1
|
Haque MA, Nath ND, Johnston TV, Haruna S, Ahn J, Ovissipour R, Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174236. [PMID: 38942308 DOI: 10.1016/j.scitotenv.2024.174236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the discovery of antibiotics, penicillin has remained the top choice in clinical medicine. With continuous advancements in biotechnology, penicillin production has become cost-effective and efficient. Genetic engineering techniques have been employed to enhance biosynthetic pathways, leading to the production of new penicillin derivatives with improved properties and increased efficacy against antibiotic-resistant pathogens. Advances in bioreactor design, media formulation, and process optimization have contributed to higher yields, reduced production costs, and increased penicillin accessibility. While biotechnological advances have clearly benefited the global production of this life-saving drug, they have also created challenges in terms of waste management. Production fermentation broths from industries contain residual antibiotics, by-products, and other contaminants that pose direct environmental threats, while increased global consumption intensifies the risk of antimicrobial resistance in both the environment and living organisms. The current geographical and spatial distribution of antibiotic and penicillin consumption dramatically reveals a worldwide threat. These challenges are being addressed through the development of novel waste management techniques. Efforts are aimed at both upstream and downstream processing of antibiotic and penicillin production to minimize costs and improve yield efficiency while lowering the overall environmental impact. Yield optimization using artificial intelligence (AI), along with biological and chemical treatment of waste, is also being explored to reduce adverse impacts. The implementation of strict regulatory frameworks and guidelines is also essential to ensure proper management and disposal of penicillin production waste. This review is novel because it explores the key remaining challenges in antibiotic development, the scope of machine learning tools such as Quantitative Structure-Activity Relationship (QSAR) in modern biotechnology-driven production, improved waste management for antibiotics, discovering alternative path to reducing antibiotic use in agriculture through alternative meat production, addressing current practices, and offering effective recommendations.
Collapse
Affiliation(s)
- Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA.
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Samuel Haruna
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Jaehyun Ahn
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| |
Collapse
|
2
|
Ibányez-Payá P, Blasco A, Ros-Lis JV, Fouz B, Amaro C. Electrolyzed Water Treatment for the Control of the Zoonotic Pathogen Vibrio vulnificus in Aquaculture: A One Health Perspective. Microorganisms 2024; 12:1992. [PMID: 39458301 PMCID: PMC11509359 DOI: 10.3390/microorganisms12101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
Vibrio vulnificus (Vv) is a bacterial pathogen native to warm and brackish water ecosystems that can cause fatal septicemia (Vv-vibriosis) in humans and various farmed fish species. From a One Health perspective, controlling Vv-vibriosis outbreaks on farms is essential not only for animal but also for human health, as it reduces the risk of Vv transmission to humans. Electrolyzed water (EW) is a sustainable control method, exhibiting transient disinfectant properties due to the formation of hypochlorous acid (HOCl). We hypothesized that EW could effectively reduce Vv populations in aquaculture facilities, preventing outbreak emergence. To test this hypothesis, survival assays in EW were conducted under varying conditions of salinity, pH, and free available chlorine (FAC). The results indicated that an intermediate concentration of FAC had a significant bactericidal effect on Vv populations regardless of the condition and tested strain. Consequently, the strategic use of EW could serve as an eco-friendly preventive and control measure against Vv-vibriosis by significantly decreasing the bacterial load in farm water.
Collapse
Affiliation(s)
- Pablo Ibányez-Payá
- Institute BIOTECMED, Universitat de València, 46100 Burjassot, Valencia, Spain; (P.I.-P.); (B.F.)
| | - Adolfo Blasco
- Institute IDM, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - José V. Ros-Lis
- Institute IDM, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Belén Fouz
- Institute BIOTECMED, Universitat de València, 46100 Burjassot, Valencia, Spain; (P.I.-P.); (B.F.)
| | - Carmen Amaro
- Institute BIOTECMED, Universitat de València, 46100 Burjassot, Valencia, Spain; (P.I.-P.); (B.F.)
| |
Collapse
|
3
|
Xu X, Liang S, Li X, Hu W, Li X, Lei L, Lin H. Antibiotic resistance and virulence characteristics of Vibrio vulnificus isolated from Ningbo, China. Front Microbiol 2024; 15:1459466. [PMID: 39161608 PMCID: PMC11330838 DOI: 10.3389/fmicb.2024.1459466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Background Vibrio vulnificus (V. vulnificus) is a deadly opportunistic human pathogen with high mortality worldwide. Notably, climate warming is likely to expand its geographical range and increase the infection risk for individuals in coastal regions. However, due to the absence of comprehensive surveillance systems, the emergence and characteristics of clinical V. vulnificus isolates remain poorly understood in China. Methods In this study, we investigate antibiotic resistance, virulence including serum resistance, and hemolytic ability, as well as molecular characteristics of 21 V. vulnificus isolates collected from patients in Ningbo, China. Results and discussion The results indicate that all isolates have been identified as potential virulent vcg C type, with the majority (16 of 21) classified as 16S rRNA B type. Furthermore, these isolates exhibit a high level of antibiotic resistance, with 66.7% resistance to more than three antibiotics and 61.9% possessing a multiple antibiotic resistance (MAR) index exceeding 0.2. In terms of virulence, most isolates were categorized as grade 1 in serum resistance, with one strain, S12, demonstrating intermediate sensitivity in serum resistance, belonging to grade 3. Whole genome analysis disclosed the profiles of antibiotic resistance genes (ARGs) and virulence factors (VFs) in these strains. The strains share substantial VF genes associated with adherence, iron uptake, antiphagocytosis, toxin, and motility. In particular, key VFs such as capsule (CPS), lipopolysaccharide (LPS), and multifunctional autoprocessing repeats-in-toxin (MARTX) are prevalent in all isolates. Specifically, S12 possesses a notably high number of VF genes (672), which potentially explains its higher virulence. Additionally, these strains shared six ARGs, namely, PBP3, adeF, varG, parE, and CRP, which likely determine their antibiotic resistance phenotype. Conclusion Overall, our study provides valuable baseline information for clinical tracking, prevention, control, and treatment of V. vulnificus infections.
Collapse
Affiliation(s)
- Xiaomin Xu
- Department of Hospital Infection Management, Ningbo No.2 Hospital, Ningbo, China
| | - Shanyan Liang
- Department of Hospital Infection Management, Ningbo No.2 Hospital, Ningbo, China
| | - Xin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
| |
Collapse
|
4
|
Morgado ME, Brumfield KD, Chattopadhyay S, Malayil L, Alawode T, Amokeodo I, He X, Huq A, Colwell RR, Sapkota AR. Antibiotic resistance trends among Vibrio vulnificus and Vibrio parahaemolyticus isolated from the Chesapeake Bay, Maryland: a longitudinal study. Appl Environ Microbiol 2024; 90:e0053924. [PMID: 38809043 PMCID: PMC11218627 DOI: 10.1128/aem.00539-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Antibiotics are often used to treat severe Vibrio infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022). Vibrio parahaemolyticus (n = 134) and Vibrio vulnificus (n = 94) toxR-confirmed isolates were randomly selected from both sampling periods and tested for antimicrobial susceptibility against eight antibiotics using the Kirby-Bauer disk diffusion method. A high percentage (94%-96%) of V. parahaemolyticus isolates from both sampling periods were resistant to ampicillin and only 2%-6% of these isolates expressed intermediate resistance or resistance to third-generation cephalosporins, amikacin, tetracycline, and trimethoprim-sulfamethoxazole. Even lower percentages of resistant V. vulnificus isolates were observed and those were mostly recovered from 2009 to 2012, however, the presence of multiple virulence factors was observed. The frequency of multi-drug resistance was relatively low (6%-8%) but included resistance against antibiotics used to treat severe vibriosis in adults and children. All isolates were susceptible to ciprofloxacin, a fluoroquinolone, indicating its sustained efficacy as a first-line agent in the treatment of severe vibriosis. Overall, our data indicate that antibiotic resistance patterns among V. parahaemolyticus and V. vulnificus recovered from the lower Chesapeake Bay have remained relatively stable since 2009.IMPORTANCEVibrio spp. have historically been susceptible to most clinically relevant antibiotics; however, resistance and intermediate-resistance have been increasingly recorded in both environmental and clinical isolates. Our data showed that while the percentage of multi-drug resistance and resistance to antibiotics was relatively low and stable across time, some Vibrio isolates displayed resistance and intermediate resistance to antibiotics typically used to treat severe vibriosis (e.g., third-generation cephalosporins, tetracyclines, sulfamethoxazole-trimethoprim, and aminoglycosides). Also, given the high case fatality rates observed with Vibrio vulnificus infections, the presence of multiple virulence factors in the tested isolates is concerning. Nevertheless, the continued susceptibility of all tested isolates against ciprofloxacin, a fluoroquinolone, is indicative of its use as an effective first-line treatment of severe Vibrio spp. infections stemming from exposure to Chesapeake Bay waters or contaminated seafood ingestion.
Collapse
Affiliation(s)
- Michele E. Morgado
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Suhana Chattopadhyay
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Leena Malayil
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Taiwo Alawode
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Ibiyinka Amokeodo
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Xin He
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, Maryland, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA
| | - Amy R. Sapkota
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
| |
Collapse
|
5
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
6
|
Abdulaziz A, Vikraman HK, Raj D, Menon N, George G, Soman R, Mony DP, Mary A, Krishna K, Raju GKT, Kuttan SP, Tharakan B, Chekidhenkuzhiyil J, Platt T, Sathyendranath S. Distribution and antibiotic resistance of vibrio population in an urbanized tropical lake-the Vembanad-in the southwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116066-116077. [PMID: 37906329 DOI: 10.1007/s11356-023-30565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Among the diverse Vibrio spp. autochthonous to coastal ecosystems, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus are pathogenic to humans. Increasing sea-surface temperature, sea-level rise and water-related disasters associated with climate change have been shown to influence the proliferation of these bacteria and change their geographic distribution. We investigated the spatio-temporal distribution of Vibrio spp. in a tropical lake for 1 year at a 20-day interval. The abundance of Vibrio spp. was much higher during the south-west monsoon in 2018, when the lake experienced a once-in-a-century flood. The distribution of Vibrio spp. was influenced by salinity (r = 0.3, p < 0.001), phosphate (r = 0.18, p < 0.01) and nitrite (r = 0.16, p < 0.02) in the water. We isolated 470 colonies of Vibrio-like organisms and 341 could be revived further and identified using 16S rRNA gene sequencing. Functional annotations showed that all the 16 Vibrio spp. found in the lake could grow in association with animals. More than 60% of the isolates had multiple antibiotic resistance (MAR) index greater than 0.5. All isolates were resistant to erythromycin and cefepime. The proliferation of multiple antibiotic-resistant Vibrio spp. is a threat to human health. Our observations suggest that the presence of a diverse range of Vibrio spp. is favoured by the low-saline conditions brought about by heavy precipitation. Furthermore, infections caused by contact with Vibrio-contaminated waters may be difficult to cure due to their multiple antibiotic resistances. Therefore, continuous monitoring of bacterial pollution in the lakes is essential, as is the generation of risk maps of vibrio-infested waters to avoid public contact with contaminated waters and associated disease outbreaks.
