada
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Mitchell T, De Miguel C, Gohar EY. Sex differences in redox homeostasis in renal disease. Redox Biol 2020; 31:101489. [PMID: 32197946 PMCID: PMC7212488 DOI: 10.1016/j.redox.2020.101489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023] Open
Abstract
Sex differences in redox signaling in the kidney present new challenges and opportunities for understanding the physiology and pathophysiology of the kidney. This review will focus on reactive oxygen species, immune-related signaling pathways and endothelin-1 as potential mediators of sex-differences in redox homeostasis in the kidney. Additionally, this review will highlight male-female differences in redox signaling in several major cardiovascular and renal disorders namely acute kidney injury, diabetic nephropathy, kidney stone disease and salt-sensitive hypertension. Furthermore, we will discuss the contribution of redox signaling in the pathogenesis of postmenopausal hypertension and preeclampsia.
Collapse
Affiliation(s)
- Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carmen De Miguel
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eman Y Gohar
- Section of Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
28
|
Sun Y, Liu Y, Guan X, Kang J, Wang X, Liu Q, Li D, Xu H, Tao Z, Deng Y. Atorvastatin inhibits renal inflammatory response induced by calcium oxalate crystals via inhibiting the activation of TLR4/NF-κB and NLRP3 inflammasome. IUBMB Life 2020; 72:1065-1074. [PMID: 32083808 DOI: 10.1002/iub.2250] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the renal protective effect of atorvastatin (ATV) on the kidney inflammation induced by calcium oxalate (CaOx) crystals. A cell model of cell-crystal interactions and a rat model of CaOx kidney stone were established. The expressions of TLR4, NF-κB, NLRP3, and cleaved caspase-1 in cells and rat kidney tissues were detected using Western blot, immunohistochemical, and/or immunofluorescence. The concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), reactive oxygen species (ROS) in cells, and lactic acid dehydrogenase (LDH) in the culture medium were measured. The secreted levels of interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor-α (TNF-α) were examined by ELISA. The serum levels of creatinine (CRE) and blood urea nitrogen (BUN) were measured. von Kossa staining was used for the evaluation of renal lens deposition. The CaOx model group showed significantly decreased SOD level; increased concentrations of MDA; ROS and LDH; elevated expressions of TLR4, NF-κB, NLRP3, and cleaved caspase-1; and the elevated release of IL-1β, IL-18, IL-6, and TNF- α as compared to the control group. The treatment with ATV significantly inhibited the formation of CaOx kidney stone by increasing the level of SOD; downregulating MDA, ROS, and LDH; inhibiting the expressions of TLR4, NF-κB, NLRP3 and cleaved caspase-1; and blocking the secretion of inflammatory cytokines. In addition, the serum levels of CRE and BUN, and the intrarenal crystal deposition were also significantly decreased in ATV-treated rats. In summary, oxidative stress, TLR4/NF-κB, and NLRP3 inflammasome pathways are involved in renal inflammatory responses induced by CaOx crystals. ATV treatment significantly suppressed oxidative stress, inhibited the activation of TLR4/NF-κB and NLRP3 inflammasome pathways, and decreased the release of inflammatory mediators, thereby ameliorating CaOx crystal-induced damage and crystal deposition in HK-2 cells and rat kidney tissues.
Collapse
Affiliation(s)
- Yan Sun
- Department of Urology, the Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Yunlong Liu
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Guan
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juening Kang
- Department of Urology, the Langdong Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Wang
- Department of Urology, the Langdong Hospital of Guangxi Medical University, Nanning, China.,Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Derong Li
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Xu
- Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Tao
- Department of Urology, the Langdong Hospital of Guangxi Medical University, Nanning, China.,Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaoliang Deng
- Department of Urology, the Langdong Hospital of Guangxi Medical University, Nanning, China.,Department of Urology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
29
|