Collapse
Affiliation(s)
- Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India.
| | | | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Nandini Menon
- Nansen Environmental Research Centre India, KUFOS Amenity Centre, Kochi, 682506, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Grinson George
- ICAR-Central Marine Fisheries Research Institute, Kochi, 682018, India
| | - Reshma Soman
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Kiran Krishna
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Trevor Platt
- Plymouth Marine Laboratory, Plymouth, PL1 3DH, Devon, UK
| | | |
Collapse
|
7
|
Hirshfeld B, Lavelle K, Lee KY, Atwill ER, Kiang D, Bolkenov B, Gaa M, Li Z, Yu A, Li X, Yang X. Prevalence and antimicrobial resistance profiles of Vibrio spp. and Enterococcus spp. in retail shrimp in Northern California. Front Microbiol 2023; 14:1192769. [PMID: 37455729 PMCID: PMC10338826 DOI: 10.3389/fmicb.2023.1192769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Shrimp is one of the most consumed seafood products globally. Antimicrobial drugs play an integral role in disease mitigation in aquaculture settings, but their prevalent use raises public health concerns on the emergence and spread of antimicrobial resistant microorganisms. Vibrio spp., as the most common causative agents of seafood-borne infections in humans, and Enterococcus spp., as an indicator organism, are focal bacteria of interest for the monitoring of antimicrobial resistance (AMR) in seafood. In this study, 400 samples of retail shrimp were collected from randomly selected grocery stores in the Greater Sacramento, California, area between September 2019 and June 2020. The prevalence of Vibrio spp. and Enterococcus spp. was 60.25% (241/400) and 89.75% (359/400), respectively. Subsamples of Vibrio (n = 110) and Enterococcus (n = 110) isolates were subjected to antimicrobial susceptibility testing (AST). Vibrio isolates had high phenotypic resistance to ampicillin (52/110, 47.27%) and cefoxitin (39/110, 35.45%). Enterococcus were most frequently resistant to lincomycin (106/110, 96.36%), quinupristin-dalfopristin (96/110, 87.27%), ciprofloxacin (93/110, 84.55%), linezolid (86/110, 78.18%), and erythromycin (58/110, 52.73%). For both Vibrio and Enterococcus, no significant associations were observed between multidrug resistance (MDR, resistance to ≥3 drug classes) in isolates from farm raised and wild caught shrimp (p > 0.05) and in isolates of domestic and imported origin (p > 0.05). Whole genome sequencing (WGS) of a subset of Vibrio isolates (n = 42) speciated isolates as primarily V. metschnikovii (24/42; 57.14%) and V. parahaemolyticus (12/42; 28.57%), and detected 27 unique antimicrobial resistance genes (ARGs) across these isolates, most commonly qnrVC6 (19.05%, 8/42), dfrA31 (11.90%, 5/42), dfrA6 (9.5%, 4/42), qnrVC1 (9.5%, 4/42). Additionally, WGS predicted phenotypic resistance in Vibrio isolates with an overall sensitivity of 11.54% and specificity of 96.05%. This study provides insights on the prevalence and distribution of AMR in Vibrio spp. and Enterococcus spp. from retail shrimp in California which are important for food safety and public health and exemplifies the value of surveillance in monitoring the spread of AMR and its genetic determinants.
Collapse
Affiliation(s)
- Brady Hirshfeld
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Katie Yen Lee
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - David Kiang
- California Department of Public Health, Richmond, CA, United States
| | - Bakytzhan Bolkenov
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Megan Gaa
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Zhirong Li
- California Department of Public Health, Richmond, CA, United States
| | - Alice Yu
- California Department of Public Health, Richmond, CA, United States
| | - Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Xiang Yang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Mancini ME, Alessiani A, Donatiello A, Didonna A, D’Attoli L, Faleo S, Occhiochiuso G, Carella F, Di Taranto P, Pace L, Rondinone V, Damato AM, Coppola R, Pedarra C, Goffredo E. Systematic Survey of Vibrio spp. and Salmonella spp. in Bivalve Shellfish in Apulia Region (Italy): Prevalence and Antimicrobial Resistance. Microorganisms 2023; 11:microorganisms11020450. [PMID: 36838415 PMCID: PMC9966029 DOI: 10.3390/microorganisms11020450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is increasingly common across the globe and aquatic ecosystems could be considered a reservoir of antibiotic-resistant bacteria. This study aimed to determine prevalence and antibiotic susceptibility of the potential pathogenic bacteria Salmonella spp. and Vibrio spp. in bivalve molluscs intended for human consumption, collected over a period of 19 months along the northern coast of Apulia region. The AMR profile was also determined in non-pathogenic Vibrio species, common natural inhabitants of seawater and a useful indicator for the surveillance of AMR in the environment. The current study presents data on the AMR of 5 Salmonella and 126 Vibrio isolates by broth microdilution MIC. Multidrug resistance (MDR) was observed in one S. Typhimurium strain towards sulfamethoxazole, trimethoprim, tetracycline, gentamicin, and ampicillin and in 41.3% of the Vibrio strains, mostly towards sulphonamides, penicillin, and cephems. All Vibrio isolates were sensitive to azithromycin, chloramphenicol, tetracycline, amoxicillin/clavulanic acid, gentamicin, streptomycin, amikacin, and levofloxacin. The AMR phenomenon in the investigated area is not highly worrying but not entirely negligible; therefore, in-depth continuous monitoring is suggested. Results concerning the antibiotic agents without available specific clinical breakpoints could be useful to upgrade the MIC distribution for Vibrio spp. but, also, the establishment of interpretative criteria for environmental species is necessary to obtain a more complete view of this issue.
Collapse
|
9
|
Grant TA, Jayakumar JM, López-Pérez M, Almagro-Moreno S. Vibrio floridensis sp. nov., a novel species closely related to the human pathogen Vibrio vulnificus isolated from a cyanobacterial bloom. Int J Syst Evol Microbiol 2023; 73. [PMID: 36749680 DOI: 10.1099/ijsem.0.005675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A Gram-stain-negative, rod-shaped bacterial strain, designated Vibrio floridensis IRLE0018 (=NRRL B-65642=NCTC 14661), was isolated from a cyanobacterial bloom along the Indian River Lagoon (IRL), a large and highly biodiverse estuary in eastern Florida (USA). The results of phylogenetic, biochemical, and phenotypic analyses indicate that this isolate is distinct from species of the genus Vibrio with validly published names and is the closest relative to the emergent human pathogen, Vibrio vulnificus. Here, we present the complete genome sequence of V. floridensis strain IRLE0018 (4 535 135 bp). On the basis of the established average nucleotide identity (ANI) values for the determination of different species (ANI <95 %), strain IRLE0018, with an ANI of approximately 92 % compared with its closest relative, V. vulnificus, represents a novel species within the genus Vibrio. To our knowledge, this represents the first time this species has been described. The results of genomic analyses of V. floridensis IRLE0018 indicate the presence of antibiotic resistance genes and several known virulence factors, however, its pathogenicity profile (e.g. survival in serum, phagocytosis avoidance) reveals limited virulence potential of this species in contrast to V. vulnificus.
Collapse
Affiliation(s)
- Trudy-Ann Grant
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| | - Jane M Jayakumar
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
10
|
Therapeutic potential of otilonium bromide against Vibrio vulnificus. Res Microbiol 2023; 174:103992. [PMID: 36122890 DOI: 10.1016/j.resmic.2022.103992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/29/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
New drugs are urgently required for the treatment of infections due to an increasing number of new strains of diseases-causing pathogens and antibiotic-resistant bacteria. A library of drugs approved by Food and Drug Administration was screened for efficacy against Vibrio vulnificus using antimicrobial assays. We found that otilonium bromide showed potent antimicrobial activity against V.vulnificus and had a synergistic effect in combination with antibiotics. Field emission transmission electron microscope images revealed that otilonium bromide caused cell division defects in V.vulnificus. Moreover, it significantly inhibited V.vulnificus swarming motility and adhesion to host cells at concentrations lower than the minimum inhibitory concentration. To investigate its inhibitory action mechanisms, we examined the effect of otilonium bromide on the expression levels of several proteins crucial for V.vulnificus growth, motility, and adhesion. It decreased the protein expression levels of cAMP receptor protein and flagellin B, but not HlyU or OmpU. In addition, otilonium bromide significantly decreased the expression levels of outer membrane protein TolCV1, thus inhibiting RtxA1 toxin secretion and substantially reducing V.vulnificus cytotoxicity to host cells. Collectively, these findings suggest that otilonium bromide may be considered as a promising candidate for treating V.vulnificus infections.
Collapse
|
11
|
A multiplex PCR for the detection of Vibrio vulnificus hazardous to human and/or animal health from seafood. Int J Food Microbiol 2022; 377:109778. [PMID: 35696749 DOI: 10.1016/j.ijfoodmicro.2022.109778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 01/11/2023]
Abstract
Vibrio vulnificus is a zoonotic pathogen linked to aquaculture that is spreading due to climate change. The pathogen can be transmitted to humans and animals by ingestion of raw shellfish or seafood feed, respectively. The aim of this work was to design and test a new procedure to detect V. vulnificus hazardous to human and/or animal health in food/feed samples. For this purpose, we combined a pre-enrichment step with multiplex PCR using primers for the species and for human and animal virulence markers. In vitro assays with mixed DNA from different Vibrio species and Vibrio cultures showed that the new protocol was 100 % specific with a detection limit of 10 cfu/mL. The protocol was successfully validated in seafood using artificially contaminated live shrimp and proved useful also in pathogen isolation from animals and their ecosystem. In conclusion, this novel protocol could be applied in health risk studies associated with food/feed consumption, as well as in the routine identification and subtyping of V. vulnificus from environmental or clinical samples.
Collapse
|
12
|
Wu Z, Wu Y, Gao H, He X, Yao Q, Yang Z, Zhou J, Ji L, Gao J, Jia X, Dou Y, Wang X, Shao P. Identification and whole-genome sequencing analysis of Vibrio vulnificus strains causing pearl gentian grouper disease in China. BMC Microbiol 2022; 22:200. [PMID: 35974308 PMCID: PMC9380395 DOI: 10.1186/s12866-022-02610-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
Vibrio vulnificus is a pathogenic bacterium that causes disease in marine fish, affecting fish farming and human health worldwide. In May 2021, in the Bohai Bay region, a disease broke out in commercially farmed pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus), causing huge economic losses. The diseased fish had skin lesions, water accumulation in their abdomens, and showed tissue and organ damage. V. vulnificus biotype 2 has been reported in eels and other marine fish, but it is less reported in pearl gentian grouper. In this study, the pathogenic strain isolated from diseased fish was identified as V. vulnificus EPL 0201 biotype 2 on the basis of physiological and biochemical characteristics and the results of 16S rRNA gene and gyrB sequencing, virulence gene detection, and recursive infection experiments. To gain a comprehensive understanding of the pathogenicity and drug resistance of this strain, whole-genome sequencing was performed. Whole-genome analysis showed that the gene map of this strain was complete. The Virulence Factor Database annotation results showed that this strain had the key virulence factor genes vvhA and rtxA, which cause host disease. In addition, this strain had genes conferring resistance against cephalosporins, aminoglycosides, tetracyclines, and sulfonamides. Antimicrobial susceptibility testing confirmed the presence of these resistance genes identified in the genome. The results of this study show that V. vulnificus EPL 0201 biotype 2 is a multi-drug resistant strain with high pathogenicity.
Collapse
Affiliation(s)
- Zun Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yating Wu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Haofeng Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuexin He
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Qiang Yao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhanglei Yang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinyi Zhou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Linting Ji
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Jinwei Gao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xuying Jia
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Yong Dou
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xiaoyu Wang
- Tianjin Fisheries Research Institute, 422 Jiefang Nan Road, He Xi District, Tianjin, 300221, People's Republic of China.
| | - Peng Shao
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
13
|
Kumarage PM, De Silva LADS, Heo GJ. Aquatic environments: A Potential Source of Antimicrobial-Resistant Vibrio spp. J Appl Microbiol 2022; 133:2267-2279. [PMID: 35797342 DOI: 10.1111/jam.15702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Vibrio spp. are associated with water and seafood-related outbreaks worldwide. They are naturally present in aquatic environments such as seawater, brackish water and freshwater environments. These aquatic environments serve as the main reservoirs of antimicrobial-resistant genes and promote the transfer of antimicrobial-resistant bacterial species to aquatic animals and humans through the aquatic food chain. Vibrio spp. are known as etiological agents of cholera and non-cholera Vibrio infections in humans and animals. Antimicrobial-resistant Vibrio species have become a huge threat in regard to treating Vibrio infections in aquaculture and public health. Most of the Vibrio spp. possess resistance towards the commonly used antimicrobials, including β-lactams, aminoglycosides, tetracyclines, sulfonamides, quinolones and macrolides. The aim of this review is to summarize the antimicrobial resistance properties of Vibrio spp. isolated from aquatic environments to provide awareness about potential health risks related to Vibrio infections in aquaculture and public health.
Collapse
Affiliation(s)
- P M Kumarage
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - L A D S De Silva
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Gang-Joon Heo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
14
|
Behera DR, Nayak AK, Nayak SR, Nayak D, Swain S, Maharana PK, Biswal B, Pany S, Pati S, Pal BB. Genomic diversities of ctxB, tcpA and rstR alleles of Vibrio cholerae O139 strains isolated from Odisha, India. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:376-384. [PMID: 34668341 DOI: 10.1111/1758-2229.13016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The genome of Vibrio cholerae O139 strains has undergone cryptic changes since its first emergence in 1992 in South India. This study aimed to determine the presence of genotypic changes marked in ctxB, tcpA and rstR genes located within the CTX prophages among the strains of V. cholerae O139 isolated from 1999 to 2017 in Odisha. Antibiotic susceptibility test was conducted on 59 V. cholerae O139 strains. A conventional PCR assay was done for ctxB gene typing followed by sequencing along with identification of rstR and tcpA gene. Pulsed-field gel electrophoresis (PFGE) was carried out to reveal clonal variations among the V. cholerae O139 strains. Among V. cholerae O139 isolates more than 60% showed resistance to ampicillin, co-trimoxazole, furazolidone, streptomycin, neomycin and nalidixic acid. The ctxB sequencing and rstR allele-specific PCR assay revealed the presence of three genotypes 1, 3 and 4 with at least one copy of CTX Calc φ in addition to CTX ET and CTX Cl prophages in V. cholerae O139 isolates. PFGE analysis revealed 13 pulsotypes with two clades having 60% similarity among V. cholerae O139 strains. The circulating V. cholerae O139 strains in Odisha showed variation in genotypes with multiple clonal expansions over the years.
Collapse
Affiliation(s)
- Dipti Ranjan Behera
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Ashish Kumar Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Smruti Ranjan Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Dilena Nayak
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Sipraswati Swain
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Pradeep Kumar Maharana
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Bhagyalaxmi Biswal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Swatishree Pany
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Sanghamitra Pati
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| | - Bibhuti Bhusan Pal
- Microbiology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar, OR, 751023, India
| |
Collapse
|
15
|
Abdalla T, Al-Rumaithi H, Osaili TM, Hasan F, Obaid RS, Abushelaibi A, Ayyash MM. Prevalence, Antibiotic-Resistance, and Growth Profile of Vibrio spp. Isolated From Fish and Shellfish in Subtropical-Arid Area. Front Microbiol 2022; 13:861547. [PMID: 35464960 PMCID: PMC9019552 DOI: 10.3389/fmicb.2022.861547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 12/03/2022] Open
Abstract
The study aimed to determine the prevalence of different species of Vibrio spp. in fish and shellfish sold in subtropical-arid countries (United Arab Emirates). It also examined the antimicrobial resistance of the isolated species and their growth behavior upon in vitro environmental changes concerning temperature, pH, and salinity. The prevalence of Vibrio spp. in fish and shellfish samples, was 64.5 and 92%, respectively. However, Vibrio parahemolyticus were detected in a mere 7.5 and 13.0% of the samples, respectively. On the other hand, Vibrio mimicus was detected in 1.5 and 8.5% of the samples, respectively. None of the six antibiotics studied except for Sulfamethoxazole-trimethoprim were effective against fish Vibrio spp. isolates. On a similar note, three antibiotics, namely Penicillin, Daptomycin, and Vancomycin, were ineffective against the shellfish isolates. The growth of the microorganisms did not show any significant trend with changes in pH and salinity. The optimum temperature for Vibrio spp. growth was observed to be 37°C.
Collapse
Affiliation(s)
- Tarfa Abdalla
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Hind Al-Rumaithi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Fayeza Hasan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aisha Abushelaibi
- Campus Director at Higher Colleges of Technology, Dubai, United Arab Emirates
| | - Mutamed M Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Phitsamai A, Chueansuwan W, Changpradub D. Vibrio vulnificus Necrotizing Fasciitis in Upper Limbs and Septicemia Following Pinch Injury by Mud Crab: A Case Report. Cureus 2022; 14:e24393. [PMID: 35619836 PMCID: PMC9126442 DOI: 10.7759/cureus.24393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/05/2022] Open
|
17
|
Toraskar AD, Manohar CS, Fernandes CL, Ray D, Gomes AD, Antony A. Seasonal variations in the water quality and antibiotic resistance of microbial pollution indicators in the Mandovi and Zuari estuaries, Goa, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:71. [PMID: 34994862 DOI: 10.1007/s10661-021-09679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The two adjacent estuaries of the rivers Mandovi and Zuari, along the Goa coast in the central west coast of India, are a large complex aquatic system hosting diverse natural habitats. The water quality in these habitats is affected by various anthropogenic activities as they are extensively used for transportation, fisheries and various recreational activities. In the present study, changes in the water quality and levels of microbial pollution during the pre-monsoon, monsoon and post-monsoon seasons were determined. The water quality index was estimated based on the parameters: temperature, salinity, pH, dissolved oxygen, biochemical oxygen demand and nutrients. The seasonal changes in the microbial pollution load were also assessed based on the abundance of pollution indicator organisms and their resistivity towards multiple antibiotics. Results show that the water quality index status was 'poor' in the pre-monsoon and post-monsoon seasons and it was 'good' only in the monsoon period. Levels of pollution indicator organisms determined show that the counts were the highest in the pre-monsoon season, which reduced in the monsoon and further declined during the post-monsoon season. However, the estimated multiple antibiotic resistance (MAR) index suggests that bacterial isolates in monsoonal water and sediment samples have maximum resistance towards antibiotics. This shows that, though the basic water quality improved during the monsoon, possibly due to substantial dilution, the increased terrestrial inputs brought harmful pathogens into these estuarine waters, which may be of potential health risk. Understanding the ecological status of the estuarine habitats is important for successful environmental management and sustainable development.
Collapse
|
18
|
Metagenomic and Recombination Analyses of Antimicrobial Resistance Genes from Recreational Waters of Black Sea Coastal Areas and Other Marine Environments Unveil Extensive Evidence for Their both Intrageneric and Intergeneric Transmission across Genetically Very Diverse Microbial Communities. Mar Genomics 2021; 61:100916. [PMID: 34922301 DOI: 10.1016/j.margen.2021.100916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
Microbial communities of marine coastal recreation waters have become large reservoirs of AMR genes (ARGs), contributing to the emergence and transmission of various zoonotic, foodborne and other infections that exhibit resistance to various antibiotics. Thus, it is highly imperative to determine ARGs assemblages as well as mechanisms and trajectories of their transmission across these microbial communities for our better understanding of the evolutionary trends of AMR (AMR). In this study, using metagenomics approaches, we screened for ARGs in recreation waters of the Black Sea coastal areas of the Batumi City (Georgia). Also, a large array of the recombination detection algorithms of the SplitsTree, RDP4, and GARD was applied to elucidate genetic recombination of ARGs and trajectories of their transmission across various marine microbial communities. The metagenomics analyses of sea water samples, obtained from across the above marine sites, could identify putative ARGs encoding for multidrug resistance efflux transporters mainly from the Major Facilitator and Resistance Nodulation Division superfamilies. The data, generated by SplitsTree (fit ≥95.619; bootstrap values ≥ 95; Phi p ≤ 0.0494), RDP4 (p ≤ 0.0490), and GARD, provided strong statistical evidence not only for intrageneric recombination of these ARGs, but also for their intergeneric recombination across fairly large and diverse microbial communities of marine environment. These bacteria included both human pathogenic and nonpathogenic species, exhibiting collectively the genera of Vibrio, Aeromonas, Synechococcus, Citromicrobium, Rhodobacteraceae, Pseudoalteromonas, Altererythrobacter, Erythrobacter, Altererythrobacter, Marivivens, Xuhuaishuia, and Loktanella. The above nonpathogenic bacteria are strongly suggested to contribute to ARGs transmission in marine ecosystems.
Collapse
|
19
|
López-Pérez M, Jayakumar JM, Grant TA, Zaragoza-Solas A, Cabello-Yeves PJ, Almagro-Moreno S. Ecological diversification reveals routes of pathogen emergence in endemic Vibrio vulnificus populations. Proc Natl Acad Sci U S A 2021; 118:e2103470118. [PMID: 34593634 PMCID: PMC8501797 DOI: 10.1073/pnas.2103470118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.