Wang X, Zhang Y, Han S, Chen H, Chen C, Ji L, Gao B. Overexpression of miR‑30c‑5p reduces cellular cytotoxicity and inhibits the formation of kidney stones through ATG5. Int J Mol Med 2019; 45:375-384. [PMID: 31894301 PMCID: PMC6984788 DOI: 10.3892/ijmm.2019.4440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are critical regulators in various diseases. In the current study, the role of miR-30c-5p in the formation of sodium oxalate-induced kidney stones was investigated. For this purpose, human renal tubular epithelial cells (HK-2 cells) were incubated with sodium oxalate at the concentrations of 100, 250, 500, 750 and 1,000 µM. Cell viability and the miR-30c-5p expression level were respectively measured by CCK-8 assay and RT-qPCR. After separately transfecting miR-30c-5p mimic and inhibitor into the HK-2 cells, the cell apoptotic rate, the levels of mitochondrial membrane potential (MMP) and ROS were determined by flow cytometry. The levels of oxidative stress indicators [lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT)] were determined using commercial kits. Crystal-cell adhesion assay was performed to evaluate the crystal adhesion capacity in vitro. miR-30c-5p binding at autophagy related 5 (ATG5) was predicted by TargetScan7.2 and further verified by dual-luciferase reporter assay. Rescue experiments were performed to confirm the molecular mechanisms underlying sodium oxalate-induced kidney formation in HK-2 cells. The results revealed that sodium oxalate decreased the viability of HK-2 cells in a concentration-dependent manner, and that miR-30c-5p expression was significantly downregulated by exposure to 750 µM sodium oxalate. In addition, the increase in cell apoptosis and crystal number, and the upregulated levels of LDH, MDA and ROS were reversed by the overexpression of miR-30c-5p. Moreover, the overexpression of miR-30c-5p upregulated the levels of SOD, CAT and MMP induced by sodium oxalate. ATG5 was directly regulated by miR-30c-5p, and the inhibition of cell cytotoxicity and crystal-cell adhesion induced by miR-30c-5p mimic was blocked by ATG5. These data indicated that the overexpression of miR-30c-5p alleviated cell cytotoxicity and crystal-cell adhesion induced by sodium oxalate through ATG5. Thus, the current study provides a better understanding of the role of miR-30c-5p in sodium oxalate-induced kidney stones.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yanan Zhang
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Shuai Han
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hongshen Chen
- Department of Breast and Thyroid Surgery, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Chen Chen
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Lingling Ji
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Bihu Gao
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
30
|
Yang A, Guo H, Fu M, Liu M. Inhibitive Effects of Huashi Pill on Formation of Renal Stones by Modulating Urine Biochemical Indexes and Osteopontin in Renal Stone Rat Models. Med Sci Monit 2019; 25:8335-8344. [PMID: 31690714 PMCID: PMC6857440 DOI: 10.12659/msm.916247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Renal stones are the accumulated or deposited crystals that form and appear in supersaturated urine. This study aimed to the investigate the therapeutic effects of Huashi Pill on clearance of renal stones. Material/Methods Sprague Dawley rats were divided into normal control, positive control, low-dosage Huashi Pill, medium-dosage Huashi Pill, and high-dosage Huashi Pill groups. A renal rat model was established by using ethylene glycol, ammonium chloride, and calcium gluconate. The urinary pH, urine protein, and uric acid levels, as well as the calcium, magnesium, and phosphorus levels were examined. The blood urea nitrogen (BUN) and creatinine (Cr) levels were also evaluated. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBIL) levels were evaluated. Crystal formation and calcium deposits were examined using hematoxylin and eosin (H and E) staining and von Kossa staining, respectively. Osteopontin (OPN) expression was evaluated with quantitative real-time polymerase chain reaction assay and immunohistochemical assay. Results A renal stone rat model was successfully established. Huashi Pill significantly improved water and food intake and enhanced pH value of urine (P<0.05). Huashi Pill significantly improved the liver functions by decreasing ALT and TBIL levels (P<0.05). Huashi Pill regulated the amounts of microelements. Huashi Pill significantly decreased the urine protein, uric acid, and Cr levels (P<0.05). Huashi Pill inhibited formation of stone crystals and reduced the insoluble calcium deposition. Huashi Pill significantly downregulated expression of OPN in the kidney tissues of renal rat models (P<0.05). Conclusions Huashi Pill inhibited stone formation by regulating urine biochemical indexes and reducing OPN expression in kidney tissue in a renal stone rat model.