Collapse
Affiliation(s)
- Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Jane M Jayakumar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| | - Trudy-Ann Grant
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| | - Asier Zaragoza-Solas
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, 03550 Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816;
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL 32816
| |
Collapse
|
20
|
Diner RE, Kaul D, Rabines A, Zheng H, Steele JA, Griffith JF, Allen AE. Pathogenic Vibrio Species Are Associated with Distinct Environmental Niches and Planktonic Taxa in Southern California (USA) Aquatic Microbiomes. mSystems 2021; 6:e0057121. [PMID: 34227831 PMCID: PMC8407410 DOI: 10.1128/msystems.00571-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
Interactions between vibrio bacteria and the planktonic community impact marine ecology and human health. Many coastal Vibrio spp. can infect humans, representing a growing threat linked to increasing seawater temperatures. Interactions with eukaryotic organisms may provide attachment substrate and critical nutrients that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. However, vibrio interactions with planktonic organisms in an environmental context are poorly understood. We quantified the pathogenic Vibrio species V. cholerae, V. parahaemolyticus, and V. vulnificus monthly for 1 year at five sites and observed high abundances, particularly during summer months, with species-specific temperature and salinity distributions. Using metabarcoding, we established a detailed profile of both prokaryotic and eukaryotic coastal microbial communities. We found that pathogenic Vibrio species were frequently associated with distinct eukaryotic amplicon sequence variants (ASVs), including diatoms and copepods. Shared environmental conditions, such as high temperatures and low salinities, were associated with both high concentrations of pathogenic vibrios and potential environmental reservoirs, which may influence vibrio infection risks linked to climate change and should be incorporated into predictive ecological models and experimental laboratory systems. IMPORTANCE Many species of coastal vibrio bacteria can infect humans, representing a growing health threat linked to increasing seawater temperatures. However, their interactions with surrounding microbes in the environment, especially eukaryotic organisms that may provide nutrients and attachment substrate, are poorly understood. We quantified three pathogenic Vibrio species monthly for a duration of 1 year, finding that all three species were abundant and exhibited species-specific temperature and salinity distributions. Using metabarcoding, we investigated associations between these pathogenic species and prokaryotic and eukaryotic microbes, revealing genus and amplicon sequence variant (ASV)-specific relationships with potential functional implications. For example, pathogenic species were frequently associated with chitin-producing eukaryotes, such as diatoms in the genus Thalassiosira and copepods. These associations between high concentrations of pathogenic vibrios and potential environmental reservoirs should be considered when predicting infection risk and developing ecologically relevant model systems.
Collapse
Affiliation(s)
- Rachel E. Diner
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Drishti Kaul
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Joshua A. Steele
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - John F. Griffith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Andrew E. Allen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
21
|
A Novel Cooperative Metallo-β-Lactamase Fold Metallohydrolase from Pathogen Vibrio vulnificus Exhibits β-Lactam Antibiotic-Degrading Activities. Antimicrob Agents Chemother 2021; 65:e0032621. [PMID: 34228542 DOI: 10.1128/aac.00326-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a pathogen that accounts for one of the highest mortality rates and is responsible for most reported seafood-related illnesses and deaths worldwide. Owing to the threats of pathogens with β-lactamase activity, it is important to identify and characterize β-lactamases with clinical significance. In this study, the protein sequence of the metallo-β-lactamase (MBL) fold metallohydrolase from V. vulnificus (designated Vmh) was analyzed, and its oligomeric state, β-lactamase activity, and metal binding ability were determined. BLASTp analysis indicated that the V. vulnificus Vmh protein showed no significant sequence identity with any experimentally identified Ambler class B MBLs or enzymes containing the MBL protein fold; it was also predicted to have a signal peptide of 19 amino acids at its N terminus and an MBL protein fold from amino acid residues 23 to 216. Recombinant V. vulnificus Vmh protein was overexpressed and purified. Analytical ultracentrifugation and electrospray ionization-mass spectrometry (MS) data demonstrated its monomeric state in an aqueous solution. Recombinant V. vulnificus Vmh protein showed broad degrading activities against β-lactam antibiotics, such as penicillins, cephalosporins, and imipenems, with kcat/Km values ranging from 6.23 × 102 to 1.02 × 104 M-1 s-1. The kinetic reactions of this enzyme exhibited sigmoidal behavior, suggesting the possibility of cooperativity. Zinc ions were required for the enzyme activity, which was abolished by adding the metal chelator EDTA. Inductively coupled plasma-MS indicated that this enzyme might bind two zinc ions per molecule as a cofactor.
Collapse
|
22
|
Adesiyan IM, Bisi-Johnson MA, Ogunfowokan AO, Okoh AI. Occurrence and antibiogram signatures of some Vibrio species recovered from selected rivers in South West Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42458-42476. [PMID: 33813704 DOI: 10.1007/s11356-021-13603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Vibrio species, widely distributed in water environments, has emerged as a prominent cause of water and food-related disease outbreaks posing significant risk to human and animal health worldwide. About 40% of presumptive isolates recovered from four selected rivers in Southwest Nigeria and, established as Vibrio species genus through polymerase chain reaction techniques., were subjected to antibiotic susceptibility testing against a panel of 18 commonly used antibiotics. The relative prevalence of key Vibrio species (V. parahaemolyticus, V. vulnificus, V. mimicus, V. harveyi, and V. cholerae) was in the order 17%, 13.3%, 4.4%, 2.2%, and 2.2% respectively. Antibiotic resistance by all Vibrio species was mostly observed against doxycycline (71-89%), erythromycin (86-100%), tetracycline (71-89%), rifampicin (86-100%), and sulfamethoxazole (87-100%), though susceptibility to meropenem (86-100%), cephalothin (60-100%), norfloxacin (93-100%), ciprofloxacin (88-100%), amikacin (64-100%), gentamicin (57-74%), and trimethoprim/sulfamethoxazole (57-81%) was equally observed in all species. Vibrio mimicus expressed highest resistance against streptomycin and chloramphenicol (64%), while V. vulnificus (52%) and V. cholerae (57%) had the highest resistance against cephalothin. High resistance against ampicillin (57%) and amoxicillin (50%) was exhibited by V. cholerae and V. mimicus respectively. Indexes of multiple antibiotic resistances (MARI) among Vibrio species ranged between 0.11 and 0.72 with the highest MAR index of 0.72 observed in one isolate of V. vulnificus. This study reveals high prevalence of Vibrio species in the selected rivers as well as elevated resistance against some first-line antibiotics, which suggests possible inappropriate antimicrobial usage around study communities. We conclude that the freshwater resources investigated are unfit for domestic, industrial, and recreational uses without treatment prior to use and are potential reservoirs of antibiotic-resistant Vibrio species in this environment.
Collapse
Affiliation(s)
- Ibukun M Adesiyan
- Department of Biological Sciences, Achievers University, Owo, Ondo State, Nigeria.
- Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile Ife, Osun-State, 220005, Nigeria.
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
| | | | - Aderemi O Ogunfowokan
- Department of Industrial Chemistry, The Technical University, Ibadan,, Oyo State, Nigeria
- Department of Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental Health Sciences College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
23
|
García-Hernández J, Hernández M, Moreno Y. Combination of Direct Viable Count and Fluorescent In Situ Hybridization (DVC-FISH) as a Potential Method for Identifying Viable Vibrio parahaemolyticus in Oysters and Mussels. Foods 2021; 10:foods10071502. [PMID: 34209577 PMCID: PMC8303443 DOI: 10.3390/foods10071502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/21/2022] Open
Abstract
Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent in situ hybridization technique (DVC-FISH) makes it possible to detect microorganisms that can present VBNC forms in complex samples The optimization of the in vitro DVC-FISH technique for V. parahaemolyticus was carried out. The selected antibiotic was ciprofloxacin at a concentration of 0.75 μg/mL with an incubation time in DVC broth of 5 h. The DVC-FISH technique and the traditional plate culture were applied to detect and quantify the viable cells of the affected pathogen in artificially contaminated food matrices at different temperatures. The results obtained showed that low temperatures produced an important logarithmic decrease of V. parahaemolyticus, while at 22 °C, it proliferated rapidly. The DVC-FISH technique proved to be a useful tool for the detection and quantification of V. parahaemolyticus in the two seafood matrices of oysters and mussels. This is the first study in which this technique has been developed to detect viable cells for this microorganism.
Collapse
Affiliation(s)
- Jorge García-Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
- Correspondence: ; Tel.: +34-658993099
| | - Manuel Hernández
- Advanced Center for Food Microbiology, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Yolanda Moreno
- Research Institute of Water and Environmental Ingeneering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain;
| |
Collapse
|
24
|
Lin IC, Hussain B, Hsu BM, Chen JS, Hsu YL, Chiu YC, Huang SW, Wang JL. Prevalence, Genetic Diversity, Antimicrobial Resistance, and Toxigenic Profile of Vibrio vulnificus Isolated from Aquatic Environments in Taiwan. Antibiotics (Basel) 2021; 10:antibiotics10050505. [PMID: 33946739 PMCID: PMC8147101 DOI: 10.3390/antibiotics10050505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus is a gram-negative, opportunistic human pathogen associated with life-threatening wound infections and is commonly found in warm coastal marine water environments, globally. In this study, two fishing harbors and three tributaries of the river basin were analyzed for the prevalence of V. vulnificus in the water bodies and shellfish that are under the pressure of external pollutions. The average detection rate of V. vulnificus in the river basins and fishing harbors was 8.3% and 4.2%, respectively, in all seasons. A total of nine strains of V. vulnificus were isolated in pure cultures from 160 samples belonging to river basins and fishing harbors to analyze the antibiotic susceptibility, virulence gene profiles, and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) fingerprinting. All isolates were susceptible to 10 tested antibiotics. The genotypic characterization revealed that 11.1% (n = 1/9) strain was nonvirulent, whereas 88.9% (n = 8/9) isolates were virulent strains, which possessed the four most prevalent toxin genes such as vcgC (88.9%), 16S B (88.9%), vvhA (88.9%), and manIIA (88.9%), followed by nanA (77.8%), CPS1 (66.7), and PRXII (44.4%). Additionally, ERIC-PCR fingerprinting grouped these nine isolates into two main clusters, among which the river basin isolates showed genetically diverse profiles, suggesting multiple sources of V. vulnificus. Ultimately, this study highlighted the virulent strains of V. vulnificus in the coastal aquatic environments of Taiwan, harboring a potential risk of infection to human health through water-borne transmission.
Collapse
Affiliation(s)
- I-Ching Lin
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua City 500, Taiwan;
- Department of Family Medicine, Asia University Hospital, Taichung City 413, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621, Taiwan
- Correspondence: ; Tel.: +886-5272-0411 (ext. 66218)
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung City 824, Taiwan;
| | - Yu-Ling Hsu
- Department of Nuclear Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan;
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung City 833, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung City 833, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| |
Collapse
|
25
|
Wang C, Hu R, Strong PJ, Zhuang W, Huang W, Luo Z, Yan Q, He Z, Shu L. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124985. [PMID: 33421848 DOI: 10.1016/j.jhazmat.2020.124985] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Plants roots are colonised by soil bacteria that are known to be the reservoir of antibiotic resistance genes (ARGs). ARGs can transfer between these microorganisms and pathogens, but to what extent these ARGs and pathogens disseminate from soil into plant is poorly understood. Here, we examined a high-resolution resistome profile along the soil-root continuum of mangrove saplings using amplicon and metagenomic sequencing. Data revealed that 91.4% of total ARGs were shared across four root-associated compartments (endosphere, episphere, rhizosphere and unplanted soil). Rather than compartment-selective dynamics of microbiota, the resistome was disseminated in a continuous fashion along the soil-root continuum. Such dissemination was independent of underlying root-associated bacterial and fungal microbiota, but might be facilitated by a multiplicity of mobile genetic elements. As the multiple-drug resistant pathogens, Vibrio vulnificus, pathogenic Escherichia coli and Klebsiella pneumoniae consistently predominated across four compartments, indicating the potential dissemination of antibiotic pathogens along the soil-root continuum. Through deciphering the profile and dynamics of the root-associated resistome and pathogens, our study identified the soil-root continuum as an interconnected sink through which certain ARGs and pathogens can flow from soil into the plant.
Collapse
Affiliation(s)
- Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, GPO Box 2432, 2 George St, Brisbane QLD 4001, Australia
| | - Wei Zhuang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Weiming Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, No.132, East Outer Ring Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
26
|
Liu X, Liu Y, Zhao G, Zhang Y, Liu L, Wang J, Wang Y, Zhang S, Li X, Guo D, Wang P, Xu X. Biochemical Characterization of Arylamine N-acetyltransferases From Vibrio vulnificus. Front Microbiol 2021; 11:595083. [PMID: 33537010 PMCID: PMC7847940 DOI: 10.3389/fmicb.2020.595083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022] Open
Abstract
Vibrio vulnificus is a zoonotic bacterium that is capable of causing highly lethal diseases in humans; this pathogen is responsible for 95% of all seafood-related deaths in the United States. Arylamine N-acetyltransferases (NAT, E.C. 2.3.1.5) is a major family of xenobiotic-metabolizing enzymes that can biotransform aromatic amine chemicals. In this research, to evaluate the effect of NAT on acetyl group transformation in arylamine antibiotics, we first used sequence alignment to study the structure of V. vulnificus NAT [(VIBVN)NAT]. The nat gene encodes a protein of 260 amino acids, which has an approximate molecular mass of 30 kDa. Then we purified recombinant (VIBVN)NAT and determined the enzyme activity by PNPA and DTNB methods. The DTNB method indicates that this prokaryotic NAT has a particular substrate specificity towards aromatic substrates. However, (VIBVN)NAT lost most of its activity after treatment with high concentrations of urea and H2O2. In addition, we also explored the stability of the enzyme at different temperatures and pH values. In analyzing the influence of metal ions, the enzyme activity was significantly inhibited by Zn2+ and Cu2+. The kinetic parameters Km and Vmax were determined using hydralazine, isoniazid, 4-amino salicylic acid, and 4-chloro-3-methylaniline as substrates, and the Tm, Tagg and size distribution of (VIBVN)NAT were observed. In particular, a molecular docking study on the structure of (VIBVN)NAT was conducted to understand its biochemical traits. These results showed that (VIBVN)NAT could acetylate various aromatic amine substrates and contribute to arylamine antibiotic resistance in V. vulnificus.
Collapse
Affiliation(s)
- Xinning Liu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yuanchang Liu
- Quality Control Department, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Guangjian Zhao
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lu Liu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Juan Wang
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Siyu Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dongliang Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ximing Xu
- Marine Drug Screening and Evaluation Platform (QNLM), School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
27
|
Kim HJ, Kim YT, Kim HB, Choi SH, Lee JH. Characterization of bacteriophage VVP001 and its application for the inhibition of Vibrio vulnificus causing seafood-borne diseases. Food Microbiol 2020; 94:103630. [PMID: 33279062 DOI: 10.1016/j.fm.2020.103630] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is a major food-borne pathogen that causes septicemia and cellulitis with a mortality rate of >50%. However, there are no efficient natural food preservatives or biocontrol agents to control V. vulnificus in seafood. In this study, we isolated and characterized a novel bacteriophage VVP001. Host range and transmission electron microscopy morphology observations revealed that VVP001 belongs to the family Siphoviridae and specifically infects V. vulnificus. Phage stability tests showed that VVP001 is stable at a broad temperature range of -20 °C to 65 °C and a pH range from 3 to 11, which are conditions for food applications (processing, distribution, and storage). In vitro challenge assays revealed that VVP001 inhibited V. vulnificus MO6-24/O (a clinical isolate) growth up to a 3.87 log reduction. In addition, complete genome analysis revealed that the 76 kb VVP001 contains 102 open reading frames with 49.64% G + C content and no gene encoding toxins or other virulence factors, which is essential for food applications. Application of VVP001 to fresh abalone samples contaminated with V. vulnificus demonstrated its ability to inhibit V. vulnificus growth, and an in vivo mouse survival test showed that VVP001 protects mice against high mortality (survival rate >70% at a multiplicity of infection of 1000 for up to 7 days). Therefore, the bacteriophage VVP001 can be used as a good natural food preservative and biocontrol agent for food applications.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You-Tae Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, And Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
28
|
Guo RH, Gong Y, Kim SY, Rhee JH, Kim YR. DIDS inhibits Vibrio vulnificus cytotoxicity by interfering with TolC-mediated RtxA1 toxin secretion. Eur J Pharmacol 2020; 884:173407. [PMID: 32735984 DOI: 10.1016/j.ejphar.2020.173407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Vibrio vulnificus (V. vulnificus) infection, frequently resulting in fatal septicemia, has become a growing health concern worldwide. The present study aimed to explore the potential agents that could protect against V. vulnificus cytotoxicity, and to analyze the possible underlying mechanisms. First, we observed that 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt hydrate (DIDS) significantly suppressed V. vulnificus cytotoxicity to host cells by using a lactate dehydrogenase (LDH) assay. DIDS did not exhibit any effect on host cell viability, bacterial growth, microbial adhesion and swarming motility. DIDS effectively lowered V. vulnificus RtxA1 toxin-induced calcium influx into host mitochondria and RtxA1 binding to host cells. To further elucidate the underlying mechanism, the synthesis and secretion of RtxA1 toxin were investigated by Western blotting. Intriguingly, DIDS selectively inhibited the secretion of RtxA1 toxin, but did not influence its synthesis. Consequently, the outer membrane portal TolC, a key conduit for RtxA1 export coupled with tripartite efflux pumps, was examined by RT-PCR and Western blotting. We found that DIDS significantly reduced the expression of TolCV1 protein at the transcriptional level. Taken together, these results suggest that DIDS is a promising new paradigm as an antimicrobial drug that targets TolC-mediated toxin.
Collapse
Affiliation(s)
- Rui Hong Guo
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Yue Gong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea
| | - Soo Young Kim
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Republic of Korea
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Republic of Korea.
| |
Collapse
|
29
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|
30
|
Brehm TT, Berneking L, Rohde H, Chistner M, Schlickewei C, Sena Martins M, Schmiedel S. Wound infection with Vibrio harveyi following a traumatic leg amputation after a motorboat propeller injury in Mallorca, Spain: a case report and review of literature. BMC Infect Dis 2020; 20:104. [PMID: 32019500 PMCID: PMC7001194 DOI: 10.1186/s12879-020-4789-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vibrio spp. are aquatic bacteria that are ubiquitous in warm estuarine and marine environments, of which 12 species are currently known to cause infections in humans. So far, only five human infections with V. harveyi have been reported. CASE PRESENTATION A 26-year old patient was transferred to our center by inter-hospital air transfer from Mallorca, Spain. Seven days before, he had suffered a complete amputation injury of his left lower leg combined with an open, multi-fragment, distal femur fracture after he had been struck by the propeller of a passing motorboat while snorkeling in the Mediterranean Sea. On admission he was febrile; laboratory studies showed markedly elevated inflammatory parameters and antibiotic treatment with ampicillin/sulbactam was initiated. Physical examination showed a tender and erythematous amputation stump, so surgical revision was performed and confirmed a putrid infection with necrosis of the subcutaneous tissue and the muscles. Tissue cultures subsequently grew V. harveyi with a minimal inhibitory concentration (MIC) of 16 mg/L for ampicillin, and antibiotic treatment was switched to ceftriaxone and ciprofloxacin. Throughout the following days, the patient repeatedly had to undergo surgical debridement but eventually the infection could be controlled, and he was discharged. CONCLUSIONS We report the first human infection with V. harveyi acquired in Spain and the second infection acquired in the Mediterranean Sea. This case suggests that physicians and microbiologists should be aware of the possibility of wound infections caused by Vibrio spp. acquired in the ocean environment, especially during hot summer months. Since Vibrio spp. preferentially grow at water temperatures above 18 °C, global warming is responsible for an abundance of these bacteria in coastal waters. This will likely lead to a worldwide increase in reports of Vibrio-associated diseases in the future.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Chistner
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Schlickewei
- Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan Schmiedel
- Division of Infectious Diseases, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
31
|
Mok JS, Ryu A, Kwon JY, Park K, Shim KB. Abundance, antimicrobial resistance, and virulence of pathogenic Vibrio strains from molluscan shellfish farms along the Korean coast. MARINE POLLUTION BULLETIN 2019; 149:110559. [PMID: 31543492 DOI: 10.1016/j.marpolbul.2019.110559] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
To reduce the outbreaks caused by the major pathogenic Vibrio species, V. parahaemolyticus, V. vulnificus, and V. cholerae, the distribution, antibiotic resistance, and virulence of these Vibrio strains were monitored in shellfish and seawater along the Korean coast. Among the Vibrio strains, V. parahaemolyticus was the most abundant species; during summer, this strain showed a substantial increase that correlated with the water temperature. Although >99.0% of the Vibrio species isolates were sensitive to seven antimicrobials recommended by the Center for Disease Control and Prevention for the treatment of Vibrio infections, multiple-antibiotic resistance to at least three antimicrobials was found in 14.3% to 50.0% of each Vibrio species. Among V. parahaemolyticus isolates, 14.3% were positive for the trh gene, whereas only 1% was positive for the tdh gene. These results should aid in implementing proper precautions to avoid potential human health risks associated with exposure to pathogenic Vibrio species.