Collapse
Affiliation(s)
- Ailing Yang
- Medical Laboratory Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Huimeng Guo
- Medical Laboratory Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Manling Fu
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| | - Minyong Liu
- Medical Device Research and Development Room, Southwest Medical University, Luzhou, Sichuan, China (mainland)
| |
Collapse
|
31
|
Nox1-derived oxidative stress as a common pathogenic link between obesity and hyperoxaluria-related kidney injury. Urolithiasis 2019; 48:481-492. [DOI: 10.1007/s00240-019-01170-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022]
|
32
|
Li Y, Zhang J, Liu H, Yuan J, Yin Y, Wang T, Cheng B, Sun S, Guo Z. Curcumin ameliorates glyoxylate-induced calcium oxalate deposition and renal injuries in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152861. [PMID: 31029908 DOI: 10.1016/j.phymed.2019.152861] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Nephrolithiasis is one of the most common and frequent urologic diseases worldwide. Several pathophysiological mechanisms are involved in stone formation, including oxidative stress, inflammation, apoptosis, fibrosis and autophagy. Curcumin, the predominant active component of turmeric, has been shown to have pleiotropic biological and pharmacological properties, such as antioxidant, anti-inflammatory and antifibrotic effects. PURPOSE The current study proposed to systematically investigate the protective effects and the underlying mechanisms of curcumin in a calcium oxalate (CaOx) nephrolithiasis mouse model. METHODS The animal model was established in male C57BL/6 mice by successive intraperitoneal injection of glyoxylate (100 mg/kg) for 1 week. Curcumin was orally given to mice 7 days before the injection of glyoxylate and for a total of 14 days at 50 mg/kg or 100 mg/kg. Bilateral renal tissue was harvested and processed for oxidative stress index detection, histopathological examinations and other analyses. RESULTS Coadministration of curcumin could significantly reduce glyoxylate-induced CaOx deposition and simultaneous tissue injury in mouse kidneys. Meanwhile, curcumin alleviated the oxidative stress response via reducing MDA content and increasing SOD, CAT, GPx, GR and GSH levels in this animal model. Moreover, treatment with curcumin significantly inhibited apoptosis and autophagy induced by hyperoxaluria. Curcumin also attenuated the high expression of IL-6, MCP-1, OPN, CD44, α-SMA, Collagen I and collagen fibril deposition, which were elevated by hyperoxaluria. Furthermore, the results revealed that both the total expression and nuclear accumulation of Nrf2, as well as its main downstream products such as HO-1, NQO1 and UGT, were decreased in the kidneys of mice in the crystal group, while treatment with curcumin could rescue this deterioration. CONCLUSION Curcumin could significantly alleviate CaOx crystal deposition in the mouse kidney and the concurrent renal tissue injury. The underlying mechanism involved the combination of antioxidant, anti-apoptotic, inhibiting autophagy, anti-inflammatory, and antifibrotic activity and the ability to decrease expression of OPN and CD44 through the Nrf2 signaling pathway. The pleiotropic antilithic properties, combined with the minimal side effects, make curcumin a good potential choice to prevent and treat new or recurrent nephrolithiasis.
Collapse
Affiliation(s)
- Yinhui Li
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Jie Zhang
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Haiyun Liu
- Department of prevention and treatment of contagious diseases, HeZe City Center for disease control and prevention, HeZe, Shandong 274000, PR China
| | - Jihang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China
| | - Yupeng Yin
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China
| | - Tiantian Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China
| | - Bingfeng Cheng
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai 200433, PR China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China.
| |
Collapse
|
33
|
Woźniak P, Kontek B, Skalski B, Król A, Różański W, Olas B. Oxidative Stress and Hemostatic Parameters in Patients With Nephrolithiasis Before and After Ureteroscopic Lithotripsy. Front Physiol 2019; 10:799. [PMID: 31293453 PMCID: PMC6598153 DOI: 10.3389/fphys.2019.00799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023] Open
Abstract
Purpose In patients with nephrolithiasis, oxidative stress, especially lipid peroxidation is observed. Moreover, various invasive methods [including extracorporeal shock wave lithotripsy (ESWL)] for treatment of nephrolithiasis may induce not only the oxidative stress, but they may modulate hemostasis. The study was aimed to evaluate the oxidative damages of lipids and proteins in patients with nephrolithiasis (before and after ureteroscopic lithotripsy – URSL). The aim of the present study was also determine selected parameters of hemostasis in these patients. Methods 56 patients with nephrolithiasis and 49 healthy participants were included: 30 men and 26 women (for patient group); 27 men and 22 women (for healthy group). We measured the level of selected typical two biomarkers of oxidative modification of lipids [such as the production of thiobarbituric acid reactive substances (TBARS) and isoprostane concentration (8-isoPGF2α)] and two biomarkers of oxidative damages of proteins (carbonylation and the level of thiol groups) in patients with nephrolithiasis (before and after URSL). The following parameters of hemostasis were measured: blood platelet count, the level of fibrinogen and D-dimer, and coagulation times (the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of plasma). Results Different levels of plasma lipid peroxidation were observed in patients with nephrolithiasis before URSL and after URSL. However, no such difference in the level of oxidative damage to plasma proteins was observed. In addition, the tested hemostasis parameters were not influenced by the presence of nephrolithiasis, nor by treatment with URSL. Conclusion We suggest URSL does not induce the oxidative modifications of plasma proteins and does not change hemostatic parameters in patients with nephrolithiasis.