Collapse
Affiliation(s)
- Jong Soo Mok
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea.
| | - Ara Ryu
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Ji Young Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Kil Bo Shim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
32
|
Ability of Vibrio vulnificus isolated from fish of the Lagoa dos Patos estuary in south Brazil to form biofilms after sublethal stress and bacterial resistance to antibiotics and sanitizers. Int J Food Microbiol 2019; 303:19-25. [DOI: 10.1016/j.ijfoodmicro.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/26/2019] [Accepted: 05/10/2019] [Indexed: 01/22/2023]
|
33
|
Kim SE, Shin SU, Oh TH, Kim UJ, Darboe KS, Kang SJ, Jang HC, Jung SI, Shin HY, Park KH. Outcomes of Third-Generation Cephalosporin Plus Ciprofloxacin or Doxycycline Therapy in Patients with Vibrio vulnificus Septicemia: A Propensity Score-Matched Analysis. PLoS Negl Trop Dis 2019; 13:e0007478. [PMID: 31188821 PMCID: PMC6590838 DOI: 10.1371/journal.pntd.0007478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/24/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background Combination therapy with a third-generation cephalosporin (TGC) and a tetracycline analogue is recommended for Vibrio vulnificus infection. The combination of a TGC and ciprofloxacin has synergistic in vitro bactericidal activity against V. vulnificus. No clinical study has compared the standard regimen with TGC plus ciprofloxacin therapy for V. vulnificus infection. Methods Patients with a confirmed V. vulnificus infection at two medical centers in Korea from 1991 to 2016 were enrolled in this study. The patients were grouped according to the type of antibiotic administered. A retrospective propensity-score-matched case-control study of patients treated with TGC plus doxycycline or TGC plus ciprofloxacin was performed. The clinical characteristics and outcomes of the patients were analyzed. Results A total of 218 patients were confirmed to have V. vulnificus septicemia during the study, and the 30-day survival rate was 39% (85/218). The patients were classified into the following six treatment groups: TGC monotherapy (n = 82), TGC plus doxycycline therapy (n = 42), TGC plus ciprofloxacin therapy (n = 39), ciprofloxacin monotherapy (n = 14), other β-lactam monotherapy (n = 10), and other (n = 31). The survival rates of these groups were as follows: TGC monotherapy (35%), TGC plus doxycycline (38%), TGC plus ciprofloxacin (54%), ciprofloxacin monotherapy (29%), other β-lactam (20%), and other (39%). The 30-day survival rate showed no significant difference between the TGC plus doxycycline and TGC plus ciprofloxacin groups (log-rank test, P = 0.18). Among the 81 patients treated with TGC plus doxycycline or TGC plus ciprofloxacin, 12 per treatment group were selected by propensity-score matching. There was no significant difference in the baseline characteristics or the frequency of fasciotomy between the two groups. The 30-day survival rate showed no significant difference between the TGC plus doxycycline (50%) and TGC plus ciprofloxacin (67%) groups (log-rank test, P = 0.46). Conclusion Our data suggest that the outcome of TGC plus ciprofloxacin therapy was comparable to that of TGC plus doxycycline therapy in patients with V. vulnificus septicemia. The combination of a third-generation cephalosporin (TGC) and ciprofloxacin has synergy in vitro bactericidal activity against V. vulnificus. No clinical study has compared the standard regimen with TGC plus ciprofloxacin therapy for V. vulnificus infection. A total of 218 patients were enrolled who are confirmed to have V. vulnificus septicemia in two medical centers in Korea from 1991 to 2016. The 30-day survival rate was 39% (85/218) for all patients, 38% (16/42) for TGC plus doxycycline and 54% (21/39) for TGC plus ciprofloxacin (log rank test, P = 0.18). A propensity score-matched analysis was performed and 12 per treatment groups were selected. The 30-day survival rate showed no significant difference between the TGC plus doxycycline (50%, 6/12) and TGC plus ciprofloxacin (67%, 4/12) groups (log-rank test, P = 0.46). The outcome of TGC plus ciprofloxacin therapy was comparable to that of TGC plus doxycycline therapy in patients with V. vulnificus septicemia.
Collapse
Affiliation(s)
- Seong Eun Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
| | - Sung Un Shin
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
| | - Tae Hoon Oh
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
| | - Uh Jin Kim
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
| | - Kalifa Sanneh Darboe
- Department of Biomedical Science, Chonnam National University Medical School, Gwang-ju, Republic of Korea
| | - Seung-Ji Kang
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
- Department of Infectious Diseases, Chonnam National University Medical School, Gwang-ju, Republic of Korea
| | - Hee-Chang Jang
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
- Department of Infectious Diseases, Chonnam National University Medical School, Gwang-ju, Republic of Korea
| | - Sook-In Jung
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
- Department of Infectious Diseases, Chonnam National University Medical School, Gwang-ju, Republic of Korea
| | - Hee-Young Shin
- Department of Biomedical Science, Chonnam National University Medical School, Gwang-ju, Republic of Korea
- Department of Infectious Diseases, Chonnam National University Medical School, Gwang-ju, Republic of Korea
| | - Kyung-Hwa Park
- Department of Infectious Diseases, Chonnam National University Hospital, Gwang-ju, Republic of Korea
- Department of Infectious Diseases, Chonnam National University Medical School, Gwang-ju, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Le Quesne WJF, Baker-Austin C, Verner-Jeffreys DW, Al-Sarawi HA, Balkhy HH, Lyons BP. Antimicrobial resistance in the Gulf Cooperation Council region: A proposed framework to assess threats, impacts and mitigation measures associated with AMR in the marine and aquatic environment. ENVIRONMENT INTERNATIONAL 2018; 121:1003-1010. [PMID: 29980310 DOI: 10.1016/j.envint.2018.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/24/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
It is becoming increasingly clear that the genetic diversity and abundance of antimicrobial resistance (AMR) in non-clinical settings has been underestimated and that the environment plays an integral role in enabling the development of AMR. Due to specific demographic and environmental factors the Gulf Cooperation Council (GCC) region may be particularly susceptible to the threat of AMR, with the marine and aquatic environment potentially playing a specific role in its development and propagation. The demographic factors include rapid population growth, significant international population movements, heavy antibiotic use and insufficient antibiotic stewardship. Environmental factors leading to susceptibility include notable inputs of untreated sewage effluent, high ambient water temperatures, elevated concentrations of heavy metals, and poorly regulated use of antimicrobials in veterinary settings. However, to date there is only a limited understanding of the role that this environment plays in enabling the emergence and propagation AMR in this region. This article provides an overview of the risk associated with AMR in the marine and aquatic environment in the GCC region and proposes a framework for understanding how such environments interact with the wider development and propagation of resistance. It identifies priority actions aligned with the World Health Organisation AMR Global Action Plan and associated national action plans to evaluate the role of marine and aquatic systems relative to the wider factors driving AMR emergence and propagation. The proposed framework and actions to evaluate the role of marine and aquatic environments in driving propagation and emergence of AMR are equally applicable at the regional and national level beyond the GCC.
Collapse
Affiliation(s)
- William J F Le Quesne
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom.
| | - David W Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Hanan A Al-Sarawi
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, United Kingdom; Department of Earth & Environmental Sciences, Kuwait University, Faculty of Science, P.O. Box 5969, Safat 13060, Kuwait; Kuwait Environment Public Authority (KEPA), P.O. Box: 24395, Safat 13104, Kuwait
| | - Hanan H Balkhy
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Infection Prevention and Control Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia; GCC Centre for Infection Control, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Brett P Lyons
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
35
|
Ussin NK, Bagnell AM, Offermann LR, Abdulsalam R, Perdue ML, Magee P, Chruszcz M. Structural characterization of 1-deoxy-D-xylulose 5-phosphate Reductoisomerase from Vibrio vulnificus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1209-1215. [PMID: 30278288 DOI: 10.1016/j.bbapap.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Vibrio vulnificus, a gram-negative bacterium, is the leading cause of seafood-borne illnesses and mortality in the United States. Previous studies have identified metabolites 2-C-methylerythritol 4-phosphate (MEP) as being essential for V. vulnificus growth and function. It was shown that 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) is a critical enzyme in the viability of V. vulnificus, and many other bacteria, as it catalyzes the rearrangement of 1-deoxy-D-xylulose-5-phosphate (Dxp) to 2-C-methylerythritol 4-phosphate (MEP) within the MEP pathway, found in plants and bacteria. The MEP pathway produces the isoprenoids, isopentenyl diphosphate and dimethylallyl pyrophosphate. In this study, we produced and structurally characterized V. vulnificus Dxr. The enzyme forms a dimeric assembly and contains a metal ion in the active site. Protein produced in Escherichia coli co-purifies with Mg2+ ions, however the Mg2+ cations may be substituted with Mn2+, as both of these metals may be utilized by Dxrs. These findings will provide a basis for the design of Dxr inhibitors that may find application as antimicrobial compounds.
Collapse
Affiliation(s)
- Nikita K Ussin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Anna M Bagnell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lesa R Offermann
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States; Department of Chemistry, Davidson College, Davidson, NC 28035, United States
| | - Rawan Abdulsalam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Makenzie L Perdue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Patrick Magee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
36
|
Characterization of Vibrio vulnificus Isolated from the Coastal Areas in the Eastern Province of Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
37
|
Turner JW, Tallman JJ, Macias A, Pinnell LJ, Elledge NC, Nasr Azadani D, Nilsson WB, Paranjpye RN, Armbrust EV, Strom MS. Comparative Genomic Analysis of Vibrio diabolicus and Six Taxonomic Synonyms: A First Look at the Distribution and Diversity of the Expanded Species. Front Microbiol 2018; 9:1893. [PMID: 30158916 PMCID: PMC6104160 DOI: 10.3389/fmicb.2018.01893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio is a diverse genus of Gammaproteobacteria autochthonous to marine environments worldwide. Vibrio diabolicus and V. antiquarius were originally isolated from deep-sea hydrothermal fields in the East Pacific Rise. These species are closely related to members of the Harveyi clade (e.g., V. alginolyticus and V. parahaemolyticus) that are commonly isolated from coastal systems. This study reports the discovery and draft genome sequence of a novel isolate (Vibrio sp. 939) cultured from Pacific oysters (Crassostrea gigas). Questions surrounding the identity of Vibrio sp. 939 motivated a genome-scale taxonomic analysis of the Harveyi clade. A 49-genome phylogeny based on 1,109 conserved coding sequences and a comparison of average nucleotide identity (ANI) values revealed a clear case of synonymy between Vibrio sp. 939, V. diabolicus Art-Gut C1 and CNCM I-1629, V. antiquarius EX25 and four V. alginolyticus strains (E0666, FF273, TS13, and V2). This discovery expands the V. diabolicus species and makes available six additional genomes for comparative genomic analyses. The distribution of the expanded species is thought to be global given the range of isolation sources (horse mackerel, seawater, sediment, dentex, oyster, artemia and polycheate) and origins (China, India, Greece, United States, East Pacific Rise, and Chile). A subsequent comparative genomic analysis of this new eight-genome subclade revealed a high degree of individual genome plasticity and a large repertoire of genes related to virulence and defense. These findings represent a significant revision to the understanding of V. diabolicus and V. antiquarius as both have long been regarded as distinct species. This first look at the expanded V. diabolicus subclade suggests that the distribution and diversity of this species mirrors that of other Harveyi clade species, which are notable for their ubiquity and diversity.
Collapse
Affiliation(s)
- Jeffrey W Turner
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - James J Tallman
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Amanda Macias
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Lee J Pinnell
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Nicole C Elledge
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Danial Nasr Azadani
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - William B Nilsson
- Division of Environmental and Fisheries Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | - Rohinee N Paranjpye
- Division of Environmental and Fisheries Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| | - E V Armbrust
- Center for Environmental Genomics, School of Oceanography, University of Washington, Seattle, WA, United States
| | - Mark S Strom
- Division of Environmental and Fisheries Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States
| |
Collapse
|
38
|
Abstract
Vibrio is a genus of ubiquitous bacteria found in a wide variety of aquatic and marine habitats; of the >100 described Vibrio spp., ~12 cause infections in humans. Vibrio cholerae can cause cholera, a severe diarrhoeal disease that can be quickly fatal if untreated and is typically transmitted via contaminated water and person-to-person contact. Non-cholera Vibrio spp. (for example, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus) cause vibriosis - infections normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. Non-cholera bacteria can lead to several clinical manifestations, most commonly mild, self-limiting gastroenteritis, with the exception of V. vulnificus, an opportunistic pathogen with a high mortality that causes wound infections that can rapidly lead to septicaemia. Treatment for Vibrio spp. infection largely depends on the causative pathogen: for example, rehydration therapy for V. cholerae infection and debridement of infected tissues for V. vulnificus-associated wound infections, with antibiotic therapy for severe cholera and systemic infections. Although cholera is preventable and effective oral cholera vaccines are available, outbreaks can be triggered by natural or man-made events that contaminate drinking water or compromise access to safe water and sanitation. The incidence of vibriosis is rising, perhaps owing in part to the spread of Vibrio spp. favoured by climate change and rising sea water temperature.
Collapse
|
39
|
Lydon KA, Robertson MJ, Lipp EK. Patterns of triclosan resistance in Vibrionaceae. PeerJ 2018; 6:e5170. [PMID: 30013840 PMCID: PMC6046194 DOI: 10.7717/peerj.5170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/16/2018] [Indexed: 11/30/2022] Open
Abstract
The antimicrobial additive triclosan has been used in personal care products widely across the globe for decades. Triclosan resistance has been noted among Vibrio spp., but reports have been anecdotal and the extent of phenotypic triclosan resistance across the Vibrionaceae family has not been established. Here, triclosan resistance was determined for Vibrionaceae strains across nine distinct clades. Minimum inhibitory concentrations (MIC) were determined for 70 isolates from clinical (n = 6) and environmental sources (n = 64); only two were susceptible to triclosan. The mean MIC for all resistant Vibrionaceae was 53 µg mL-1 (range 3.1-550 µg mL-1), but was significantly different between clades (p < 0.001). The highest mean triclosan MIC was observed in the Splendidus clade (200 µg mL-1; n = 3). Triclosan mean MICs were 68.8 µg mL-1 in the Damselae clade and 45.3 µg mL-1 in the Harveyi clade. The lowest mean MIC was observed in the Cholerae clade with 14.4 µg mL-1, which was primarily represented by clinical strains. There were no significant differences in triclosan MIC among individual species or among environmental strains isolated from different locations. Overall, phenotypic triclosan resistance appears to be widespread across multiple clades of Vibrionaceae.
Collapse
Affiliation(s)
- Keri A. Lydon
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | - Megan J. Robertson
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
40
|
Imdad S, Batool N, Pradhan S, Chaurasia AK, Kim KK. Identification of 2',4'-Dihydroxychalcone as an Antivirulence Agent Targeting HlyU, a Master Virulence Regulator in Vibrio vulnificus. Molecules 2018; 23:E1492. [PMID: 29925801 PMCID: PMC6099652 DOI: 10.3390/molecules23061492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
The emergence of antimicrobial resistance and rapid acclimation allows Vibrio vulnificus to rapidly propagate in the host. This problematic pathological scenario can be circumvented by employing an antivirulence strategy, treating Vibrio infections without hindering the bacterial growth. We developed a genome-integrated orthogonal inhibitor screening platform in E. coli to identify antivirulence agents targeting a master virulence regulator of V. vulnificus. We identified 2′,4′-dihydroxychalcone (DHC) from the natural compound library and verified that it decreases the expression of the major toxin network which is equivalent to the ∆hlyU deletion mutant. 2′,4′-DHC also reduced the hemolytic activity of V. vulnificus which was tested as an example of virulence phenotype. The electrophoretic mobility shift assay confirmed that 2′,4′-DHC specifically targeted HlyU and inhibited its binding to PrtxA1 promoter. Under in vivo conditions, a single dose of 2′,4′-DHC protected ~50% wax-worm larvae from V. vulnificus infection at a non-toxic concentration to both V. vulnificus and wax-worm larvae. In the current study, we demonstrated that an orthogonal reporter system is suitable for the identification of antivirulence compounds with accuracy, and identified 2′,4′-DHC as a potent antivirulence agent that specifically targets the HlyU virulence transcriptional regulator and significantly reduces the virulence and infection potential of V. vulnificus.
Collapse
Affiliation(s)
- Saba Imdad
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Nayab Batool
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Subhra Pradhan
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, School of Medicine, Samsung Medical Center, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
41
|
Imdad S, Chaurasia AK, Kim KK. Identification and Validation of an Antivirulence Agent Targeting HlyU-Regulated Virulence in Vibrio vulnificus. Front Cell Infect Microbiol 2018; 8:152. [PMID: 29868508 PMCID: PMC5958221 DOI: 10.3389/fcimb.2018.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) in pathogens is the result of indiscriminate use of antibiotics and consequent metabolic/genetic modulation to evolve survival strategies and clonal-selection in AMR strains. As an alternative to antibiotic treatment, antivirulence strategies are being developed, not only to combat bacterial pathogenesis, but also to avoid emerging antibiotic resistance. Vibrio vulnificus is a foodborne pathogen that causes gastroenteritis, necrotizing wound infections, and sepsis with a high rate of mortality. Here, we developed an inhibitor-screening reporter platform to target HlyU, a master transcriptional regulator of virulence factors in V. vulnificus by assessing rtxA1 transcription under its control. The inhibitor-screening platform includes wild type and ΔhlyU mutant strains of V. vulnificus harboring the reporter construct PrtxA1::luxCDABE for desired luminescence signal detection and control background luminescence, respectively. Using the inhibitor-screening platform, we identified a small molecule, fursultiamine hydrochloride (FTH), that inhibits the transcription of the highly invasive repeat-in-toxin (rtxA1) and hemolysin (vvhA) along with other HlyU regulated virulence genes. FTH has no cytotoxic effects on either host cells or pathogen at the tested concentrations. FTH rescues host cells from the necrotic cell-death induced by RtxA1 and decreases the hemolytic activity under in vitro conditions. The most important point is that FTH treatment does not induce the antivirulence resistance. Current study validated the antivirulence strategy targeting the HlyU virulence transcription factor and toxin-network of V. vulnificus and demonstrated that FTH, exhibits a potential to inhibit the pathogenesis of deadly, opportunistic human pathogen, V. vulnificus without inducing AMR.
Collapse
Affiliation(s)
- Saba Imdad
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Akhilesh Kumar Chaurasia
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
42
|
Vibrio parahaemolyticus and Vibrio vulnificus Recovered from Oysters during an Oyster Relay Study. Appl Environ Microbiol 2018; 84:AEM.01790-17. [PMID: 29150510 DOI: 10.1128/aem.01790-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022] Open
Abstract
Vibrio parahaemolyticus and Vibrio vulnificus are naturally occurring estuarine bacteria and are the leading causes of seafood-associated infections and mortality in the United States. Though multiple-antibiotic-resistant V. parahaemolyticus and V. vulnificus strains have been reported, resistance patterns in vibrios are not as well documented as those of other foodborne bacterial pathogens. Salinity relaying (SR) is a postharvest processing (PHP) treatment to reduce the abundances of these pathogens in shellfish harvested during the warmer months. The purpose of this study was to evaluate the antimicrobial susceptibility (AMS), pathogenicity, and genetic profiles of V. parahaemolyticus and V. vulnificus recovered from oysters during an oyster relay study. Isolates (V. parahaemolyticus [n = 296] and V. vulnificus [n = 94]) were recovered from oysters before and during the 21-day relaying study to detect virulence genes (tdh and trh) and genes correlated with virulence (vcgC) using multiplex quantitative PCR (qPCR). AMS to 20 different antibiotics was investigated using microbroth dilution, and pulsed-field gel electrophoresis (PFGE) was used to study the genetic profiles of the isolates. Twenty percent of V. vulnificus isolates were vcgC+, while 1 and 2% of V. parahaemolyticus were tdh+ and trh+, respectively. More than 77% of the V. vulnificus isolates and 30% of the V. parahaemolyticus isolates were resistant to at least one antimicrobial. Forty-eight percent of V. vulnificus and 8% of V. parahaemolyticus isolates were resistant to two or more antimicrobials. All isolates demonstrated a high genetic diversity, even among those isolated from the same site and having a similar AMS profile. No significant effects of the relaying process on AMS, virulence genes, or PFGE profiles of V. vulnificus and V. parahaemolyticus were observed.IMPORTANCE Analysis of the antibiotic resistance profiles of V. vulnificus and V. parahaemolyticus isolated from oysters during this study indicated that more than 48% of V. vulnificus isolates were resistant to two or more antimicrobials, including those recommended by the CDC for treating Vibrio infections. Also, the V. parahaemolyticus isolates showed high MICs for some of the Vibrio infection treatment antibiotics. Monitoring of AMS profiles of this bacterium is important to ensure optimal treatment of infections and improve food safety. Our study showed no significant differences in the AMS profiles of V. vulnificus (P = 0.26) and V. parahaemolyticus (P = 0.23) isolated from the oysters collected before versus after relaying. This suggests that the salinity of the relaying sites did not affect the AMS profiles of the Vibrio isolates, although it did reduce the numbers of these bacteria in oysters (S. Parveen et al., J Food Sci 82:484-491, 2017, https://doi.org/10.1111/1750-3841.13584).
Collapse
|
43
|
Yang JH, Mok JS, Jung YJ, Lee KJ, Kwon JY, Park K, Moon SY, Kwon SJ, Ryu AR, Lee TS. Distribution and antimicrobial susceptibility of Vibrio species associated with zooplankton in coastal area of Korea. MARINE POLLUTION BULLETIN 2017; 125:39-44. [PMID: 28781188 DOI: 10.1016/j.marpolbul.2017.07.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Vibrio parahaemolyticus and V. vulnificus are the most common pathogens causing seafood-borne illnesses in Korea. This study determines the abundance and antimicrobial resistance of pathogenic Vibrio species in seawater and zooplankton samples from the Geoje Island coast in Korea, which is an important area for coastal fisheries, the fishing industry, and tourism. The two Vibrio species were detected more in mesozooplankton samples than in seawater samples. V. parahaemolyticus isolates showed greater resistance than those of V. vulnificus for antimicrobials. Of V. parahaemolyticus isolates, 93.3% exhibited resistance to three or more antimicrobial agents. Conversely, more than 80% of V. vulnificus isolates showed susceptibility to all antimicrobials examined, with the exception of rifampicin. Our findings show that strong antimicrobial resistance of V. parahaemolyticus in the surveyed area was exposed to conventionally used antibiotics, therefore necessitating proper surveillance programs for the monitoring of antimicrobial resistance patterns in seawater bodies and aquatic animals.