Collapse
Affiliation(s)
- Paweł Woźniak
- 2nd Department of Urology, Medical University of Łódź, Łódź, Poland
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Bartosz Skalski
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Anna Król
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | | | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
34
|
Kushwaha RS, Gupta RC, Sharma S, Masood T, Sharma JP, Singh RK, Singh RK, Gierke CL, Cornelissen G. Chronomics of Circulating Plasma Lipid Peroxides and Antioxidant Enzymes in Renal Stone Formers. Indian J Clin Biochem 2019; 34:195-200. [PMID: 31092993 DOI: 10.1007/s12291-017-0726-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/08/2017] [Indexed: 11/27/2022]
Abstract
The chronome of lipid peroxidation and anti-oxidant defense mechanisms may relate to the efficacy and management of time qualified preventive therapeutic and dietary interventions. One hundred renal stone patients, 20-60 years of age, and 50 clinically healthy volunteers, 21-45 years, were synchronized for 1 week with diurnal activity from 06:00 to 22:00 and nocturnal rest. All subjects took their usual meals three times daily (breakfast around 08:30, lunch around 13:00, and dinner around 20:30) with usual fluid intake. Drugs known to affect free radical system were not taken. Blood samples were collected at 6-h intervals for 24-h under standardized, presumably 24-h synchronized conditions. Determinations included plasma lipid peroxides, in terms of malondialdehyde (MDA) and blood superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) activities. A marked circadian variation was demonstrated for each studied variable by population-mean cosinor in renal stone patients and healthy participants (p < 0.001). By comparison to healthy subjects, parameter tests indicate that the stone formers had a higher MESOR of MDA, but a lower MESOR of SOD, GPx, GR and CAT. Furthermore, the patients also differed from the healthy controls in terms of their circadian amplitude and acrophase (tested jointly) of all variables (p < 0.001). Mapping the broader time structure with multifrequency circadian characteristics of oxidants and anti-oxidants is needed for exploring their role as marker in the treatment and management of urolithiasis.
Collapse
Affiliation(s)
- Rajeev Singh Kushwaha
- 1Department of Biochemistry, NIMS Medical College and Hospital, Shobha Nagar, Jaipur, Rajasthan 303121 India
- Department of Biochemistry, SGRR Institute of Medical and Health Sciences, Dehradun, 248001 India
| | - R C Gupta
- 1Department of Biochemistry, NIMS Medical College and Hospital, Shobha Nagar, Jaipur, Rajasthan 303121 India
| | - Sumita Sharma
- Department of Biochemistry, SGRR Institute of Medical and Health Sciences, Dehradun, 248001 India
| | - Tariq Masood
- Department of Biochemistry, SGRR Institute of Medical and Health Sciences, Dehradun, 248001 India
| | - J P Sharma
- Department of Surgery, SGRR Institute of Medical and Health Sciences and Shri Mahant Indiresh Hospital, Dehradun, UK 248001 India
| | - Rajesh K Singh
- Department of Biochemistry, TS Misra Medical College and Hospital, Amausi, Lucknow, UP 226008 India
| | - Raj K Singh
- Department of Biochemistry, TS Misra Medical College and Hospital, Amausi, Lucknow, UP 226008 India
| | - Cathy L Gierke
- 5Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Germaine Cornelissen
- 5Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
35
|
Liang X, Lai Y, Wu W, Chen D, Zhong F, Huang J, Zeng T, Duan X, Huang Y, Zhang S, Li S, Wu W. LncRNA-miRNA-mRNA expression variation profile in the urine of calcium oxalate stone patients. BMC Med Genomics 2019; 12:57. [PMID: 31036010 PMCID: PMC6489260 DOI: 10.1186/s12920-019-0502-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background To explore long-non-coding RNA (lncRNA), microRNA (miRNA) and messenger RNA (mRNA) expression profiles and their biological functions in the urine samples in calcium oxalate (CaOx) patients. Methods Five CaOx kidney stone patients were recruited in CaOx stone group and six healthy people were included as control group, whose midstream morning urine was collected before the patients were given any medicine on admission. After total RNA was extracted from urine, microarray of miRNA, mRNA and lncRNA were applied to explore their expression variation. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to reveal the gene functions of the dysregulated lncRNA-associated competing endogenous RNA (ceRNA) network. Quantitative real-time PCR were performed on HK-2 cells treated with sodium oxalate (NaOx) to further screen out the differentially expression profiles of these RNAs. Results A total of nine miRNAs, 883 mRNAs and 1002 lncRNAs were differentially expressed in urine of CaOx patients compared with normal population. GO analysis revealed that most of mRNAs from ceRNA network were enriched in terms of respiratory burst, regulation of mitophagy, and protein kinase regulator activity. KEGG pathway analysis of these genes related to ceRNA network highlight their critical role in pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, and Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. Five miRNAs (miR-6796-3p, miR-30d-5p, miR-3192–3p, miR-518b and miR-6776-3p), four mRNAs (NT5E, CDH4, CLEC14A, CCNL1) and six lncRNAs (lnc-TIGD1L2–3, lnc-KIN-1, lnc-FAM72B-4, lnc-EVI5L-1, lnc-SERPINI1–2, lnc-MB-6) from the HK-2 cells induced by NaOx were consistent with the expression changes of microarray results. Conclusion The differential expressed miRNAs, mRNAs and lncRNAs may be associated with numerous variations of the signaling pathways or regulation of metabolism and kinase activity, providing potential biomarkers for early diagnosis of urolithiasis and new basis for further research of urolithiasis mechanism. Electronic supplementary material The online version of this article (10.1186/s12920-019-0502-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Weizhou Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Dong Chen
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Fangling Zhong
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Jian Huang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Yapeng Huang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Shike Zhang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Shujue Li
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230, Guangdong, China.
| |
Collapse
|
36
|
Joshi S, Khan SR. Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress. Expert Opin Ther Targets 2019; 23:379-391. [PMID: 30905219 DOI: 10.1080/14728222.2019.1599359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Oxalate is a toxic byproduct of metabolism and is normally produced in quantities easily removed from the body. However, under specific circumstances oxalate production is increased resulting in deposition of calcium oxalate (CaOx) crystals in the kidneys as well as other organs causing inflammation and injury. Excessive buildup of crystal deposits in the kidneys causes eventual loss of renal function requiring renal transplantation. Areas covered: Cellular exposure to CaOx crystals induces the production of reactive oxygen species (ROS) with the involvement of renin-angiotensin aldosterone system (RAAS), mitochondria, and NADPH oxidase. Inflammasomes are activated and pro-inflammatory cytokines, such as IL-1β and IL-18 are produced. We reviewed results of experimental and clinical studies of crystal renal epithelial cell interactions with emphasis on cellular injury and ROS production. Expert opinion: Treatment should depend upon the level of hyperoxaluria and whether it is associated with CaOx crystal deposition. Persistent low grade or intermittent hyperoxaluria can be treated with antioxidants, free radical scavengers. Hyperoxaluria associated with CaOx crystal deposition will require administration of angiotensin II receptor blockers, and NADPH oxidase or NLRP3 inflammasome inhibitors. DASH-style diet will be beneficial in both cases.
Collapse
Affiliation(s)
- Sunil Joshi
- a Department of Pathology, Immunology & Laboratory Medicine, College of Medicine , University of Florida , Gainesville , FL , USA
| | - Saeed R Khan
- a Department of Pathology, Immunology & Laboratory Medicine, College of Medicine , University of Florida , Gainesville , FL , USA
| |
Collapse
|
37
|
The lipid peroxidation in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy. Future Med Chem 2018; 10:2685-2693. [PMID: 30518231 DOI: 10.4155/fmc-2018-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To evaluate the level of lipid peroxidation in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy (ESWL). MATERIALS & METHODS Isoprostane concentration (8-isoPGF2α) was measured in urine, and thiobarbituric acid reactive substance production in serum and erythrocytes. In addition, the concentrations of selected compounds (uric acid, glucose and creatinine) were measured in serum. RESULTS The patients (before and after ESWL) demonstrated significantly higher levels of two different biomarkers of lipid peroxidation compared with the control group. A correlation was identified between increased amounts of uric acid and biomarkers of lipid peroxidation in patients with nephrolithiasis, both before and after ESWL. CONCLUSION Uric acid may be associated with lipid peroxidation in patients with nephrolithiasis.
Collapse
|
38
|
Ahmed S, Hasan MM, Khan H, Mahmood ZA, Patel S. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed Pharmacother 2018; 106:1292-1299. [DOI: 10.1016/j.biopha.2018.07.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/05/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
|
39
|
Structural Characterization, Antioxidant Activity, and Biomedical Application of Astragalus Polysaccharide Degradation Products. INT J POLYM SCI 2018. [DOI: 10.1155/2018/5136185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the antioxidant capacity of Astragalus polysaccharides (APS) with different molecular weights, we used hydrogen peroxide to degrade original Astragalus polysaccharide (APS0) with an initial molecular weight of 11.03 kDa and obtained three degraded polysaccharides with molecular weights of 8.38 (APS1), 4.72 (APS2), and 2.60 kDa (APS3). The structures of these polysaccharides were characterized by 1H NMR, 13C NMR, FT-IR, and GC/MS. The degradation process did not cause significant changes in the main chain structure of APS. The monosaccharide component of APS before and after degradation was slightly changed. The antioxidant ability in vitro (removing hydroxyl and ABTS radicals and reducing ability) and in cells (superoxide dismutase and malondialdehyde generation) of these polysaccharides is closely related to their molecular weight. If the molecular weight of APS is very high or low, it is not conducive to their activity. Only APS2 with moderate molecular weight showed the greatest antioxidant activity and ability to repair human kidney epithelial (HK-2) cells. Therefore, APS2 can be used as a potential antistone polysaccharide drug.