Collapse
Affiliation(s)
- Ji Hye Yang
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Jong Soo Mok
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea.
| | - Yeoun Joong Jung
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Ka Jeong Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Ji Young Kwon
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Seong Yong Moon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Soon Jae Kwon
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - A Ra Ryu
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Tea Seek Lee
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
44
|
Efficacy of Ceftriaxone, Cefepime, Doxycycline, Ciprofloxacin, and Combination Therapy for Vibrio vulnificus Foodborne Septicemia. Antimicrob Agents Chemother 2017; 61:AAC.01106-17. [PMID: 28971862 DOI: 10.1128/aac.01106-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/23/2017] [Indexed: 12/17/2022] Open
Abstract
Foodborne Vibrio vulnificus infections are associated with higher rates of sepsis and mortality than wound infections; however, antibiotic efficacy studies have not been performed in foodborne infection models. The efficacies of ceftriaxone, cefepime, doxycycline, ciprofloxacin, and combination therapy were assessed in V. vulnificus intestinal infection in mice in order to model foodborne infections. In accordance with prior studies of cefotaxime, cefepime was synergistic with doxycycline and ciprofloxacin in vitro; combination therapy significantly decreased bacterial growth, by ≥2 log10 units, from that with antibiotic monotherapy (P < 0.01). In vivo, survival rates in the ceftriaxone (50%), doxycycline (79%), and ciprofloxacin (80%) groups were significantly higher than those in the control group (0%) (P < 0.0001). Survival was significantly higher with ceftriaxone-doxycycline (91%) or ceftriaxone-ciprofloxacin (100%) therapy than with ceftriaxone (50%) (P ≤ 0.05). Survival with cefepime-doxycycline (96%) or cefepime-ciprofloxacin (90%) therapy was significantly higher than that with cefepime alone (20%) (P < 0.001). There was no difference in survival between the combination therapy groups. Thus, we conclude that combination therapy was the most effective treatment for foodborne V. vulnificus septicemia. In a septic patient with a recent ingestion of raw seafood, cefepime in combination with doxycycline or ciprofloxacin should be initiated for coverage of resistant Gram-negative organisms and V. vulnificus pending a microbiological diagnosis. Once a diagnosis of foodborne V. vulnificus septicemia is established, treatment can safely transition to ceftriaxone in combination with doxycycline or ciprofloxacin.
Collapse
|
45
|
Williams TC, Froelich BA, Phippen B, Fowler P, Noble RT, Oliver JD. Different abundance and correlational patterns exist between total and presumed pathogenic Vibrio vulnificus and V. parahaemolyticus in shellfish and waters along the North Carolina coast. FEMS Microbiol Ecol 2017; 93:3836909. [PMID: 28531284 DOI: 10.1093/femsec/fix071] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/18/2017] [Indexed: 11/12/2022] Open
Abstract
Monitoring of Vibrio vulnificus and V. parahaemolyticus abundance is pertinent due to the ability of these species to cause disease in humans through aquatic vectors. Previously, we performed a multiyear investigation tracking Vibrio spp. levels in five sites along the southeastern North Carolina coast. From February 2013 to October 2015, total V. vulnificus and V. parahaemolyticus abundance was measured in water, oysters and clams. In the current study, pathogenic subpopulations were identified in these isolates using molecular markers, revealing that 5.3% of V. vulnificus isolates possessed the virulence-correlated gene (vcgC), and 1.9% of V. parahaemolyticus isolates harbored one or both of the virulence-associated hemolysin genes (tdh and trh). Total V. parahaemolyticus abundance was not sufficient to predict the abundance of pathogenic subpopulations. Specifically, pathogenic V. parahaemolyticus isolates were more often isolated in cooler waters and were sometimes isolated when no other V. parahaemolyticus strains were detectable. Vibrio vulnificus clinical (C-) genotypes correlated with total V. vulnificus; however, salinity, water depth and total suspended solids influenced C- and E-genotypes differently. Lastly, we documented individual oysters harboring significantly higher V. vulnificus levels for which there was no ecological explanation, a phenomenon that deserves closer attention due to the potentially elevated health hazard associated with these 'hot' shellfish.
Collapse
Affiliation(s)
- Tiffany C Williams
- The University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC 28223, USA
| | - Brett A Froelich
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC 28557, USA
| | - Britney Phippen
- The University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC 28223, USA
| | - Patricia Fowler
- The North Carolina Department of Environment and Natural Resources, Division of Marine Fisheries, Morehead City, NC 28223, USA
| | - Rachel T Noble
- The University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC 28557, USA
| | - James D Oliver
- The University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC 28223, USA
| |
Collapse
|
46
|
Serratore P, Zavatta E, Fiocchi E, Serafini E, Serraino A, Giacometti F, Bignami G. Preliminary study on the antimicrobial susceptibility pattern related to the genotype of Vibrio vulnificus strains isolated in the north-western Adriatic Sea coastal area. Ital J Food Saf 2017; 6:6843. [PMID: 29564231 PMCID: PMC5850071 DOI: 10.4081/ijfs.2017.6843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 01/22/2023] Open
Abstract
V. vulnificus is a Gram-negative bacterium, commonly found in estuarine and coastal habitats, that can infect humans through seafood consumption or wound exposure. This study represents the first attempt to correlate the genotype of Vibrio vulnificus strains isolated in the north-western Adriatic Sea coastal area, with their antimicrobial susceptibility patterns. On the whole, 40 V. vulnificus strains, isolated from shellfish (n=20), different coastal water bodies (n=19), and the blood of a Carretta carretta turtle (n=1), were utilized. All strains were positive for the species-specific genes vvhA and hsp, with high variability for other markers: 55% (22 out of 40) resulted of the environmental (E) genotype (vcgE, 16S rRNA type A, CPS2 or CPS0), 10% (4 out of 40) of the clinical (C) genotype (vcgC, 16S rRNA type B, CPS1), and 35% (14 out of 40) of the mixed (M) genotype, possessing both E and C markers. The antimicrobial susceptibility was assayed by the diffusion method on agar, according to the Clinical Laboratory Standards Institute (CLSI), utilizing the following commercial disks (Oxoid): ampicillin (AMP), ampicillin- sulbactam (SAM), piperacillin (PRL), cefazolin (KZ), cefotaxime(CTX), ceftazidime (CAZ), imipenem (IPM), meropenem (MEM), amikacin (AK), gentamicin(CN), tetracycline(TE), ciprofloxacin (CIP), levofloxacin (LEV), trimethoprim-sulfamethoxazole (SXT), and chloramphenicol (C). 75% of the strains, (n=30) including all C strains, was sensitive to all the tested antibiotics, whereas E strains showed intermediate sensitivity to AK (2 strains), CIP and CAZ (1 strain), TE (1 strain) and resistance to KZ (1 strain), and 4 M strains showed I to AK.
Collapse
Affiliation(s)
- Patrizia Serratore
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Emanuele Zavatta
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Eleonora Fiocchi
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Emanuele Serafini
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giorgia Bignami
- Department of Veterinary Medical Science, Alma Mater Studiorum- University of Bologna, Bologna, Italy
| |
Collapse
|
47
|
Elbashir S, Parveen S, Schwarz J, Rippen T, Jahncke M, DePaola A. Seafood pathogens and information on antimicrobial resistance: A review. Food Microbiol 2017; 70:85-93. [PMID: 29173644 DOI: 10.1016/j.fm.2017.09.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023]
Abstract
Seafood-borne diseases are a major public health hazard in the United States and worldwide. Per capita, seafood consumption has increased globally during recent decades. Seafood importation and domestic aquaculture farming has also increased. Moreover, several recent outbreaks of human gastroenteritis have been linked to the consumption of contaminated seafood. Investigation of seafood-borne illnesses caused by norovirus, and Vibrio, and other bacteria and viruses require a concrete knowledge about the pathogenicity and virulence properties of the etiologic agents. This review explores pathogens that have been associated with seafood and resulting outbreaks in the U.S. and other countries as well as the presence of antimicrobial resistance in the reviewed pathogens. The spectrum of such resistance is widening due to the overuse, misuse, and sub-therapeutic application of antimicrobials in humans and animals.
Collapse
Affiliation(s)
- S Elbashir
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA
| | - S Parveen
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA.
| | - J Schwarz
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA
| | - T Rippen
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, 2116 Center for Food Science and Technology, Princess Anne, MD 21853, USA
| | - M Jahncke
- Virginia Tech., Virginia Seafood Agricultural Research and Extension Center, 102 South King Street, Hampton, VA 23669, USA
| | - A DePaola
- Angelo DePaola Consulting, 12719 Dauphin Island Pkwy, Coden, AL 36523, USA
| |
Collapse
|
48
|
McArthur JV, Dicks CA, Bryan AL, Tuckfield RC. The effects of low-level ionizing radiation and copper exposure on the incidence of antibiotic resistance in lentic biofilm bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:390-397. [PMID: 28554028 DOI: 10.1016/j.envpol.2017.03.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Environmental reservoirs of antibiotic resistant bacteria are poorly understood. Understanding how the environment selects for resistance traits in the absence of antibiotics is critical in developing strategies to mitigate this growing menace. Indirect or co-selection of resistance by environmental pollution has been shown to increase antibiotic resistance. However no attention has been given to the effects of low-level ionizing radiation or the interactions between radiation and heavy metals on the maintenance or selection for antibiotic resistance (AR) traits. Here we explore the effect of radiation and copper on antibiotic resistance. Bacteria were collected from biofilms in two ponds - one impacted by low-level radiocesium and the other an abandoned farm pond. Through laboratory controlled experiments we examined the effects of increasing concentrations of copper on the incidence of antibiotic resistance. Differences were detected in the resistance profiles of the controls from each pond. Low levels (0.01 mM) of copper sulfate increased resistance but 0.5 mM concentrations of copper sulfate depressed the AR response in both ponds. A similar pattern was observed for levels of multiple antibiotic resistance per isolate. The first principal component response of isolate exposure to multiple antibiotics showed significant differences among the six isolate treatment combinations. These differences were clearly visualized through a discriminant function analysis, which showed distinct antibiotic resistance response patterns based on the six treatment groups.
Collapse
Affiliation(s)
- J Vaun McArthur
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA.
| | | | - A Lawrence Bryan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
| | | |
Collapse
|
49
|
Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, Chan KG, Goh BH, Pusparajah P, Lee LH. Vibrio vulnificus: An Environmental and Clinical Burden. Front Microbiol 2017; 8:997. [PMID: 28620366 PMCID: PMC5449762 DOI: 10.3389/fmicb.2017.00997] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.
Collapse
Affiliation(s)
- Sing-Peng Heng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Chuan-Yan Deng
- Zhanjiang Evergreen South Ocean Science and Technology CorporationGuangdong, China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Tahir M. Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Department of Pharmacy, Absyn University PeshawarPeshawar, Pakistan
| | - Lay-Hong Chuah
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
50
|
Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol 2017; 25:76-84. [DOI: 10.1016/j.tim.2016.09.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/21/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022]
|