Collapse
|
40
|
Besiroglu H, Ozbek E. Association between blood lipid profile and urolithiasis: A systematic review and meta-analysis of observational studies. Int J Urol 2018; 26:7-17. [PMID: 30151863 DOI: 10.1111/iju.13781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/08/2018] [Indexed: 01/11/2023]
Abstract
The objective of this study was to pool individual studies regarding the association of blood lipid profiles with urolithiasis to carry out a systematic review and meta-analysis. We searched MEDLINE, PubMed, Embase and Cochrane Library to identify the relevant studies up to November 2017. Studies that met all inclusion criteria were chosen, and a pooled analysis of the odds ratio between urolithiasis and dyslipidemia traits was calculated. A total of 11 observational studies (seven cross-sectional, three cohort, one case-control) with a total of 282 479 participants were examined. The overall pooled analysis of eight studies showed that high triglyceride was associated with increased estimated risk of urolithiasis (odds ratio 1.287, 95% CI 1.073-1.544; P = 0.007). Estimates of the total effect size were consistent in the sensitivity analysis. No evidence of publication bias was detected. The overall pooled analysis of nine studies showed low high-density lipoprotein was weakly associated with increased estimated risk of urolithiasis (odds ratio 1.171, 95% CI 1.010-1.358; P = 0.032). The sensitivity analysis showed conflicting results. No evidence of publication bias was detected. Three studies on the association between any dyslipidemia traits and urolithiasis showed a significant association (odds ratio 1.309, 95% CI 1.202-1.425; P < 0.001). The present meta-analysis showed that patients with higher triglyceride and lower high-density lipoprotein had an increased estimated risk of urolithiasis. A triglyceride-urolithiasis association was found to be more coherent and consistent compared with the high-density lipoprotein-urolithiasis association. Although somewhat contradictory results have been found, the meta-analysis is encouraging for evaluating urolithiasis as a systemic disorder. Further well-designed prospective randomized controlled or cohort studies are necessary to better elucidate the causal association of dyslipidemia and urolithiasis.
Collapse
Affiliation(s)
- Huseyin Besiroglu
- Department of Urology, Catalca Ilyas Cokay State Hospital, Istanbul, Turkey
| | - Emin Ozbek
- Department of Urology, Cerrahpasa Medicine Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
41
|
Guo D, Yu K, Sun XY, Ouyang JM. Structural Characterization and Repair Mechanism of Gracilaria lemaneiformis Sulfated Polysaccharides of Different Molecular Weights on Damaged Renal Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7410389. [PMID: 30174781 PMCID: PMC6098909 DOI: 10.1155/2018/7410389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Natural Gracilaria lemaneiformis sulfated polysaccharide (GLP0, molecular weight = 622 kDa) was degraded by H2O2 to obtain seven degraded fragments, namely, GLP1, GLP2, GLP3, GLP4, GLP5, GLP6, and GLP7, with molecular weights of 106, 49.6, 10.5, 6.14, 5.06, 3.71, and 2.42 kDa, respectively. FT-IR and NMR results indicated that H2O2 degradation does not change the structure of GLP polysaccharides, whereas the content of the characteristic -OSO3H group (13.46% ± 0.10%) slightly increased than that of the natural polysaccharide (13.07%) after degradation. The repair effects of the polysaccharide fractions on oxalate-induced damaged human kidney proximal tubular epithelial cells (HK-2) were compared. When 60 μg/mL of each polysaccharide was used to repair the damaged HK-2 cells, cell viability increased and the cell morphology was restored, as determined by HE staining. The amount of lactate dehydrogenase released decreased from 16.64% in the injured group to 7.55%-13.87% in the repair groups. The SOD activity increased, and the amount of MDA released decreased. Moreover, the mitochondrial membrane potential evidently increased. All polysaccharide fractions inhibited S phase arrest through the decreased percentage of cells in the S phase and the increased percentage of cells in the G2/M phase. These results reveal that all GLP fractions exhibited repair effect on oxalate-induced damaged HK-2 cells. The repair ability is closely correlated with the molecular weight of the fractions. GLP2 with molecular weight of about 49.6 kDa exhibited the strongest repair effect, and GLP with higher or lower molecular weight than 49.6 kDa showed decreased repair ability. Our results can provide references for inhibiting the formation of kidney stones and developing original anti-stone polysaccharide drugs.
Collapse
Affiliation(s)
- Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Kai Yu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
42
|
Protective effect of pentoxifylline on oxidative renal cell injury associated with renal crystal formation in a hyperoxaluric rat model. Urolithiasis 2018; 47:415-424. [PMID: 29980797 DOI: 10.1007/s00240-018-1072-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Abstract
The aim of the study is to investigate the effects of pentoxifylline (PTX) on the renal tubular cell injury and stone formation in a hyperoxaluric rat model induced by ethylene glycol and its possible underlying mechanisms. The study was performed with 30 male Wistar rats and randomized into three groups of teen. The sham-control (group 1) received only drinking water orally. The EG/untreated (group 2) received drinking water containing 0.75% EG for 4 weeks orally. The EG/PTX treated (group 3) received drinking water containing 0.75% EG for 4 weeks orally and PTX. Urine and blood were collected to determine some parameters. The kidneys were also removed for histological examination. Serum and urinary parameters were significantly improved in the EG/PTX treated. In the EG/PTX-treated group, the MDA, TOS and MPO activity reduced and the TAS, SOD, CAT and GSH-Px activities were increased markedly compared with the group 2. In urine of the group 2 rats, a large number of CaOx crystals were displayed and most tubules that contained crystals were dilated and showed degeneration, necrosis, and desquamation of the lining epithelium. Only few CaOx crystals were r in EG/PTX-treated animal's urine. Mild tissue damage was observed in PTX-treated rats. iNOS expression was significantly elevated in the group 2. In contrast, in the EG/PTX-treated group, eNOS expression in renal tubular epithelial cells was increased. Current study indicates that PTX may partially reduce renal tubular injury resulting from hyperoxaluria-induced oxidative and nitrosative stress.
Collapse
|
43
|
Amelioration of hyperoxaluria-induced kidney dysfunction by chemical chaperone 4-phenylbutyric acid. Urolithiasis 2018; 47:171-179. [DOI: 10.1007/s00240-018-1064-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/08/2018] [Indexed: 01/11/2023]
|
44
|
Moe OW, Xu LHR. Hyperuricosuric calcium urolithiasis. J Nephrol 2018; 31:189-196. [DOI: 10.1007/s40620-018-0469-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
|
45
|
Integrative Analysis of miRNA and mRNA Expression Profiles in Calcium Oxalate Nephrolithiasis Rat Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8306736. [PMID: 29392139 PMCID: PMC5748115 DOI: 10.1155/2017/8306736] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
The microRNA (miRNA) expression profiles and their biological functions in calcium oxalate nephrolithiasis remain unclear. In this study, we investigate the miRNA and mRNA expression profiles of kidney tissues in calcium oxalate stone rats. 16 Sprague Dawley rats were divided into control group and stone-forming group. 24-hour urine samples and kidney tissues were collected for biochemical and histological determination after 4 weeks. MiRNA and mRNA microarray were applied to evaluate the miRNA and mRNA expression profiles. To validate the microarray results, the quantitative real-time PCR (qRT-PCR) was performed. A total of 38 miRNAs and 2728 mRNAs were significantly and differentially expressed in kidney tissues of stone-forming group versus control group. Gene Ontology (GO) analysis revealed that most of the target genes were enriched in terms of oxidation reduction, ion transport, inflammatory response, and response to wounding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of these targets highlights their critical role in cytokine-cytokine receptor interaction, gap junction, and chemokine signaling pathway. Furthermore, the reliability of the microarray-based results was confirmed by using qRT-PCR determination. The miRNA and mRNA expressions in calcium oxalate stone rat kidneys might provide a basis for further research on urolithiasis mechanism.
Collapse
|
46
|
Woźniak P, Kontek B, Różański W, Olas B. Evaluation of hemostasis parameters and the role of the oxidative damage to plasma proteins in the modulation of hemostasis in patients with nephrolithiasis before and after extracorporeal shock wave lithotripsy. PLoS One 2017; 12:e0185157. [PMID: 28968428 PMCID: PMC5624585 DOI: 10.1371/journal.pone.0185157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/07/2017] [Indexed: 11/28/2022] Open
Abstract
Purpose Extracorporeal shock wave lithotripsy (ESWL) is a commonly-used method in urology, which may modulate hemostasis and may induce lipid peroxidation in patients with nephrolithiasis. However, previous studies only examine changes occurring in patients 30–240 min after ESWL. The main aim of the present study was to determine whether oxidative stress may modulate the hemostatic activity of plasma in patients with nephrolithiasis before ESWL and the day after treatment ESWL. This will be performed by measuring selected parameters of hemostasis in these patients, both before ESWL and the following day, and assessing the level of oxidative damage to plasma proteins in these patients by measuring two biomarkers. Methods Twelve patients with nephrolithiasis and 10 healthy participants were included. The following parameters of hemostasis were measured: the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of plasma, the level of fibrinogen, the level of D-dimer and blood platelet count. In addition, two selected biomarkers of oxidative stress were measured: protein carbonylation level and the number of protein thiol groups. Results No difference was observed between patients with nephrolithiasis before and after ESWL and healthy controls with regard to PT, TT or APTT. Fibrinogen concentration and blood platelet count were lower in the nephrolithiasis patients in the period after ESWL than before ESWL. The nephrolithiasis patients demonstrated elevated D-dimer concentration after ESWL. However, although oxidative damage was observed in the plasma proteins in the nephrolithiasis patients, this was not influenced by ESWL. Conclusion Oxidative stress may induce changes of hemostasis in patients with nephrolithiasis, both before and after ESWL. In addition, changes of hemostasis parameters such as fibrinogen, blood platelet count and D-dimer level can be observed in these patients, especially after ESWL, and this may suggest that ESWL modulates hemostasis. By having a better understanding of the influence of ESWL on hemostasis, this could lead to modifying patient care for those patients at increased risk of bleeding.
Collapse
Affiliation(s)
- Paweł Woźniak
- 2nd Department of Urology, Medical University of Łódź, Pabianicka 62, Łódź, Poland
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/3, Łódź, Poland
| | - Waldemar Różański
- 2nd Department of Urology, Medical University of Łódź, Pabianicka 62, Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/3, Łódź, Poland
- * E-mail:
| |
Collapse
|
47
|
Total flavonoids of Desmodium styracifolium attenuates the formation of hydroxy-l-proline-induced calcium oxalate urolithiasis in rats. Urolithiasis 2017; 46:231-241. [DOI: 10.1007/s00240-017-0985-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/24/2017] [Indexed: 10/19/2022]
|
48
|
Partovi N, Ebadzadeh MR, Fatemi SJ, Khaksari M. Effect of fruit extract on renal stone formation and kidney injury in rats. Nat Prod Res 2017; 32:1180-1183. [DOI: 10.1080/14786419.2017.1320790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Nasrin Partovi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Mohammad Khaksari
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
49
|
Kittanamongkolchai W, Mara KC, Mehta RA, Vaughan LE, Denic A, Knoedler JJ, Enders FT, Lieske JC, Rule AD. Risk of Hypertension among First-Time Symptomatic Kidney Stone Formers. Clin J Am Soc Nephrol 2017; 12:476-482. [PMID: 28148559 PMCID: PMC5338710 DOI: 10.2215/cjn.06600616] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Prior work has suggested a higher risk of hypertension in kidney stone formers but lacked disease validation and adjustment for potential confounders. Certain types of stone formers may also be at higher risk of hypertension. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In our study, incident symptomatic stone formers in Olmsted County from 2000 to 2011 were manually validated by chart review and age and sex matched to Olmsted County controls. We followed up patients through November 20, 2015. Hypertension was also validated by manual chart review, and the risk of hypertension in stone formers compared with controls was assessed both univariately and after adjusting for comorbidities. The risk of hypertension among different subtypes of stone formers was also evaluated. RESULTS Among 3023 coded stone formers from 2000 to 2011, a total of 1515 were validated and matched to 1515 controls (mean age was 45 years old, and 56% were men). After excluding those with baseline hypertension (20% of stone formers and 18% of controls), 154 stone formers and 110 controls developed hypertension. Median follow-up time was 7.8 years in stone formers and 9.6 years in controls. Stone formers were found to have a higher risk of hypertension compared with controls (hazard ratio, 1.50; 95% confidence interval, 1.18 to 1.92), even after adjusting for age, sex, body mass index, serum creatinine, CKD, diabetes, gout, coronary artery disease, dyslipidemia, tobacco use, and alcohol abuse (hazard ratio, 1.58; 95% confidence interval, 1.12 to 2.21). Results were similar after excluding patients who were ever on a thiazide diuretic (hazard ratio, 1.65; 95% confidence interval, 1.16 to 2.38). Stone composition, radiographic stone burden, number of subsequent stone events, and stone removal surgeries were not associated with hypertension (P>0.05 for all). CONCLUSIONS The risk of hypertension was higher after the first symptomatic kidney stone event. However, kidney stone severity, type, and treatment did not associate with hypertension.
Collapse
|
50
|
Antiurolithiasis Activity of Bioactivity Guided Fraction of Bergenia ligulata against Ethylene Glycol Induced Renal Calculi in Rat. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1969525. [PMID: 28349055 PMCID: PMC5352974 DOI: 10.1155/2017/1969525] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/29/2017] [Indexed: 11/17/2022]
Abstract
Dried rhizome of Bergenia ligulata (pashanbhed) is commonly used as a traditional herbal medicine with a wide range of therapeutic applications including urolithiasis. Aqueous extract of B. ligulata was prepared through maceration followed by decoction (mother extract, 35.9% w/w). Further, polarity based fractions were prepared successively from mother extract which yielded 3.4, 2.9, 5.4, 7.5, and 11.3% w/w of hexane, toluene, dichloromethane (DCM), n-butanol, and water fractions, respectively. The in vitro, ex vivo, and real-time antiurolithiasis activity of mother extract and fractions were carried out using aggregation assay in synthetic urine and in rat plasma. The study revealed that DCM fraction has significantly (p < 0.05) greater inhibitory potential than other fractions. Ethylene glycol in drinking water (0.75%, v/v) for 28 days was used for induction of urolithiasis and the curative effects of mother extract and DCM fraction were checked for the level of oxalate, calcium, creatinine, uric acid, and urea of both urine and serum. Treatment with mother extract and DCM fraction at a dose of 185 mg/kg and 7 mg/kg, respectively, in ethylene glycol induced rats resulted in a significant (p < 0.05) decrease in serum and urine markers. Histological study revealed lower number of calcium oxalate deposits with minimum damage in the kidneys of mother extract and DCM fraction treated rats. This result provides a scientific basis for its traditional claims.
Collapse
|